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FIGURE 7.2
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Piird : The alternative boxes which we introduced correspond to the
conditional transfer orders xCc, xCC. I.e., the intention that they express will
be effected in the actual code by such an order. Of the two output branches (cf.

e.g. Figure 7-2 a) one leads to the order following imtediately in the selectron
memory upon the last order on the input branch, while the other leads to the left
or the right hand order in S(x). If at the moment at whifch this decision is made
the number u is in A, then u < o causes the first branch to be taken. We wi I I place
the u which is thus valid into the alternative box, and mark the two branches repre-
senting the two alternatives u ^ o and u < o by + and by -, respectively. In this
way Figures 7.2 a-b become Figures 7.3 a-b. Figure 7.3 b may be made still more
specific: If the induction variable is i, and if the induction is to end when i

reaches the value 1 i if i 's successive values are 0, I, 2 ..., then this means
that I iterations are wanted), and if, as shown in Figure 7.3 b, the - branch is

in the induction loop while the + branch leaves it, then the u of this Figure may
'be chosen as i - I, and the complete scheme is that shown in Figure 7.3 c. (In
many inductions the natural ending is defined by i + 1, having reached a certain
value I. Then the above i - I is to be replaced by i - I + 1.

)

H.H. Goldstine and J. von Neumann. 1947
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The static coding of the boxes I-Xl follows:

C.1

C.2

I.l

H.H. Goldstine and J. von Neumann. 1947
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M. T. démontre eu outre que ces résultats ne peuvent être 
généralisés davantage.

Dans tous ces raisonnements M. T. a recours à quelques 
nouvelles formules élémentaires sur les images d’ensembles, en par 
ticulier à la 'form ule

R( A . iP ( B ) )  =  R{ A) .  B;

où R  est une relation uni-plurivoque et R en est la relation 
inverse.

B. K n a s te  r: Un théorème sur les fonctions d'ensembles.
M. K. communique les résultats suivants, obtenus en commun 

par M. Tarski et lui.
En ce qui concerne le th. (7'8) de la communication précé 

dente, on peut m ontrer que c e  t h é o r è m e  r e s t e  v r a i  p o u r  
d e s  r e l a t i o n s  R  e t  S  t o u t  à f a i t  a r b i t r a i r e s  (donc aussi 
lorsqu’elles sont plurivoques dans les deux sens). Cela résulte du 
théorème :

(T ) f  e t  g é t a n t  d e s  f o n c t i o n s  m a n o t o n e s 1) d’e n  
s e m b l e s  t e l l e s  q u e

B l = f { A )  e t  A x — g(B)

où  AX Ç_A  e t  B, C -B , i l  e x i s t e  d e s  e n s e m b l e s  Z), E , F  et 
G t e l  s . q u e  A  =  D  - f  E, B  =  F - \ - G ,  D E  =  0 =  F  G e t

F = f ( D )  e t  E  =  g(G).

Il suffit, en effet, de poser dans ( T) :

f ( X )  =  S ( X )  et g ( Y ) = S ( Y )

pour tout X  C2 A et Y  Ç2 B.  les images de relations quelconques 
étant des fonctions monotones d’ensembles.

Le théorème ( T)  lui-même n’est qu’un cas particulier du lemme: 
(L) h ( X ) é t a n t  u n e  f o n c t i o n  m o n o t o n e  d’e n s e m b l e s  

e t  A u n  e n s e m b l e  t e l  q u e  h(A)  (7. A,  i l  e x i s t e  un s o u s -  
e n s e m b l e  D  d e  A  t e l  q u e  D  —  h(D).

En effet, si l’on pose dans (L):

h ( X )  =  A - g ( B - f ( X ) ) ,

') C’est-à-dire telles que X  d  Y  entraîne f (X )  Ç Z f ( Y )  et g(X) d g ( Y ) .

1928

1955

A LATTICE THEORETICAL FIXPOINT THEOREM
AND ITS APPLICATIONS

ALF RED TARSKI

1. A lattice theoretical fixpoint theorem. In this section we formulate and
prove an elementary fixpoint theorem which holds in arbitrary complete lat t ices.
In the following sections we give various applications (and extensions) of this
result in the theories of simply ordered sets, real functions, Boolean algebras,
as well as in general set theory and topology. *

By a lattice we understand as usual a system 21 =  ( A9 < ) formed by a non 
empty set A and a binary relation <; it is assumed that < establishes a partial
order in A and that for any two elements afb E A there is a least upper bound
(join) a u b and a greatest lower bound (meet) an b. The relations >L, < , and
> are defined in the usual way in terms of < .

The lattice 21 =  (A, < ) is called complete if every subset B of A has a
least upper bound  B and a greatest lower bound Πβ. Such a lattice has in
particular two elements 0 and 1 defined by the formulas

0 =  ΓU and 1 =  11,4.

Given any two elements a9b E A with a < b, we denote by [a9b] the interval
with the endpoints a and b, that is, the set of all elements x E A for which
a < x < b; in symbols,

[ a,b] =  Ex[x E A and a .< x .< b ] .

The system \ [α , 6 ] , < ) is clearly a latt ice; it is a complete if 21 is complete.

We shall consider functions on A to A and, more generally, on a subset B of
A to another subset C of A. Such a function /  is called increasing if, for any

1 F o r notions and facts concerning lat t ices, simply ordered systems, and Boolean
algebras consult [ l ] .

Received June 29, 1953. Most of the results contained in this paper were obtained
in 1939. A summary of the results was given in [ 6 ] . The paper was prepared for pub 
lication when the author was working on a research project in the foundations of mathe 
matics sponsored by the Office of Ordnance Research, U.S. Army.

Pacific J. Math. 5 (1955), 285 309
285
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 ANNALS OF MATHEMATICS

 Vol. 43, No. 2, April, 1942

 THE CLOSURE OPERATORS OF A LATTICE

 BY MORGAN WARD

 (Received January 29, 1940)

 I. INTRODUCTTON

 1. If C is a lattice of elements A, B., the class of all operators of e (that

 is, one-valued functions kX = O(X) on ? to A) may be made into a lattice by
 defining the union 6 and cross-cut K of any set 4) of operators O by'

 AX = (I .. O X .. * ), KX = [I .. *X ... * ], O e-4)

 The union and cross-cut here are taken over all the values OX of the operators
 in 4) for any given X of 2.

 It is easily verified that the operators of e form a lattice in which O D V' if
 and only if kX D {,X for every X of ({; furthermore this lattice is closed, modular,
 or distributive according as (E is closed, modular or distributive.2

 The operator lattice of a lattice is a concept comparable in generality to the
 Boolean algebra of all subsets of a lattice. As in the algebra, it is certain
 distinguished sets of operators which are useful in investigating the given lat-
 tice rather than the operator lattice itself.

 ()ne obviously important distinguished type is the linear operator. An
 operator O is said to be linear if for any subset 21 of elements A of A, it has one
 or more of the four properties

 . ) (i) f( ( - K * 4 . ) = (.. K A ... (iii) O[f ...A ... .. [ A ...a **]
 (ii) O( ... A .. * ) = [a .. O A ..*.] (iv) O[ ... A .. .. O]= ( A ..*.)

