
History of
Abstract

Interpretation

Roberto Giacobazzi
Francesco Ranzato

HFM 2019

Acknowledgements
These slides are much indebted and inspired from

Patrick Cousot's talk

Abstract Interpretation: 40 years back + some years ahead

at the

Next 40 years of Abstract Interpretation (N40AI)

Workshop held in Paris on January 21st 2017

part of POPL2017 week

The cultural context

Historical Context in the 1940 — 1970

H.H. Goldstine and J. von Neumann. 1947Turing, A. M. 1949

EC?
i^e;^c»vT o%^ iU«. \->^r^ tlie \._. ^i- .

cd ... -T< y

PLANNINQ AND CODING OF PROBLEMS

FOR AN

ELECTRONIC COMPUTING INSTRUMENT

BY

Herma/1 H> Goldstlne John von Neumann

Report on the Kbthematical and Logical aspects of an

Electronic Cornputing Instrument

Part II, Volume I- 3

IAS ECP list of reports,

19^6-57. nos. k, 8, 11.

Institute for Advanced Study
Princeton, New Jersey

IM7

Flow diagrams

Historical Context in the 1940 — 1970
FIGURE 7.2

OUT
OUT

Piird : The alternative boxes which we introduced correspond to the
conditional transfer orders xCc, xCC. I.e., the intention that they express will
be effected in the actual code by such an order. Of the two output branches (cf.

e.g. Figure 7-2 a) one leads to the order following imtediately in the selectron
memory upon the last order on the input branch, while the other leads to the left
or the right hand order in S(x). If at the moment at whifch this decision is made
the number u is in A, then u < o causes the first branch to be taken. We wi I I place
the u which is thus valid into the alternative box, and mark the two branches repre-
senting the two alternatives u ^ o and u < o by + and by -, respectively. In this
way Figures 7.2 a-b become Figures 7.3 a-b. Figure 7.3 b may be made still more
specific: If the induction variable is i, and if the induction is to end when i

reaches the value 1 i if i 's successive values are 0, I, 2 ..., then this means
that I iterations are wanted), and if, as shown in Figure 7.3 b, the - branch is

in the induction loop while the + branch leaves it, then the u of this Figure may
'be chosen as i - I, and the complete scheme is that shown in Figure 7.3 c. (In
many inductions the natural ending is defined by i + 1, having reached a certain
value I. Then the above i - I is to be replaced by i - I + 1.

)

H.H. Goldstine and J. von Neumann. 1947

Block
Diagrams

Historical Context in the 1940 — 1970
-12-

The static coding of the boxes I-Xl follows:

C.1

C.2

I.l

H.H. Goldstine and J. von Neumann. 1947

Asse
rtio

n boxes
See Mark’s
presentation

Historical Context in the 1940 — 1970

133

M. T. démontre eu outre que ces résultats ne peuvent être
généralisés davantage.

Dans tous ces raisonnements M. T. a recours à quelques
nouvelles formules élémentaires sur les images d’ensembles, en par
ticulier à la 'form ule

R(A . iP (B)) = R{ A) . B;

où R est une relation uni-plurivoque et R en est la relation
inverse.

B. K n a s te r: Un théorème sur les fonctions d'ensembles.
M. K. communique les résultats suivants, obtenus en commun

par M. Tarski et lui.
En ce qui concerne le th. (7'8) de la communication précé

dente, on peut m ontrer que c e t h é o r è m e r e s t e v r a i p o u r
d e s r e l a t i o n s R e t S t o u t à f a i t a r b i t r a i r e s (donc aussi
lorsqu’elles sont plurivoques dans les deux sens). Cela résulte du
théorème :

(T) f e t g é t a n t d e s f o n c t i o n s m a n o t o n e s 1) d’e n
s e m b l e s t e l l e s q u e

B l = f { A) e t A x — g(B)

où AX Ç_A e t B, C -B , i l e x i s t e d e s e n s e m b l e s Z), E , F et
G t e l s . q u e A = D - f E, B = F - \ - G , D E = 0 = F G e t

F = f (D) e t E = g(G).

Il suffit, en effet, de poser dans (T) :

f (X) = S (X) et g (Y) = S (Y)

pour tout X C2 A et Y Ç2 B. les images de relations quelconques
étant des fonctions monotones d’ensembles.

Le théorème (T) lui-même n’est qu’un cas particulier du lemme:
(L) h (X) é t a n t u n e f o n c t i o n m o n o t o n e d’e n s e m b l e s

e t A u n e n s e m b l e t e l q u e h(A) (7. A, i l e x i s t e un s o u s -
e n s e m b l e D d e A t e l q u e D — h(D).

En effet, si l’on pose dans (L):

h (X) = A - g (B - f (X)) ,

') C’est-à-dire telles que X d Y entraîne f (X) Ç Z f (Y) et g(X) d g (Y) .

1928

1955

A LATTICE THEORETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALF RED TARSKI

1. A lattice theoretical fixpoint theorem. In this section we formulate and
prove an elementary fixpoint theorem which holds in arbitrary complete lat t ices.
In the following sections we give various applications (and extensions) of this
result in the theories of simply ordered sets, real functions, Boolean algebras,
as well as in general set theory and topology. *

By a lattice we understand as usual a system 21 = (A9 <) formed by a non
empty set A and a binary relation <; it is assumed that < establishes a partial
order in A and that for any two elements afb E A there is a least upper bound
(join) a u b and a greatest lower bound (meet) an b. The relations >L, < , and
> are defined in the usual way in terms of < .

The lattice 21 = (A, <) is called complete if every subset B of A has a
least upper bound B and a greatest lower bound Πβ. Such a lattice has in
particular two elements 0 and 1 defined by the formulas

0 = ΓU and 1 = 11,4.

Given any two elements a9b E A with a < b, we denote by [a9b] the interval
with the endpoints a and b, that is, the set of all elements x E A for which
a < x < b; in symbols,

[a,b] = Ex[x E A and a .< x .< b] .

The system \ [α , 6] , <) is clearly a latt ice; it is a complete if 21 is complete.

We shall consider functions on A to A and, more generally, on a subset B of
A to another subset C of A. Such a function / is called increasing if, for any

1 F o r notions and facts concerning lat t ices, simply ordered systems, and Boolean
algebras consult [l] .

Received June 29, 1953. Most of the results contained in this paper were obtained
in 1939. A summary of the results was given in [6] . The paper was prepared for pub
lication when the author was working on a research project in the foundations of mathe
matics sponsored by the Office of Ordnance Research, U.S. Army.

Pacific J. Math. 5 (1955), 285 309
285

Historical Context in the 1940 — 1970

 ANNALS OF MATHEMATICS

 Vol. 43, No. 2, April, 1942

 THE CLOSURE OPERATORS OF A LATTICE

 BY MORGAN WARD

 (Received January 29, 1940)

 I. INTRODUCTTON

 1. If C is a lattice of elements A, B., the class of all operators of e (that

 is, one-valued functions kX = O(X) on ? to A) may be made into a lattice by
 defining the union 6 and cross-cut K of any set 4) of operators O by'

 AX = (I .. O X .. *), KX = [I .. *X ... *], O e-4)

 The union and cross-cut here are taken over all the values OX of the operators
 in 4) for any given X of 2.

 It is easily verified that the operators of e form a lattice in which O D V' if
 and only if kX D {,X for every X of ({; furthermore this lattice is closed, modular,
 or distributive according as (E is closed, modular or distributive.2

 The operator lattice of a lattice is a concept comparable in generality to the
 Boolean algebra of all subsets of a lattice. As in the algebra, it is certain
 distinguished sets of operators which are useful in investigating the given lat-
 tice rather than the operator lattice itself.

 ()ne obviously important distinguished type is the linear operator. An
 operator O is said to be linear if for any subset 21 of elements A of A, it has one
 or more of the four properties

 .) (i) f((- K * 4 .) = (.. K A ... (iii) O[f ...A [A ...a **]
 (ii) O(... A .. *) = [a .. O A ..*.] (iv) O[... A O]= (A ..*.)

 Here the unions and cross-cuts are taken over all the elements of 21, and 21 is
 finite if C is not closed. Lattice homomorphisms and homomorphisms with
 respect to union with properties (i), (iii) and (i) respectively are familiar ex-
 amples. (Ore 1).

