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Abstract 

In the context of the standard Cousot and Cousot framework, refinement operators that system- 
atically produce more precise abstract interpretations from simpler ones are useful. We present a 
theoretical study of one such operator: the powerset. For any given abstract interpretation, i.e. an 
abstract domain equipped with corresponding abstract operations, the powerset operator yields 
a new abstract interpretation, where the abstract domain is (very close to) the powerset of the 
original one and the operations are accordingly extended. It turns out that the refined powerset 
domain is able to represent in the best possible way the concrete disjunction. Conditions that 
guarantee the correctness of the powerset operator are given, and the relationship, with respect to 
the precision, between any abstract interpretation and its powerset is studied. The general theory 
is applied to the well-known abstract interpretation POS, typically used for ground-dependency 
analysis of logic languages. We show that the powerset P(POS) is strictly more precise than POS 
both at the domain and operations level. Furthermore, the standard bottom-up abstract semantics 
of logic programs based on POS and P(POS) are compared by exhibiting a completeness rela- 
tionship between them, i.e. the first semantics can be obtained by abstracting back the second 
one. (~) 1999 Elsevier Science B.V. All rights reserved. 

Keywords." Abstract interpretation; Powerset operator; Logic program ground-dependency 
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1. Introduction 

Abstract  interpretation [13, 14] is a widely known methodology for programming 

language semantics approximation, which is primari ly used for specifying static pro- 

gram analysis frameworks. Its basic idea is as follows. Let I_ be any programming 

language and S E M  be a semantic description o f  L parameterized w.r.t, the domain of  

computation and the semantic operations. Several semantics of  L can be specified by 

giving different interpretations o f  S E M .  The standard or concrete semantics is obtained 
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by specifying the concrete interpretation cg = (C, ob, . . . ,o~) ,  where C is the actual 
domain of computation of the programs, and oh, . . . ,  o~ are the operations that can be 
evaluated during the execution. In this setting, an approximate semantics is specified 
by giving a nonstandard or abstract interpretation ~ = (D, Ol . . . . .  ok) of SEM,  where 
D represents the approximate properties of C, and ol . . . . .  ok mimic on D the operations 

1 k o~ . . . . .  o~. Following the standard terminology, C and o c .. . .  , o c are called the con- 
crete domain and operations, respectively, while D and ol , . . .  ,ok are, respectively, the 
abstract domain and operations. The concrete and abstract domains are equipped with 
partial ordering relations describing the relative precision of domain values (where the 
top element gives no information). The correctness of the approximation is guaranteed 
when ~ satisfies some conditions relating it to cg (in this case, we say that ~ abstracts 
cg). In particular, the correspondence between the domains C and D must be given by 
a Galois connection (7,D, C, ct), where ~(c)<~9d (or, equivalently, c<~cT(d)) holds if 
d is an abstract approximation of the concrete value c. Here, ~(c) is the most precise 
abstract (in D) approximation of c, while 7(d) is the concrete meaning of d. The main 
advantages of abstract interpretation over "ad hoc" dataflow analysis methods are its 
generality and the fact that it supports the correctness proof of the analysis. 

Clearly, the accuracy of a semantics approximation depends on the expressiveness of 
the chosen abstract interpretation. Thus, it is very interesting to define refinement opera- 
tors that systematically produce new and more precise abstract interpretations from sim- 
pler ones (see [21] for a general treatment of refinement operators at the abstract domain 
level). Examples of well-known refinement operators on abstract domains are Cousot 
and Cousot's reduced product [14] and Nielson's tensor product [35]. The power- 

set operator (also called disjunctive completion) on abstract domains was originally 
introduced by Cousot and Cousot in their seminal work [14], where it has been 
exploited in order to demonstrate that a merge-over-all-paths dataflow analysis can 
be expressed in least fixpoint form. It has been further studied in [15, 17], and ap- 
plied, e.g., for the definition of comportment analysis for higher-order functional lan- 
guages in [17], and in Jensen's disjunctive strictness logic [29] for functional 
languages. 

The basic idea of the powerset operator is simple. Given an abstract domain D, 
where the concrete domain is C, any subset S of D is considered as a denotation for 
the concrete disjunction of its elements, namely for the lub in C of the meaning of the 
values in S. Let us consider a classical [14] and very simple example. Assume that 
the concrete domain is the powerset ~(7/) of the set of integers, equipped with the 
set-inclusion ordering. The abstract domain is Sign depicted in Fig. 1, which enjoys 
an obvious Galois connection with gd(7/) (for instance, 7(+) = {x C 7/ : x > 0} and 
c t ({ -1 , -3} )  -- - ) .  In this case, the concrete disjunction is given by the union of 
sets of integers. It is simple to verify that the powerset abstract domain P(Sign) is 
that depicted in Fig. 1. P(Sign) contains three new elements with respect to Sign: For 
example, [ + , - ]  represents precisely the disjunction of + and - ,  and therefore [ + , - ]  
is a denotation for the set of nonzero integers. Also notice that [T] = [+, 0 , - ] ,  since 
7 / =  ? ( T )  = 7(÷) U 7(0) U 7(- ) .  
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Fig. 1. The abstract domain Sign and its poweset P(Sign). 
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It should be clear that the powerset operator can generate very expressive abstract 
interpretations that allow to improve the precision of a program analysis. Let us con- 
sider the example of Mycroft's strictness analysis for functional languages [4, 33]. A 
function f is said to be strict if it is undefined when applied to undefined arguments. 
If ± denotes a generic undefined value, then f is strict if f ( ± )  = _L. For example, 
the abstract domain for the basic type Int of integers g a ( Z ± )  (where d_ denotes un- 
definedness) is the two-point domain s t r  = {0, 1) (with 0 < 1), where 7(0) = {±} 
and 7(1) = Z±. In this case, whenever the strictness analysis of some function f of 
type Int ~ Int is able to detect that the semantic abstraction f a  over s t r  of f is such 
that F ( 0 )  = 0, then one can infer that f is strict. As observed in [29], the standard 
abstract domains used for strictness analysis are not able to model precisely the logical 
disjunction. The abstract domain for the product type Int x Int is given by the cartesian 
product abstract domain s t r  × s t r  depicted below. 

(1, 1) 

(0, 1) 

(o, o) 

(1, 0) 

The meaning of the abstract values of s t r  × s t r  is the most natural: For instance, (0, 1) 
represents the set of pairs of integers, whose first component is undefined, whereas 
(1, 1) represents the whole set of pairs of integers (defined or not). It is clear that the 
lub (1, 1) = (0, 1) V (1,0) is not precise: 

7 ( ( 0 , 1 ) )  u 7 ( ( 1 , 0 ) )  = { ( z l , z 2 )  e 7 / .  × 7 / .  : z l  = ± or  z2 = ±} 
C 7/± x 7/± = 7((1,1)), 
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and therefore str x str is less precise than its powerset. Consider now the following 
functional program suggested by Jensen [29], where s u m  performs the addition of a 
pair of integers: 

f ( x ) = i f  B then (x,3) else (3,x) 

g(x) = sum(f  (x)) 

Suppose that the value of the Boolean expression B cannot be statically determined, 
and that we already know that sum is strict in both its components. It is clear that 
g is a strict function. However, by using the abstract domain str x str we are not 
able to detect the strictness of f .  In fact, the best approximation of applying f to an 
undefined argument is given by ~ ({ ( l , 3 )} )V  ~({(3,±)}),  which in str x str  is (1, 1). 
But evaluating sum for such an abstract value, we cannot detect the strictness of g. On 
the other hand, if one uses the powerset abstract domain P(s t r  x s tr)  then ct({(±, 3)})V 
~({(3, l ) } )  is given by [(0,1), (1,0)]. Then, we get [sum((0,1)) = 0 , s u m ( ( 1 , 0 ) ) :  
0] = [0], and therefore we detect that g is strict. 

This paper contains a general study of the powerset operator on abstract interpreta- 
tions. For any abstract interpretation ~ = (D, ol . . . . .  ok) abstracting ~ = (C, O c , . . . , O c )  , 1  k 

its powerset P ( ~ ) =  (P(D) ,o~  . . . .  ,o~) is systematically defined. Thus, our approach 
considers full abstract interpretations, namely abstract domains equipped with corre- 
sponding abstract operations. Conditions on the concrete interpretation cg that assure 
the correctness of the powerset P ( ~ )  are stated: The concrete domain C must be a 
completely distributive lattice, and any concrete operation o~ must satisfy a restricted 
form of additivity. We show that the powerset operator actually is a refinement operator 
in the sense of [21 ], and therefore P ( ~ )  (when it is correct) is an abstract interpretation 
that is always better than ~.  Also, we demonstrate that under certain conditions it is 
possible to sharp the definition of the systematic lifting to the powerset of an abstract 
operation oi, so that when 0 i is complete (i.e., ~ o o~ = oi o ~ holds), its lifting to the 
powerset is complete too. This will be the case of an abstract operation considered in 
our application to logic program analysis. 

As recalled above, the powerset operator was first introduced by Cousot and Cousot 
in [14], and then successively generalized in [15, 17]. However, in those papers the 
powerset is applied to abstract domains only, whereas the corresponding new abstract 
operations are only defined implicitly as the best correct approximations of the concrete 
ones. In contrast, our approach allows to derive correct abstract operations for the 
powerset domain that are directly based on the definition of those of the original 
domain. Moreover, if the latter are finitely computable (and the abstract domain is 
finite) then so are the former. As far as the abstract domain is concerned, we show 
that our definition of the powerset is equivalent to those of [15, 17], although they 
differ from a syntactic perspective. In particular, our approach defines a simple and 
natural ordering relation on the powerset abstract domain that is based on the obvious 
set-inclusion relation. 

The powerset operator is applied to the well-known abstract interpretation P O S  

[1, 10, 31, 32], typically used for ground-dependency analysis of logic languages. The 
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abstract domain Pos consists of positive (i.e., true under the unitary truth-assignment) 
propositional formulae, while the abstract operations are logical conjunction (that sim- 
ulates concrete unification), disjunction, and existential quantification. We show that 
the powerset abstract interpretation P ( P O S )  is strictly better than POS. This result is 
somehow against the intuition, given that the abstract domain Pos is already closed 
under logical disjunction. In order to clarify this phenomenon, we characterize precisely 
the subsets of formulae of Pos for which the concretization map preserves their logical 
disjunction. Furthermore, we show that this is the case for every subset consisting only 
of monotone formulae, which are exactly the abstraction in POS of all the sets of 
ground substitutions. We also study the relationship between the standard bottom-up 
abstract semantics (cf. [3, 5,32]) instantiated to the abstract interpretations POS and 
P(POS) .  We prove that the semantics using POS is complete with respect to that us- 
ing P(POS) ,  in the sense that the former semantics can be obtained by abstracting the 
latter back to Pos. From this result it follows that, using P ( P O S )  instead of POS for 
analysing logic programs, one cannot gain plain ground-dependency Pos-information, 

but possibly only disjunctive ground-dependency information, i.e. information that the 
base abstract domain Pos is not able to represent with no loss of precision. 

The rest of  the paper is organized as follows. Section 2 contains the basic notations 
and notions on abstract interpretation used throughout the paper. The powerset operator 
is defined and studied in Sections 3 and 4. Section 3 is concerned with the powerset 
abstract domain, while in Section 4 the abstract operations for the powerset domain 
are defined and studied. The application of the powerset operator to the abstract inter- 
pretation POS is described in Section 5. Finally, Section 6 contains some concluding 
remarks. A preliminary short version of this paper appeared as [22]. 

2. Preliminaries 

In this section, we briefly introduce some notation used throughout the paper and 
summarize some well-known notions concerning abstract interpretation. For more de- 
tails on Galois connections see e.g. [25], while for abstract interpretation see the survey 
[15]. 