 Here the unions and cross-cuts are taken over all the elements of 21, and 21 is
 finite if C is not closed. Lattice homomorphisms and homomorphisms with
 respect to union with properties (i), (iii) and (i) respectively are familiar ex-
 amples. (Ore 1).

 The linear operators and certain associated lattices are important in the
 study of residuated lattices (Ward-Dilworth 1) as I plan to show in detail
 elsewhere.'

 1 If ( is not closed, ' is assumed to contain only a finite number of operators. A lattice
 is said to be closed (or "complete" or "continuous") if it contains the union and cross-cut
 of any subset of elements in it.

 2 Chain conditions in (E do not usually carry over to the operator-lattice.
 3 The product+; of two operators and q defined by cqX = 0(q(X)) immediately gives

 us an associative multiplication over the operator lattice. On the other hand if B is any
 fixed element of a residuated lattice (E, the operators ,u and p defined by ,.X = BX, pX =
 B:X have the linear properties j( .. A ...) = (.-*- 4A ... ), p(... A ...) = [-* pA . .1.

 191
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José Morgado: in memoriam

J. Almeida A. Machiavelo

Centro de Matemática da Universidade do Porto

Departamento de Matemática Pura

Faculdade de Ciências, Universidade do Porto

José Morgado nasceu a 17 de Fevereiro de 1921, em Pegarinhos, a aldeia
trasmontana da região duriense que era a capital do universo como, com
orgulho e ironia provocatória, gostava de referir. Fez a escola primária em
Pegarinhos, e o primeiro e segundo anos do liceu em Favaios, que fica a
uns 19Kms da sua aldeia natal. Não se tendo inscrito no terceiro ano do
liceu, por a famı́lia não poder arcar com as despesas necessárias, já que a
localidade mais próxima onde o poderia fazer era Vila Real, a uns 60Kms
de Pegarinhos, foram alguns dos professores que se encarregaram de tratar
pessoalmente de garantir que o adolescente José Morgado prosseguisse os
seus estudos, pois tinha-se revelado já um aluno excepcional, não apenas
nesta ou aquela disciplina, mas em todas, como escreve aquele que seria o
seu professor de Filosofia em Vila Real, Sant’anna Diońısio, em [4, pp. 180–
181], onde relata esta história. E acrescenta:

O rapaz [...] foi, conforme se previa, um dos mais destacados
para não dizer dos mais notáveis estudantes que teriam passado

1
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A BASIS FOR A MATHEMATICAL THEORY OF 
COMPUTATION 1) 

JOHN McCARTHY 

Computation is sure to become one of the most important of the sciences. 
This is because it is the science of how machines can be made to carry 
out intellectual processes. We know that any intellectual process that can 
be carried out mechanically can be performed by a general purpose digital 
computer. Moreover, the limitations on what we have been able to make 
computers do so far clearly come far more from our weakness as pro- 
grammers than from the intrinsic limitations of the machines. We hope 
that these limitations can be greatly reduced by developing a mathemati- 
cal science of computation. 

There are three established directions of mathematical research 
relevant to a science of computation. The first and oldest of these is 
numerical analysis. Unfortunately, its subject matter is too narrow to be 
of much help in forming a general theory, and it has only recently begun 
to be affected by the existence of automatic computation. 

The second relevant direction of research is the theory of computability 
as a branch of recursive function theory. The results of the basic work 
in this theory, including the existence of universal machines and the 
existence of unsolvable problems, have established a framework in which 
any theory of computation must fit. Unfortunately, the general trend of 
research in this field has been to establish more and better unsolvability 
theorems, and there has been very little attention paid to positive results 
and none to establishing the properties of the kinds of algorithms that 
are actually used. Perhaps for this reason the formalisms for describing 
algorithms are too cumbersome to be used to describe actual algorithms. 

The third direction of mathematical research is the theory of finite 
automata. Results which use the finiteness of the number of states tend 
not to be very useful in dealing with present computers which have so 

l) This paper is a corrected version of the paper of the same title given at the Western 
Joint Computer Conference, May 1961. A tenth section discussing the relations 
between mathematical logic and computation has been added. 

Bridge between computability and
programming!

1963
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Peter Naur 1966.  
Proof of algorithms by general snapshots

BIT 6 (1966), 310-316 

PROOF OF ALGORITHMS BY GENERAL SNAPSHOTS 

PETER NAUR 

Abstract .  
A constructive approach to the question of proofs of algorithms is to consider 

proofs that an object resulting from the execution of an algorithm possesses cer- 
tain static characteristics. It  is shown by an elementary example how this pos- 
sibility may be used to prove the correctness of an algorithm written in ALGOL 60. 
The stepping stone of the approach is what is called General Snapshots, i.e. ex- 
pressions of static conditions existing whenever the execution of the algorithm 
reaches particular points. General Snapshots are further shown to be useful for 
constructing algorithms. 

Key words: Algorithm, proof, computer, programming. 

Introduct ion .  
I t  is a deplorable consequence of the lack of influence of mathemat ica l  

th inking on the way  in which compute r  p rogramming  is cur ren t ly  being 
pursued,  t h a t  the regular  use of systemat ic  proof  procedures,  or even 
the realization t h a t  such proof procedures  exist,  is unknown to the large 
major i ty  of programmers .  Undoub ted ly ,  this fac t  accounts  for  a t  least 
a large share of the  unrel iabi l i ty  and  the  a t t e n d a n t  lack of over-all  ef- 
fectiveness of programs as t h e y  are used to-day .  

Histor ical ly  this s ta te  of affairs is easily explained.  Large  scale com- 
pu te r  programming s ta r ted  so recent ly  t ha t  all of its pract i t ioners  are, 
in fact ,  amateurs .  At  the same t ime the  modern  computers  are so effec- 
t ive t h a t  t he y  offer advantages  in use even when the i r  powers are largely 
wasted.  The stress has been on always larger, and, allegedly, more power- 
ful systems, in spite of the  fac t  t h a t  the available p rogrammer  com- 
petence  often is unable  to cope with their  complexities.  

However ,  a reac t ion  is bound  to  come. We cannot  indefini tely con- 
t inue to build on sand. When  this is realized there  will be an increased 
interest  in the  less glamorous,  bu t  more  solid, basic principles. This will 
go in parallel  with the  in t roduct ion  of these principles in the  e lementa ry  
school curricula.  One subject  which will then  come up for  a t t en t ion  is 
t h a t  of proving the  correctness of algorithms. The  purpose of the  present  
article is to  show in an  e lementa ry  way  t h a t  this  subject  no t  only exists, 
b u t  is ripe to  be used in practise.  The i l lustrat ions are phrased  in ALGOL 
60, bu t  the  technique  m a y  be used with any  programming  language. 

Copyright (~ 1966 by Peter  Naur. 
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ments in the process, but still as applied to one particular set of data. 
To illustrate this technique, every detail of an example of the use of 
Program 1 is given above. Successive snapshots are given in successive 
lines, where for clarity a value given in a column holds unchanged in 
following lines unless another value is given. 