 The linear operators and certain associated lattices are important in the
 study of residuated lattices (Ward-Dilworth 1) as I plan to show in detail
 elsewhere.'

 1 If (is not closed, ' is assumed to contain only a finite number of operators. A lattice
 is said to be closed (or "complete" or "continuous") if it contains the union and cross-cut
 of any subset of elements in it.

 2 Chain conditions in (E do not usually carry over to the operator-lattice.
 3 The product+; of two operators and q defined by cqX = 0(q(X)) immediately gives

 us an associative multiplication over the operator lattice. On the other hand if B is any
 fixed element of a residuated lattice (E, the operators ,u and p defined by ,.X = BX, pX =
 B:X have the linear properties j(.. A ...) = (.-*- 4A ...), p(... A ...) = [-* pA . .1.

 191

This content downloaded from 2.82.200.240 on Thu, 10 Oct 2019 22:48:25 UTC
All use subject to https://about.jstor.org/terms

Historical Context in the 1940 — 1970

José Morgado: in memoriam

J. Almeida A. Machiavelo

Centro de Matemática da Universidade do Porto

Departamento de Matemática Pura

Faculdade de Ciências, Universidade do Porto

José Morgado nasceu a 17 de Fevereiro de 1921, em Pegarinhos, a aldeia
trasmontana da região duriense que era a capital do universo como, com
orgulho e ironia provocatória, gostava de referir. Fez a escola primária em
Pegarinhos, e o primeiro e segundo anos do liceu em Favaios, que fica a
uns 19Kms da sua aldeia natal. Não se tendo inscrito no terceiro ano do
liceu, por a famı́lia não poder arcar com as despesas necessárias, já que a
localidade mais próxima onde o poderia fazer era Vila Real, a uns 60Kms
de Pegarinhos, foram alguns dos professores que se encarregaram de tratar
pessoalmente de garantir que o adolescente José Morgado prosseguisse os
seus estudos, pois tinha-se revelado já um aluno excepcional, não apenas
nesta ou aquela disciplina, mas em todas, como escreve aquele que seria o
seu professor de Filosofia em Vila Real, Sant’anna Diońısio, em [4, pp. 180–
181], onde relata esta história. E acrescenta:

O rapaz [...] foi, conforme se previa, um dos mais destacados
para não dizer dos mais notáveis estudantes que teriam passado

1

Historical Context in the 1940 — 1970

A BASIS FOR A MATHEMATICAL THEORY OF
COMPUTATION 1)

JOHN McCARTHY

Computation is sure to become one of the most important of the sciences.
This is because it is the science of how machines can be made to carry
out intellectual processes. We know that any intellectual process that can
be carried out mechanically can be performed by a general purpose digital
computer. Moreover, the limitations on what we have been able to make
computers do so far clearly come far more from our weakness as pro-
grammers than from the intrinsic limitations of the machines. We hope
that these limitations can be greatly reduced by developing a mathemati-
cal science of computation.

There are three established directions of mathematical research
relevant to a science of computation. The first and oldest of these is
numerical analysis. Unfortunately, its subject matter is too narrow to be
of much help in forming a general theory, and it has only recently begun
to be affected by the existence of automatic computation.

The second relevant direction of research is the theory of computability
as a branch of recursive function theory. The results of the basic work
in this theory, including the existence of universal machines and the
existence of unsolvable problems, have established a framework in which
any theory of computation must fit. Unfortunately, the general trend of
research in this field has been to establish more and better unsolvability
theorems, and there has been very little attention paid to positive results
and none to establishing the properties of the kinds of algorithms that
are actually used. Perhaps for this reason the formalisms for describing
algorithms are too cumbersome to be used to describe actual algorithms.

The third direction of mathematical research is the theory of finite
automata. Results which use the finiteness of the number of states tend
not to be very useful in dealing with present computers which have so

l) This paper is a corrected version of the paper of the same title given at the Western
Joint Computer Conference, May 1961. A tenth section discussing the relations
between mathematical logic and computation has been added.

Bridge between computability and
programming!

1963

Historical Context in the 1970s

Peter Naur 1966.
Proof of algorithms by general snapshots

BIT 6 (1966), 310-316

PROOF OF ALGORITHMS BY GENERAL SNAPSHOTS

PETER NAUR

Abstract .
A constructive approach to the question of proofs of algorithms is to consider

proofs that an object resulting from the execution of an algorithm possesses cer-
tain static characteristics. It is shown by an elementary example how this pos-
sibility may be used to prove the correctness of an algorithm written in ALGOL 60.
The stepping stone of the approach is what is called General Snapshots, i.e. ex-
pressions of static conditions existing whenever the execution of the algorithm
reaches particular points. General Snapshots are further shown to be useful for
constructing algorithms.

Key words: Algorithm, proof, computer, programming.

Introduct ion .
I t is a deplorable consequence of the lack of influence of mathemat ica l

th inking on the way in which compute r p rogramming is cur ren t ly being
pursued, t h a t the regular use of systemat ic proof procedures, or even
the realization t h a t such proof procedures exist, is unknown to the large
major i ty of programmers . Undoub ted ly , this fac t accounts for a t least
a large share of the unrel iabi l i ty and the a t t e n d a n t lack of over-all ef-
fectiveness of programs as t h e y are used to-day .

Histor ical ly this s ta te of affairs is easily explained. Large scale com-
pu te r programming s ta r ted so recent ly t ha t all of its pract i t ioners are,
in fact , amateurs . At the same t ime the modern computers are so effec-
t ive t h a t t he y offer advantages in use even when the i r powers are largely
wasted. The stress has been on always larger, and, allegedly, more power-
ful systems, in spite of the fac t t h a t the available p rogrammer com-
petence often is unable to cope with their complexities.

However , a reac t ion is bound to come. We cannot indefini tely con-
t inue to build on sand. When this is realized there will be an increased
interest in the less glamorous, bu t more solid, basic principles. This will
go in parallel with the in t roduct ion of these principles in the e lementa ry
school curricula. One subject which will then come up for a t t en t ion is
t h a t of proving the correctness of algorithms. The purpose of the present
article is to show in an e lementa ry way t h a t this subject no t only exists,
b u t is ripe to be used in practise. The i l lustrat ions are phrased in ALGOL
60, bu t the technique m a y be used with any programming language.

Copyright (~ 1966 by Peter Naur.

P R O O F O F A L G O R I T H M S B Y G E N E R A L S N A P S H O T S 313

ments in the process, but still as applied to one particular set of data.
To illustrate this technique, every detail of an example of the use of
Program 1 is given above. Successive snapshots are given in successive
lines, where for clarity a value given in a column holds unchanged in
following lines unless another value is given.

This snapshot technique is quite useful as an aid to understanding a
given algorithm. However, it is not a proof technique because it depends
entirely on the choice of the data set. In order to achieve a proof we
shall need more general snapshots.

General Snapshots .
By a General Snapshot I shall mean a snapshot of a dynamic process

which is associated with one particular point in the actual program text,
and which is valid every time that point is reached in the execution of
the process.

From this definition it immediately follows tha t the values of vari-
ables given in a General Snapshot normally at best can be expressed as
general, mathematical expressions or by equivalent formulations. I have
to say "a t best" because in many cases we can only give certain limits on
the value, and I have to admit "equivalent formulations" because we do
not always have suitable mathematical notation available.

In order to illustrate this notion, here is a version of the above algorithm
expanded with General Snapshots at six different points:

PROGRAM 2
Greatest number, with snapshots

c o m m e n t General Snapshot 1:1 < N;
r : = l ;
c o m m e n t General Snapshot 2 : 1 < N, r = 1;
for i := 2 step 1 unt i l /V do

begin c o m m e n t General Snapshot 3 : 2 <= i <= N, 1 < r <= i - 1,
A[r] is the greatest among the elements A[1],A[2] , A [i - 1] ;
if A[i] > Air] then r : = i;
c o m m e n t General Snapshot 4: 2 < i < N , l < r< i, A[r] is the greatest
among the elements A [1], A [2] A [i];
end;

c o m m e n t General Snapshot 5 : 1 < r <-N, A[r] is the greatest among the
elements A[1],A[2] A[_N];
R : = A[r];
c o m m e n t General Snapshot 6: R is the greatest value of any element,
A[1J,A[2] A [~¢'];

Historical Context in the 1970s

Peter Naur 1966.
Proof of algorithms by general snapshots

3 1 2 P E T E R NAUR

This looks pret ty good to me. However, can I prove tha t it is correct ?
Many people, including many experienced programmers, will tend to
dismiss the question, claiming tha t it is obvious that the solution is cor-
rect. I wish to oppose this view. Although the algorithm is not very
complicated, it does contain some 7 operators and 12 operands. This is
more than what can be grasped immediately by anyone, and I am sure
tha t even the experienced programmer, in studying the algorithm, makes
use of mental images and a certain decomposition of the process before
he accepts it. I wish to claim tha t he goes through a proof, and I want
this to be brought into the open, using a technique which can be used
also in more complicated cases.