2.1. Galois connections 

Throughout the paper, we will use the following basic notation and terminology. If 
f is a function defined on the set X and A CA" then f ( A )  = { f ( a )  : a C A}. We 
use o for function composition. If X and Y are sets, we write X \ Y to denote the 
set difference between X and Y, and Y C X  to denote that Y is a proper subset of X. 
If ~< is a partial ordering then a < b stands for a ~< b and a ~ b. If P is a partially 
ordered set (poset) and y c_p, then max(Y)  = {y  E Y : Vz E Y. y<<,ez ~ y = z}  

denotes the set of maximal elements of Y, while ~ Y = {x c P : 3y  C Y. x<<,ey} 

denotes the downward closure of Y. A subset Y C_ P is downward closed if Y = ~ Y. A 
function f • L ~ M between complete lattices is additive if for any X c_ L, f(VL X) = 
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VM f ( X )  (co-additivity is dually defined). A complete lattice L is join-generated by a 

subset S _c L if for all z E L there exists X _c S such that z = VL X. An element x E L 

of  a complete lattice is (completely) join-irreducible if  for all X _ L, x = VL X implies 

x E X; the set of  join-irreducible elements of  L is denoted by JI(L). 
We recall the definitions of  Galois connection and insertion. I f  C and D are two 

posets and ~ : C -~ D, 7 : D -+ C are monotonic functions such that Vc E C. c ~< c 

7(cffc)) and Vd E D. ~(7(d))<~od,  then the quadruple (7,D, C, ~) is a Galois connection 
(G.c. for short) between D and C. I f  in addition Vd E D. ~(7(d)) = d, then (7 ,D,C,~)  
is a Galois insertion (G.i. for short) o f  D in C. We also recall that the above definition 

of  G.c. is equivalent to that of  adjunction: (7 ,D,C,~)  is an adjunction if Vc E C.Vd E 
D. ct(c)<~Dd ¢~ c<~cT(d). The map ~ (7) is called the left (riyht) adjoint to 7 (ct). 

The following are some well-known properties of  Galois connections and insertions 

that will be useful later on. 
(i) I f  (7 ,D,C,~)  is a G.i., then 7 and ~ are 1-1 and onto, respectively. Also, 7 is an 

embedding, i.e. d <~md' <=> 7(d)<~cT(d'). 
(ii) I f  (7 ,D,C,~)  is a G.c. between the posets D and C, then ct preserves lub's (i.e., 

if  for some S C C the lub Vc S exists then the lub VD ct(S) exists, and ~(Vc s )  = 

VD 7(S)),  and 7 preserves glb's. 
(iii) I f  (7,D, C, ct) is a G.i. o f  the poset D in the complete lattice C, then D is actually 

a complete lattice. 
(iv) Let C and D be posets, and suppose that 7 : D ~ C preserves glb's;  in addition, 

for all c E C assume that ]ko{d E D : c<~c7(d)} exists. I f  we define ~ : C ~ D 

as ~(c) = ]ko{d E D : c<~c7(d)}, then (7 ,D,C,~) . i s  a G.c. between D and C. 
Moreover, if  7 is 1-1 then it is a G.i. o f  D in C. 

(v) In any G.c., one of  the two functions uniquely determines the other. 
Whenever C and D are complete lattices, property (ii) says that ~ and ~ are, re- 

spectively, additive and co-additive. By property (v), the function ~ as defined in (iv) 

will be the only mapping such that (7 ,D,C,7)  is a G.c. (it is "the" left adjoint to 7). 
Moreover, starting with ~ : C ~ D it is possible to state the dual version of  (iv). 

A G.c. (7 ,A,C,~)  is the composition of  two G.c. 's  (yA,o,A,D,c~o,A) and (TD, c,D,C, 
~c,o) if  ~ = CtO.A o CtC, O (or, equivalently, 7 = 7D, c o 7A,D). 

2.2. Abstract interpretation basics 

As recalled in the introduction, in the setting of  abstract interpretation, the concrete 
and abstract domains, C and D, are related by a Galois connection (7 ,D,C,~) .  Fol- 
lowing the standard terminology, ~ and 7 are called the abstraction and concretization 
maps, respectively, and D is also called an abstraction of  C. The intuition is that the 
abstract domain is a representation of  some approximate properties of  the values of  
the concrete domain. Both on the concrete and on the abstract domain, a partial order 
relation describing the relative precision of  the values is defined: x ~< y means that x is 
more precise than y. The concretization map gives the concrete value corresponding to 
an abstract denotation (i.e. its semantics), whereas for a concrete value the abstraction 



G. FilO, F Ranza to /Theore t i ca l  Computer Science 222 (1999)  77-111 83 

map gives its best (w.r.t. the ordering of D) abstract approximation (cf. property (iv) 

in Section 2.1). Thus, an abstract value y C D approximates a concrete value x E C 

if x<~cT(Y),  or equivalently (by adjunction), if ~(x)<<,Dy. When c = 7(d), we will 
say that the abstract denotation d represents precisely (i.e. with no approximation) the 

concrete value c. If  (7,D, C,~) is G.i., each value of the abstract domain D is useful in 

the representation of the concrete domain C, because all the elements of D represent 
distinct members of  C. In practice, C and D are very often complete lattices; however, 

for the sake of generality, we will assume that they are mere posets, unless otherwise 

specified. 
I f  o~ . . . .  , o~ are the operations defined on the concrete domain C, that are involved 

in the standard semantic definition, then cg 1 k = (C,o c . . . . .  Oc) is called the concrete 

interpretation. For a G.c. (7 ,D,C,~) ,  the abstract operations over D must correctly 

simulate the behavior of the concrete operations on the properties represented by D. 

Let us assume that oc : C × X ~ C is a concrete operation of cg, where X is any set of  
possible auxiliary parameters, also mathematically unstructured. 1 Then, following the 
standard Cousot and Cousot approach, a corresponding abstract operation oD : D × X 

D is a (correct) approximation of (or (correctly) approximates)  oc if 

Vc E C.Vd E D.Vx C X. ~(c)<~Dd ~ ~(oc(c,x))<~DoD(d,x) .  

The intuition for this definition should be clear: I f  d is an approximate description of c, 
then the concrete computation of oc(c , x )  is approximated at the abstract level (on D) 
by oD(d,x).  It is possible to state this notion of approximation by several equivalent 

formulations (cf. [13, 14]). In fact, it is easily shown that oD approximates oc iff Vc E 

C.Vx E X. o~(oc(c,x))<~DOD(O~(c),x) iff Vd E D.Vx C X. oc(];(d),x)<~cT(OD(d,x)).  
i is approximated by the corresponding oi, then we will say that ~ = If each o c 

(D ,  Ol . . . . .  ok )  abstracts (or is an abstract interpretation of) cg = (C, oc,...,10c).k 

Assume that Ol and 02 are two abstract operations (for D) both approximating a 
common concrete operation oc. Following the standard Cousot and Cousot defini- 

tion [14], we say that ol is more precise than 02 if for any d C D and x c X, 
ol(d ,x)<~Do2(d,x)  (namely, if Ol is lower than o2 with respect to the standard func- 

tional pointwise ordering). Cousot and Cousot showed in [14] that it is always possible 
to define the best (correct) approximation of a concrete operation oc: This is defined 
as oboest(d,x) = ~(Oc(~(d),x)) ,  for any d E D and x E X. Actually, it is easy to 

verify that this o~ ~st is more precise than every approximation of oc. The notion of 

completeness for an abstract operation is also well-known [15, 34]. We say that oD is 
complete for oc if for any c E C and x E X ,  oD(~(c),x)  = ~(oc(c ,x)) .  Notice that 

if oD is complete for oc then oD is the best approximation of oc, while the converse 
is in general not true. If  C and D are complete lattices and we consider the concrete 

and abstract lub's as operations, then we always have that VD is complete for Vc: In 

I The extension to the more general case Oc : C n × X ~ C m × Y is straightforward. 
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fact, by (ii) in Section 2.1, for any Sc_C, we have that VD ~(S) = ~(VcS), hence 
showing the completeness. Completeness is a quite strong property for abstract oper- 
ations (see [34]). It also implies that if the least fixpoints lfp(oD) and lfp(oc) exist, 

then ~(l fp(oc))= lfp(oD) (see [15]). 

2.3. Comparing abstract interpretations 

As far as precision of representation is concerned, the standard criterion for com- 
paring abstract domains, introduced by Cousot and Cousot in [14], is as follows. Let 

G1 = (71,D1,C,~1) and G2 = (72,O2, C, Ix2) be two G.c.'s. Then, D2 is better than D1 
whenever 71(D1)C_ 72(D2), while O2 is strictly better than DI if D2 is better than D1 
and DI is not better than D2, i.e. if 71(D1)C 7z(D2). Also, Dl and D2 are equivalent 
when D2 is better than DI and D1 is better than D2, i.e. when 71(Dl) = 72(D2). Thus, 
intuitively, D2 is better than D1 when D2 is able to represent precisely at least all the 
concrete elements that are represented precisely by D1. 

Lemma 2.1. (i) I f  G2 is a G.i., then 02  is better than Dl iff G1,2 ---- (~2 o 71,D1,D2, 
~1 o 72) & a G.c. 

(ii) I f  G1,G2 are G.i.'s, then D2 is better than D1 zff G1,2 is a G.i. [9]. 

Proof. We prove (i) ( 3 )  Monotonicity of ~2 o71 and ~X l 072 follows from that of their 
components. Thus, it is enough to show the following two points. 

- Vdl c D1. Ctl(72(a2(71(dl))))<-..D, dl: By hypothesis, there exists d2 E D2 such that 

71(dl) = 72(d2); hence, a1(72(ct2(71(dl)))) = ~q(72(~2(Y2(d2)))) = ~1(72(d2)) = 
CXl (71 ( d l ) )  ~< D, d l .  

- Vd2 E D2. d2--.<O2~2(Tl(~l(72(d2)))): Since 72(d2)--.<c 71(~1(72(d2))), by monotonic- 
ity of ~z2, we get d2 = IX2(72(d2))~D 2 lx2(71(IXl(72(d2)))). 
(¢=) It suffices to prove that Vdl E DI. 71(dl ) ---- 72(~2(71(dl))). Observe that, since 

Gl,2 is a G.c., oq(72(o~2(71(dl))))~Dldl.  Hence, 72(~2(71(dl)))<<.CTl(dl), that joint 
with 71(dl)<...c72(o~2(7i(dl))) concludes the proof. [] 

It is also worth noting that if D2 is better than D1 (and G2 is a G.i.) then GI is the 
composition of Gl,2 and G2, i.e. for all dl C DI, 71(dl)  ---- 72(~2(71(dl))) (this is a 
direct consequence of the fact that if 71 (d l )=  72(d2) then d2 = ~2(71(dl))).  

We extend in the most natural way the notion of being better to full abstract interpre- 
tations. Let us assume that ol : D1 ×X --+ D1 and 02 " D2 x X  --~ D2 are approximations 
of the same concrete operation oc. Following the standard criterion of comparison of 
Cousot and Cousot (cf. [13]), we say that the abstract operation 02 is better than the 
corresponding O1 if Vc E C.Vx E X. 72(02((ZE(C),X))~cTl(Ol(O~l(C),X)), Furthermore, 
02 is strictly better than Ol if 02 is better than Ol and ot is not better than 02, i.e. 
there exist c E C and x c X such that 72(o2(~2(c),x))<c71(o1(~1(c),x)). Assume now 
that ~1 1 k /D 01 _k \ = (Dl,00, . . . . .  oo, ) and 92 = \ 2, 02 . . . . .  OD2 / are two abstract interpretations 
of a common interpretation cg = (C,o~c . . . . .  Okc). @2 is better than ~ l  if the abstract 
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domain D2 is better than D1, and each operation o i is better than the corresponding D2 
operation o i Moreover, ~2 is strictly better than ~1 when it is better, the abstract DI" 

domain D2 is strictly better than Dl, and at least one operation o~) 2 is strictly better 

than the corresponding o~ .  Thus, according to this definition, an abstract interpretation 
is strictly better than another one when its domain is strictly more expressive and when 
at least one of its operations takes advantage of this extra expressivity in order to be 
more precise than the corresponding operation of the other domain. 