This snapshot technique is quite useful as an aid to understanding a 
given algorithm. However, it is not a proof technique because it depends 
entirely on the choice of the data  set. In order to achieve a proof we 
shall need more general snapshots. 

General  Snapshots .  
By a General Snapshot I shall mean a snapshot of a dynamic process 

which is associated with one particular point in the actual program text, 
and which is valid every time that  point is reached in the execution of 
the process. 

From this definition it immediately follows tha t  the values of vari- 
ables given in a General Snapshot normally at  best can be expressed as 
general, mathematical expressions or by equivalent formulations. I have 
to say "a t  best" because in many cases we can only give certain limits on 
the value, and I have to admit "equivalent formulations" because we do 
not always have suitable mathematical notation available. 

In order to illustrate this notion, here is a version of the above algorithm 
expanded with General Snapshots at  six different points: 

PROGRAM 2 
Greatest number, with snapshots 

c o m m e n t  General Snapshot 1:1  < N; 
r : = l ;  
c o m m e n t  General Snapshot 2 : 1  < N, r = 1; 
for i :=  2 step 1 unt i l /V do 

begin c o m m e n t  General Snapshot 3 : 2 <= i <= N,  1 < r <= i -  1, 
A[r] is the greatest among the elements A[1],A[2] . . . .  , A [ i - 1 ] ;  
if A[i] > Air] then r : =  i; 
c o m m e n t  General Snapshot 4: 2 < i < N ,  l < r< i, A[r] is the greatest 
among the elements A [ 1], A [2] . . . . .  A [i]; 
end; 

c o m m e n t  General Snapshot 5 : 1  < r <-N, A[r] is the greatest among the 
elements A[1],A[2] . . . . .  A[_N]; 
R : =  A[r]; 
c o m m e n t  General Snapshot 6: R is the greatest value of any element, 
A[1J,A[2] . . . . .  A [~¢']; 
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Peter Naur 1966.  
Proof of algorithms by general snapshots

3 1 2  P E T E R  NAUR  

This looks pret ty good to me. However, can I prove tha t  it is correct ? 
Many people, including many experienced programmers, will tend to 
dismiss the question, claiming tha t  it is obvious that  the solution is cor- 
rect. I wish to oppose this view. Although the algorithm is not very 
complicated, it does contain some 7 operators and 12 operands. This is 
more than what can be grasped immediately by anyone, and I am sure 
tha t  even the experienced programmer, in studying the algorithm, makes 
use of mental images and a certain decomposition of the process before 
he accepts it. I wish to claim tha t  he goes through a proof, and I want 
this to be brought into the open, using a technique which can be used 
also in more complicated cases. 

Snapshots. 
Our proof problem is one of relating a static description of a result to 

a dynamic description of a way to obtain the result. Basically there are 
two ways of bringing the two descriptions closer together, either we may 
t ry  to make the static description more dynamic, with a hope of getting 
to the given algorithm, or we may t ry  to make the dynamic de- 
scription more static. Of these the second is clearly preferable because 
we have far more experience in manipulating static descriptions, through 
practise in dealing with mathematical formulae. Therefore, if only we 
can derive some static description from the dynamic one, there is good 
hope tha t  we may manipulate it so as to show tha t  it is identical with 
the given static description. 

r i R 

Initial 
Following r := 1 1 

- f o r / : =  2 2 
Second time in loop 3 
Following r := i 3 
Third time in loop 
Following R := A[r] 

4 

5 

N A[I] A[2] A[3] A[4] 

4 2 1 5 2 

We are thus led to the use of snapshots of the dynamic process for 
purposes of proof, because a snapshot is an instantaneous, and therefore 
static, picture of the development of the process. In its most primitive 
form a snapshot refers to one particular moment in the development of 
the process applied to one particular set of data. In a slightly more 
developed use we give a series of snapshots, referring to successive mo- 

Related to State Vectors in McCarthy’s work on ALGOL
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Robert Floyd 1967.  
Assigning meanings to programs.

START 

_____ {X 0, Y> 0, Q = ° 
r-----lI=----, (X - Q, 5) 

R-X 
_____ 

(X-Q,4) 
_____ {R 0, X 0, Y > 0, Q 0, X = R + QY 

(X - Q,3) __ _ 

---"'-- ,C HALT) 

I_tO R < Y,X O,X = R + QY 
No (X - Q,2) 

_____ {R Y> 0, X 0, Q 0, X = R + QY 
,_----'1""-_--, (X - Q, 2) 

_____ {R 0, Y > 0, X 0, Q > 0, X = R + QY 
(X - Q,4) 

FIGURE 5. Algorithm to compute quotient Q and remainder R of 
X.;- y, for integers X 0, Y > ° 

REFERENCES 

1. J. McCarthy, "A basis for a mathematical theory of computation" in Computer pro-
gramming and formal systems, North-Holland, Amsterdam, 1963, pp. 33-70. 

2. , Towards a mathematical science of computation, Proc. IFIP Congr. 62, North-
Holland, Amsterdam, 1962, pp. 21-28. 

CARNEGIE INSTITUTE OF TECHNOLOGY 
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programs in the language, appear to be novel, although McCarthy ll, 2] 
has done similar work for programming languages based on evaluation of 
recursive functions. 

A semantic definition of a programming language, in our approach, is 
founded on a syntactic definition. It must specify which of the phrases 
in a syntactically correct program represent commands, and what conditions 
must be imposed on an interpretation in the neighborhood of each command. 

We will demonstrate these notions, first on a flowchart language, then 
on fragments of ALGOL. 

DEFINITIONS. A flowchart will be loosely defined as a directed graph 
with a command at each vertex, connected by edges (arrows) representing 
the possible passages of control between the commands. An edge is said 
to be an entrance to (or an exit from) the command c at vertex v if its 
destination (or origin) is v. An interpretation I of a flowchart is a mapping 
of its edges on propositions. Some, but not necessarily all, of the free 
variables of these propositions may be variables manipulated by the 

- - - - - - - - n E J+ (J+ is the set of positive integers) 

- - - - - - - - n E J+ /\ i = 1/\ S = 0 
i-l 

_____ - - - n E J+ /\ i E J+ /\ i n + 1/\ S = 1: OJ 
j-l 

i-I n 
- - - n E J1- /\ i = n + 1/\ S = 1: OJ; i.e., S = 1: OJ ______ j-l j-l 

i-l 
- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = 1: OJ 

j-1 

. 
I 

- - - - - - - - n E J+ /\ i E J+ /\ i n /\ S = L. OJ 
j-1 

i - i + 1 i-l 

- - - - - - - - n E J+ Ai € J+ 1\ 2 i n + 1/\ S = 1: OJ 
j-l 

FIGURE 1. Flowchart of program t() compute S = 1:1-1 OJ (n 0) 
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C.A.R Hoare 1969.  
An axiomatic basis for computer programming

R. Burstall 1968 
Proving Properties of programs by structural induction

J.W. DeBakker 1968 
Axiomatics of simple assignment statements
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C. Strachey & D. Scott. 1971 
A mathematical theory of computation.