Snapshots.
Our proof problem is one of relating a static description of a result to

a dynamic description of a way to obtain the result. Basically there are
two ways of bringing the two descriptions closer together, either we may
t ry to make the static description more dynamic, with a hope of getting
to the given algorithm, or we may t ry to make the dynamic de-
scription more static. Of these the second is clearly preferable because
we have far more experience in manipulating static descriptions, through
practise in dealing with mathematical formulae. Therefore, if only we
can derive some static description from the dynamic one, there is good
hope tha t we may manipulate it so as to show tha t it is identical with
the given static description.

r i R

Initial
Following r := 1 1

- f o r / : = 2 2
Second time in loop 3
Following r := i 3
Third time in loop
Following R := A[r]

4

5

N A[I] A[2] A[3] A[4]

4 2 1 5 2

We are thus led to the use of snapshots of the dynamic process for
purposes of proof, because a snapshot is an instantaneous, and therefore
static, picture of the development of the process. In its most primitive
form a snapshot refers to one particular moment in the development of
the process applied to one particular set of data. In a slightly more
developed use we give a series of snapshots, referring to successive mo-

Related to State Vectors in McCarthy’s work on ALGOL

Historical Context in the 1970s

Robert Floyd 1967.
Assigning meanings to programs.

START

_____ {X 0, Y> 0, Q = °
r-----lI=----, (X - Q, 5)

R-X

(X-Q,4)
_____ {R 0, X 0, Y > 0, Q 0, X = R + QY

(X - Q,3) __ _

---"'-- ,C HALT)

I_tO R < Y,X O,X = R + QY
No (X - Q,2)

_____ {R Y> 0, X 0, Q 0, X = R + QY
,_----'1""-_--, (X - Q, 2)

_____ {R 0, Y > 0, X 0, Q > 0, X = R + QY
(X - Q,4)

FIGURE 5. Algorithm to compute quotient Q and remainder R of
X.;- y, for integers X 0, Y > °

REFERENCES

1. J. McCarthy, "A basis for a mathematical theory of computation" in Computer pro-
gramming and formal systems, North-Holland, Amsterdam, 1963, pp. 33-70.

2. , Towards a mathematical science of computation, Proc. IFIP Congr. 62, North-
Holland, Amsterdam, 1962, pp. 21-28.

CARNEGIE INSTITUTE OF TECHNOLOGY
PITTSBURGH, PENNSYLVANIA

programs in the language, appear to be novel, although McCarthy ll, 2]
has done similar work for programming languages based on evaluation of
recursive functions.

A semantic definition of a programming language, in our approach, is
founded on a syntactic definition. It must specify which of the phrases
in a syntactically correct program represent commands, and what conditions
must be imposed on an interpretation in the neighborhood of each command.

We will demonstrate these notions, first on a flowchart language, then
on fragments of ALGOL.

DEFINITIONS. A flowchart will be loosely defined as a directed graph
with a command at each vertex, connected by edges (arrows) representing
the possible passages of control between the commands. An edge is said
to be an entrance to (or an exit from) the command c at vertex v if its
destination (or origin) is v. An interpretation I of a flowchart is a mapping
of its edges on propositions. Some, but not necessarily all, of the free
variables of these propositions may be variables manipulated by the

- - - - - - - - n E J+ (J+ is the set of positive integers)

- - - - - - - - n E J+ /\ i = 1/\ S = 0
i-l

_____ - - - n E J+ /\ i E J+ /\ i n + 1/\ S = 1: OJ
j-l

i-I n
- - - n E J1- /\ i = n + 1/\ S = 1: OJ; i.e., S = 1: OJ ______ j-l j-l

i-l
- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = 1: OJ

j-1

.
I

- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = L. OJ
j-1

i - i + 1 i-l

- - - - - - - - n E J+ Ai € J+ 1\ 2 i n + 1/\ S = 1: OJ
j-l

FIGURE 1. Flowchart of program t() compute S = 1:1-1 OJ (n 0)

Historical Context in the 1970s

C.A.R Hoare 1969.
An axiomatic basis for computer programming

R. Burstall 1968
Proving Properties of programs by structural induction

J.W. DeBakker 1968
Axiomatics of simple assignment statements

Historical Context in the 1970s

C. Strachey & D. Scott. 1971
A mathematical theory of computation.

[[·]] : Comm �! (State �! State)
<latexit sha1_base64="y4oc2Y5vCWj33h6nSYa2ECuWst8=">AAACLHicbZDLSgMxFIYz3q23qks3qSIoQpmpC8VVsRuXitYWZoaSSdM2NJchOaOU0rfwJdz4KoK4sIhbn8O0daHWHwI/3zmHk/MnqeAWfH/ozczOzS8sLi3nVlbX1jfym1u3VmeGsirVQpt6QiwTXLEqcBCsnhpGZCJYLelWRvXaHTOWa3UDvZTFkrQVb3FKwKFGvhJGhRBHtKkhjgoxPsMVLSWOhFZtw9sdIMboe3xwDQTYFB7Tw0Z+zy/6Y+FpE3ybvfJudPQwLPcuG/mXqKlpJpkCKoi1YeCnEPeJAU4FG+SizLKU0C5ps9BZRSSzcX987ADvO9LELW3cU4DH9OdEn0hrezJxnZJAx/6tjeB/tTCD1mnc5yrNgCk6WdTKBAaNR8nhJjeMgug5Q6jh7q+YdoghFFy+ORdC8PfkaXNbKgbHxdKVS+McTbSEdtAuOkABOkFldIEuURVR9Iie0Rsaek/eq/fufUxaZ7zvmW30S97nF9flqms=</latexit>

[[·]] : AExp �! (State �! V al)
<latexit sha1_base64="eaX9FvjGntob9E7q9g0EwJtYwW0=">AAACKnicbVDLSgNBEJz1bXxFPXoZFUERwq4eFE9RETwqmijsLqF3MkkGZ2eWmV41BP/Cf/Dir3jxoASvfoiTxIMaCxqKqm66u5JMCou+3/VGRsfGJyanpgszs3PzC8XFparVuWG8wrTU5joBy6VQvIICJb/ODIc0kfwquTnu+Ve33Fih1SW2Mx6n0FSiIRigk2rFwzBaDWnE6hrjaDWmB/Tw5D6jkdSqaUSzhWCMvqObFwjIh+QqyK1acd0v+X3QYRJ8k/XyWrT92C23z2rF16iuWZ5yhUyCtWHgZxh3wKBgkj8UotzyDNgNNHnoqIKU27jTf/WBbjilThvauFJI++rPiQ6k1rbTxHWmgC371+uJ/3lhjo39uCNUliNXbLCokUuKmvZyo3VhOEPZdgSYEe5WylpggKFLt+BCCP6+PEyqO6Vgt7Rz7tI4IgNMkRWyRjZJQPZImZySM1IhjDyRF/JG3r1n79Xreh+D1hHve2aZ/IL3+QXZ16lb</latexit>

Denotational semantics was less relevant to the origins of abstract
interpretation than expected

Historical Context in the 1970s
Programming T.A. Standish
Languages Editor

Inductive Methods for
Proving Properties of
Programs
Zohar Manna, Stephen Ness, Jean Vuillemin
Stanford University

There are two main purposes in this paper: first,
clarification and extension of known results about
computation of recursive programs, with emphasis on
the difference between the theoretical and practical
approaches; second, presentation and examination of
various known methods for proving properties of
recursive programs. Discussed in detail are two powerful
inductive methods, computational induction and structural
induction, including examples of their applications.