3. The powerset abstract domain 

In the following, we assume that the concrete domain C enjoys the standard gener- 
alized form of infinite distributivity, i.e. that C is a completely distributive lattice. This 

.fcil iE1 C C, where I means that C is a complete lattice such that for each subset t jJjEJ(i)- 
i where j i  and, for any i E 1, J(i) are sets of indices, Ai~z VjcJ(i)c~. = V~EJ, Aic, c~(i), 

is the set of all the functions q~ : I ~ UiEz J(i) such that for any i E I, q~(i) E J(i). 
The dual condition, where meet and join are exchanged, is equivalent (cf. [25]). This 
condition of complete distributivity is satisfied by any complete ring of sets, i.e. any 
(complete lattice isomorphic to a) subset of a powerset, ordered by the subset or super- 
set relation and closed under arbitrary unions and intersections (see [2]). In particular, 
the powerset of any set, ordered with the subset or superset relation, is completely 
distributive, and therefore this class comprises the concrete domains used in collecting 
semantics for analysis (cf. [17]). The concrete domain C is related to the abstract do- 
main D by a Galois connection (7,D,C,~). Notice that if we assume a G.i. of  D in 
C, then, by property (ii) in Section 2.1, the fact that C is a complete lattice implies 
that so is D. 

In the powerset construction, any subset S of the abstract domain D is intended 
to represent the concrete disjunction of its elements, namely, its concrete meaning is 
given by the lub Vc 7(S). Thus, we define the following equivalence relation between 
subsets of D: 

if Sh $2 C_ D then $1 -~ $2 ¢~ Vc ?($1 ) = Vc 7($2), 

where, as usual, Vc 0 = A-c. If S C D then we denote its equivalence class for -~ 
by [S] -- {Z C D : S -~ Z}. In order to simplify the notation, we will often denote 
the equivalence class of a finite subset {dl . . . . .  dk} C_D simply by [dl . . . . .  dk]. The 
powerset domain of D, denoted by P(D), is defined as the quotient with -7 of the set 
go(D) of all the subsets of D: 

P(D) def go(D)/= = {[S] : S G D}. 

For each class [S] E P(D) it will be useful to have a canonical representative. The fat 
of [S] is defined as t~[S] = U{ZCD : Z E [S]}. We now show that U[S] =7 S, and 
therefore ®[S] turns out to be the greatest element in [S]. 
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Lemma 3.1. For [S] E P(D), 
(i) w[S] -~ S; 

(ii) t~[S] = {d E O : 7(d)~<c Vc 7(S)}; 
(iii) ~[S] = l +~[S]. 

Proof. (i) Vc ~,(w[S]) = Vc 7(U{ Z C - D : Z  E [S ] } )  = Vc {Vc  7(Z) E c : z  E [ s ] }  = 

Vc 
(ii) On the one hand, i f Z  E [S] and d E Z, then 7(d)<~cVcT(Z ) = Vc 7(s). On the 
other hand, if 7(d)~< c Vc 7(s) then Vc 7(s u {d}) = Vc 7(s), from which d E t~[S]. 
(iii) If d~< D d for some d E W[S], then 7(d)~< c 7(d)~ c Vc 7(s). Consequently, d' E 
~[S] because VcT(S u { f } )  = Vc7(S). [] 

It is well-known (see, e.g., [19]) that a poset satisfies the ascending chain condition 
(ACC for short, namely it does not contain infinite strictly increasing chains) iff for 
every nonempty subset S of the poset, max(S) ~ ~). As a consequence, whenever 
an abstract domain D satisfies the ACC, any equivalence class [S] E P(D) contains 
the set of maximal elements of S, i.e. S =--~ max(S). However, it is worth noting that 
max(S) could not be taken as the canonical representative of an equivalence class [S]. 
For instance, considering the domain Sign in Section 1, we have that [ + , 0 , - ]  = IT], 
whereas max({+,0 , -})  = { + , 0 , - }  ~ {T} = max({T}). 

We exploit the fat sets in order to give the ordering relation on P(D): 

if [S], [T] E P(D) then [S] E [T] ¢:~ t~[S] C U[T]. 

Notice that r- is a partial order on P(D) (antisymmetry is a consequence of Lemma 
3.1 (i)). For this partial order, P(D) has top and bottom elements: By ordering defini- 
tion, Tp(D) = [D], and, by Lemma 3.1 (ii), it is easy to verify that /p(D) = [0]. If D 
has the top element To (as observed above, this always holds if we start from a G.i. 
rather than a G.c.), then Tp(D) = [TD]. 

Proposition 3.2. P(D) is a complete lattice, where UiEI[Si] = [UiEl~[Si]] and 
Riel[Si] = [Ni~I t~[Si]], for all {[Si]}iEI C_ P(D). 

Proof. We first show that if SC_T then [S] _ [T]: If d E t~[S] then 7(d)~< c 
Vc 7(S) ~<c Vc 7(T), and therefore, since Vc 7( T U {d}) = Vc 7(T), we obtain that 
d E ~[T]. We only prove the existence of glb's. For lub's the proof is dual. By 
Lemma 3.1 (i) and the above claim, [[']iel U[Si]] E [~[Si]] = [Si], for each i E I. 
Suppose now that [T] F- [Si] for each i E I. Then, ~[T] C_ NiE1 [~[St], and again by 
Lemma 3.1 (i) and the previous claim, [T] -- [~[T]] _ [Nieit~[Si]]. From this it 
follows that [NiE1 ~[Si]] is the glb. [] 

As it is natural to expect, the powerset abstract domain is always completely dis- 
tributive. 
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P r o p o s i t i o n  3.3. P(D) is completely distributive. 

Proof .  Complete distributivity of P(D) is a simple consequence of the definition of lub 
and glb of Proposition 3.2, since each powerset of some set is obviously completely 
distributive. [] 

The concretization map for the powerset abstract domain 7* : P(D) --* C is the 
obvious one, namely it provides the concrete disjunction of an abstract subset: 7"([S]) = 
Vc 7(s). The hypothesis of complete distributivity of the concrete domain is central in 
the proof of the next basic lemma. 

L e m m a  3.4. 7* is 1-1 and co-additive. 

Proof. That 7* is 1-1 follows from the definition of P(D). In order to show that it is 
co-additive, consider any subset 5 e = {[S/] E P(D) : i E I } .  For each i E I,  we pick 
out a set of indices J(i)  such that U[Si] = {d} E D : j  E J ( i ) } .  Thus, we have 

7*([']~) = Vc  7 (niEl{d~ " : J E J ( i )} ) ,  

/\c7"(5") = Ac  {VcT(W[Si]): i  E I} (by Lemma 3.1 (i)) 

= Ac {Vc{7(d}) : J E J( i)} : i E I} 

= VC {AC{7(di~(i)) : i E I } :  (p E j l }  (by complete distributivity 
of C) 

= Vc {7 (Ao{d;(~): i E I } ) :  q) E j1}  (by co-additivity of 7). 

It suffices now to verify that (]i~,{d} : j E J(i)} = {AD{d~(i) • i E I}"  ~o E j1}. 
(C_) If dE nie l{d~j: jEd( i )}  then there exists q) E J  I such that d = 

AD{di~(i)'i E l} = AD{d} = d. 
( 2 )  Let q) E J '  and d = AD{d~(~) ' i  E I}. Then, d<,Dd~( 0 for all i E I, and 

therefore, by Lemma 3.1 (iii), d E ~[Si] for all i E I. Thus, d E niEl W[S,.]. [] 

Thus, the above lemma implies that we have correctly defined an abstract domain. 
By property (iv) in Section 2.1, the abstraction map c~* : C ~ P(D) can be defined 
as the left adjoint of 7*: ~*(c) = M{[S] E P(D) : c<~cT*([S])}. Notice that ~*(e) is 
well-defined, since P(D) is a complete lattice. We have therefore shown the following 
basic result. 

T h e o r e m  3.5. Let C be a completely distributive lattice. I f  (7,D,C,~) is a Galois 
connection then (7*,P(D), C,~*) is a Galois insertion. 

We also exploit Lemma 3.4 in order to characterize the lub and glb in the powerset 
abstract domain as follows. 
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Proposition 3.6. For any subset {[S/])i~1 c_ P(D), Ilicl[Si] = [Ui~1 &] and [~ iEI [S / ]  = 

[{AiEI xi : Vi E I. xi E S/}]. 

Proof.  By Proposition 3.2, I [iEt[Si] = [Uiczu[Si]]. Further, VcT(uic ts i )  = 

Vc{VcT(Si)  : i E I}  = Vc{Vc?(~[si])  : i E I}  = VcT(Ui6lW[Si]), and therefore 
I IiEz[S/] = [U/czS/]. Consider now, for any i E I ,  a suitable set o f  indices J( i )  
such that Si = {xj : j E J ( i )} .  Thus, notice that [{AiEiXi : Vi E I. xi E Si}] = 
[{Ai~lx~u) : ~o E J~}]. Using co-additivity of  7 and complete distributivity of  C, we 
have that * i 7 ([{AiEix~(i) q~ C j l } ] )  = V~oEJ, i Y(AiElX~o(i)) = V~oEj, i • AiE1 7(&o(i)) = 

AiE,%Ej(i)Y(xj)  = AiE, Vv(Si) • It is now clear that for any i E I, 7*([{AiElxi : 
Vi E L xi E Si}])<~cV*([Si]), and hence, since 7* is an embedding, [{Aiclxi  : Vi E 
L xi E S/}] is a lower bound. On the other hand, if  [T] E P(D) is a lower bound, 

then 7*([T])<~cAiezVv(Si),  and therefore, [T] _E [ { A i c l X i : V i  E I. xi E Si}]. This 
concludes the proof. [] 

In order to clarify the above characterization of  the glb on the powerset, consider the 
example of  Sign and P(Sign) in Fig. 1: Then, for instance, we have that [ + , - ]  M [0] = 
[+ A 0 , -  A 0] = [±]. 

When the concrete domain C is join-generated by its join-irreducible elements, i.e. 

for any c E C there exists S c_JI(C) such that c -- Vc S, we can give a very useful 
characterization for the abstraction map ~*. Notice that any collecting concrete domain, 
i.e. go(Z) (ordered by the subset or superset relation) for some set Z, is join-generated 
by its join-irreducible elements (e.g., JI({go(Z),C_}) = {{z} E go(Z) : z E Z}). First, 
we need a standard lattice-theoretic lemma (see, e.g., [2, p. 244]). 

Lemma 3.7. (Balbes and Dwinger [2, p. 244])• Let C be a completely distributive 
lattice• Then, x E J I (C)  iff for  any S C C, x<<. V S implies x<~s for  some s E S. 

Proposition 3.8. f f  C is join-generated by JI(C),  then, for  any c E C,g*(c)  = [{~(x) : 

x E JI(C),  x<~c}]. 

Proof.  First, let us show that if  x E JI (C)  then ~*(x) = [~(x)]. On the one hand, 

by observing that x<<.cV(Ct(x)) -- 7*([~(x)]), we get ~*(x) r [~(x)]. On the other, 

for all AC_D such that x<~cT*([A]) --- Vc{7(a) : a E A}, by Lemma 3.7, there 
exists a E A such that x<<.c y(a), and therefore such that ct(x)~<o a. Then, 7*([~(x)]) = 

7(~(x)) ~< c 7(a)~< c 7*([A]), from which, since 7* is an embedding, [~(x)] _E [A]. Hence, 
[~(x)] __ ~*(x), and therefore, ~*(x) = [~(x)]. Consider now any c E C. By hypothesis, 
c = Vc{x  E C : x  E JI(C),  x<.%c}. Thus, ~*(c) = (by additivity of  ~*) = Ll{~*(x) : 
x E JI(C),  x<.c} = U{[~(x)] : x  E JI(C),  x<.c} = (by Proposition 3.6) = [{~(x) :x  E 
JI(C),  x<~e}]. [ ]  

From this result, in particular, we get that for any c E JI(C),  a*(c) = [c¢(c)]. As 
a further consequence of  the above characterization, for a collecting concrete domain 
(go(Z), _C), for some set Z, we have that for any S E go(Z), c~*(S) = [{ct({s}) : s E S}]. 