[[·]] : Comm �! (State �! State)
<latexit sha1_base64="y4oc2Y5vCWj33h6nSYa2ECuWst8="></latexit>

[[·]] : AExp �! (State �! V al)
<latexit sha1_base64="eaX9FvjGntob9E7q9g0EwJtYwW0="></latexit>

Denotational semantics was less relevant to the origins of abstract 
interpretation than expected
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Inductive Methods for 
Proving Properties of 
Programs 
Zohar Manna, Stephen Ness, Jean Vuillemin 
Stanford University 

There are two main purposes in this paper: first, 
clarification and extension of known results about 
computation of recursive programs, with emphasis on 
the difference between the theoretical and practical 
approaches; second, presentation and examination of 
various known methods for proving properties of 
recursive programs. Discussed in detail are two powerful 
inductive methods, computational induction and structural 
induction, including examples of their applications. 

Key Words and Phrases: recursive programs, least 
fixedpoint, computational induction, structural induction 

CR Categories: 4.2, 5.23, 5.24 

Copyright © 1973, Association for Computing Machinery, Inc. 
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The research reported here was supported by the Advanced 
Research Projects Agency of the Office of the Secretary of Defense 
under Contract SD-183. This is a modified version of a paper 
originally presented at the ACM Conference on Proving Asser- 
tions about Programs, Las Cruces, New Mexico, January 1972. 
Authors' addresses: Zohar Manna, Applied Mathematics Depart- 
ment, The Weizmann Institute of Science, Rehovot, Israel; Stephen 
Ness, Computer Science Department, Stanford University, Stan- 
ford, CA 94305: Jean Vuillemin, I.R.I.A., Domaine de Volceau, 
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Introduction 

Many different inductive methods have been used to 
prove properties of programs. Well-known methods in- 
clude, for example, recursion induction, structural in- 
duction, inductive assertions, computat ional  induction, 
truncation induction, and fixedpoint induction. Our in- 
tention in this paper is to introduce these methods to 
as wide a class of readers as possible, illustrating their 
power as practical techniques for proving properties 
of  recursive programs. 

In Section I we give the theoretical background 
necessary to understand the fixedpoint approach to 
recursive programs (essentially following Scott, 1970 
[16]), as well as the practical computat ional  approach.  
We emphasize that while existing inductive methods 
prove properties of the "least fixedpoint function" of a 
recursive program, in practice this function may differ 
from the function computed by some common computa-  
tion rules. We briefly suggest "fixedpoint" computat ion 
rules which assure that the computed function is iden- 
tical to the least fixedpoint. A brief informal exposition 
of the fixedpoint theory was given by Manna and 
Vuillemin, 1972 [8]. 

In Section II  we examine computational induction 
methods, i.e. methods in which the induction is based 
on the steps of the computation.  We first present the 
extremely simple induction method introduced by Scott 
(deBakker and Scott, 1969 [3]). Examples are presented 
which introduce various applications of  the method. 
We also discuss another computat ional  induction 
method, truncation induction (Morris, 1971 [14]). A 
related method, called fixedpoint induction, is described 
in Park, 1969 [15]. 

We describe the structural induction method and its 
application for proving properties of  programs in Sec- 
tion lII .  This method was suggested explicitly by Bur- 
stall, 1969 [1], although it was often used previously, 
for example by McCarthy and Painter, 1967 [9], for 
proving the correctness of  a compiler and by Floyd, 
1967 [4] for proving termination of flowchart programs.  
Our intention in this section is to emphasize, by means of 
appropriately chosen examples, that the choice of a 
suitable partial ordering on the data structure and of a 
suitable induction hypothesis leads to simple and clear 
inductive proofs. 

Although it can be shown that computat ional  in- 
duction and structural induction are essentially equiva- 
lent, there are practical reasons for keeping both of them 
in mind. Computat ional  induction i s  best suited for 
proving the correctness and equivalence of programs, 
and because of its simplicity it is particularly convenient 
for machine implementation (Milner, 1972 [10, 11]). On 
the other hand, termination of programs is usually more 
convenient to show by structural induction. 

We concentrate on these two methods because they 
form a natural basis for future automatic program 
verifiers. In particular, all other known verification tech- 
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computing the factorial function: 

F(x) ~ i fx  = 0 then 1 else x.F(x--1). 

This program resembles the ALGOL declaration 

integer procedure f (x ) ; 
f : =  i f x  =Othen 1 eisex*f(x--1); 

and the LISP definition 

DEFINE (( 
(FF (LAMBDA (X)(COND ((ZEROP X ) 1 )  

(T (TIMES X (FF (SUB1 X)) ) ) ) ) ) ) ) .  

Of  course our programs are meaningless until we 
describe the semantics of our language, i.e. how to 
compute the function defined by a program. The next 
step is therefore to give computation rules for executing 
programs. Our aim is to characterize the rules such that 
for every program F ( x )  ~ r[F] (x) the computed func- 
tion will be exactly the least fixedpointf~. 

C o m p u t a t i o n  S e q u e n c e  
Let F( x )  ~ r[F] (x) be a program over some domain 

D +. For  a given input value d E D + (for x),  the program 
is executed by constructing a sequence of terms 
to, h ,  t 2 , . . . ,  called a computation sequence for  d, as 
follows : 
(1) The first term to is F(d).  
(2) For  each i, i > 0, the term t~+l is obtained from ti 
in two steps: first (a) substitution: some occurrences 
(see below) of F(e)  in ti are replaced by ~-[F](e) 
simultaneously, where e may be any subexpression; 
and then (b) simplification: known functions and 
predicates are replaced by their values, whenever pos- 
sible, until no further simplifications can be made. 
(3) The sequence is finite and t, is the final term in the 
sequence if and only if no further substitution or sim- 
plification can be applied to t, (that is, when tn is an 
element of D+). 

C o m p u t a t i o n  R u l e s  
A computation rule C tells us which occurrences of 

F(e)  should be replaced by r[F] (e) in each substitution 
step. For  a given computat ion rule C, the program 
defines a partial function f~ mapping D + into D + as 
follows: I f  for input d ~ D ÷ the computat ion sequence 
for d is finite, we say t ha t f c (d )  - tn ; if the computa-  
tion sequence for d is infinite, we say that f c  (d) =- o~. 

The following are examples of  typical computat ion 
rules: ( I ) f u l l  computation rule: Replace all occurrences 
of  F simultaneously. We denote the computed function 
by fFL. (2) leftmost-innermost("call by value") rule: 
Replace only the leftmost-innermost occurrence of F 
(that is, the leftmost occurrence of F with all argu- 
ments free of F 's) .  We denote the computed function 
by fz~ • This is the rule which corresponds to the usual 
stack implementation of recursion for languages like 
LISP or ALGOL where a procedure evaluates all its argu- 
ments before execution. (3) leftmost-outermost ("call 
by name") rule: Replace only the leftmost-outermost 

occurrence of F. We denote the computed function 
byfLo • 

Example 8. We consider the recursive program for 
the "91-function" over the integers: 

F(x) ~ i f x  > 100 then x -- 10 else F(F(x+ll) ) .  