Key Words and Phrases: recursive programs, least
fixedpoint, computational induction, structural induction

CR Categories: 4.2, 5.23, 5.24

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

The research reported here was supported by the Advanced
Research Projects Agency of the Office of the Secretary of Defense
under Contract SD-183. This is a modified version of a paper
originally presented at the ACM Conference on Proving Asser-
tions about Programs, Las Cruces, New Mexico, January 1972.
Authors' addresses: Zohar Manna, Applied Mathematics Depart-
ment, The Weizmann Institute of Science, Rehovot, Israel; Stephen
Ness, Computer Science Department, Stanford University, Stan-
ford, CA 94305: Jean Vuillemin, I.R.I.A., Domaine de Volceau,
78-Roquencourt, France.

491

Introduction

Many different inductive methods have been used to
prove properties of programs. Well-known methods in-
clude, for example, recursion induction, structural in-
duction, inductive assertions, computat ional induction,
truncation induction, and fixedpoint induction. Our in-
tention in this paper is to introduce these methods to
as wide a class of readers as possible, illustrating their
power as practical techniques for proving properties
of recursive programs.

In Section I we give the theoretical background
necessary to understand the fixedpoint approach to
recursive programs (essentially following Scott, 1970
[16]), as well as the practical computat ional approach.
We emphasize that while existing inductive methods
prove properties of the "least fixedpoint function" of a
recursive program, in practice this function may differ
from the function computed by some common computa-
tion rules. We briefly suggest "fixedpoint" computat ion
rules which assure that the computed function is iden-
tical to the least fixedpoint. A brief informal exposition
of the fixedpoint theory was given by Manna and
Vuillemin, 1972 [8].

In Section II we examine computational induction
methods, i.e. methods in which the induction is based
on the steps of the computation. We first present the
extremely simple induction method introduced by Scott
(deBakker and Scott, 1969 [3]). Examples are presented
which introduce various applications of the method.
We also discuss another computat ional induction
method, truncation induction (Morris, 1971 [14]). A
related method, called fixedpoint induction, is described
in Park, 1969 [15].

We describe the structural induction method and its
application for proving properties of programs in Sec-
tion lII . This method was suggested explicitly by Bur-
stall, 1969 [1], although it was often used previously,
for example by McCarthy and Painter, 1967 [9], for
proving the correctness of a compiler and by Floyd,
1967 [4] for proving termination of flowchart programs.
Our intention in this section is to emphasize, by means of
appropriately chosen examples, that the choice of a
suitable partial ordering on the data structure and of a
suitable induction hypothesis leads to simple and clear
inductive proofs.

Although it can be shown that computat ional in-
duction and structural induction are essentially equiva-
lent, there are practical reasons for keeping both of them
in mind. Computat ional induction i s best suited for
proving the correctness and equivalence of programs,
and because of its simplicity it is particularly convenient
for machine implementation (Milner, 1972 [10, 11]). On
the other hand, termination of programs is usually more
convenient to show by structural induction.

We concentrate on these two methods because they
form a natural basis for future automatic program
verifiers. In particular, all other known verification tech-

Communications August 1973
of Volume 16
the ACM Number 8

computing the factorial function:

F(x) ~ i fx = 0 then 1 else x.F(x--1).

This program resembles the ALGOL declaration

integer procedure f (x) ;
f : = i f x =Othen 1 eisex*f(x--1);

and the LISP definition

DEFINE ((
(FF (LAMBDA (X)(COND ((ZEROP X) 1)

(T (TIMES X (FF (SUB1 X))))))))) .

Of course our programs are meaningless until we
describe the semantics of our language, i.e. how to
compute the function defined by a program. The next
step is therefore to give computation rules for executing
programs. Our aim is to characterize the rules such that
for every program F (x) ~ r[F] (x) the computed func-
tion will be exactly the least fixedpointf~.

C o m p u t a t i o n S e q u e n c e
Let F(x) ~ r[F] (x) be a program over some domain

D +. For a given input value d E D + (for x), the program
is executed by constructing a sequence of terms
to, h , t 2 , . . . , called a computation sequence for d, as
follows :
(1) The first term to is F(d).
(2) For each i, i > 0, the term t~+l is obtained from ti
in two steps: first (a) substitution: some occurrences
(see below) of F(e) in ti are replaced by ~-[F](e)
simultaneously, where e may be any subexpression;
and then (b) simplification: known functions and
predicates are replaced by their values, whenever pos-
sible, until no further simplifications can be made.
(3) The sequence is finite and t, is the final term in the
sequence if and only if no further substitution or sim-
plification can be applied to t, (that is, when tn is an
element of D+).

C o m p u t a t i o n R u l e s
A computation rule C tells us which occurrences of

F(e) should be replaced by r[F] (e) in each substitution
step. For a given computat ion rule C, the program
defines a partial function f~ mapping D + into D + as
follows: I f for input d ~ D ÷ the computat ion sequence
for d is finite, we say t ha t f c (d) - tn ; if the computa-
tion sequence for d is infinite, we say that f c (d) =- o~.

The following are examples of typical computat ion
rules: (I) f u l l computation rule: Replace all occurrences
of F simultaneously. We denote the computed function
by fFL. (2) leftmost-innermost("call by value") rule:
Replace only the leftmost-innermost occurrence of F
(that is, the leftmost occurrence of F with all argu-
ments free of F 's) . We denote the computed function
by fz~ • This is the rule which corresponds to the usual
stack implementation of recursion for languages like
LISP or ALGOL where a procedure evaluates all its argu-
ments before execution. (3) leftmost-outermost ("call
by name") rule: Replace only the leftmost-outermost

occurrence of F. We denote the computed function
byfLo •

Example 8. We consider the recursive program for
the "91-function" over the integers:

F(x) ~ i f x > 100 then x -- 10 else F(F(x+ll)) .

We illustrate the computat ion secquences for x = 99
using the three rules.
(a) Using the full rule:

to is F(99)
i f 99 > 100 then 99 -- 10

else F(F (99+ 11)) [substitution]
h is F(F(110)) [simplification]

i f [if 110 > 100 then I10 -- 10
else F(F(l l0+ l l))] > 100

then [if 110 > 100 then 110 -- 10
else F(F(I10+ll))] -- l0

else F(F([if 110 > 100
then 110 -- I0
else F(F(110+11))]+11)) [substitution]

t~. is F(F(111)) [simplification]
i f [i f 111 > 100 then 111 - - 1 0

else F (F (l l l + l l))] > 100
then [if 111 > 100 then 111 -- 10

else F (F (l l l + l l))] -- 10
else F(F([if 111 > 100

then 111 -- 10
else F (F (l l l + l l))] + l l)) [substitution]

h is 91.

In short, omitting simplifications and underlining the
occurrences of F used for substitution: _F(99)
_F(F(l l0)) ~ _F(_F(111)) --~ 91. Thus, f rL(99) =- 91.
(b) Using the leftmost-innermost rule:

F(99) ---, F(F(l l0)) --* F (100) --* F(E(l l l) --* F (101) ~ 91.

Thus, fLt(99) = 91.
(c) Using the leftmost-outermost rule

E(99) ---, F_ (F(ll0))
i f F _ (l l 0) > 100 then F (I I 0) -- 10

else F(F(F(llO)+ll))
--* E (F(F(IlO)+ll))

ifF_(ll0) + 11 > 100 then F(ll0) -- 9
else F(F(F(110)+22))--10

F(ll0) -- 9 ~ 9 1 .

Thus, fLo(99) -= 91. []

An important property o f f c should be mentioned at
this point (Cadiou, 1972 [2]): For any computat ion rule
C, the computed function f c is less defined than the least
fixedpoint, i.e. f c __-f~, but they are not necessarily
equal.