G. Fil£ F. Ranzato/Theoretical Computer Science 222 (1999) 77-111 89 

Fil6 et al. introduced in [21] the notion of abstract domain refinement, formalizing 
the idea of systematic operators devoted to enhance the precision of representation of 
abstract domains. A refinement is an operator on abstract domains that improves the 
precision of abstract domains, and that is monotonic and idempotent (namely, it refines 
domains all at once). The powerset operator defined above turns out to be a refinement 
of abstract domains. This fact is precisely stated by the following result. 

Proposition 3.9. I f  D, E are two abstractions of C then: 
(i) P(D) is better than D; 

(ii) I f  D is better than E then P(D) is better than P(E); 
(iii) P(P(D)) is equivalent to P(D). 

Proof. (i) It is sufficient to verify that 7(D) _C 7*(P(D)): by definition of 7*, if d E D 

then 7(d) = 7*([d]). 
(ii) By hypothesis, 7E(E)C_ 7D(D). Thus, if [S] E P(E) then there exists T C D such 

that Vc 7E(S) = Vc 7D(T). Then, 7~([S]) = 7~([T]), proving that 7~(P(E)) C_ 7*o(p(E)). 
(iii) We have to prove that 7*(P(D)) = 7**(P(P(D))). 

(C_) For [S]r E P(D) and [{[S]J]< E P(P(D)),7**([{[S]J]<) = 7"([S]7). 
(_D) For [A]< E P(P(D)), define UA = U{®[S]~. C_D : [S]y E A}C_D, and con- 

sider [UA]~, E P(D). Thus, 7*([UA]r) = Vc{Vc 7(w[s]7) : [S]r E A} = (by 
Lemma 3.1 (i)) = VcT*(A) = 7**([A]<). [] 

By (i) above, Lemma 2.1 and Theorem 3.5, we get that (~* ov, D,P(D),~ov* ) is a 
G.c., and if in addition (7,D, C, ~) is a G.i., then (c~*o 7,D,P(D), ~ o 7*) is a G.i. We 
can be more precise about this latter G.i. 

Proposition 3.10. I f  (7,D,C,~) is a G.i., then for all [S]EP(D) and d ED, 
cffV*([S])) = VD S and ~*(7(d)) = [d]. 

Proof. By additivity of c~, we get ~(7"([S])) = cffV c 7(s)) = VD ~(7(S)) = VD S. More- 
over, u*(7(d)) = M{[T] E P(D):7(d)<,.cV*([T])}. Observe that 7(d)<,cV*([T]) is 
equivalent to [d] I- [T] (as V* is an embedding), from which ~*(7(d)) = [d]. [] 

In particular, by the observation following Lemma 2.1, we get that (7,D, C,~) is the 
composition of (2d.[d],D,P(D), 2[S].VD S) and (7*,P(D), C, ~*). 

It should be clear that whenever the concretization map of (7,D,C,~) is additive, 
the abstract domain D is already able to represent precisely, by means of its lub, the 
concrete disjunction of its elements. Thus, in this case, the powerset of D is equivalent 
to D. The next result shows that absence of additivity of the concretization map is a 
necessary and sufficient condition in order to get a strict improvement of precision by 
powerset. 

Proposition 3.11. Assume that (7,D, C,~) is a G.i. Then, P(D) is strictly better than 
D iff 7 is not additive. 
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Proof. By definition, P(D) is strictly better than D ¢¢, 7(D)C 7*(P(D)) ¢~ 3[S] E 

P(D). 7"([S])~ 7(D) ¢~ (as 7 is an embedding) 3SC_D. Vc 7(S)<cT(VDS) ¢~ (as 7 
is monotonic) 7 is not additive. [] 

Corollary 3.12. I f  (7,D,C,~) is a G.i., then D and P(D) are equivalent iff 7 is addi- 
tive. 

The following are altemative ways of expressing the condition of additivity for the 
concretization map. 

Proposition 3.13. / f  (7,D, C, ~) is a G.i. then the following are equivalent: 
(i) 7 is additive, 

(ii) 7(D) is a complete sublattice of C, 
(iii) For any [S] E P(D), VDS E ~[S]. 

Proof. (i) ~ (ii): Assume T = 7(S) for some S C_ D. Thus, Vc T = Vc 7(s) = 7(VD S) 
E 7(D). Thus, 7(D) is a complete sublattice of C, since 7(D) is always closed under 
glb's. 
(ii) ~ (iii): For any IS] E P(D), there exists d E D such that Vc 7(s) = 7(d). Hence, 
d E W[S], and, by additivity of c¢, we get VD S = c¢(V c 7(s)) = d E ®IS]. 
(iii) ~ (i): If S c__ D, then, by using Lemma 3.1 (ii), 7(VD S) >~ c Vc 7(s) >~ c 7(VD S). 

[] 

We say that a value in a powerset P(D) is new, if it is able to represent precisely a 
concrete denotation otherwise not representable precisely in D. Hence, [S] E P(D) is 

new iff Vc 7(S) <c ~(VD S). 
Following their seminal work [14], Cousot and Cousot first proposed in [15] a general 

definition of the powerset operator in a generic setting where abstract domains are spec- 
ified by Galois connections. Successively, and independently of the conference version 
[22] of this paper, Cousot and Cousot introduced in [17] various disjunctive comple- 
tions of an abstract domain, all defined by some form of powerset. They exploited their 
definitions in order to present the new powerful comportment analysis for higher-order 
functional languages. More specifically, they introduced the standard disjunctive com- 
pletion, the order ideal completion and the anti-chain completion (this latter completion 
is isomorphic to a further Scott closed ideal completion, cf. [17]). These definitions can 
be quickly summarized as follows. For subsets of a domain D abstracting a completely 
distributive lattice C, Cousot and Cousot consider the standard lower powerdomain 
pre-ordering relation (cf. [26]): If X, YC_D, then XC_ v Y ¢:~ Vx E X.3y E Y. X<,Dy. 
Then, one can define the equivalence relation X ~v  y ¢:~ X c_ v Y & Y c_VX. 
- The disjunctive completion of D is defined as the quotient of go(D) with respect 

to the equivalence relation ~v.  It is a complete lattice with respect to the lower 
powerdomain ordering: [X]_~v _ [Y]~v ¢~ X c_ v Y. 
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- The order ideal completion of D consists of all the downward closed subsets of D. 
It is a complete lattice with respect to the lower powerdomain ordering _c v above. 

- The anti-chain completion of D consists of all subsets S of D such that S = max(S). 

Also in this case, the complete ordering relation is given by c_ v. 
The concretization function (for all the definitions above) is obviously the same as that 
given in this paper: For any element S of the completion, the concretization is given by 
Vc 7(s). Cousot and Cousot showed that the disjunctive and order-ideal completions are 
equivalent, and for abstract domains satisfying the ACC, they are in turn equivalent 
to the anti-chain completion. It is easy to verify that also our powerset domain is 
equivalent to those above. 

Proposition 3.14. P(D)  is equivalent to each o f  the above completions. 

Proof. It is enough to observe that {Vc 7(S) : S ___ D} is the image by the concretization 
map of each completion, and it coincides with 7*(P(D)). [] 

Although from a semantic viewpoint our powerset definition is equivalent to those in 
[ 17], they differ from a synctatic perspective. In particular, our definition of the ordering 
relation on the powerset abstract domain is more natural, since it directly relies on the 
set-inclusion relation. Moreover, as we will see in the next section, our use of fat sets 
as canonical representatives permits to lift, by an explicit direct definition, the abstract 
operations to the powerset domain. This is particularly relevant as far as implementation 
details are concerned. It is also worth mentioning that all these definitions of the 
powerset abstract domain have been generalized by Giacobazzi and Ranzato in [24], 
who give a general, but implicit, definition of the disjunctive completion by using 
closure operators, which only requires that the concrete domain is a mere complete 
lattice. On the other hand, Giacobazzi and Ranzato show how to supply an explicit 
powerset-like definition of the disjunctive completion, under the hypothesis of complete 
distributivity for the concrete domain. 

4. Lifting abstract operations to the powerset 

Let us suppose that (7,D, C, ~) is a G.c., where C is a completely distributive lattice, 
and that oc : C x X ~ C is a concrete operation approximated by oo : D x X ~ D. 
We want to define an operation on the powerset abstract domain P(D),  such that it 
extends OD and that still approximates o o  Let us consider the following definition: 

0 D : P(D)  × X --~ P(D)  

O*D([S],x) = [{oD(d,x) E D :d  6 ®[S]}]. 

The definition of this operation is the most natural one since it directly relies on that 
of  OD: It consists in first applying OD to the elements of the canonical representative, 
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and then take the equivalence class of  the obtained subset of  D. It is worthwhile to 
observe that, whenever D is finite and oD is finitely computable, o~ is also finitely 
computable. 

Proposition 4.1. o~ is monotonic. 

Proof.  If [S] I- [T] and x E X then, by definition of  _ ,  we have {oD(d,x) : d E 
U[S]} C_{oD(d,x) : d E t~[T]}, and therefore o~([S],x) E o*o([T],x). [] 

In general, it is not true that o~ approximates oc. An example showing this fact is 
given below. 

Example 4.2. Let us consider the concrete domain (ga(Z), C_), the abstract domain Sign 
of  Fig. 1, and its powerset P(Sign), also in Fig. 1. Consider this concrete operation 
sq : ga(77) ~ go(Z): 

{ a 2 : a E A }  i f 0 ~ A  o r A = { 0 }  
sq(A) = 7/ otherwise. 

Thus, sq is the square operation on the sets of  integers not containing zero and on {0}, 
while maps the remaining sets to the top Z. It is simple to check that sq is monotonic, 
and that it is abstractly approximated by the (monotonic) operation Sqa on Sign defined 
as follows: 

S q a = { I H I ,  + ~--~ +,  0 ~--~ 0, - - H + ,  T ~-~ T } .  

The operation sq* on the powerset domain P(Sign) is therefore defined as follows: 

sq~([±]) = [_L], sq~([+]) = sq~( [ - ] )  = s q S ( [ + , - ] )  = [+], 

sq~([0]) = [0], s q S ( [ + , 0 ] ) =  s q ~ ( [ - , 0 ] ) =  [+,0],  sq~([7-])=- [7-]. 

In spite of  the fact that sq~ is an approximation of  sq, its extension sq~ to the powerset 
does not approximate sq. In fact, considering [ - ,  0] E P(Sign), we get 

sq (7*( [ - ,0 ] ) )  = sq({a E Y : a~<0}) = 7/ 

7*(sq*([ - ,0] ) )  = 7"([+,0])  = {a E 7/ : a~>0}. [] 

The following condition guarantees the correctness of  o~). 

Proposition 4.3. I f  oc preserves lub's of  the subsets 7(S), for all S C D, i.e. for any 
x E X, oc(Vc{7(d) : d E S},x)  = Vc{oc(7(d),x) : d E S}, then o~ is an approxima- 
tion of oo 
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Proof. Let [S] c P(D) and x E X. Then, 

* ÷ oc (7* ( [ s ] ) , x )  = oc(~ ([w[s]]),x) 

= V c { o c ( 7 ( d ) , x ) ' d  c W[S]} 

Vc{7(oD(d,x)) : d C W[S]} 

= ~*(o*~([S],x)). [] 

(by Lemma 3.1 (i)) 

(by hypothesis on oc) 

(by correctness of oo) 

Clearly, if oc is (fully) additive then it also verifies the condition in Proposition 4.3, 
and thus, in such a case, o~ approximates oc. Even though this condition of additivity 
may seem restrictive, we will show later that it is trivially satisfied by the standard 
concrete operations used in a typical logic program abstract interpretation framework. 
Additivity of abstract operations is also considered and discussed in [36], with particular 
emphasis to additive abstract operations used in functional program analysis. 

As an important example, let us consider the systematic liffing of the glb operation 
from D to P(D). Notice that this is possible since the hypothesis of complete distribu- 
tivity of the concrete domain implies that the concrete glb is additive. As expected, 
it tums out that the glb of P(D), that we explicitly defined in the previous section, 
coincides with this systematically defined operation. 