We illustrate the computat ion secquences for x = 99 
using the three rules. 
(a) Using the full rule: 

to is F(99) 
i f  99 > 100 then 99 -- 10 

else F(F (99+ 11 ) ) [substitution] 
h is F(F(110) ) [simplification] 

i f  [ if  110 > 100 then I10 -- 10 
else F(F( l l0+ l l ) ) ]  > 100 

then [if 110 > 100 then 110 -- 10 
else F(F(I10+ll))]  -- l0 

else F(F([if 110 > 100 
then 110 -- I0 
else F(F(110+11 ) )]+11 ) ) [substitution] 

t~. is F(F(111 ) ) [simplification] 
i f [ i f  111 > 100 then 111 - - 1 0  

else F ( F ( l l l + l l ) ) ]  > 100 
then [if 111 > 100 then 111 -- 10 

else F ( F ( l l l + l l ) ) ]  -- 10 
else F(F([if 111 > 100 

then 111 -- 10 
else F ( F ( l l l + l l ) ) ] + l l ) )  [substitution] 

h is 91. 

In short, omitting simplifications and underlining the 
occurrences of F used for substitution: _F(99) 
_F(F( l l0 ) )  ~ _F(_F(111)) --~ 91. Thus, f rL(99)  =- 91. 
(b) Using the leftmost-innermost rule: 

_F(99) ---, F(F(l l0))  --* F_ (100) --* F(E( l l l )  --* F (101) ~ 91. 

Thus, fLt(99) = 91. 
(c) Using the leftmost-outermost rule 

E(99) ---, F_ (F(ll0)) 
i f F _ ( l l 0 )  > 100 then F ( I I 0 )  --  10 

else F(F(F(llO)+ll  ) ) 
--* E (F(F(IlO)+ll ) ) . . . .  

ifF_(ll0) + 11 > 100 then F(ll0) -- 9 
else F(F(F(110)+22))--10 

F(ll0)  -- 9 ~ 9 1 .  

Thus, fLo(99) -= 91. [] 

An important  property o f f c  should be mentioned at 
this point (Cadiou, 1972 [2]): For  any computat ion rule 
C, the computed function f c  is less defined than the least 
fixedpoint, i.e. f c  __-f~, but they are not necessarily 
equal. 

A program may consist in general of a system of 
recursive definitions of the form 

I FI(x)  ~ rl[Fx , . . . ,  F,](X) 
F...2(x) ~ r.,.[F1, , F,](X) 

~F,(x) ~ r,[F1, . . . , F,I(X), 

where each ri is an expression representing a composi- 
tion of known monotonic functions and predicates and 
the function variables F~, F ,2 , . . .  ,F, applied to the 
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Historical Context in the 1970s
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u(x•)]   >      (1) 

(2) 

(3) 

4) 

(g) While   Rule 

< p(x)   A t(x)   |   B   |   qCx.x')   A   (-tCx')   v  u(x)   ; 

q(x,x')   A  tCx«)   =» p(x') 

qCx.x')   A  qCx'.x")   = q(x,x") 

p(x)   A   ~t(x)   = q(x,x) 

< p(x)   |   while   t(x)   do  B   |   qCx.x^A -tCx')   > 

where     (w,^)     is   a well-founded set  and    u:X -* W   . 

The  above   seemingly  complicated  rule   is  devised to 

overcome  several  difficulties   caused by  the need to prove 

termination.     Termination  of  a  looping while   statement   is 

essentially ensured here  by   Floyd's  technique   [1967],  namely, 

producing a function    u    whose  values keep strictly decreasing 

in   subsequent  executions  of    B. 

Condition   (1)   requires establishing a well-founded set 

(W,-<)     with a partial  order     <   satisfying the  descending 

chain condition,  i.e.,   there  is no infinite  chain of elements 

from    W, a,   >- a ^...     .     Also  required is  a partial   function 

u    mapping some  elements   of our data domain     X    into  elements 

of    W   .     If we  were   able  to  prove  that  after each  execution 

of    B   ,    u(x)  V  u(x')     (where  by writing this   inequality we 

also mean  that     uix)     and    uCx')     are  both  defined),   then 

clearly    B    cannot   repeatedly execute  an  infinite  number of 

times  or we would violate  the  descending chain  condition. 

The  demand  for the  existence  of a descending  counter 

which  is  defined  for  all  executions  of the while  body    B   , 

MM mmmm 



Historical Context in the 1970s

E. Dijkstra 1975.  
Guarded Commands, Nondeterminacy and Formal Derivation of Programs

and Q, we have for all states (wp(S,P) or wp(S,Q)) 
= wp(S,P or Q). 

For  nondeterministic mechanisms S, the equality has to 
be replaced by an implication; the resulting formula 
follows from the second property. 

Together with the rules of propositional calculus and 
the semantic definitions to be given below, the above four 
properties take over the role of the "rules of infer- 
ence" as introduced by Hoare [1 ]. 

We take the position that we know the semantics oi' 
a mechanism S sufficiently well if we know its predicate 
transformer, i.e. can derive wp(S,R) for any post-con- 
dition R. 

Note. We consider the semantics of S only defined 
for those initial states for which has been established 
a priori that they satisfy wp(S,T), i.e. for which proper 
termination is guaranteed (even in the face of possibly 
non-deterministic behavior); for other initial states we 
don' t  care. By suitably changing S, if necessary, we 
can always see to it that wp(S,T) is decidable. (End of 
note.) 

Example 1. The semantics of the empty statement, 
denoted by "skip" are given by the definition that for 
any post-condition R, we havewp ("skip", R) = R. 

Example 2. The semantics of the assignment state- 
ment "x  := E"  are given by wp("x := E",  R) = REx, 
in which RB ~ denotes a copy of the predicate defining R 
in which each occurrence of the variable x is replaced 
by (E). 

Example 3. The semantics of the semicolon ";" as 
concatenation operator are given by 
wp("Sl ; $2", R) = wp(Sl, wp(S2,R)). 

lead to a properly terminating activity leaving the sys- 
tem in a final state such that the value of t is decreased 
by at least 1 (compared to its initial value). In terms of 
wdec we can formulate the very similar: 

THEOREM 2. From (Vi : 1 < i < n : (Q and B~) 
wdec(SLi,t)) for all states we can conclude that 

(Q and BB) ~ wdec(IF, t) holds for  all states. 
Note (which can be skipped at first reading). The 

relation between wp and wdec is as follows. For  any 
point X in state space we can regard wp(S, t <_ to) as 
an equation with to as the unknown. Let its smallest 
solution for to be tmin(X). (Here we have added the 
explicit dependence on the state X.) Then train(X) can 
be interpreted as the lowest upper bound for the final 
value of  t if the mechanism S is activated with X as initial 
state. Then, by definition, wdec(S, t) = (tmin(X) <_ 
t(X) - 1) = (tmin(X) < t(X)). (End of note.) 

