
SOLID PRINCIPLES
INGEGNERIA DEL SOFTWARE
Università degli Studi di Padova
Dipartimento di Matematica

Corso di Laurea in Informatica

rcardin@math.unipd.it

Ingegneria del software

SUMMARY

¢ Introduction

¢ Single Responsibility Principle

¢ Open-Close Principle

¢ Liskov Substitution Principle

¢ Interface Segregation Principle

¢ Dependency Inversion Principle

2Riccardo Cardin

Ingegneria del software

INTRODUCTION

¢ Structured programming and Object-oriented
programming
� Two of the most important revolution of IT industry

¢ Everyone uses OO languages, but...
� Today's programmers are unaware of the principles

that are the foundation of Object Orientation

¢ Dependency management
� The art of making code flexible, robust, and reusable

¢ It’s too easy to get a bunch of tangled legacy code
� SOLID principles

¢ A set of class design principles that helps to manage
dependency

3Riccardo Cardin Ingegneria del software

INTRODUCTION

¢ SOLID principles
� Single Responsibility Principle

¢ A class should have one, and only one, reason to change

� Open Closed Principle
¢ You should be able to extend a classes behavior, without

modifying it

� Liskov Substitution Principle
¢ Derived classes must be substitutable for their base classes

� Interface Segregation Principle
¢ Make fine grained interfaces that are client specific

� Dependency Inversion Principle
¢ Depend on abstractions, not on concretions

4Riccardo Cardin

Ingegneria del software

SINGLE RESPONSIBILITY PRINCIPLE

¢ Also known as cohesion
� Functional relatedness of the elements of a module
� A module should have only one reason to change

¢ We call this reason of change responsibility

¢ Coupled responsibilities
� Changes to one responsibility may impair or inhibit

the class’ ability to meet the others
� Fragile design that break in unexpected ways

¢ Recompilation, test, deploy, …

5Riccardo Cardin Ingegneria del software

SINGLE RESPONSIBILITY PRINCIPLE

6Riccardo Cardin

Uses Rectangle to help it with the
mathematics of geometric shapes. It
never draws the rectangle on the
screen

It definitely draws the
rectangle on the screen.

The Rectangle class has two
responsibilities.
• Provides a mathematical

model
• Renders the rectangle on

a GUI

Ingegneria del software

SINGLE RESPONSIBILITY PRINCIPLE

7Riccardo Cardin

Responsibilities are
separeted into two
completely different classes

Renders the rectangle on a
GUI

Provides a mathematical
model

Ingegneria del software

SINGLE RESPONSIBILITY PRINCIPLE

¢ What is really a responsibility?
� An axis of change is only an axis of change if the

changes actually occur
� The context of the application is also important

¢ Needless complexity

¢ Should these two responsibilities be separated?
¢ That depends upon how the application is changing.

8Riccardo Cardin

public interface Modem {
public void dial(String pno);
public void hangup();

public void send(char c);
public char recv();

}

Connection management

Data communication

Ingegneria del software

SINGLE RESPONSIBILITY PRINCIPLE

� Eventually separate responsibilities avoids rigidity
¢ They are still coupled in ModemImplementation, but clients

don’t need to worry about interface implementations

9Riccardo Cardin Ingegneria del software

SINGLE RESPONSIBILITY PRINCIPLE

10Riccardo Cardin

Ingegneria del software

OPEN-CLOSE PRINCIPLE

¢ There are many heuristics in OOD

� Software entities should be open for extension, but
closed for modification
¢ You extend behaviour adding new code, not changing the old

� The Open-Close Principle underlines these heuristics

¢ Abstraction is the key
� Abstract types are the fixed part, derivate classes

points of extension
11Riccardo Cardin

“All member variables should be private”, “Global variables
should be avoided”, “Using run time type identification (RTTI)
is dangerous”

Ingegneria del software

OPEN-CLOSE PRINCIPLE

12Riccardo Cardin

Client class
must be changed
to name the new

server class.