Proposition 4.4. The lifted glb A* on P(D) actually is the glb 73. 

Proof. Assume that {[S/]}iCl C P(D). Also, for any i C I, we consider a suitable set of 
indices K(i) such that tS[&] = {x~ : k E K(i)}. Observe that, by definition, Aiel[&] = 

[ {A ,~ t  ' Y~oli) : ~P E K1}]. Therefore, by co-additivity of ? and complete distributiv- 
ity of C, we have that 7*(A*e,[si]) = V~,c,:, 7(Ai~l yi~(i)) = V¢eK, Ale, i 7(y~(/)) = 
Aici Vkex(0 2(Y~) = A~cl v{7(s) : s E tJ[si]}. Thus, by Lemma Yl(i) and co-additivity 

of  7 ' '  7 (AicI [S i ] )  = Aicl ]2*([si]) = ~*(~iGl[Si]). This, because 7" is l - 1 ,  concludes 

the proof. [] 

We can be more precise about the relationship between the glb of P(D) and that of 
D. In fact, whenever D is completely distributive, the glb of D results to be complete 
with respect to the glb of P(D), where the Galois insertion (2d.[d],D,P(D), 2[S].VD S) 
of D in P(D) is that given by Proposition 3.10. 

Proposition 4.5. If D is completely distributive then the glb A on D is complete for 
the glb ~ on P(D) (w.r.t. the G.i. (2d.[d],D,P(D),2[S].VDS)). 

Proof. Consider any {[Si]}ici c_ P(D). We have to show that V([~icl[Si]) = A,Mvs,). 
For any i E I, we consider a suitable set of indices J( i )  such that S / =  {x} : j  E J(i)}. 
Note that, by Proposition 3.6, we then have [~iEI[Si] = [ { A i E /  xi ~o(i) : ~0 G jl}].  Thus, 
by complete distributivity, we have that Aic i (vs i )  = i V ~ j ,  Aicl x~(i), and therefore 
this concludes the proof. [] 
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Notice that in the above proposition, if the glb is considered as a finitary operation, then 
it suffices that D is (finitely) distributive. Further, it is worth noting that, as observed 
in Section 2.2, an analogous result for the lub trivially holds. 

We next investigate the relationship existing between Oo and o~. We already know 
that P(D)  is better than D. Therefore, it should not come as a surprise that o~ is an 
extension of o D and that it is better than oD. 

Proposition 4.6. Assume that (7,D, C, c¢) is a G.i. (and that the hypotheses o f  Propo- 

sition 4.3 hold). Then, 

(i) o~ extends Oo, i.e. Vd C D.Vx C X. O*D([d],x ) = [oo(d,x)]; 

(ii) o~ is better than Oo. 

Proof. (i) The following chain of equalities holds: 

y*(O*o([d],x)) = Vc{7(oD(dt ,x) )  " d'  C ~[{d}]} 

= Vc{7 (oo (d t , x ) ) ' y (d t )<- . cT (d ) }  (by Lemma 3.1 (ii)) 

= Vc{?(oD(d ' ,x ) )  :d '  <~Dd} (as 7 is an embedding) 

= 7*([oD(d,x)]) (by monotonicity of OD 
and 7). 

Since Y* is 1-1, the thesis follows. 
(ii) If c E C then ~*(c) r-- [~(c)]. Thus, applying 7", we get 7*(~t*(c))<~cT(~(c)). 

We want then to show that, for any x E X ,  7*(o~(~*(c),x))<~c 7(OD(~(C),X)): 

7*(O*D(O~*(C),X)) = VC{7(oD(d,x))  : d E U~*(c)} 

= Vc{7(oD(d ,x ) ) :7 (d )<~cT*(~*(c ) )  ) 

<.c Vc{Y(OD(d,x))  : 7(d)<~cY(~(c))}  

= M C { 7 ( o D ( d , x ) ) ' d ~ D O ~ ( c ) }  

= 7(OD(O~(C),X)) 

(by Lemma 3.1 (ii)) 

(by the above 
observation) 

(as V is an 
embedding) 

(by monotonicity 
of OD and 7), 

and this concludes the proof. [] 

It is also straightforward to verify that (ii) above implies that OD approximates o~ 
w.r.t, the G.i. (2d.[d],D,P(D),  2[S].VD S). 

We denote by P ( ~ ) =  (P(D), o~ . . . . .  o~) the abstract interpretation obtained by ap- 
plying the powerset operator to ~ = (D, ol . . . . .  ok). The following theorem summarizes 
some of the results achieved so far. 
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Theorem 4.7. Let ~ -- (C, Olc . . . . .  okc) be a concrete interpretation, ~ = (D, ol . . . .  , ok> 
abstracting cg, and P ( ~ )  = (P(D), o~ . . . . .  o~) be the powerset o f  ~.  I f  C is completely 
distributive and each oCi preserves lub's o f  the subsets 7(S), for all S c_ D, then: 

(i) P ( ~ )  abstracts (£; 
(ii) I f  (7,D,C,~ ) is a G.i., then P ( ~ )  is better than 9.  

In general, the systematic lifting of  an abstract operation to the powerset does not 
preserve either the property of  being complete or that of  being the best correct approx- 
imation, as the following example shows. 

Example 4.8. Let us consider again the abstract domain Sign and its powerset P(Sign), 
depicted in Fig. 1. As concrete operation f : ~d(Z) --~ ~ ( Z )  let us consider f = 
2,K.{x • z E Z : x C X, z C Z, z ~ 0}, i.e. f ( X )  is the pointwise multiplication of  X 
with the set of  integers different from 0. It is then easy to see that the best correct 
approximations fsign and fe(sign) of  f on Sign and P(Sign) are, respectively, defined 
as follows: 

fsig~={IHI, + ~--', q-, 0 H 0 ,  -~--~ T, T H T } ;  

fP(s,g~) = { [ / ]  ~ [_L], [+] ~ [ + , - ] ,  [0] ~ [0], [ - ]  ~ [ + , - ] ,  

[ + ,0 ]  ~ [T ] ,  [ + , - ]  H [ + , - ] ,  [ - , 0 ]  H [T ] ,  [T ]  ~--~ [T ] } .  

Also, it is not too hard to verify that both fSign and fP(Sign) a r e  complete for f ,  i.e. 
for all X C ~a(Z), ~ ( f ( X ) )  = fsig,(~(X)) and ~ * ( f ( X ) )  = fP(sig,)(~*(X)). Notice 
that f is additive, and therefore, by Proposition 4.3, one can correctly consider the 

systematic lifting fs*o, of  fsig, to the powerset P(Sign). Although fsig, is the best correct 
approximation of  f ,  it tums out that fs*o, is not. In fact, we have that fS~0n([+]) = 
[fSiq,(+)] = [T], whilst for the best correct approximation fP(sig,) we get a strictly 
precise result, that is, fP(sig,)([+]) -- [ + , - ] .  Moreover, this also proves that fs~0, is 
not complete for f (of. Section 2.2). [] 

We now show that, under certain conditions, the definition of  the lifting to the 
powerset of  an abstract operation can be suitably modified, still remaining systematic, 
so that this step does preserve the property of  being complete. 

Lemma 4.9. If C is join-generated by JI(C)  and D is join-generated by ~(JI(C)), 
then for  any [S] c P(D) there exists S ° C_ ~(JI(C)) such that IS] = [S°]. 

Proof.  Let [S] E P(D) and S -  = S \ ~(JI(C)). For any x C S - ,  let Ax = {d C 
~(JI(C)) : d<<.DX}, and observe that, by hypothesis, x = V~Ax. Then, let S ° = 
(SN~(JI(C)))U(Ux~ s_ Ax). We demonstrate that [S] = [S°]. To show this, it is enough 
to verify that for any x C S - ,  Vc{V(d) : d c Az} = 7(x). The inequality Vc{7(d) : d E 
Ax} ~<c 7(x) trivially holds. On the other hand, note that if z E JI(C)  and z ~<c 7(x), 
then ~(z)<<.Dx, and therefore ~(z) E Ax. Hence, z<~cT(~(z))<<. Vc{7(d) : d E Az}. 
Since, by hypothesis, 7(x) = Vc{Z E J l (C) : z<~c  7(x)}, we get that 7(x)~<c Vc{7(d) : 
d E A x } .  [] 
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Thus, under the hypotheses of  the above lemma, any [S] E P(D) can be transformed in 

an equivalent [S °] E P(D) such that any element x E S ° is the image, via the abstrac- 

tion map, of  a concrete join-irreducible point. For instance, the G.c. (7,Sign, ga(Z),~) 

evidently satisfies such hypotheses: Hence, for [--] E P(Sign) we get that {Y} ° = 

{ + , 0 , - } ,  and [T] = [ + , 0 , - ] ,  where +,  0, and - are all the image of  a singleton, 
i.e. a join-irreducible element, in ~o(Z). 

Given an abstract operation oD : D × X --, D, we exploit the above lemma for 

defining the following operation o~ : P(D) × X --~ P(D) on the powerset abstract 
domain P(D):  For all [S] E P(D) and x E X, 

O ~D([S],x) = [{OD( t , x )  E D : t C (++~[S])°}]. 

In other terms, we consider (t+_3[S]) ° as canonical representative of  an equivalence class 

[S] E P(D), and we apply pointwise oD to each element of  (U[S]) °. It is straight- 
forward to verify by a simple inspection of  the proof  of  Proposition 4.3, and under 

its hypotheses, that o~ is a correct approximation of  oc. Here, the interesting point is 
that when oD is complete for oc and oc preserves any join-irreducible element (i.e., 

if  c E JI(C) then, for all x E X,  oc(c,x) E JI(C)),  then o~9 on P(D) is still complete 
for oc, and its definition can be simplified by substituting U[S] with S. 

Proposition 4,10. Let C be join-generated by JI (C) ,D be join-generated by ~(JI(C) ), 
oc be additive and preserving join-irreducible elements. I f  oD is complete jbr oc then 
o~ is complete for oc as well, and, for all [S] E P(D) and x E X, o~([S],x) = 
[{Oo(t ,x):t  E SO}]. 

Proof.  Let us fix a generic parameter x E X. In the proof, we will use the defini- 

tion o~([S],x) = [{oD(t,x) : t  E S°}], and we will demonstrate at the end of  the proof  
that this is correct. We first show that for a join-irreducible h E JI(C), ~*(oc(h,x)) = 
o~(~*(h),x). By hypothesis, oc(h,x) E JI(C), and so, by Proposition 3.8, ct*(oc(h,x)) 
= [ct(oc(h,x))]. Thus, by completeness, ~*(oc(h,x)) = [oo(~(h),x)]. Moreover, again 
by Proposition 3.8, ~*(h) = [~(h)]. Therefore, since {~(h)} ° = {~(h)}, o~o(~*(h),x) = 
[oo(~(h),x)] -- 7*(oc(h,x)). Now, let c E C. By hypothesis, c = VcHc, where Hc = 
{h E JI(C)  :h <<-c c}. Then, by additivity of  Oc and ~* and by the above observations, 

~ * ( o C ( c , x ) )  =- [ [hEHc ~ * ( o c ( h , x ) )  = [ [hEH, O~D(~*(h),x) = ~hEHc[Oo(~(h ) , x ) ] .  Thus, 
by Proposition 3.6, ~*(oc(c,x)) = [{oo(ot(h),x) : h E Hc}]. Observe now that, by 

Proposition 3.8, ~*(c) = [{~(h) : h E /-/~}], and, trivially, (~(Hc))° = ~(Hc). Thus, 

o~o(c~*(e),c) -- [{oD(cffh),x) " h E Hc}] = c~*(Oc(C,X)). To conclude, let us observe 
that if  [R] = [S] then [{oD(t,x) : t E R°}] ---- [{oo(t,x) : t E S°}] = [{oD(t,x) : t E 
(~[S])°}]:  In fact, there exists some c E C such that ~*(c) = [R], and therefore, by 
what just proved above, these three equivalence classes are all equal to ~*(oc(c,x)). 