A program may consist in general of a system of
recursive definitions of the form

I FI(x) ~ rl[Fx , . . . , F,](X)
F...2(x) ~ r.,.[F1, , F,](X)

~F,(x) ~ r,[F1, . . . , F,I(X),

where each ri is an expression representing a composi-
tion of known monotonic functions and predicates and
the function variables F~, F ,2 , . . . ,F, applied to the

495 Communications August 1973
of Volume 16
the ACM Number 8

Historical Context in the 1970s

Z. Manna & A. Pnueli 1974.
Axiomatic approach to total correctness of programsmmi i . w IV^J WltliMilu

«MMMOT

v.

u(x•)] > (1)

(2)

(3)

4)

(g) While Rule

< p(x) A t(x) | B | qCx.x') A (-tCx') v u(x) ;

q(x,x') A tCx«) =» p(x')

qCx.x') A qCx'.x") = q(x,x")

p(x) A ~t(x) = q(x,x)

< p(x) | while t(x) do B | qCx.x^A -tCx') >

where (w,^) is a well-founded set and u:X -* W .

The above seemingly complicated rule is devised to

overcome several difficulties caused by the need to prove

termination. Termination of a looping while statement is

essentially ensured here by Floyd's technique [1967], namely,

producing a function u whose values keep strictly decreasing

in subsequent executions of B.

Condition (1) requires establishing a well-founded set

(W,-<) with a partial order < satisfying the descending

chain condition, i.e., there is no infinite chain of elements

from W, a, >- a ^... . Also required is a partial function

u mapping some elements of our data domain X into elements

of W . If we were able to prove that after each execution

of B , u(x) V u(x') (where by writing this inequality we

also mean that uix) and uCx') are both defined), then

clearly B cannot repeatedly execute an infinite number of

times or we would violate the descending chain condition.

The demand for the existence of a descending counter

which is defined for all executions of the while body B ,

MM mmmm

Historical Context in the 1970s

E. Dijkstra 1975.
Guarded Commands, Nondeterminacy and Formal Derivation of Programs

and Q, we have for all states (wp(S,P) or wp(S,Q))
= wp(S,P or Q).

For nondeterministic mechanisms S, the equality has to
be replaced by an implication; the resulting formula
follows from the second property.

Together with the rules of propositional calculus and
the semantic definitions to be given below, the above four
properties take over the role of the "rules of infer-
ence" as introduced by Hoare [1].

We take the position that we know the semantics oi'
a mechanism S sufficiently well if we know its predicate
transformer, i.e. can derive wp(S,R) for any post-con-
dition R.

Note. We consider the semantics of S only defined
for those initial states for which has been established
a priori that they satisfy wp(S,T), i.e. for which proper
termination is guaranteed (even in the face of possibly
non-deterministic behavior); for other initial states we
don' t care. By suitably changing S, if necessary, we
can always see to it that wp(S,T) is decidable. (End of
note.)

Example 1. The semantics of the empty statement,
denoted by "skip" are given by the definition that for
any post-condition R, we havewp ("skip", R) = R.

Example 2. The semantics of the assignment state-
ment "x := E" are given by wp("x := E", R) = REx,
in which RB ~ denotes a copy of the predicate defining R
in which each occurrence of the variable x is replaced
by (E).

Example 3. The semantics of the semicolon ";" as
concatenation operator are given by
wp("Sl ; $2", R) = wp(Sl, wp(S2,R)).

lead to a properly terminating activity leaving the sys-
tem in a final state such that the value of t is decreased
by at least 1 (compared to its initial value). In terms of
wdec we can formulate the very similar:

THEOREM 2. From (Vi : 1 < i < n : (Q and B~)
wdec(SLi,t)) for all states we can conclude that

(Q and BB) ~ wdec(IF, t) holds for all states.
Note (which can be skipped at first reading). The

relation between wp and wdec is as follows. For any
point X in state space we can regard wp(S, t <_ to) as
an equation with to as the unknown. Let its smallest
solution for to be tmin(X). (Here we have added the
explicit dependence on the state X.) Then train(X) can
be interpreted as the lowest upper bound for the final
value of t if the mechanism S is activated with X as initial
state. Then, by definition, wdec(S, t) = (tmin(X) <_
t(X) - 1) = (tmin(X) < t(X)). (End of note.)

3.3 The Repetitive Construct
As is to be expected, the definition of the repetitive

construct

do B1 - - o S L x ~] . • • [7 B n ---o SL, od,

that we denote by DO, is more complicated. Let

H o (R) = (R and non BB)

and f o r k > 0,

Hk(R) = (wp(1F, Hk_I(R)) or Ho(R))

(where IF denotes the same guarded command set en-
closed by "if fi"). Then, by definition

3.2 The Alternative Construct
In order to define the semantics of the alternative

construct we define two abbreviations.
Let IF denote

if B x - - o SL1 [7 . . • [7 B ~ - - o SL~ fi;

let BB denote

(':li : 1 < i < n :Bi) ;

then, by definition

wp(IF, R) = (BB and (Vi : 1 < i < n : Bi ~ wp(SL~,R)),.

(The first term BB requires that the alternative construct
as such will not lead to abortion on account of all
guards false; the second term requires that each guarded
list eligible for execution will lead to an acceptable
final state.) From this definition we can derive--by
simple substitutions:

THEOREM 1. From (Vi : 1 < i < n : (Q and Bi)
wp(SLi,R)) for all states we can conclude that (Q and
BB) ~ wp(1F, R) holds for all states.

Let t denote some integer function, defined on the
state space, and let wdec(S,t) denote the weakest pre-
condition such that activation of S is guaranteed to

wp(DO, R) = (3k : k >_ 0 : Hk(R)).

(Intuitively, Hk(R) can be interpreted as the weakest
pre-condition guaranteeing proper termination after
at most k selections of a guarded list, leaving the
system in a final state satisfying R.)Via mathematical
induction we can prove:

THEOREM 3. I f we have for all states (P and BB)
(wp(1F, P) and wdec(IF, t) and t >__ 0) we can conclude
that we have for all states P ~ wp(DO, P and non BB).

Note. The antecedent of Theorem 3 is of the form
of the consequents of Theorems 1 and 2. (End of note.)

Because T is the condition by definition satisfied by
all states, wp(S,T) is the weakest pre-condition guaran-
teeing proper termination for S. This allows us to
formulate an alternative theorem about the repetitive
construct, viz. :

THEOREM 4. From (P and BB) ~ wp(IF, P) f o r all
states, we can conclude that we have for all states
(P and wp(DO, T)) ~ wp(DO, P and non BB).

Note. In connection with the above theorems, P
is called "the invariant relation" and t is called "the
variant function." Theorems 3 and 4 are easily proved
by mathematical induction, with k as the induction
variable. (End of note.)

455 Communications August 1975
of Volume 18
the ACM Number 8

Prove correctness and
synthesise correct code

T. Hoare R. Floyd

Proofs

Ind
uc

tio
n

….. credits to Tom Ball

The years 1972—1977

Patrick Cousot worked on the operational semantics
of programming languages and the derivation of
implementations from the formal definition.

Early years (1972-73): Formal semantics

Patrick Cousot. Définition interprétative et implantation de
languages de programmation. Thèse de Docteur Ingénieur en
Informatique, Université Joseph Fourier, Grenoble, France, 14
Décembre 1974 (submitted in 1973 but defended after
finishing military service with J.D. Ichbiah at CII).

Static analysis of the formal definition and transformation to
get the implementation by “pre-evaluation” (similar to the
more recent “partial evaluation”)

http://www.di.ens.fr/%7Ecousot/COUSOTpapers/CousotTheseDi1974.shtml
http://www.di.ens.fr/%7Ecousot/COUSOTpapers/CousotTheseDi1974.shtml

Radhia Rezig worked on precedence parsing (R.W.
Floyd, N. Wirth and H. Weber, etc.) for Algol 68

Pre-process ing (by s ta t ic ana lys is and
transformation) of the grammar before building the
bottom-up parser

Patrick Cousot worked on context-free grammar
parsing (J. Earley and F. De Remer)

Pre-process ing (by s ta t ic ana lys is and
transformation) of the grammar before building the
top-down parser

Before starting (1972-73): formal syntax

• Radhia Rezig. Application de la méthode de précédence totale à l’analyse d’Algol 68, Master thesis,
Université Joseph Fourier, Grenoble, France, September 1972.