3.3 The Repetitive Construct 
As is to be expected, the definition of the repetitive 

construct 

do B1 - - o  S L x  ~] . • • [7 B n  ---o SL,  od, 

that we denote by DO, is more complicated. Let 

H o ( R )  = ( R  and non BB) 

and f o r k >  0, 

Hk(R) = (wp(1F, Hk_I(R)) or Ho(R)) 

(where IF denotes the same guarded command set en- 
closed by "if  fi"). Then, by definition 

3.2 The Alternative Construct 
In order to define the semantics of the alternative 

construct we define two abbreviations. 
Let IF denote 

if  B x - - o  SL1 [7 . . • [7 B ~  - - o  SL~ fi; 

let BB denote 

(':li : 1 < i < n :Bi ) ;  

then, by definition 

wp(IF, R) = (BB and (Vi : 1 < i < n : Bi ~ wp(SL~,R)),. 

(The first term BB requires that the alternative construct 
as such will not lead to abortion on account of all 
guards false; the second term requires that each guarded 
list eligible for execution will lead to an acceptable 
final state.) From this definition we can derive--by 
simple substitutions: 

THEOREM 1. From (Vi : 1 < i < n : (Q and Bi) 
wp(SLi,R)) for all states we can conclude that (Q and 
BB) ~ wp(1F, R) holds for all states. 

Let t denote some integer function, defined on the 
state space, and let wdec(S,t) denote the weakest pre- 
condition such that activation of S is guaranteed to 

wp(DO, R) = (3k  : k >_ 0 : Hk(R)). 

(Intuitively, Hk(R) can be interpreted as the weakest 
pre-condition guaranteeing proper termination after 
at most k selections of a guarded list, leaving the 
system in a final state satisfying R. )Via  mathematical 
induction we can prove: 

THEOREM 3. I f  we have for all states (P and BB) 
(wp(1F, P) and wdec(IF, t) and t >__ 0) we can conclude 
that we have for all states P ~ wp(DO, P and non BB). 

Note. The antecedent of Theorem 3 is of the form 
of the consequents of Theorems 1 and 2. (End of note.) 

Because T is the condition by definition satisfied by 
all states, wp(S,T) is the weakest pre-condition guaran- 
teeing proper termination for S. This allows us to 
formulate an alternative theorem about the repetitive 
construct, viz. : 

THEOREM 4. From (P and BB) ~ wp(IF, P ) f o r  all 
states, we can conclude that we have for all states 
(P and wp(DO, T)) ~ wp(DO, P and non BB). 

Note. In connection with the above theorems, P 
is called "the invariant relation" and t is called "the 
variant function." Theorems 3 and 4 are easily proved 
by mathematical induction, with k as the induction 
variable. (End of note.) 
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Prove correctness and
synthesise correct code
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The years 1972—1977



Patrick Cousot worked on the operational semantics 
of programming languages and the derivation of 
implementations from the formal definition.

Early years (1972-73): Formal semantics

Patrick Cousot. Définition interprétative et implantation de 
languages de programmation. Thèse de Docteur Ingénieur en 
Informatique, Université Joseph Fourier, Grenoble, France, 14 
Décembre 1974 (submitted in 1973 but defended after 
finishing military service with J.D. Ichbiah at CII). 

Static analysis of the formal definition and transformation to 
get the implementation by “pre-evaluation” (similar to the 
more recent “partial evaluation”)

http://www.di.ens.fr/%7Ecousot/COUSOTpapers/CousotTheseDi1974.shtml
http://www.di.ens.fr/%7Ecousot/COUSOTpapers/CousotTheseDi1974.shtml


Radhia Rezig worked on precedence parsing (R.W. 
Floyd, N. Wirth and H. Weber,  etc.) for Algol 68


Pre-process ing (by s ta t ic ana lys is and 
transformation) of the grammar before building the 
bottom-up parser


Patrick Cousot worked on context-free grammar 
parsing (J. Earley and F. De Remer)


Pre-process ing (by s ta t ic ana lys is and 
transformation) of the grammar before building the 
top-down parser

Before starting (1972-73): formal syntax

• Radhia Rezig.  Application de la méthode de précédence totale à l’analyse d’Algol 68, Master thesis, 
Université Joseph Fourier, Grenoble, France, September 1972.

• Patrick Cousot. Un analyseur syntaxique pour grammaires hors contexte ascendant sélectif et général. In 
Congrès AFCET 72, Brochure 1, pages 106-130, Grenoble, France, 6-9 November 1972.

http://www.di.ens.fr/~cousot/COUSOTpapers/AFCET72.shtml


Intervals ➞

Static analysis ➞

Assertions ➞

1972



Radhia Rezig shows her interval analysis ideas to Patrick 
Cousot

➡ Patrick very critical on going backwards from [-∞, +∞] 

and claims that going forward would be much better

➡ Patrick also very skeptical on forward termination for 

loops

Radhia comes back with the idea of extrapolating 
bounds to ±∞ for the forward analysis

The discover of widening = induction in the abstract 
and that the idea is very general!!

1974: The origins



Notes of Radhia Rezig on 
forward iteration from ☐ = ⊥ 

(forward least fix-point) 
versus backward iteration 
from [-∞, +∞] (backward 

greatest fix-point)



The IRIA-SESORI contract (1975-76)
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The first abstract 
interpreter with 

widening 
(as of 23 Sep. 1975)

The first research 
report 

(Nov. 1975)



The first publication (ISOP II, Apr. 1976)



The breakthrough!



POPL 1977
Los Angeles, January 17-19, 1977



For 4th POPL’77, Patrick and Radhia submitted on 
August 12, 1976 hard copies of a two-hands written 
manuscript of 100 pages. 

The POPL 1977 submission

Never published in a "scientific journal". 
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Fixpoint abstraction 
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iterative fixpoint computation 



Topology, higher-order 
fixpoints, operational/
summary/... analysis

Galois connections, 
closure operators, Moore 

families, ideals,...
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Program analysis is approximating program semantics

Formalise the notion of approximation in 
Semantics

Domain approximation

Fix-point approximation

Key Ideas!
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CONSTRUCTIVE VERSIONS OF TARSKI'S
FIXED POINT THEOREMS

P,q.rnrcN Cousor l.No RlpnlA Cousor

Let F be a monotone operator on the complete lattice
Z into itself. Tarski's lattice theoretical fixed point theorern
states that the set of fixed points of l' is a nonempty cornplete
lattice for the ordering of Z. We give a constructive proof
of this theorern showing that the set of fixed points of .F is
the image of L by a lower and an upper preclosure operator.
These preclosure operators are the composition of lower and
upper closure operators which are defined by means of limits
of stationary transfinite iteration sequences for ,F. In the
same wey we give a constructive characterization of the set
of common fixed points of a family of commuting operators.
Finally we examine some consequences of additional semi-
continuity hypotheses.

1 .  I n t roduc t i on .  Le tL (s : ,  L ,T ,U ,  | - l )  beanonempty  comp le te
Lutt'ice with parti,al ordering g, least upper bound, u , greatest
lower bound, ft. The i,nf,munL I of tr is f-l L, the supremum T of
L is UL. (Birkhoff 's standard referenee book I3l provides the
necessary background materiai.) Set inclusion, union and intersection
are respectively denoted by e , U and f-l .