[] 

We will exemplify this result in the next section, by applying it for the abstract 
operation of  existential quantification used in ground-dependency analysis o f  logic lan- 
guages over an abstract domain of  propositional formulae. 
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5. Powerset of the logic program abstract interpretation POS 

POS (cf. [1, 10, 31, 32]) is a well-known abstract interpretation for ground-depen- 

dency analysis of  logic languages, whose underlying abstract domain Pos consists of  

certain propositional formulae. The groundness information results to be useful to a 

Prolog compiler for a number of  relevant optimizations (see, e.g., [27, 37]). Minor 

variants of  this abstract interpretation have been also used for a variety of other anal- 
yses, such as suspension analysis of  concurrent logic programs [6]. In this section, we 

apply the powerset operator to POS. We show that P(POS) is a strictly better inter- 
pretation than POS, although by abstracting back to Pos the outcome of an analysis 

performed with P(POS) one gets the corresponding analysis for POS. 

5.1. The concrete &terpretation LP 

We briefly recall the standard concrete domain and operations used in an abstract 

interpretation framework for logic program analysis (for more details, see e.g. [10]). 
Assume that Var is an infinite set of variables, and IVar C_ Var is an infinite de- 

numerable subset of  variables of  interest. For any syntactic object o, var(o) denotes 
the set of  variables occurring in o. A substitution 0. (over Var and a fixed alphabet of  
constant and function symbols) is denoted by its set of  nontrivial bindings, i.e. 0. = 
{x/0.(x) " 0.(x) ¢ x}. The domain of definition of 0. is dom(0.) = {x E Var " 0.(x) ¢ x}, 
while its variable range is rng(g) = U{var(a(x)) " x  E dom(6)}. The composition 

of substitutions a and 0 is denoted by 0.0. The empty substitution is denoted by e. 
I f  W C IVar is any subset of variables of  interest and 0. is a substitution, then a/g, 

is any substitution obtained rom a by projecting variables of  0. over W (i.e., by re- 
naming variables in dom(a)U rnq(0.) belonging to IVar \W with variables of  nonin- 
terest). I f  0. is a substitution and E is any syntactic entity, then E0. stands for the 
result of  applying 0. to E. The set of  idempotent substitutions over Var is denoted 

by Sub. If  0. c Sub then eqn(6) denotes the corresponding set of term equations in 
solved form (the correspondence between idempotent substitutions and sets of syn- 
tactic equations in solved form is well-known, cf. [30]). Over Sub the usual relation 

_~ of instantiation is defined as follows: I f  O-l,O- 2 C Sub then 61_0. 2 iff there ex- 

ists a (possibly nonidempotent) substitution 0 such that 0.1 = a20. For any set E of 
term equations, mgu(E) is defined as follows: If  E is not unifiable then mgu(E) = 
13, otherwise mgu(E) = {0.}, for an arbitrary idempotent most general unifier a c 
Sub of E (recall that all the idempotent mgu's of  E are equivalent up to renaming, 

cf. [30]). 
The concrete domain of interpretation is given by the standard collecting domain 

(~o(Sub), C_). We follow [10] in defining the following concrete operation of unification: 

u : ga(Sub) × go(Sub) ---+ 8d(Sub) 

u(S, O) = U mgu(eqn(a) U eqn(O)). 
aEZ, OEO 
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This operation of  unification u is general enough to subsume other forms of  unification 

and composition of  substitutions used in most logic program analysis frameworks (see 

[10] for more details and examples).  For instance, it is simple to observe that if  cr E Sub 

is a calling substitution and 0 is an idempotent mgu of  an equation between atoms 
H = B then mgu(eqn(a )U eqn(O)) = {a~  : ~p E mgu(Ha = Ba)} ,  up to renaming. 

The operation of  projection over a set of  variables of  interest is defined as follows: 

rt : ga(Sub) x ~d(IVar) ~ ga(Sub) 

~t(s, rv) = {a/w : a E s} .  

The last trivial concrete operation is given by the union of  sets o f  idempotent sub- 
stitutions, 2 U : go(Sub) × go(Sub) ~ ga(Sub), namely the lub operation of  the con- 
crete domain. The concrete interpretation for logic programs is then given by LP = 

(go(Sub),u,U,n).  It is immediate to note that all the concrete operations of  LP are 
additive functions, due to the collecting nature of  the concrete domain. We will make 
use of  this obvious observation later on. 

5.2. The abstract interpretation POS  

Let us succinctly recall the definitions of  the abstract domains Mon, D e f  and Pos, 

and of  their abstract operations. For more details see [1, 10, 31]. 

Let VI C_ I Var be a finite (nonempty) subset o f  variables of  interest. In order to fix 

the notation, suppose that VI = {xl , . . .  ,xn}. Assume also that B = {false, true} is the 
two point lattice. A Boolean function on VI is any function f : B n ~ B (where the i-th 

component of  B n corresponds to the variable xi). Obviously, Boolean functions can be 
represented by means of  propositional formulae: I f  F is the propositional formula over 

VI representing the Boolean function f ,  then f ( b l  . . . . .  bn) = true iff {xi E VI : bi = 

true} is a truth-assignment (namely, the set of  true logical variables) which is a model 
of  F.  On the other hand, each class of  logically equivalent propositional formulae over 

VI determines a Boolean function. Thus, in the following, we will use without distinc- 
tion Boolean functions and propositional formulae as equivalent concepts. Any subset 
M C_ VI is considered as a truth-assignment for a Boolean function f ,  and m o d ( f )  de- 

notes the set o f  truth-assignments which are models of  f (it is then a subset o f  gd(VI)). 
The set Bool of  Boolean functions on VI forms a (finite) Boolean lattice for the stan- 
dard ordering: j ]  -< J~ iff mod( f l  )c_ mod(f2).  The lub and glb are given by logical 
disjunction and conjunction: For two Boolean functions J] and j~, they are denoted by 
J] V J~ and f l  A J~, respectively (obviously, for the corresponding propositional for- 
mulae, this corresponds to consider their syntactic disjunction and conjunction). With 
a slight abuse of  notation, false and true denote the bottom and top elements of  Bool. 

A Boolean function f E BooI is monotone if  m o d ( f )  is upward closed (that is, 

2 Obviously, considering union as a binary operator is sufficient to get finite union. 
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Fig. 2. Mon, Def and Pos for VI = {x, y}. 

for any M C N  C VI, i f M  C rood(f)  then N C rood(f)).  We denote by Mon the set of  
monotone Boolean functions. It is well-known that a propositional formula f E Bool is 

monotone iff f is equivalent either to false, or to true, or to a formula built using only 
the connectives V and A (see, e.g., [38]). It is immediate to observe that (Mon,-<) is 

a sublattice of  (Bool, _~). A Boolean function f E Bool is positive if V I E  m o d ( f )  

(or, equivalently, if  f ( true . . . . .  true) = true). The set of positive Boolean functions is 
denoted by Pos. It is shown in [8, Corollary 1, p. 325] that a propositional formula 

f E Bool is positive iff f is equivalent to a formula built using only the connectives 
A, V and +-% successively, this synctatic characterization has been sharpened in [1, 

Theorem 3.1], where it is shown that f c Bool is positive iff f is equivalent to a 
formula built using only the connectives A and --~. It is easy to note that Pos is 
a sublattice of  Bool, and that Pos is distributive. A Boolean function f C Bool is 

definite if  f E Pos and rood(f)  is closed under intersection (i.e., if M,N c m o d ( f )  
then M N N  C rood(f)).  As observed by Armstrong et al. [1], from [18, Proposition 3.1] 

one gets that a propositional formula f is definite iff f is equivalent to a conjunction 
of formulae having the shape xi~ A . . .  A xik -+ xj, where k may be 0 (in this case, the 

formula is simply xj). The subset of Pos given by the definite formulae is denoted 

by Def. It turns out that Def  is merely a meet subsemilattice of  Pos (and hence of 
Bool). This means that the glb of  Def  is given by logical conjunction, while its lub 

can be defined in the usual way in terms of the glb: Ji VDef f2 ---~ A { f  E Def  : fl  ~_ 
f, J~ _ f } .  Note that Mon is not a subset of  Def  and Pos, because false (f Pos. 
However, since the element false is useful in order to represent precisely the empty 
set of  substitutions (and therefore to represent the information of reachability), as it is 

common practice, we add false both to Def  and Pos, and we still use Def  and Pos 

to denote these lattices. The lattices Mon, Def  and Pos are depicted in Fig. 2 for the 
case of  two variables of  interest VI = {x, y}. 

Let us now recall the Galois insertion of Pos into the concrete domain fJ(Sub). For 
a substitution a C Sub, the truth-assignment specifying which variables of  interest are 
bound by G to ground terms and which are not, is given by 9r~ = {x E VI : var(a(x)) = 
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0}. On the other hand, the propositional formula expressing the ground-dependencies 
in a of  the variables of  interest is given by 3 depa = 3-~. A {x ~ Avar(a(x))  : x E 

dom(cr)}. Note that dep~ = true. The abstraction ~ : ga(Sub) ~ Pos and concretization 

: Pos ~ ga(Sub) mappings are then defined as follows: 

• (Z )  = V{dep~ : a E Z}, 

y ( f )  = {a C Sub : Va'~_ a. 9r~, 6 m o d ( f ) } .  

Note that a(0) = false, for any a c Sub, ~({a})  = dep~ c Def, and y(false)  = 9. 

These two mappings form the Galois insertion (7, Pos, go(Sub), ~). The restriction of  7 

to Mon and D e f  also yields the right adjoint o f  a Galois insertion. 

Example 5.1. Assume that VI = {x ,y , z ,v} .  The formula x A ( y  ~ z)  is an element of  

Pos (and Def )  representing all the substitutions a such that for any instance # of  a the 

following conditions hold: (i) a'(x)  is ground, (ii) # ( y )  is ground iff # ( z )  is ground. 
T h u s ,  4 a = {x/a ,y /b ,z /c ,w/d}  and 0 = {x /a ,y /w ,z /w}  satisfy these conditions, and 

therefore {a, 0} C 7(x A (y  ~ z)).  On the other hand, we have that ~t({a}) = x A y A z 
and ct({0}) = x  A ( y  ~ z). [] 

Let us now recall the abstract operations defined on Pos. Abstract unification is 
simply given by logical conjunction A : Pos x Pos ~ Pos. On the other hand, logical 
disjunction V : Pos x Pos ~ Pos is the obvious abstract operation corresponding to the 

concrete union of  sets o f  substitutions. Finally, the concrete operation of  projection is 
simulated in Pos by existential quantification as follows: 

rCp : Pos x ~o(IVar) --~ Pos 

gp(f ,  W)  = 3VI\W. f .  

Hence, 3 v i \ w . f  projects away the variables of  interest which are not in W. As noted by 

Armstrong et al. [1, Theorem 3.2], this operation is well-defined (i.e., 3 v z \ w . f  E Pos). 

Thus, the full abstract interpretation is given by POS = (Pos, A, V, ne). These ab- 
stract operations of  Pos are correct approximations of  the corresponding concrete oper- 

ations. Actually, as it is shown in [10], we can be more precise, since it turns out that 
A is the best correct approximation of  the concrete unification u [10, Theorem 5.7], 
ne is complete for g [10, Lemma 6.3], and V is trivially complete for the union of  

sets o f  substitutions (see Section 2.2). 

5.3. The powerset  abstract domain P(Pos )  

Since the concrete domain go(Sub) is collecting (and therefore completely distribu- 
tive), we can correctly apply the construction in Section 3 of  the powerset abstract 

3 ~ is the existential quantification over the variables of noninterest (i.e. those in ~ = Var \ VI). 
4 By a, b, c, ..., we denote ground terms. 



G. FilO, F RanzatolTheoretical Computer Science 222 (1999) 77-111 101 

domain to Pos. By Proposition 3.5, we get the Galois insertion (?*,P(Pos), go(Sub), ~* ). 
Note that, by Proposition 3.8, the abstraction in P(Pos) of a set of substitutions Z E 
go(Sub) is simply given by the set of the abstractions in Pos of every substitution in 
Z, i.e. ~*(Z) = [{dep~ : a E Z}]. It is also worth noting that by Proposition 3.3, the 
lifting of Pos to P(Pos) preserves the property of distributivity of the domain. 