• Patrick Cousot. Un analyseur syntaxique pour grammaires hors contexte ascendant sélectif et général. In
Congrès AFCET 72, Brochure 1, pages 106-130, Grenoble, France, 6-9 November 1972.

http://www.di.ens.fr/~cousot/COUSOTpapers/AFCET72.shtml

Intervals ➞

Static analysis ➞

Assertions ➞

1972

Radhia Rezig shows her interval analysis ideas to Patrick
Cousot

➡ Patrick very critical on going backwards from [-∞, +∞]

and claims that going forward would be much better

➡ Patrick also very skeptical on forward termination for

loops

Radhia comes back with the idea of extrapolating
bounds to ±∞ for the forward analysis

The discover of widening = induction in the abstract
and that the idea is very general!!

1974: The origins

Notes of Radhia Rezig on
forward iteration from ☐ = ⊥

(forward least fix-point)
versus backward iteration
from [-∞, +∞] (backward

greatest fix-point)

The IRIA-SESORI contract (1975-76)

3H3U3HC3U30 ruoddvu

s/6T er$E^oN5Z 'trtl

JCISrp3 €TqPeU Pue JOSfp3 {f,rrlBd

s'fl{vluv c0 sgrrul@ud sdrt
3I}Ti\ilTIIO JO NOIJ\DICITEA f,IIVIS

The first abstract
interpreter with

widening
(as of 23 Sep. 1975)

The first research
report

(Nov. 1975)

The first publication (ISOP II, Apr. 1976)

The breakthrough!

POPL 1977
Los Angeles, January 17-19, 1977

For 4th POPL’77, Patrick and Radhia submitted on
August 12, 1976 hard copies of a two-hands written
manuscript of 100 pages.

The POPL 1977 submission

Never published in a "scientific journal".

Everything was there!

 40

te
l-0

02
88

65
7,

 v
er

si
on

 1
 -

18
 J

un
 2

00
8

...

i.e. pre i.e. post transformer

fixpoint
backward reachability
forward reachability

fixpoint reflexive transitive closure

Fixpoint abstraction
under commutativity

with abstraction h

concrete transformerabstract transformer

iterative fixpoint computation

Topology, higher-order
fixpoints, operational/
summary/... analysis

Galois connections,
closure operators, Moore

families, ideals,...

On this page: dual,
conjugate and

inversion: lfp/gfp wp/sp
(i.e. pre/post) wp/sp)

POPL1977 POPL1979FDPC1977

Program analysis is approximating program semantics

Formalise the notion of approximation in
Semantics

Domain approximation

Fix-point approximation

Key Ideas!

PA.IFIC'?:lTii
::',''ffi HEMATI.S

CONSTRUCTIVE VERSIONS OF TARSKI'S
FIXED POINT THEOREMS

P,q.rnrcN Cousor l.No RlpnlA Cousor

Let F be a monotone operator on the complete lattice
Z into itself. Tarski's lattice theoretical fixed point theorern
states that the set of fixed points of l' is a nonempty cornplete
lattice for the ordering of Z. We give a constructive proof
of this theorern showing that the set of fixed points of .F is
the image of L by a lower and an upper preclosure operator.
These preclosure operators are the composition of lower and
upper closure operators which are defined by means of limits
of stationary transfinite iteration sequences for ,F. In the
same wey we give a constructive characterization of the set
of common fixed points of a family of commuting operators.
Finally we examine some consequences of additional semi-
continuity hypotheses.

1 . I n t roduc t i on . Le tL (s : , L ,T ,U , | - l) beanonempty comp le te
Lutt'ice with parti,al ordering g, least upper bound, u , greatest
lower bound, ft. The i,nf,munL I of tr is f-l L, the supremum T of
L is UL. (Birkhoff 's standard referenee book I3l provides the
necessary background materiai.) Set inclusion, union and intersection
are respectively denoted by e , U and f-l .

Let tr be a monotone operator on L(e, L, T, U, f l) into itself
(i .e. , YX, Y e L, {X =Y) - {F(X) e l r(y)}) .

The fundamental theorem of Tarski [19] states that the set fp(F)
o f f , red"po i ,n ts o f f ' (i .e . , fp (F) : {Xe L :X: f ' (X) }) i s a nonempty
complete iattice with ordering e . The proof of this theorem is
based on the definition of the least fixed point tfp(F) of lI by Lfp(F) :
n{Xe L:F(X) g X}. The least upper bouncl of S c fe@) in fp(F)
is the least fixed point of the restriction of f'to the complete lattice
{X e L: (u S1 q 11. An application of the duality principte completes
the proof.

This deflnition is not constructive and many appiications of
Tarski's theorem (specially in computer science (Cousot [5]) and
numerical analysis (Amann Iz])) use the alternative characterization
of lfp(F) as U {tr"(-r): i e N}. This iteration scheme which originates
from Kleene [tO]'s first recursion theorem and which was used by
Tarski [fl] for complete morphisms, has the drawback to require
the additional assumption that F is semi-conti,nuous (F(US) : U,F'(S)
for every 'increas'ing nonempty ch,ai,tt, S, see e.g., Kolodner [ff]).

I

José Morgado: in memoriam

J. Almeida A. Machiavelo

Centro de Matemática da Universidade do Porto

Departamento de Matemática Pura

Faculdade de Ciências, Universidade do Porto

José Morgado nasceu a 17 de Fevereiro de 1921, em Pegarinhos, a aldeia
trasmontana da região duriense que era a capital do universo como, com
orgulho e ironia provocatória, gostava de referir. Fez a escola primária em
Pegarinhos, e o primeiro e segundo anos do liceu em Favaios, que fica a
uns 19Kms da sua aldeia natal. Não se tendo inscrito no terceiro ano do
liceu, por a famı́lia não poder arcar com as despesas necessárias, já que a
localidade mais próxima onde o poderia fazer era Vila Real, a uns 60Kms
de Pegarinhos, foram alguns dos professores que se encarregaram de tratar
pessoalmente de garantir que o adolescente José Morgado prosseguisse os
seus estudos, pois tinha-se revelado já um aluno excepcional, não apenas
nesta ou aquela disciplina, mas em todas, como escreve aquele que seria o
seu professor de Filosofia em Vila Real, Sant’anna Diońısio, em [4, pp. 180–
181], onde relata esta história. E acrescenta:

O rapaz [...] foi, conforme se previa, um dos mais destacados
para não dizer dos mais notáveis estudantes que teriam passado

1

The community

POPL1977 POPL1979

POPL2014POPL2011 POPL2012POPL2004POPL2002

POPL2000POPL1992

POPL2019

POPL2017

POPL1997

POPL

SCOPUS: 777 entries
1977-2000 = 220 entries
2001-2019 = 557 entries

DBLP: 884 entries
1977-2000 = 292
2001-2019 = 592

07/10/2019, 16*51Scopus - Analyze search results

Page 1 of 3https://www.scopus.com/term/analyzer.uri?sid=695607149b9bd845…esults=Analyze+results&txGid=cf26646d854b5988638067a6e3798557

Scopus

Analyze search results

777 document results Select year range to analyze: to

Click on cards below to see additional data.

◅ Back to results " Export # Print $ Email

TITLE ("abstract interpretation" OR "abstract domain")

1977 % 2019 % Analyze

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

Year ⬇ Documents ⬆

16

26

32

31

33

40

41

35

33

41

Year

D
oc

um
en

ts

Documents by year

1977 1981 1985 1989 1993 1997 2001 2005 2009 2013 2017 2021
0

10

20

30

40

50

Source: Scopus

Articles whose title contains
"Abstract Interpretation" OR "abstract domain"

07/10/2019, 16*50Scopus - Analyze search results

Page 1 of 3https://www.scopus.com/term/analyzer.uri?sid=695607149b9bd845…esults=Analyze+results&txGid=cf26646d854b5988638067a6e3798557

Scopus

Analyze search results

777 document results Select year range to analyze: to

Click on cards below to see additional data.

◅ Back to results " Export # Print $ Email

TITLE ("abstract interpretation" OR "abstract domain")

1977 % 2019 % Analyze

Country/Territory ⬆ Documents ⬇

France 226

Italy 159

United States 151

United Kingdom 62

Germany 60

Spain 42

Belgium 35

China 31

Denmark 25

Australia 18

Documents

Documents by country or territory
Compare the document counts for up to 15 countries/territories.

