WHAT IS IT?

Object-oriented programming (OOP) is a programming paradigm
based on the concept of "objects”, which may contain data, in the
form of fields; and code, in the form of procedures. A feature of
objects is that an object's procedures can access and often modify the
data fields of the object with which they are associated

o What is an object? And a class?
¢ Very easy to misunderstand

LES REVISITED

OFTWARE o Three core principles
e Encapsulation (information hiding)

a
formatica ¢ Inheritance

¢ Polymorphism
rcardin@math.unipd.it

Ingegneria del software Riccardo Cardin
WHAT IS IT? PROCEDURAL PROGRAMMING
o The real problem is the definition of objects o Building block is represented by the procedure
e Messages (methods) and not data e Can have side effects
[..] it is not even about classes. I'm sorry that I long ago coined the o Data is primitive or structured in records

term “objects” for this topic because it gets many people to focus on

o o o .« o o5 t t 1
the lesser idea. The big idea is “messaging”|[..] struct Rectangle {

double height;
Alan Kay double width;
}i

e Through the three principles, we can regain the ]
correct definition of objects and classes o No connection between data and procedures

double area (Rectangle r) {

. . . // Code that computes the area of a rectangle
o Based on extrinsic behaviour )

void scale (Rectangle r, double factor) {

° Naive Objects hierachies are eViI ) // Code that changes the rectangle r directly

Ingegneria del software Riccardo Cardin 3 Ingegneria del software Riccardo Cardin



PROCEDURAL PROGRAMMING

o Procedures need the struct as input
¢ Very verbose, hard to maintain, a lot of parameters

’List<Double> scale (double height, double width, double factor)

o Lack of information hiding
¢ No restriction, no authorization process
e Testing is a hell

Rectangle r = new Rectangle (2.0, 4.0);
r.height = 6.0
printf (area(r)); // we espect 8.0, but a 24.0 is returned

Ingegneria del software Riccardo Cardin

INFORMATION HIDING

OBJECT-ORIENTED PROGRAMMING

o Binding data with behaviours

The aim of Object-oriented programming is not modeling reality
using abstract representations of its component, accidentally called
"objects”. OOP aims to organize behaviors and data together in
structures, minimizing dependencies among them.

¢ The internal state is hidden from the outside

interface Shape {
double area();
Shape scale (double factor);
}
class Rectangle implements Shape {
private double height;
private double width;
/* Definition of functions declared in Shape interface */

o How to build a type using information hiding?
1. Find procedures sharing the same inputs
2. Get the minimum set of common inputs
o Avoid tighly coupling
3. Create a structure using those inputs
o Nope! Data is accessible from everywhere :(

4. Bind the structure with procedures, forminga,type

o Clients must depend only on behaviour
¢ Hide data behind a private scope

o Use interfaces to hide implementations

Ingegneria del software Riccardo Cardin

Ingegneria del software Riccardo Cardin

INFORMATION HIDING

o Let’s look at an example...

Ingegneria del software Riccardo Cardin



INHERITANCE

o Class (implementation)

¢ Internal state and method implementation
o Type

¢ The set of requests to which it can respond

Inheritance is a language feature that allows new objects to be
defined from existing ones.

o Class inheritance (code reuse)
¢ Reuse of object’s implementation
o Interface inheritance (subtyping)
e Reuse of object’s behaviour

Ingegneria del software Riccardo Cardin

INHERITANCE

INHERITANCE

o Code reuse example

class AlgorithmThatReadFromCsvAndWriteOnMongo (filePath: String,
mongoUri: String) {
def read(): List[String] = ! L
def write(lines: List[String]): Unit = {
}
class AlgorithmThatReadFromKafkaAndWriteOnMongo (broker: String,
topic: String,
mongoUri: String)
extends AlgorithmThatReadFromCsvAndWriteOnMongo (null, mongoUri) {
def read(): List([String] = | X

class AlgorithmThatReadFromKafkaAndWriteOnMongoAndLogs (brk: String,
topic: String,
mongoUri: String,
logFile: String)
extends AlgorithmThatReadFromKafkaAndWriteOnMongo (broker, topic,
mongoUri) {
def write(lines: List[String]): Unit = *
}

o The banana, monkey, jungle problem

The problem with object-oriented languages is theyve got all this

implicit environment that they carry around with them. You wanted
a banana but what you got was a gorilla holding the banana and the

entire jungle.
Joe Armstrong

¢ Using a class adds a strong dependency also’to
parent classes

o Tight coupling
o0 One class, one responsibility
¢ Single Responsibility Principle
¢ Inheritance only from abstract types

Ingegneria del software Riccardo Cardin

Ingegneria del software Riccardo Cardin

INHERITANCE AND ENCAPSULATION

10

o Does class Inheritance break encapsulation?
¢ Classes expose two different interfaces

o Subclasses can access internal state of base classes

o Public and protected

o More and more clients for a class!!!
¢ Increasing of the dependency degree of a class
e The higher the dependency, the higher'the coupling

0 So, try to avoid class inheritance

Ingegneria del software Riccardo Cardin

12



SUBTYPING

Class inheritance defines an object’s implementation in terms of
another object’s implementation. In short, it’s a mechanism for code
and representation sharing. In contrast, interface inheritance (or
subtyping) describes when an object can be used in place of another.

o Inherit only from interfaces and abstract classes
¢ Do not override methods
¢ Do not hide operation of a parent class

o Loose coupling
¢ Clients remain unaware of the specifictype
¢ Polymorphism depends on subtyping

Ingegneria del software Riccardo Cardin 13

WHEN TO USE CLASS INHERITANCE

COMPOSITION OVER INHERITANCE

o Black box reuse
¢ Assembling functionalities into new features
¢ No internal details

trait Reader {
def read(): List[String]
}
trait Writer {
def write(lines: List[String]): Unit
}
class CsvReader (filePath: String) extends Reader { B }
class MongoWriter (mongoUri: String) extends Writer { A }

class Migrator (reader: Reader, writers: List[Writer]) ({
val lines = reader.read()
writers.foreach(_.write(lines))

}

Functions that use pointers or references to base classes must be able

to use objects of derived classes without knowing it.
Liskov Substitution Principle

o Do not override pre- and post-condition of base
class

¢ Preconditions must be weaker, post conditions must
be stronger than in the base class.

o Design by contract
¢ Avoid redefinition of extrinsic public behaviour

Ingegneria del software Riccardo Cardin 15

Ingegneria del software Riccardo Cardin 14

CONCLUSIONS

o Define classes in terms of messages
o Never depend upon internal state
o Do not use class inheritance

o Favor composition over inheritance
o Design by contract

o..

o Using inheritance and information hiding we
built a procedure to define types/in-O0OP

Ingegneria del software Riccardo Cardin 16



REFERENCES GITHUB REPOSITORY

o The Secret Life of Objects: Information Hiding
http://rcardin.github.io/design/programming/o
op/fp/2018/06/13/the-secret-life-of-
objects.html

o The Secret Life of Objects: Inheritance

http://rcardin.github.io/design/programnding/o https://github.com/rcardin/swe
op/fp/2018/07/27/the-secret-life-of-Objects-

part-2.html

Ingegneria del software Riccardo Cardin 17 Ingegneria del software Riccardo Cardin