Obviously, by Proposition 3.9 (i), we know that P(Pos) is better than Pos. More 
precisely, we know that (2f .[f] ,Pos,  P(Pos),2[S].V S) is a G.i. On the other hand, 
we now show that P(Pos) actually is strictly better than Pos. To this end, by Propo- 
sition 3.11, it suffices to find two formulae of Pos such that Y does not preserve their 
logical disjunction. The following example shows this phenomenon. 

Example 5.2. Assume that the set VI of variables of interest contains at least two 
variables x,y ,  and consider x V (x --+ y) E Pos. We want to verify that 7(x)tJ 
?(x ~ y ) C  7(x V (x -+ y)). Let a = {x/v}, where v is any other variable (possi- 
bly not in VI). Obviously, a ~ 7(x), because x is not ground for a, and a ~ 7(x -+ y), 
because considering the instance a'  = {x/a, v/a} of a we have that gr~, ({ mod(x -+ y). 
On the other hand, note that the logical disjunction x V (x --+ y)  is logically equivalent 

to true. Then, 7(x V (x -+ y))  = Sub, and therefore a E 7(x V (x --+ y)). [~ 

As an immediate consequence of the above example, we get the following result. 

Theorem 5.3. P(Pos) is strictly better than Pos. 

This result is somehow in opposition to the intuition. In fact, since the lub of Pos 
is logical disjunction, it is natural to think that the meaning of a disjunction f V g of 
two formulae of Pos is exactly given by the logical disjunction of the meanings of f 
and g, namely by the union of  their concretizations. However, the above result shows 
that this is not the case. We now give a characterization of the subsets of formulae of 
Pos whose logical disjunction is preserved by the concretization. This characterization 
makes use of the definite formulae of Def. First, we need a preliminary lemma. 

Lemma 5.4. For any f E Def  there exists af  E Sub such that depo I = f .  

Proof. We prove indirectly this fact, by using other known results. In [7, Theo- 
rem 8.4.2], it is shown that there exists a Galois insertion of Def into the well-known 
Jacobs and Langen abstract domain Sharing [28]. Thus, for any f E Def  there exists 

af E Sharing such that ~Sharing, Def(af) = f .  On the other hand, as observed in [28], 
for any a E Sharing there exists aa E Sub such that O~ga(Sub),Sharing({fa} ) ~- a. Thus, 
consider the substitution aai E Sub. In [7, Theorem 8.4.5], it is shown that for any 

a E Sub, dep~ = ~Sharino, Del'(O~¢a(Sub),Sharing({a})). Thus, dep% = f .  [] 

Theorem 5.5. Let ~ C_ Pos with • ¢ O. Then, U ( ? ( f )  : f  E q~} = 7(Vq~) if  and only 
i f  gg E Def. (g ~_ V~) =~ ( 3 f  E 4. g _--< f ) .  
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[t~e] 

,x  ----~ y] 

[;] [y] 

[false] 

Fig. 3. P(Pos) for VI = {x, y}. 

Proof. ( i f)  By monotonicity of 7, it is sufficient to verify that 7(V~) C_ U{7(f)  : f E 
• }. Consider a E 7(V~). Thus, ct({tr}) = dep~ ___ V~ and dep~ E Def. By hypothesis, 
there exists f E • such that dep~ ~ f .  Thus, 7(dep,)c_ 7(f) ,  and, since a E 7(dep,),  

we get a E 7(f ) .  
(only i f )  Let g E D e f  such that g --< V~. By Lemma 5.4, there exists trg E Sub such 

that ~({trg}) = g. Therefore, ct({ag}) ___ V~, implies ag E 7(V~) = U{7(f)  I f E ~}. 
Thus, we get that there exists f E • such that ag E 7(f) .  We conclude by observing 

that ~({ag}) -- g _~ f .  [] 

By using this characterization of Theorem 5.5, it is simple to verify that the pow- 
erset domain P(Pos)  for VI = {x, y} is the lattice depicted in Fig. 3. In fact, it is 
easy to detect directly from the Hasse diagrams of D e f  and Pos in Fig. 2, that [x, 
x ~-~ y], [y,x ~-~ y], [x,x ~-~ y, y], [y, y --~ x], [x,x --~ y], [y ~ x ,x  --~ y] are all and only 
the new elements of P(Pos) .  For instance, by Theorem 5.5, we have that 7(x)U 7 
(x ~ y)  C 7(x V (x ~ y))  = 7(true), because y ~ x -< true but y ~ x ~ x and 
y---~ x ~ x--~ y. 

The following result proves that 7 preserves the logical disjunction of monotone 
formulae. 
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Proposition 5.6. I f  4 C_ Mon then U{7(f)  : f E 4} = 7(V4). 

Proof. Obvious if 4 = O. Thus, assume that 4 -¢ 0. Let us suppose by contradiction 

that U{7(f)  : f E 4} C 7(V4). Then, by Theorem 5.5, there exists g E Def such 

that mod(g)C_ rood(V4) = U f E ,  mod( f )  and for any f E 4,  rood(g) ~ mod(f ) .  
Thus, for any f E 4, there exists Mf E rood(g)\ mod(f) .  Since 4 is nonempty, by 

definiteness of  g, we get that NfEq~ Mf E rood(g). Hence, there exists h E 4 such that 

NfEc b Mf E rood(h). Observe now that, since h is monotone, NfEq~ Mf C M h implies 
that Mh E rood(h), which is a contradiction. [] 

The converse of the above proposition does not hold. It is enough to consider the 

formulae x, which is monotone, and y ~ x, which is not: since x -< y --~ x, 7 trivially 

preserves their disjunction. The following result shows that the abstraction in Pos of 

all the ground substitutions yields precisely all the monotone formulae. In this sense, 

monotone formulae are only able to express plain groundness and no information of 
ground-dependency between variables. This fact also provides an intuitive justification 

to Proposition 5.6. 

Proposition 5.7. I f  Sub aR = {a E Sub " rng(a) = ~} is the subset of  Sub of the 
ground substitutions, then a( £~( Sub aR ) ) = Mon. 

Proof. (_c) Note that by definition of ~, for any a E Sub GR, ~ ( { a } )  = A(dom(a)D Vl), 
and hence ~({a}) E Mon (in particular, ~({~}) = true). Thus, if S E ~(Sub Gn) then, 

by definition of ~ and since Mon is closed by logical disjunction, we get that a(S)  E 

Mon. 
(_D) If  f E Mon, then it is possible to transform f in an equivalent formula in 

disjunctive normal form (see, e.g., [38]). Thus, we can assume that f = %EJ(AiEI xj;), 
for some finite J and I (where xj, E VI). For every j E J ,  consider the substitution 
aj = {xj;/a : i E I} E Sub Gn. Then, we have that ~({aj : j E J } )  = Vjej ~({aj}) = 

V;~j(Ai~; x ; , )  = f . [] 

5.4. Abstract operations on P(Pos) 

Let us now turn to lifting abstract operations from Pos to P(Pos). As far as the 
lub is concerned, we noticed in Section 2.2 that the lub of any abstract domain is 

always complete with respect to the concrete one. Thus, in view of this simple obser- 
vation, for the powerset P(Pos) we will consider its lub U, which is characterized by 

Proposition 3.6, as approximating the concrete union of sets of  substitutions. 
Next, let us see how to lift the existential quantification 1re from Pos to P(Pos). 

We recalled above that 7re is complete for the corresponding concrete operation of 
projection ~ (cf. [10, Lemma 6.3]). Thus, we can hope to apply Proposition 4.10, 
so that to maintain this desirable property by lifting ~te to the powerset. We show 
that indeed this is the case. In fact, first note that the hypotheses of Lemma 4.9 are 
satisfied by the G.c. of  Pos into go(Sub): The concrete domain ga(Sub) is collecting, and 
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therefore it is join-generated by its join-irreducible elements, namely by the singletons 
{a} with a E Sub; moreover, by Lemma 5.4, ~(Jl(ga(Sub))) = Def, and therefore Pos 
is join-generated by ~(JI(gd(Sub))). Hence, for every [S] E P(Pos) there exists IS °] E 
P(Pos) such that S ° C_ Def and [S] = [S°]. Such S ° can be obtained as in the proof of 
Lemma 4.9: If f E S and f E Pos\Def, then f is substituted with the set of formulae 
of Def less than f itself. Furthermore, the concrete projection n trivially preserves join- 
irreducible elements, i.e. singletons. Thus, we can apply Proposition 4.10 in defining 
n~e over P(Pos) as follows: For all [S] E P(Pos) and W E ga(IVar), n~([S], W) -- 

[ { n p ( f  W )  : f E S°}]. 
Finally, by Proposition 4.4, lifting the logical conjunction of Pos to P(Pos) actually 

gives rise to the glb M of P(Pos). 
The following result shows the precision of these abstract operations on P(Pos) just 

defined. 

Proposition 5.8. The abstract operations U and rC~p are complete for the corresponding 
concrete operations U and 7z, while M is the best correct approximation of  u. 

Proof. As recalled above, 13 is trivially complete for U. Also, by the observations above 
and by Proposition 4.10, we get that 7t~ is complete for ~z. Let us now turn to the glb 
M. In order to show that M is the best correct approximation of n, we have to prove 
that for any [R],[S] E P(Pos), a*(n(7*([R]),7*([S]))) = [g] M [S]. Let us first show 
the following particular case: For all f 9  E Def, a*(u(7*([f]),7*([g]))) = [ f ]  ~ [g], 
i.e. ~*(u(7(f), 7(9))) = [ f  A 9]. To prove this, we need to note that by exploiting the 
proof of [10, Theorem 5.7], it is not too hard to demonstrate the following fact: If 

f 9  E Def and f A g ¢ false then there exist af E 7 ( f )  and 0 o E 7(g) such that 
ct(n({af}, {0g})) = f A g (this fact strongly relies on the hypothesis that both f and 
g are formulae of Def). We will refer to this observation by (t). If f A g = false 
then either f =false or g =false. Hence, either 7 ( f )  or 7(g) is the empty set, and so 
a*(u(7(f),  7(g))) = a*(O) = [false] = [ f  A 9]. Thus, let us assume that f A g C false. 
By Proposition 3.8, a*(u(7(f) ,7(9)))  = [{~(u({a},{0})) : a E 7(f) ,  0 E 7(g)}]. 
Moreover, observe that for any a E 7 ( f )  and 0 E 7(g), by monotonicity of u and ~t, 

ct(u({a}, {0})) _ a(u(7(f) ,7(9))) ,  and therefore from f A 9 = ct(u(7(f), 7(g))) (viz., 
A is the best correct approximation on Pos of u, cf. [10, Theorem 5.7]), we get that 

a(u({a},{0})) ~ f A g- Thus, by (t), we get a*(u(7(f) ,7(g)))  = [ f  A g]. Let us 
now turn to the general case. As already observed above, by Lemma 4.9, there exist 
[R°],[S °] E P(Pos) such that [R] = [R °] and [S] = [S<>], and R°,S ° C_Def Thus, 
w.l.o.g., let R,S C_ Def. Hence, the following equalities hold: 

~ * ( u ( 7 * ( [ R ] ) , 7 * ( [ s ] ) ) )  = U a*(u(7(f),  7(g))) 
f GR,gGS 

]] [ f A g ]  
f ER,gES 

(by additivity of u and a*) 

(by what proved above) 
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and this closes the proof. 

= [ { f A g : f c R ,  g C S } ]  

= [R] n IS] 

[] 

(by Proposition 3.6) 

(by Proposition 3.6), 

To conclude, let us observe that R is not complete for u: In fact, by considering 0" = 

{x/a} and 0 = {x/b}, we get ~*(u({0"}, {0})) = ~*(0) = [false], whereas ~*({0"})m 

~*({0} )  = [x] n [x] = [x]. 