Let tr be a monotone operator on L(e, L, T, U, f l) into itself
( i .e. ,  YX, Y e L, {X =Y) -  {F(X) e l r(y)}) .

The fundamental theorem of Tarski [19] states that the set fp(F)
o f  f , red"po i ,n ts  o f  f ' ( i .e . ,  fp (F) :  {Xe L :X:  f ' (X) } )  i s  a  nonempty
complete iattice with ordering e . The proof of this theorem is
based on the definition of the least fixed point tfp(F) of lI by Lfp(F) :
n{Xe L:F(X) g X}.  The least upper bouncl of  S c fe@) in fp(F)
is the least fixed point of the restriction of f'to the complete lattice
{X e L: ( u S1 q 11. An application of the duality principte completes
the proof.

This deflnition is not constructive and many appiications of
Tarski's theorem (specially in computer science (Cousot [5]) and
numerical analysis (Amann Iz])) use the alternative characterization
of lfp(F) as U {tr"( -r ): i e N}. This iteration scheme which originates
from Kleene [tO]'s first recursion theorem and which was used by
Tarski [fl] for complete morphisms, has the drawback to require
the additional assumption that F is semi-conti,nuous (F(US) : U,F'(S)
for every 'increas'ing nonempty ch,ai,tt, S, see e.g., Kolodner [ff]).

I

José Morgado: in memoriam

J. Almeida A. Machiavelo

Centro de Matemática da Universidade do Porto

Departamento de Matemática Pura

Faculdade de Ciências, Universidade do Porto

José Morgado nasceu a 17 de Fevereiro de 1921, em Pegarinhos, a aldeia
trasmontana da região duriense que era a capital do universo como, com
orgulho e ironia provocatória, gostava de referir. Fez a escola primária em
Pegarinhos, e o primeiro e segundo anos do liceu em Favaios, que fica a
uns 19Kms da sua aldeia natal. Não se tendo inscrito no terceiro ano do
liceu, por a famı́lia não poder arcar com as despesas necessárias, já que a
localidade mais próxima onde o poderia fazer era Vila Real, a uns 60Kms
de Pegarinhos, foram alguns dos professores que se encarregaram de tratar
pessoalmente de garantir que o adolescente José Morgado prosseguisse os
seus estudos, pois tinha-se revelado já um aluno excepcional, não apenas
nesta ou aquela disciplina, mas em todas, como escreve aquele que seria o
seu professor de Filosofia em Vila Real, Sant’anna Diońısio, em [4, pp. 180–
181], onde relata esta história. E acrescenta:

O rapaz [...] foi, conforme se previa, um dos mais destacados
para não dizer dos mais notáveis estudantes que teriam passado

1
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The 80s and 90s: The main difficulties in 
the spread of Abstract Interpretation

Imperative programming?

Lack of a clean/simple fixed point semantics

Dominance of compile-time data-flow 

static analysis (a la Kildall)

• compile-time optimisation

• compiler oriented
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Code Obfuscation Against Abstract Model Checking A�acks 1:3

Fig. 1. Source and obfuscated Fibonacci code

1.2 The challenge
The major challenges in code protecting transformations are: (1) the design of provably correct
code transformations that do not inject �aws when protecting code, and (2) the extraction of
adequate metrics for measuring the potency (i.e., the strength) of code protecting transformations.
In this paper we start by addressing (2) and then provide a method for strongest protection that
guarantees (1). Due to the undecidability of generic program analysis and impossibility of VBB
obfuscation, measuring the potency of a code transformation defeatingWB attacks means specifying
precisely the perimeter of the possible attack model.

Assumption #2: We consider as model of attack static program analysis and abstract model
checking.

We choose to focus on this form of attack because it handles a quite general class of cases. For
example certain data-�ow analyses can be cast to model checking of safety formulas. It is known

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



Thus a predicative function of an individual is a first-order function; 
and for higher types of arguments, predicative functions take the 
place that first-order functions take in respect of individuals. We 
assume then, that every function is equivalent, for all its values, to 
some predicative function of the same argument. This assumption 
seems to be the essence of the usual assumption of classes 
[modern sets] . . . we will call this assumption the axiom of classes, 
or the axiom of reducibility.[14]

 Mathematical Logic as based on the Theory of Ty pes.

 BY BERTRAND RUSSELL.

 The following theory of symbolic logic recommended itself to me in the first

 instance by its ability to solve certain contradictions, of which the one best

 known to mathematicians is Burali-Forti's concerning the greatest ordinal.* But

 the theory in question seems not wholly dependent on this indirect recom-

 mendation; it has also, if I am not mistaken, a certain consonance with common

 sense which makes it inherently credible. This, however, is not a merit upon

 which much stress should be laid; for common sense is far more fallible than it

 likes to believe. I shall therefore begin by stating some of the contradictions to

 be solved, and shall then show how the theory of logical types effects their

 solution.

 The Contradictions.

 (1) The oldest contradiction of the kind in question is the Epi'menides.

 Epimenides the Cretan said that all Cretans were liars, and all other statements

 made by Cretans were certainly lies. Was this a lie? The simplest form of this

 contradiction is afforded by the man who says " I am lying;" if he is lying, he

 is speaking the truth, and vice versa.

 (2) Let w be the class of all those classes which are not members of them-

 selves. Then, whatever class x may be, " x is a w "is equivalent t to " x is not
 an x." Hence, giving to x the value w, " w is a w" is equivalent to "w is not

 a w."

 (3) Let T be the relation which subsists between two relations 1 and S

 whenever B does not have the relation R to S. Then, whatever relations R and

 S may be, " R has the relation T to S" is equivalent to " R does not have the

 *See below.

 f Two propositions are called equivalent when both are true or both are false.
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The 80s and 90s: The main difficulties in 
the spread of Abstract Interpretation

Functional programming?

Dominance of type-based verification (a la Milner)

Strictness was essentially the only true example!

Binding-time analysis (a little open window for AI)



The 80s and 90s: The main difficulties in 
the spread of Abstract Interpretation

Concurrent programming?

Debate on the (right) model and the calculus

Synchronisation considered too hard 

for static analysis applications

Dominance of types coming from the FP tradition 

and Milner’s impact



The 80s and 90s: The main difficulties in 
the spread of Abstract Interpretation

Logic programming?

Clean and simple fix-point semantics

Simple synchronisation mechanism

Tp(X) = {A | A A1, . . . , An 2 P ^ {A1, . . . , An} ✓ X}
<latexit sha1_base64="zco6BDAdsyT+4PtQ0CvWxOUp9Rg="></latexit>



The 80s and 90s: The main difficulties in 
the spread of Abstract Interpretation

Logic programming?

No type system!!

Clean and simple fix-point semantics

Simple synchronisation mechanism



• AND/OR Parallelism (a true implementation CIAO)

• support to correct execution and debugging

The 80s and 90s: The main difficulties in 
the spread of Abstract Interpretation

Logic programming?

Clean and simple fix-point semantics

Messy control! 