France

Italy

United States

United Kingdom

Germany

Spain

Belgium

China

Denmark

Australia

0 100 20025 50 75 125 150 175 225 250

Articles whose title contains
"Abstract Interpretation" OR "abstract domain"

Year Range:
1977 — 2019

Source: Scopus

The PL perspective

The 80s and 90s: The main difficulties in
the spread of Abstract Interpretation

Imperative programming?

Lack of a clean/simple fixed point semantics

Dominance of compile-time data-flow

static analysis (a la Kildall)

• compile-time optimisation

• compiler oriented

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Code Obfuscation Against Abstract Model Checking A�acks 1:3

Fig. 1. Source and obfuscated Fibonacci code

1.2 The challenge
The major challenges in code protecting transformations are: (1) the design of provably correct
code transformations that do not inject �aws when protecting code, and (2) the extraction of
adequate metrics for measuring the potency (i.e., the strength) of code protecting transformations.
In this paper we start by addressing (2) and then provide a method for strongest protection that
guarantees (1). Due to the undecidability of generic program analysis and impossibility of VBB
obfuscation, measuring the potency of a code transformation defeatingWB attacks means specifying
precisely the perimeter of the possible attack model.

Assumption #2: We consider as model of attack static program analysis and abstract model
checking.

We choose to focus on this form of attack because it handles a quite general class of cases. For
example certain data-�ow analyses can be cast to model checking of safety formulas. It is known

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Thus a predicative function of an individual is a first-order function;
and for higher types of arguments, predicative functions take the
place that first-order functions take in respect of individuals. We
assume then, that every function is equivalent, for all its values, to
some predicative function of the same argument. This assumption
seems to be the essence of the usual assumption of classes
[modern sets] . . . we will call this assumption the axiom of classes,
or the axiom of reducibility.[14]

 Mathematical Logic as based on the Theory of Ty pes.

 BY BERTRAND RUSSELL.

 The following theory of symbolic logic recommended itself to me in the first

 instance by its ability to solve certain contradictions, of which the one best

 known to mathematicians is Burali-Forti's concerning the greatest ordinal.* But

 the theory in question seems not wholly dependent on this indirect recom-

 mendation; it has also, if I am not mistaken, a certain consonance with common

 sense which makes it inherently credible. This, however, is not a merit upon

 which much stress should be laid; for common sense is far more fallible than it

 likes to believe. I shall therefore begin by stating some of the contradictions to

 be solved, and shall then show how the theory of logical types effects their

 solution.

 The Contradictions.

 (1) The oldest contradiction of the kind in question is the Epi'menides.

 Epimenides the Cretan said that all Cretans were liars, and all other statements

 made by Cretans were certainly lies. Was this a lie? The simplest form of this

 contradiction is afforded by the man who says " I am lying;" if he is lying, he

 is speaking the truth, and vice versa.

 (2) Let w be the class of all those classes which are not members of them-

 selves. Then, whatever class x may be, " x is a w "is equivalent t to " x is not
 an x." Hence, giving to x the value w, " w is a w" is equivalent to "w is not

 a w."

 (3) Let T be the relation which subsists between two relations 1 and S

 whenever B does not have the relation R to S. Then, whatever relations R and

 S may be, " R has the relation T to S" is equivalent to " R does not have the

 *See below.

 f Two propositions are called equivalent when both are true or both are false.

This content downloaded from 37.116.103.164 on Mon, 07 Oct 2019 10:33:03 UTC
All use subject to https://about.jstor.org/terms

Functional programming ?

The 80s and 90s: The main difficulties in
the spread of Abstract Interpretation

The 80s and 90s: The main difficulties in
the spread of Abstract Interpretation

Functional programming?

Dominance of type-based verification (a la Milner)

Strictness was essentially the only true example!

Binding-time analysis (a little open window for AI)

The 80s and 90s: The main difficulties in
the spread of Abstract Interpretation

Concurrent programming?

Debate on the (right) model and the calculus

Synchronisation considered too hard

for static analysis applications

Dominance of types coming from the FP tradition

and Milner’s impact

The 80s and 90s: The main difficulties in
the spread of Abstract Interpretation

Logic programming?

Clean and simple fix-point semantics

Simple synchronisation mechanism

Tp(X) = {A | A A1, . . . , An 2 P ^ {A1, . . . , An} ✓ X}
<latexit sha1_base64="zco6BDAdsyT+4PtQ0CvWxOUp9Rg=">AAACRHicbZDNbhMxFIU95a+k/ISyZHNFQSpSFc2UBWyQmrJhGaSmjRRHI4/nTmrVYw/2nVbRNHks9hUSD8COJ2DDAoTKEuEkXZSWI1n6dM69sn2ySitPcfw1Wrlx89btO6t3W2v37j942H60vu9t7ST2pdXWDTLhUSuDfVKkcVA5FGWm8SA7ejvPD47ReWXNHk0qHJVibFShpKBgpe3hXlrB5uAFvAHeQHd2OoMu11iQcM6eQDdNtrjOLfmtwIYrAz2Y8RPMxzgLG5fyeTzlvs48En6AAZ+m7Y24Ey8E1yG5gI2dZ+cfPx2v/e6l7S88t7Iu0ZDUwvthElc0aoQjJTVOW7z2WAl5JMY4DGhEiX7ULEqYwvPg5FBYF44hWLiXNxpRej8pszBZCjr0V7O5+b9sWFPxetQoU9WERi4vKmoNZGHeKOTKoSQ9CSCkU+GtIA+FE5JC761QQnL1y9dhf7uTvOxsvw9t7LKlVtkT9pRtsoS9YjvsHeuxPpPsjH1jP9jP6HP0PfoVnS9HV6KLncfsH0V//gJ5cLPw</latexit>

The 80s and 90s: The main difficulties in
the spread of Abstract Interpretation

Logic programming?

No type system!!

Clean and simple fix-point semantics

Simple synchronisation mechanism

• AND/OR Parallelism (a true implementation CIAO)

• support to correct execution and debugging

The 80s and 90s: The main difficulties in
the spread of Abstract Interpretation

Logic programming?

Clean and simple fix-point semantics

Messy control!

…heavy problems in optimisation => analysis

Simple synchronisation mechanism

The 80s and 90s: The main difficulties in
the spread of Abstract Interpretation

Logic programming?

AliasingGroundnessDependency
Types

Modular
Higher-Order

Forward/BackwardParallel
Constraints

Inter-procedural
Abstract	Interpretation	in	LP	

80s	&	90s

Abstract Interpretation vs Model Checking
1992 —

Model

Edmund M. Clarke

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

emc+~cs. cmu. edu

Abstract

Checking and Abstraction*

Orna Grumberg David E. Long

Computer Science Department School of Computer Science

The Technion

Haifa 32000, Israel

orna~cs. technion. ac

October 16, 1991

Carnegie Mellon University

Pittsburgh, PA 15213

il long+@cs. cmu. edu

We describe a method for using abstraction to reduce
the complexity of temporal logic model checking. The
basis of this method is a way of constructing an ab-
stract model of a program without ever examining the
corresponding unabstracted model. We show how this
abstract model can be used to verify properties of the
original program. We have implemented a system based
on these techniques, and we demonstrate their practi-
cality using a number of examples, including a pipelined
ALU circuit with over 101300 states.

1 Introduction

Complicated finite state programs arise in many ap-
plications of computing—particularly in the design
of hardware controllers and communication protocols.
When the number of states is large, it may be very dif-
ficult to determine if such a program is correct. Tem-
poral logic model checking [5, 15, 16, 17] is a method
for automatically deciding if a finite state program sat-
isfies its specification. A model checking algorithm for
the propositional branching time temporal logic CTL
was presented at the 1983 POPL conference [6]. The
algorithm was linear in both the size of the transition

*This research was sponsored in part by the Avionics Labo-
rat ory, Wright Research and Development Center, Aeronautical
Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB,
OK1O 45433-6543 under Contract F33615-90-C-1465, ARPA Or-
der No. 7597 and in part by the National Science Foundation
under Contract No. CC R-9005992 and the U.S.-Israeli Binational
Science Foundation.

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. govern-
ment.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and ita date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise , or to republish, requires a fee and/or specific permission.

system (or model) determined by the program and in
the length of its specification. In the paper, it was used
to verify a simple version of the alternating bit protocol
with 20 states.