If we want Client
objects to use a
different server

class, then a new
derivative of the
AbstractServer

class can be
created.

The Client class
can remain
unchanged.

O
C
P

Ingegneria del software

OPEN-CLOSE PRINCIPLE

13Riccardo Cardin

public static void drawAll(Shape[] shapes) {
for (Shape shape : shapes) {

switch (shape.shapeType) {
case Square:

((Square) shape).drawSquare();
break;

case Circle:
((Circle) shape).drawCircle();
break;

}
}

}

Does not conform to the open-
closed principle because it
cannot be closed against new
kinds of shapes. If I wanted to
extend this function, I would
have to modify the function

Ingegneria del software

OPEN-CLOSE PRINCIPLE

¢ Programs conforming to OCP do not experience
«cascade of changes»
� Changes are obtained adding new code

14Riccardo Cardin

public static void drawAll(Shape[] shapes) {
for (Shape shape : shapes) {

shape.draw();
}

}

Solution that conforms to open-
close principle. To extend the
behavior of the drawAll to draw
a new kind of shape, all we need
do is add a new derivative of the
Shape class.

Ingegneria del software

OPEN-CLOSE PRINCIPLE

¢ No program can be 100% closed
� Closure must be strategic

¢ Closure can be gained through abstraction
� Using interfaces and polimorphim

¢ The draw abstract method in the Shape class

¢ ...or can be gained in a «data-driven» fashion
� Sometimes using information configured in external

structure can be the only solution
¢ What if we want to draw shapes in a specific order that

depends from type!?

15Riccardo Cardin Ingegneria del software

OPEN-CLOSE PRINCIPLE

16Riccardo Cardin

Ingegneria del software

OPEN-CLOSE PRINCIPLE

¢ Conventions and heuristics derived from OCP
� Make all member variables private

¢ When the member variables of a class change, every function
that depends upon them must be changed
¢ Encapsulation

� No global variables (ever)
¢ No module that depends upon a global variable can be closed

against any other module that might write to that variable
¢ There are very few cases that can disobey (i.e. cin, cout)

� RTTI is dangerous
¢ The Shape example shows the bad way to use RTTI
¢ But there are also good cases…

17Riccardo Cardin Ingegneria del software

LISKOV SUBSTITUTION PRINCIPLE

¢ Abstraction and polymorphism
� At the basis of OOD and OCP

¢ What are the characteristics of the best inheritance
hierarchies? What are the traps?

¢ Liskov Substitution Principle

¢ It a special case of the real LSP ;)

� Violating this principle means violating OCP
¢ Function that uses a pointer or reference to a base class, but

must know about all the derivatives of that base class.

18Riccardo Cardin

Functions that use pointers or references to base classes must
be able to use objects of derived classes without knowing it.

Ingegneria del software

LISKOV SUBSTITUTION PRINCIPLE

19Riccardo Cardin

A Square does not need both
height and width member
variables. Yet it will inherit them
anyway. Clearly this is wasteful.

Square will inherit the setWidth
and setHeight functions. These
functions are utterly inappropriate
for a Square.
But, we could override them...

public void setWidth(double width) {
super.setWidth(width);
super.setHeight(width);

}
public void setHeight(double height) {

this.setWidth(height);
}

Ingegneria del software

LISKOV SUBSTITUTION PRINCIPLE

¢ A model, viewed in isolation, can not be
meaningfully validated
� The validity of a model can only be expressed in

terms of its clients

20Riccardo Cardin

public void f(Rectangle r) {
r.setWidth(42);

}
@Test
public void testF() {

Rectangle r = new Square();
r.setHeight(15);
f(r);
// This test will not pass!!!
assertEquals(15, r.getHeight());

}

If we pass a reference to a
Square object into this
function, and the height will
be changed too.

This is a clear violation of
LSP. The f function does not
work for derivatives of its
arguments.