…heavy problems in optimisation => analysis

Simple synchronisation mechanism



The 80s and 90s: The main difficulties in 
the spread of Abstract Interpretation

Logic programming?
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We describe a method for using abstraction to reduce
the complexity of temporal logic model checking. The
basis of this method is a way of constructing an ab-
stract model of a program without ever examining the
corresponding unabstracted model. We show how this
abstract model can be used to verify properties of the
original program. We have implemented a system based
on these techniques, and we demonstrate their practi-
cality using a number of examples, including a pipelined
ALU circuit with over 101300 states.

1 Introduction

Complicated finite state programs arise in many ap-
plications of computing—particularly in the design
of hardware controllers and communication protocols.
When the number of states is large, it may be very dif-
ficult to determine if such a program is correct. Tem-
poral logic model checking [5, 15, 16, 17] is a method
for automatically deciding if a finite state program sat-
isfies its specification. A model checking algorithm for
the propositional branching time temporal logic CTL
was presented at the 1983 POPL conference [6]. The
algorithm was linear in both the size of the transition

*This research was sponsored in part by the Avionics Labo-
rat ory, Wright Research and Development Center, Aeronautical
Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB,
OK1O 45433-6543 under Contract F33615-90-C-1465, ARPA Or-
der No. 7597 and in part by the National Science Foundation
under Contract No. CC R-9005992 and the U.S.-Israeli Binational
Science Foundation.

The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. govern-
ment.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and ita date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise , or to republish, requires a fee and/or specific permission.

system (or model) determined by the program and in
the length of its specification. In the paper, it was used
to verify a simple version of the alternating bit protocol
with 20 states.

In the nine years that have passed since that paper
was published, the size of the programs that can be ver-
ified by this means has increased dramatically. By de-
veloping special programming languages for describing
transition systems, it became possible to check exam-
ples with several thousand states. This was sufficient
to find subtle errors in a number of nontrivial, although
relatively small, protocols and circuit designs [1]. Use
of boolean decision diagrams (BDDs) [2] led to an even
greater increase in size. Representing transition rela-
tions implicitly using BDDs made it possible to verify
examples that would have required 1020 states with the
original version algorithm [4]. Refinements of the BDD-
based techniques [3] have pushed the state count up over
10100 states. In this paper, we show that by combining
model checking with abstraction, we are able to handle
even larger systems. In one example, we are able to
verify a pipelined ALU circuit with 64 registers, each
64 bits wide, and more than 101300 reachable states.

Our paper consists of three main parts. In the first,
we propose a method for obtaining abstract models of
a program. In the second, we show how these abstract
models can be used to verify properties of the program.
Finally, we suggest a number of useful abstractions, and
we illustrate them via a series of examples.

We model programs as transition systems in which
the states are n-tuples of values. Each component of
a state represents the value of some variable. If the
ith component ranges over the set Di, then the set of
all program states is D1 x . . . x Dn. Abstractions will
be formed by giving subjections hl, . . . . hn which map
each Di onto a set D: of abstract values. The surjec-
tionh=(hl,.. ., h.) then maps each program state to
a corresponding abstract state. This mapping may be
applied in a natural way to the initial states and the
transitions of the program. The result is a transition
system which we refer to as the canonical abstraction

@ 1992 ACM 089791453-81921000110343 $1.50
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The 2nd breakthrough!



Very first industrial implementation:

The interval analysis was implemented in the AdaWorld 
compiler for IBM PC 80286 by J.D. Ichbiah and his Alsys SA 
corporation team in 1980–87.

The Industrialisation of Abstract 
Interpretation

The 90s

http://fr.wikipedia.org/wiki/Alsys
http://fr.wikipedia.org/wiki/Alsys
http://fr.wikipedia.org/wiki/Jean_Ichbiah
https://en.wikipedia.org/wiki/Alsys


The Astrée case and the BIG change!

The Industrialisation of Abstract 
Interpretation

• Array index out of bounds 
• Integer division by 0 
• Invalid pointer dereferences  
• Arithmetic overflows & wrap-arounds 
• Floating point overflows and invalid operations 

• IEEE floating values Inf & NaN 
• User-defined assertions, unreachable code 
• uninitialised variables 
• Elimination of false alarms by local refinement

The 2000s! 



Industrialisation



The evolution of 
Abstract Interpretation



Varieties
Pi(X ) = 0; polynomial form

[Carbonell & Kapur 04]

Signs
Xi ≥ 0 ⋀ Xi ≥ 0

[Cousot Cousot 76]

1977 1980 1990 2000 2010 2019

Constants
Xi = ci

[Kildall73]

Simple Congruences
Xi ≡ai [bi]

[Granger89]

Power Analysis
X∈ af(n) wirh f a non rel. analysis

[Mastroeni01]

Ellipsoids 
aX2+bY2+cXY≤ d

[Feret 2004]

Linear Equalities
∑i ai,j Xi = dj

[Karr76]
Polyhedra
∑i ai,j Xi ≤ dj

[Cousot Halbwachs 78]

PPL

Intervals
Xi ∈ [ai; bi]

[Cousot Cousot 76]

Sharing
{{XY}{Z}}

[Jacobs & Langen 92]

>
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Strictness
[Mycroft 91]

Groundness & 
dependency

X -> Y
[Marriott Sondergaard 94]
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Figure 6: Weak intersection of parallelotopes P1 and P2.

Definition 12 (Weak intersection). Given two parallelotopes P1 = hA, l,ui,
P2 2 Parn, let hA, l0,u0i = rotA(P2). We define the weak intersection of P1 and
P2 as:

P1 \↵ P2 = hA, l00,u00i

where l00i = max(li, l0i) and u00
i = min(ui, u0

i).

The idea of the weak intersection is to preserve the constraint matrix of the first
parallelotope. Algorithm 6 shows the weak intersection operator.

Example 7. Given the parallelotopes

P1 = {x 2 Rn | 0  �x1 + 3x2  2, 3  x1 + 2x2  8}

P2 = {x 2 Rn | 2  x1 + x2  4,�2  �x1 + x2  2}

depicted in Figure 6, P1 \↵ P2 is the parallelotope filled with both vertical and
horizontal lines.

Proposition 21. The operator \↵ is a correct approximation of the concrete
intersection. It is �-complete when the two arguments are defined over the same
constraint matrix.

We can now define the reduction operator in a standard way, by using the
weak intersection operator.

Definition 13 (Reduction). Given a parallelotope P 2 Parn and a box B 2
Box, we define the reduction operator red : Par u Box ! Par u Box as:

red(hP,Bi) = hP \↵ B,B \↵ P i

Proposition 22. The reduction operator is correct, i.e., given any P 2 Par and
B 2 Box, we have that �(red(hP,Bi)) = �(hP,Bi).
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Parallelotopes 
[Amato Scozzari 2012]

Trapezoidal 
congruences 

[Masdupuy 1993

On the Abstract Domains
Specific Abstractions

Octagons
∓X ∓ Y≤ d
[Mine01]



On the Theory of Abstract Interpretation
Independent from the abstraction
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Thanks!

History is neither watchmaking nor cabinet construction. It is an 
endeavour toward better understanding.

—Marc Bloch