In the nine years that have passed since that paper
was published, the size of the programs that can be ver-
ified by this means has increased dramatically. By de-
veloping special programming languages for describing
transition systems, it became possible to check exam-
ples with several thousand states. This was sufficient
to find subtle errors in a number of nontrivial, although
relatively small, protocols and circuit designs [1]. Use
of boolean decision diagrams (BDDs) [2] led to an even
greater increase in size. Representing transition rela-
tions implicitly using BDDs made it possible to verify
examples that would have required 1020 states with the
original version algorithm [4]. Refinements of the BDD-
based techniques [3] have pushed the state count up over
10100 states. In this paper, we show that by combining
model checking with abstraction, we are able to handle
even larger systems. In one example, we are able to
verify a pipelined ALU circuit with 64 registers, each
64 bits wide, and more than 101300 reachable states.

Our paper consists of three main parts. In the first,
we propose a method for obtaining abstract models of
a program. In the second, we show how these abstract
models can be used to verify properties of the program.
Finally, we suggest a number of useful abstractions, and
we illustrate them via a series of examples.

We model programs as transition systems in which
the states are n-tuples of values. Each component of
a state represents the value of some variable. If the
ith component ranges over the set Di, then the set of
all program states is D1 x . . . x Dn. Abstractions will
be formed by giving subjections hl, hn which map
each Di onto a set D: of abstract values. The surjec-
tionh=(hl,.. ., h.) then maps each program state to
a corresponding abstract state. This mapping may be
applied in a natural way to the initial states and the
transitions of the program. The result is a transition
system which we refer to as the canonical abstraction

@ 1992 ACM 089791453-81921000110343 $1.50

343

Predicate abstraction

SLAM

The 2nd breakthrough!

Very first industrial implementation:

The interval analysis was implemented in the AdaWorld
compiler for IBM PC 80286 by J.D. Ichbiah and his Alsys SA
corporation team in 1980–87.

The Industrialisation of Abstract
Interpretation

The 90s

http://fr.wikipedia.org/wiki/Alsys
http://fr.wikipedia.org/wiki/Alsys
http://fr.wikipedia.org/wiki/Jean_Ichbiah
https://en.wikipedia.org/wiki/Alsys

The Astrée case and the BIG change!

The Industrialisation of Abstract
Interpretation

• Array index out of bounds
• Integer division by 0
• Invalid pointer dereferences
• Arithmetic overflows & wrap-arounds
• Floating point overflows and invalid operations

• IEEE floating values Inf & NaN
• User-defined assertions, unreachable code
• uninitialised variables
• Elimination of false alarms by local refinement

The 2000s!

Industrialisation

The evolution of
Abstract Interpretation

Varieties
Pi(X) = 0; polynomial form

[Carbonell & Kapur 04]

Signs
Xi ≥ 0 ⋀ Xi ≥ 0

[Cousot Cousot 76]

1977 1980 1990 2000 2010 2019

Constants
Xi = ci

[Kildall73]

Simple Congruences
Xi ≡ai [bi]

[Granger89]

Power Analysis
X∈ af(n) wirh f a non rel. analysis

[Mastroeni01]

Ellipsoids
aX2+bY2+cXY≤ d

[Feret 2004]

Linear Equalities
∑i ai,j Xi = dj

[Karr76]
Polyhedra
∑i ai,j Xi ≤ dj

[Cousot Halbwachs 78]

PPL

Intervals
Xi ∈ [ai; bi]

[Cousot Cousot 76]

Sharing
{{XY}{Z}}

[Jacobs & Langen 92]

>
<latexit sha1_base64="bPSAI3TN8KdBiPfwGNVUum2oalA=">AAAB63icbZC7SgNBFIZnvcb1FrW0GQyCVdiNhTZi0MYygrlAsoTZyWwyZG7MzAphySvYWChiJz6LvY34Ns4mKTTxh4GP/z+HOefEilFjg+DbW1peWV1bL2z4m1vbO7vFvf2GkanGpI4lk7oVI0MYFaRuqWWkpTRBPGakGQ+v87x5T7ShUtzZkSIRR31BE4qRza2OlapbLAXlYCK4COEMSpcf/oV6+/Jr3eJnpydxyomwmCFj2mGgbJQhbSlmZOx3UkMUwkPUJ22HAnFiomwy6xgeO6cHE6ndExZO3N8dGeLGjHjsKjmyAzOf5eZ/WTu1yXmUUaFSSwSefpSkDFoJ88Vhj2qCLRs5QFhTNyvEA6QRtu48vjtCOL/yIjQq5fC0XLkNStUrMFUBHIIjcAJCcAaq4AbUQB1gMAAP4Ak8e9x79F6812npkjfrOQB/5L3/AI+0kZI=</latexit>

?
<latexit sha1_base64="i/ZQM05ClZ9t4G0HKjzjG56/dVo=">AAAB7HicbZDLSgMxFIbPeK3jrerSTbAIrspMXehGLLpxWcFeoB1KJs20oZlkSDJCGfoMblwo4krwVdy7Ed/GTNuFtv4Q+Pj/c8g5J0w408bzvp2l5ZXVtfXChru5tb2zW9zbb2iZKkLrRHKpWiHWlDNB64YZTluJojgOOW2Gw+s8b95TpZkUd2aU0CDGfcEiRrCxVr0TSuN2iyWv7E2EFsGfQenyw71I3r7cWrf42elJksZUGMKx1m3fS0yQYWUY4XTsdlJNE0yGuE/bFgWOqQ6yybBjdGydHoqksk8YNHF/d2Q41noUh7Yyxmag57Pc/C9rpyY6DzImktRQQaYfRSlHRqJ8c9RjihLDRxYwUczOisgAK0yMvU9+BH9+5UVoVMr+ably65WqVzBVAQ7hCE7AhzOowg3UoA4EGDzAEzw7wnl0XpzXaemSM+s5gD9y3n8AsAuRmA==</latexit>

Strictness
[Mycroft 91]

Groundness &
dependency

X -> Y
[Marriott Sondergaard 94]

P1

r

o

tA(
P2)

P2

1 2 3 4 5

1

2

3

Figure 6: Weak intersection of parallelotopes P1 and P2.

Definition 12 (Weak intersection). Given two parallelotopes P1 = hA, l,ui,
P2 2 Parn, let hA, l0,u0i = rotA(P2). We define the weak intersection of P1 and
P2 as:

P1 \↵ P2 = hA, l00,u00i

where l00i = max(li, l0i) and u00
i = min(ui, u0

i).

The idea of the weak intersection is to preserve the constraint matrix of the first
parallelotope. Algorithm 6 shows the weak intersection operator.

Example 7. Given the parallelotopes

P1 = {x 2 Rn | 0  �x1 + 3x2  2, 3  x1 + 2x2  8}

P2 = {x 2 Rn | 2  x1 + x2  4,�2  �x1 + x2  2}

depicted in Figure 6, P1 \↵ P2 is the parallelotope filled with both vertical and
horizontal lines.

Proposition 21. The operator \↵ is a correct approximation of the concrete
intersection. It is �-complete when the two arguments are defined over the same
constraint matrix.

We can now define the reduction operator in a standard way, by using the
weak intersection operator.

Definition 13 (Reduction). Given a parallelotope P 2 Parn and a box B 2
Box, we define the reduction operator red : Par u Box ! Par u Box as:

red(hP,Bi) = hP \↵ B,B \↵ P i

Proposition 22. The reduction operator is correct, i.e., given any P 2 Par and
B 2 Box, we have that �(red(hP,Bi)) = �(hP,Bi).

24

Parallelotopes
[Amato Scozzari 2012]

Trapezoidal
congruences

[Masdupuy 1993

On the Abstract Domains
Specific Abstractions

Octagons
∓X ∓ Y≤ d
[Mine01]

On the Theory of Abstract Interpretation
Independent from the abstraction

1979 1980 1990 2000 2010 2019

Completeness

refinement

Recursive theoretic

models

Weakly Relational

Abstractions

Pointers

Probability

AI & up-to

Abstract domain

refinement/compression

Analysis of

Analyses

Almost
Everything

done! Still l
ots t

o do!!!!

Abstract

Dependency

ANI

Thanks!

History is neither watchmaking nor cabinet construction. It is an
endeavour toward better understanding.

—Marc Bloch