Ingegneria del software

LISKOV SUBSTITUTION PRINCIPLE

21Riccardo Cardin Ingegneria del software

LISKOV SUBSTITUTION PRINCIPLE

¢ What went wrong?
� What counts is extrinsic public behavior

¢ Behavior that clients depend upon
¢ The relation between Square and Rectangle is not a IS-A

relation in OOD

¢ Design by contract

� Methods of classes declare preconditions and
postconditions (invariants)

22Riccardo Cardin

...when redefining a routine [in a derivative], you may only replace its
precondition by a weaker one, and its postcondition by a stronger one.

// Rectangle.setWidth(double w) postconditions
assert((width == w) && (height == old.height));

Ingegneria del software

LISKOV SUBSTITUTION PRINCIPLE

¢ Design by contract
� In a derivate class preconditions must not be stronger

than in the base class
¢ Using base class interface a client knows only base class

preconditions

� In a derivate class postconditions must be stronger
than in the base class
¢ Derived class must conform to all base class prostcondition.

The behaviors and outputs must not violate any of the
constraints established for the base class

� Java and JVM base languages have assert primitive.
C++ does not have anything such this

23Riccardo Cardin Ingegneria del software

INTERFACE SEGREGATION PRINCIPLE

¢ Reducing coupling means to depend upon
interfaces, not implementations
� The risk is to depend upon a «fat» or «polluted»

interfaces
� Fat interfaces are not cohesive

¢ Methods can be broken up into groups of functions
¢ Clients must view only the part they are interested to

¢ Interface Segregation Principle

24Riccardo Cardin

Clients should not be forced to depend upon interfaces that they do
not use

Ingegneria del software

INTERFACE SEGREGATION PRINCIPLE

25Riccardo Cardin

In this system there are Door objects that
can be locked and unlocked, and which know
whether they are open or closed.

Clients used this interface to managed doors.

Now consider that one such
implementation. TimedDoor
needs to sound an alarm when
the door has been left open for too long.
In order to do this the TimedDoor object
communicates with another object called a Timer.

TimeClient method represents the function called
when the timeout expires

Ingegneria del software

INTERFACE SEGREGATION PRINCIPLE

¢ First solution

26Riccardo Cardin

The Door class now depends upon
TimerClient. Not all varieties of Door need
timing. Moreover, the applications that use
those derivatives will have to import the
definition of the TimerClient class, even
though it is not used.

The interface of Door has been polluted with
an interface that it does not require. Each time
a new interface is added to the base class, that
interface must be implemented in derived
classes.

Default implementations violate the
Liskov Substitution Principle (LSP)

Ingegneria del software

INTERFACE SEGREGATION PRINCIPLE

27Riccardo Cardin Ingegneria del software

INTERFACE SEGREGATION PRINCIPLE

¢ Clients of Door and TimerClient are different
� The interfaces should remain separate too
� Sometimes it is the client that forces a change to an

interface

� Also the Door interface have to be changed
¢ Clients that does not need timer doors will also be affected

� The result is a inadvertent coupling between all the
clients

28Riccardo Cardin

public class Timer {
void register(int timeout, int timeOutId, TimerClient client);

}
public interface TimerClient {

// A change to Timer implies a change to TimerClient
void timeOut(int timeOudId);

}

Ingegneria del software

INTERFACE SEGREGATION PRINCIPLE

¢ Separation by delegation
� Object form of the Adapter design pattern

¢ DoorTimerAdapter translates a Door into a TimerClient

� Clients of Door and TimerClient are not coupled
anymore

29Riccardo Cardin Ingegneria del software

INTERFACE SEGREGATION PRINCIPLE

¢ Separation through multiple inheritance
� Class form of the Adapter design pattern

� Client can use the same object through different and
separate interfaces
¢ Possible only when multiple inheritance is supported
¢ Less types used wrt the solution that uses delegation

