
OOP PRINCIPLES REVISITED
INGEGNERIA DEL SOFTWARE
Università degli Studi di Padova
Dipartimento di Matematica

Corso di Laurea in Informatica

rcardin@math.unipd.it

Ingegneria del software

WHAT IS IT?

¢ What is an object? And a class?
� Very easy to misunderstand

¢ Three core principles
� Encapsulation (information hiding)

� Inheritance

� Polymorphism

2Riccardo Cardin

Object-oriented programming (OOP) is a programming paradigm
based on the concept of "objects", which may contain data, in the
form of fields; and code, in the form of procedures. A feature of
objects is that an object's procedures can access and often modify the
data fields of the object with which they are associated

Ingegneria del software

WHAT IS IT?

¢ The real problem is the definition of objects
� Messages (methods) and not data

� Through the three principles, we can regain the
correct definition of objects and classes

¢ Based on extrinsic behaviour
� Naive objects hierachies are evil

3Riccardo Cardin

[..] it is not even about classes. I’m sorry that I long ago coined the
term “objects” for this topic because it gets many people to focus on
the lesser idea. The big idea is “messaging” [..]

Alan Kay

Ingegneria del software

PROCEDURAL PROGRAMMING

¢ Building block is represented by the procedure
� Can have side effects

¢ Data is primitive or structured in records

¢ No connection between data and procedures

4Riccardo Cardin

struct Rectangle {
double height;
double width;

};

double area(Rectangle r){
// Code that computes the area of a rectangle

}
void scale(Rectangle r, double factor){

// Code that changes the rectangle r directly
}

Ingegneria del software

PROCEDURAL PROGRAMMING

¢ Procedures need the struct as input
� Very verbose, hard to maintain, a lot of parameters

¢ Lack of information hiding
� No restriction, no authorization process

� Testing is a hell

5Riccardo Cardin

List<Double> scale(double height, double width, double factor)

Rectangle r = new Rectangle(2.0, 4.0);
r.height = 6.0
printf(area(r)); // we espect 8.0, but a 24.0 is returned

Ingegneria del software

OBJECT-ORIENTED PROGRAMMING

¢ Binding data with behaviours

� The internal state is hidden from the outside

6Riccardo Cardin

The aim of Object-oriented programming is not modeling reality
using abstract representations of its component, accidentally called
"objects". OOP aims to organize behaviors and data together in
structures, minimizing dependencies among them.

interface Shape {
double area();
Shape scale(double factor);

}
class Rectangle implements Shape {

private double height;
private double width;
/* Definition of functions declared in Shape interface */

}

Ingegneria del software

INFORMATION HIDING

¢ How to build a type using information hiding?
1. Find procedures sharing the same inputs

2. Get the minimum set of common inputs
¢ Avoid tighly coupling

3. Create a structure using those inputs
¢ Nope! Data is accessible from everywhere :(

4. Bind the structure with procedures, forming a type

¢ Clients must depend only on behaviour
� Hide data behind a private scope

¢ Use interfaces to hide implementations
7Riccardo Cardin Ingegneria del software

INFORMATION HIDING

¢ Let’s look at an example...

8Riccardo Cardin

Ingegneria del software

INHERITANCE

¢ Class (implementation)
� Internal state and method implementation

¢ Type
� The set of requests to which it can respond

¢ Class inheritance (code reuse)
� Reuse of object’s implementation

¢ Interface inheritance (subtyping)
� Reuse of object’s behaviour

9Riccardo Cardin

Inheritance is a language feature that allows new objects to be
defined from existing ones.

Ingegneria del software

INHERITANCE

¢ Code reuse example

10Riccardo Cardin

class AlgorithmThatReadFromCsvAndWriteOnMongo(filePath: String,
mongoUri: String) {

def read(): List[String] = { /* ... */ }
def write(lines: List[String]): Unit = { /* ... */ }

}
class AlgorithmThatReadFromKafkaAndWriteOnMongo(broker: String,

topic: String,
mongoUri: String)

extends AlgorithmThatReadFromCsvAndWriteOnMongo(null, mongoUri) {
def read(): List[String] = { /* ... */ }

}
class AlgorithmThatReadFromKafkaAndWriteOnMongoAndLogs(brk: String,

topic: String,
mongoUri: String,
logFile: String)

extends AlgorithmThatReadFromKafkaAndWriteOnMongo(broker, topic,
mongoUri) {

def write(lines: List[String]): Unit = { /* ... */ }
}

Ingegneria del software

INHERITANCE

¢ The banana, monkey, jungle problem

� Using a class adds a strong dependency also to
parent classes

¢ Tight coupling
¢ One class, one responsibility

� Single Responsibility Principle

� Inheritance only from abstract types

11Riccardo Cardin

The problem with object-oriented languages is they’ve got all this
implicit environment that they carry around with them. You wanted
a banana but what you got was a gorilla holding the banana and the
entire jungle.

Joe Armstrong

Ingegneria del software

INHERITANCE AND ENCAPSULATION

¢ Does class Inheritance break encapsulation?
� Classes expose two different interfaces

¢ Subclasses can access internal state of base classes
¢ Public and protected

¢ More and more clients for a class!!!
� Increasing of the dependency degree of a class

� The higher the dependency, the higher the coupling

¢ So, try to avoid class inheritance

12Riccardo Cardin

Ingegneria del software

SUBTYPING

¢ Inherit only from interfaces and abstract classes
� Do not override methods

� Do not hide operation of a parent class

¢ Loose coupling
� Clients remain unaware of the specific type

� Polymorphism depends on subtyping

13Riccardo Cardin

Class inheritance defines an object’s implementation in terms of
another object’s implementation. In short, it’s a mechanism for code
and representation sharing. In contrast, interface inheritance (or
subtyping) describes when an object can be used in place of another.

Ingegneria del software

COMPOSITION OVER INHERITANCE

¢ Black box reuse
� Assembling functionalities into new features

� No internal details

14Riccardo Cardin

trait Reader {
def read(): List[String]

}
trait Writer {
def write(lines: List[String]): Unit

}
class CsvReader(filePath: String) extends Reader { /* ... */ }
class MongoWriter(mongoUri: String) extends Writer { /* ... */ }

class Migrator(reader: Reader, writers: List[Writer]) {
val lines = reader.read()
writers.foreach(_.write(lines))

}

Ingegneria del software

WHEN TO USE CLASS INHERITANCE

¢ Do not override pre- and post-condition of base
class
� Preconditions must be weaker, post conditions must

be stronger than in the base class.

¢ Design by contract
� Avoid redefinition of extrinsic public behaviour

15Riccardo Cardin

Functions that use pointers or references to base classes must be able
to use objects of derived classes without knowing it.

Liskov Substitution Principle

Ingegneria del software

CONCLUSIONS

¢ Define classes in terms of messages
¢ Never depend upon internal state
¢ Do not use class inheritance
¢ Favor composition over inheritance
¢ Design by contract
¢ ...

¢ Using inheritance and information hiding we
built a procedure to define types in OOP

16Riccardo Cardin

Ingegneria del software

REFERENCES

¢ The Secret Life of Objects: Information Hiding
http://rcardin.github.io/design/programming/o
op/fp/2018/06/13/the-secret-life-of-
objects.html

¢ The Secret Life of Objects: Inheritance
http://rcardin.github.io/design/programming/o
op/fp/2018/07/27/the-secret-life-of-objects-
part-2.html

17Riccardo Cardin Ingegneria del software

GITHUB REPOSITORY

18Riccardo Cardin

https://github.com/rcardin/swe