5.5. Comparing P O S  and P ( P O S )  

Let us first show that all the operations of  P(POS)  = (Pos, R,U,n~) are strictly 

better than the corresponding ones of  POS. 

Theorem 5.9. P(POS)  is strictly better than POS. 

Proof. Theorem 5.3 showed that P(Pos)  is strictly better than Pos. Let us consider here 

the abstract operations. First, consider the lub operations of  Pos and P(Pos).  According 

to the definitions in Section 2.3, we have to show that there exist Xl, S2 E gd(Sub) 

such that 7"(~*(S1) O a*(X2)) C 7(~(Z~l  ) V 9~(z~2) ). Consider 6 1  = {x/a} and 0" 2 = 

{ x / f ( v , w ) , y / v } ,  where x , y  c VI and v,w ~ VI, such that a*({a l} )  = [~({al})]  = [x] 
and ~*({a2}) = [a({a2})] = [x --+ y]. In this case, Example 5.2 directly shows the 

thesis. Let us now turn to the glb. Consider a3 = {y/a}  and 0" 4 = {X/V, y / f ( v , w ) } .  
Then, ~*({0"1,0"2}) = [x,x ~ y], ~*({0"3,0"4}) = [Y, Y ~ x], while ~({0"1,0"2}) = true = 
0~({0"3, 0-4}). Moreover, by Proposition 3.6, [x,x ~ y ] R [ y , y  ---+ x] = [x,x ~ y,y] .  Then, 
analogous to Example 5.2, it is immediate to show the thesis. Finally, consider the 

abstract projections. Consider 0"5 = { x / f ( y , z ) } ,  where z E VI. Then, c~*({0"1,0"5}) = 

[x,x +-+ (yAz) ]  and ~({0"1,0"5}) = x V ( x  +-~ (yAz) ) .  Thus, n~e([x,x +-~ (yAz)] ,  {x, y})  = 
[3z.X, 3z.x +-+ ( y A z ) ]  = [x,x --* y], whereas n e ( x V ( x  +-+ (y  Az) ) ,  {x, y}  ) = 3z .xV(x  
(y  A z ) )  = true. Hence, as before, we conclude that n~p is strictly better than np. O 

We can go more in depth about the relationship between P(POS)  and POS. In 

fact, it tums out that the operations of  POS are complete for the corresponding 
operations of  P(POS) ,  where Pos and P(Pos)  are related by the Galois insertion 

( 2 f . [ f ] ,  Pos, P(Pos) ,  2[S].V S), as recalled at the beginning of  Section 5.3. 

Proposition 5.10. A, V, and ne are complete, respectively, for  m, O and n~p. 

Proof. Completeness for A follows by Proposition 4.5, since Pos is distributive. Com- 

pleteness for the lub V always holds (see Section 2.2). As far as the projections are 
concerned, we have to show that for any [S] E P(Pos) ,  and W c_ IVar, Vn~([S], W) = 
ne(VS, W). This is a consequence of  the fact that the existential quantification is ad- 

ditive on all formulae of  Bool (see, e.g., [38]): Vn~([S], W) = Vfcs  o ~vI \w . f  = 
3VI\W. V S ° ~- 3vI\w. V S z ltp(VS, W). [] 
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We now present an example where analysing a logic program using P(POS)  we 
get an output which is strictly better than the corresponding one for POS. We follow 
the approach outlined in [1,31], where the abstract semantics of a logic program is 
obtained by means of a simple computation of a least fixpoint. This abstract semantics 
is the well-known abstraction of the declarative s-semantics (cf. [20]) characterizing 
the computed answer substitutions. We do not present all the details of the computation 
of the abstract semantics, and we refer the reader to [1, 31] for a full exposition. 

Example 5.11. Let us consider the following logic program P : 

p(x,x). 

p(a ,y ) .  

p (x ,a )  : - p(x ,z ) ,  p(a,x) .  

This program allows us to illustrate the role played by all the abstract operations in 
the computation of the abstract semantics. As an intermediate step, let us compute the 
Clark completion of P, which is as follows: 

p ( x , y )  ~ (x = y )  V (x = a) V 3z.(y = a A p (x , z )  A p (a , x ) )  

Then, one considers the mgu (if any) of each constraint appearing in the completion. 
Thus, by abstracting in Pos these mgu's (if unification fails we abstract to false),  we 
get the following recursive definition for the Boolean function p : 

p(x, y ) = (x +-* y )  V x V n e ( y  A p(x , z  ) A p(  true, x ), {x,y}) 

= (y  ~ x )  V n e ( y  A p (x , z )  A p(true, x), {x,y}) 

Using Kleene iteration starting from the bottom element false, we get the following 
sequence: 

p°(x, y )  = false 

pl(x,  y )  = ( y  ~ x)  V false = y -~ x 

p2(x, y )  = ( y  --* x )  V 3z.(y A (z ---* x )  A (x ~ true)) 

= (y  --* x)  V y = true (least fixpoint) 

Thus, an analyzer performing the analysis of P with the domain Pos yields the top 
propositional formula true. This means that we get no ground-dependency information. 
Notice that this lack of ground-dependency information for P is due to the fact that 
the two logical disjunctions (x ~ y)  V x and (y - ,  x) V y are not disjunctions in the 
concrete sense, namely they do not faithfully model the union of the corresponding 
sets of substitutions. In contrast, by using the powerset abstract domain P(Pos) ,  the 
analyzer is able to mimic in a precise way the union of sets of substitutions by using 
the lub of P(Pos) .  In fact, for P(Pos )  and using its abstract operations that we defined 
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above, we get the following recursive definition for p(x, y )  E P(Pos )  : 

p ( x , y )  = [x ~-~ y] U [x] U n~p([y] R p(x , z )  19 p(true,  x), {x,y})  

= [{x ~ y ,x}]  tA n~([y] R p(x , z )  19 p(true, x),  {x, y})  

In this case, starting from the bottom element [false] of  P(Pos) ,  the Kleene iteration 

is as follows. 

p°(x, y )  = [false] 

pl (x ,  y )  = [x ~ y ,x]  U n~e([false], {x,y})  = [x ~ y,x] 

pZ(x ,y )  = [x +-~ y,x] U [3z.y A (x ~ z)  A (true ~ x ) ,3z . y  A (x +-~ z)  A true, 

3z.y A x A (true ~ x), 3~.y A x A true] 

= [ x  ~ y,x ,  x A y ,  y, x A y ,  x A y ]  

= [x ~--~ y , x , y ]  

p3(x, y )  = [x ~ y,x] U [3z.y A (x ~ z)  A (true ~ x), 3z.y /x (x ~ z ) / x  true, 

3z.y A (x ~ z)  A x, 3z.y A x A (true ~ x), 3z.y A x A true, 

3z.y A x A x, 3~.y A z A (true ~ x), 3z.y A z/~ true, 3z.y A z A x] 

= Ix ~ y , x , x  A y , y , x  A y, x A  y, x A  y, x A  y , x  A y , y ,  x A  y] 

= [x ~-+ y , x , y ]  (least fixpoint) 

Thus, using P(Pos)  we are able to infer that in each computed answer substitution for 
the predicate p, either its first argument is ground or its second argument is ground or 

they are equivalent (namely, they are bound to the same variables). [] 

In the previous example, we can observe that abstracting in Pos the abstract seman- 
tics of  the program P obtained for P(Pos) ,  we get exactly the abstract semantics of  

P for Pos. In fact, the logical disjunction of  the formulae in Ix ~ y , x , y ]  coincides 
with true. In other terms, this means that there is completeness between the abstract 

semantics for POS and P(POS) .  It turns out that this relationship of  completeness al- 
ways holds, whenever the abstract semantics is the standard bottom-up abstraction (cf. 
[3, 5, 32]) o f  the denotational s-semantics. Let us introduce the following notation: For 

any logic program P, I[P]]D denotes the abstract bottom-up s-semantics of  P instantiated 
to the abstract domain D (and corresponding abstract operations). 

Proposition 5.12. For any program P, [[P]eos = V[[P]]e(Pos) .  

Proofi We do not consider the details o f  a particular definition of  an abstract bottom- 
up semantics, but we reason on their general pattern of  definition. W.l.o.g., we can 
suppose that for an abstract interpretation ~ = (D, AD, VD, riD) abstracting LP, for any 
program P, [[P]ID = lfp(TpD), where T D : D ~ D is the approximation of  the immediate 

consequence operator o f  s-semantics induced by ~ on D (cf. [3, 5]). Every step of  T D 
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typically consists of applying a (finite) number of the abstract operations of 9 .  Thus, 
the completeness result of Proposition 5.10 implies that T f  °s is complete for 7"P<P°s) * p  

(w.r.t. the usual G.i. (2f .[ f] ,Pos,  P(Pos),2[S].V S). As recalled in Section 2.2, it is 
well-known that if f a  is complete for f then a( l fp( f ) )  = lfp(fa). Hence, we get the 
thesis, namely [[P]]pos = V[P]p(pos). [] 

We can draw the following consequence of the above result: Using P(POS) in- 
stead of POS for analysing logic programs, one cannot gain plain ground-dependency 
Pos-information, but possibly only disjunctive ground-dependency information, i.e. the 
information represented precisely by the new elements of P(Pos) and that the base 
abstract domain Pos is not able to represent with no loss of precision. 

Although the above results set a limit to what can be achieved by using the powerset 
abstract domain P(Pos), it is worthwhile to remark that, in general, it is not possible 
to recover ~P]]p(pos) from [~P]]Pos. For instance, if for some P the analyzer yields 
the answer liP]leone. = true, for P(Pos) we could have the answers [[P]p(eos~ = [x,y, 
x +-+ y], [z,z --+ y],[w --+ x,x --+ w], etc., namely the corresponding analysis of P with 
P(Pos) might well be strictly more precise. 

6. Conclusion 

This paper proposed a general study of the powerset refinement operator on abstract 
interpretations. This operator, given an abstract interpretation ~ = (D, ol . . . . .  ok), pro- 
duces a new full abstract interpretation P ( 9 )  = (P(D), o~,..., o~), i.e., it defines both a 
new refined powerset domain P(D) which is able to represent in the best possible way 
the concrete disjunction, and new conveniently defined abstract operations o* for it. 
We have given conditions guaranteeing the correctness of P (~ ) ,  and we have studied 
the relationship, as far as precision is concerned, between ~ and P (9 ) .  The general 
theory is applied to the well-known abstract interpretation POS (whose abstract do- 
main Pos consists of certain propositional formulae) for ground-dependency analysis 
of logic languages. We obtained a strict improvement by lifting POS to its powerset 
P(POS). This is somehow an unexpected result, since the abstract domain Pos is al- 
ready closed by logical disjunction of formulae. We have also characterized precisely 
the relationship between the abstract semantics using POS and P(POS), by showing 
the existence of a form of completeness between them. 

We have not addressed the complexity issue of the powerset operator, since our 
main aim was to study the powerset operator from a theoretical perspective, consid- 
ering those aspects related to the precision. It is clear that a static program analysis 
based on a powerset abstract interpretation P ( ~ )  will be more costly than one based 
on 9 ,  being, in general, the size of the powerset domain P(D) exponential with respect 
to the size of D. It could be interesting to study practically the trade-off between the 
loss in efficiency and the gain in precision for some specific abstract interpretations. 
However, it is worth mentioning that abstract interpretation does not apply only to 
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program analysis, but it is also useful in many other fields. For  instance, abstract inter- 

pretation is a valuable tool in comparative semantics, i.e. for studying the relationship 

occurring between semantics of  programming languages at different levels o f  abstrac- 

tion (cf. [11, 12, 16]). In this context, where obviously complexi ty issues are much less 

important, we believe that the powerset operator can be successfully applied in order 

to systematically derive many well-known collecting semantics by powerset  o f  some 

base semantics. This might be particularly useful in order to simplify their semantic 

definitions, given that the results o f  [24] allow to characterize the optimal (i.e. the 

simplest)  base semantics. A similar application for logic program semantics has been 

given in [23], where complementation [7], i.e. the inverse operation to reduced product, 

has been exploited in order to systematically derive new semantic definitions. 
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