30Riccardo Cardin

Ingegneria del software

DEPENDENCY INVERSION PRINCIPLE

¢ Bad design often derives from degradation due to
new requirement and maintanance
� Rigidity – hard to change because every change affects

to many part of the system
� Fragility – when you make a change, unexpected parts

of the system break
� Immobility – It is hard to reuse in another application

because it cannot be easily disentangled
� TNTWIWHDI – That’s not the way I would have done it

¢ Interdependence of the modules

31Riccardo Cardin Ingegneria del software

DEPENDENCY INVERSION PRINCIPLE

32Riccardo Cardin

Consider a simple program
that is charged with the task of
copying characters typed on a
keyboard to a printer.
“Read keyboard” and “Write
printer” are quite reusable.
However the “Copy” module is
not reusable in any context that
does not involve keyboard and
printer

public void copy(OutputDevice dev) {
int c;
while ((c = readKeyboard()) != EOF)

if (dev == PRINTER)
writePrinter(c);

else
writeDisk(c);

}

Violates
OCP

Ingegneria del software

DEPENDENCY INVERSION PRINCIPLE

¢ Module containing high level policy should be
independent upon low level details modules

¢ We have use abstraction to limit dependency
33Riccardo Cardin

We have performed dependency
inversion. The dependencies
have been inverted; the “Copy”
class depends upon abstractions,
and the detailed readers and
writers depend upon the same
abstractions.
Now we can reuse the “Copy”
class, independently of the
“Keyboard Reader” and the
“Printer Writer”.

Ingegneria del software

DEPENDENCY INVERSION PRINCIPLE

¢ Dependency Inversion Principle

� Important policy decisions are in high level modules
¢ It’s these modules we want to be able to reuse

� Template method design pattern
� In layered application, each layer should expose a

proper level of abstraction (interface)
¢ A naive implementation can force wrong dependency among

modules

34Riccardo Cardin

High level modules should not depend upon low level modules. Both
should depend upon abstractions.
Abstractions should not depend upon details. Details should depend
upon abstractions.

Ingegneria del software

DEPENDENCY INVERSION PRINCIPLE

35Riccardo Cardin

The high level policy class uses a
lower level Mechanism; which in
turn uses a detailed level utility
class. The Policy Layer is
sensitive to changes all the way
down in the Utility Layer.

Each of the lower level layers are
represented by an abstract class.
Each of the higher level classes
uses the next lowest layer
through the abstract interface.
Thus, none of the layers depends
upon any of the other layers.

Ingegneria del software

DEPENDENCY INVERSION PRINCIPLE

36Riccardo Cardin

Ingegneria del software

REFERENCES
¢ The Principles of OOD

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
¢ Chap. 8 “The Single-Responsibility Principle (SRP)”, Agile Principles,

Patterns, and Practices in C#, Robert C. Martin, 2006, Prentice Hall
¢ Chap. 9 “The Open/Closed Principle (OCP)”, Agile Principles,

Patterns, and Practices in C#, Robert C. Martin, 2006, Prentice Hall
¢ Chap. 10 “The Liskov Substitution Principle (LSP)”, Agile Principles,

Patterns, and Practices in C#, Robert C. Martin, 2006, Prentice Hall
¢ Chap. 11 “The Dependency-Inversion Principle (DIP)”, Agile

Principles, Patterns, and Practices in C#, Robert C. Martin, 2006,
Prentice Hall

¢ Chap. 12 “The Interface Segregation Principle (ISP)”, Agile
Principles, Patterns, and Practices in C#, Robert C. Martin, 2006,
Prentice Hall

37Riccardo Cardin Ingegneria del software

REFERENCES
¢ Single-Responsibility Principle done right

http://blog.rcard.in/solid/srp/programming/2017/12/31/srp-done-
right.html

¢ The Secret Life of Objects: Inheritance
http://blog.rcard.in/design/programming/oop/fp/2018/07/27/the-
secret-life-of-objects-part-2.html

38Riccardo Cardin

Ingegneria del software

GITHUB REPOSITORY

39Riccardo Cardin

https://github.com/rcardin/swe

