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a b s t r a c t

Finding a feasible solution to aMIP problem is a tough task that has receivedmuch attention
in the last decades. The Feasibility Pump (FP) is a heuristic for finding feasible solutions
to MIP problems that has encountered a lot of success as it is very efficient also when
dealing with very difficult instances. In this work, we show that the FP heuristic for general
MIP problems can be seen as the Frank–Wolfe method applied to a concave nonsmooth
problem. Starting from this equivalence, we propose concave non-differentiable penalty
functions for measuring solution integrality that can be integrated in the FP approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Finding a first feasible solution quickly is crucial for solving Mixed Integer Programming (MIP) problems as many local-
search approaches can be used only if a feasible solution is available (see e.g. [11,16]).

Several heuristic methods for finding a first feasible solution for a MIP problem have been proposed in the literature (see
e.g. [4,14,18–23]). In particular, the Feasibility Pump [15] is considered one of the most efficient heuristics available.

The Feasibility Pump approach generates two sequences of points {x̄k} and {x̃k} such that x̄k is LP-feasible, but may not be
integer feasible, and x̃k is integer, but not necessarily LP-feasible. To be more specific the algorithm starts with a solution of
the LP relaxation x̄0 and sets x̃0 equal to the rounding of x̄0. Then, at each iteration x̄k+1 is chosen as the nearest LP-feasible
point in the ℓ1-norm to x̃k, and x̃k+1 is obtained as the rounding of x̄k+1. The idea of the algorithm is to reduce at each iteration
the distance between the points of the two sequences, until the two points are the same and an integer feasible solution
is found. Unfortunately, it can happen that the distance between x̄k+1 and x̃k is greater than zero and x̃k+1

= x̃k, and the
strategy can stall. In order to overcome this drawback, random perturbations and restart procedures are performed.

Various papers devoted to further improvements of the Feasibility Pump have been developed. In [5], the authors ex-
tended the Feasibility Pump in order to handleMIP problemswith both 0–1 and integer variables and they further exploited
the FP information to drive a subsequent enumeration phase. Achterberg andBerthold [1] proposed a different distance func-
tion which takes into account the original objective function in order to improve the quality of the feasible solution found.
Some efforts have also been made to propose new rounding techniques [3,6,17]. In [3,6] the main idea is that of choosing
a rounded solution along a line segment passing through the LP-feasible solution. In [17], an exact method combining a
diving-like procedure and constraint propagation is proposed.
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For the case of 0–1 MIPs an interesting interpretation of the FP has been given by Eckstein and Nediak in [14]: they
noticed that the FP heuristic may be seen as a form of Frank–Wolfe procedure applied to a nonsmooth merit function. This
concave nonsmooth function penalizes the violation of the integrality constraints but its reduction might not correspond
to a decrease in the number of variables that violate integrality. Starting from this interpretation in [12] the relationship
between the Feasibility Pump and the Frank–Wolfe algorithm has been exploited to define a new version of the Feasibility
Pump obtained by applying the Frank–Wolfe algorithm to a different nonsmooth concave function which penalizes the
violation of the integrality constraints and has the good property that its reduction cannot correspond to an increase in the
number of fractional variables.

In this work, we first show that the equivalence between the FP and the Frank–Wolfe algorithm still holds for the general
integer case. Then we extend the results proposed in [12] for 0–1 MIPs to general mixed integer problems. The extension
is not straightforward. In the 0–1 case, due to the fact that the integer feasible points lie on the boundary of the relaxed
feasible set, we can use a suitable class of concave penalty functions and a Frank–Wolfe based approach to find an integer
feasible solution. The first choice depends on the fact that, when minimizing a concave function over a polyhedron, the
global optima, if any, are on the boundary of the polyhedron. On the other hand, the choice of the Frank–Wolfe approach
is motivated by the fact that it is well suited for the class of problems we want to solve, since in this case the algorithm
moves from a vertex to another until it finds a stationary point. When dealing with general MIP problems, there are integer
feasible points that are in the interior of the feasible set. So, the direct extension of the approach considered in [12] would
lead to penalty functions that are not concave anymore (the functions admit globalminima in the interior of the feasible set).
This would further imply a loss in the efficiency of the Frank–Wolfe algorithm, as we should include a suitable line search
technique to guarantee the convergence of the method. In order to overcome these issues, we need to exploit the hidden
concavity of the penalty problem obtained with the approach described in [12] by considering a new equivalent concave
problem having a larger number of variables.

The paper is organized as follows. In Section 2, we give a brief review of the Feasibility Pump heuristic for general MIP
problems. In Section 3, we show the equivalence between the FP heuristic and the Frank–Wolfe algorithm applied to a
nonsmooth merit function. In Section 4, we introduce new nonsmooth merit functions for dealing with general integer
variables, and discuss their properties. We present our algorithm in Section 5, and in Section 6 we explain how it can be
integrated in the Objective Feasibility Pump [1]. In Section 7 we give a performance comparison of our algorithm with
the Objective FP showing that the merit functions proposed can improve the efficiency of the FP approach in terms of
CPU time.

In the following, given a concave function f : Rn
→ R, we denote by ∂ f (x) the set of supergradients of f at the point x,

namely

∂ f (x) = {v ∈ Rn
: f (y)− f (x) ≤ vT (y − x),∀y ∈ Rn

}.

2. The Feasibility Pump heuristic for general MIP problems

We consider a MIP problem of the form:

min cT x

s.t. Ax ≥ b

l ≤ x ≤ u

xj ∈ Z, ∀j ∈ I,

(MIP)

where A ∈ Rm×n and I ⊆ {1, 2, . . . , n} is the set of indices of the integer variables. Let P = {x : Ax ≥ b, l ≤ x ≤ u}
denote the polyhedron of the LP-relaxation of (MIP). The Feasibility Pump [5,15] starts from the solution of the LP relaxation
problem x̄0 := argmin{cT x : x ∈ P} and generates two sequences of points x̄k and x̃k: x̄k is LP-feasible, but may be
integer infeasible; x̃k is integer, but not necessarily LP-feasible. At each iteration x̄k+1

∈ P is the nearest point in ℓ1-norm
to x̃k:

x̄k+1
:= argmin

x∈P
∆(x, x̃k) (1)

where

∆(x, x̃k) =


j∈I

|xj − x̃kj |.

The point x̃k+1 is obtained as the rounding of x̄k+1. The procedure stops if at some iteration h, x̄h is integer or, in case of failing,
if it reaches a time or iteration limit. In order to avoid stalling issues and loops, the Feasibility Pump performs a perturbation
step. Here we report a brief outline of the basic scheme [5,15]:
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The Feasibility Pump (FP) for general MIPs - basic version

Initialization: Set k = 0, let x̄0 := argmin{cT x : x ∈ P}

While (not stopping condition) do

Step 1 If (x̄k is integer) return x̄k
Step 2 Compute x̃k = round(x̄k)
Step 3 If (cycle detected) perturb(x̃k)
Step 4 Compute x̄k+1

:= argmin{∆(x, x̃k) : x ∈ P}

Step 5 Update k = k + 1

End While

Now we give a better description of the rounding and the perturbing procedures used respectively at Step 2 and at Step 3
[5,15]:

Round: This function transforms a given point x̄k into an integer one, x̃k. The easiest choice is that of rounding each
component x̄kj with j ∈ I to the nearest integer, while leaving the continuous components of the solution unchanged.
Formally,

x̃kj =


[x̄kj ] = ⌊x̄kj + τ⌋ if j ∈ I
x̄kj otherwise

(2)

where τ = 0.5, and ⌊·⌋ represents the floor function (a function which maps a real number to the largest previous
integer). Another possibility is that of using a random τ like that described in [5]:

τ(ω) =


2ω(1 − ω), if ω ≤

1
2

1 − 2ω(1 − ω), otherwise
(3)

where ω is a uniform random variable in [0, 1). Using the definition (3), threshold τ can assume a value between 0 and
1, but values close to 0.5 are more likely than those close to 0 or 1.

As already mentioned in the introduction, alternative rounding techniques have been recently proposed (see [3,6,17]
for further details).
Perturb: The aim of the perturbation procedure is to avoid cycling and it consists of two heuristics. To be more specific:
– if x̃kj = x̃k+1

j for all j ∈ I a weak perturbation is performed, namely, a random number of integer constrained
components, chosen as to minimize the increase in the distance∆(x̄k+1, x̃k+1), is moved using the following rule:

x̃k+1
j =


x̃kj + 1, if x̄k+1

j > x̃kj
x̃kj − 1, if x̄k+1

j < x̃kj .
(4)

– A restart operation, consisting of random perturbation of some entries of x̃k+1, is performed if one of the following
situations occur:
– the point x̃k+1 is equal, in its integer components, to a previously generated point;
– the distance∆(x̄k+1, x̃k+1) did not decrease by at least 10% in the last KK iterations.

The Feasibility Pump for general MIPs described in [5] consists of three different stages. In the first stage (binary stage),
a few iterations (so-called pumping rounds) are performed just on the binary variables B ⊆ I by relaxing the integrality
conditions on the general integer variables. If this does not yield to a feasible solution, a second stage starts from a point x̃
visited in Stage 1 which was closest to the LP polyhedron. In the second stage, the integrality condition on all (binary and
non-binary) variables is restored, and the FP method continues by taking into account all the integrality constraints (this
requires the introduction, at each iteration, of the additional variables needed to express the distance function with respect
to the current point). If still no solution is found, a third stage is executed. Using a point x̃ from Stage 2 closest to P , the MIP

min{∆(x, x̃)|x ∈ P, xj ∈ Z,∀j ∈ I}

is processed by a MIP solver which stops after the first feasible solution is found.

3. The FP heuristic and the Frank–Wolfe method

While for the 0–1 case the equivalence between the FP heuristic and the Frank–Wolfe method has been pointed out first
in [14] and then further investigated and exploited in [12]; the relationship between FP and the Frank–Wolfe method in the
general integer case is by far less clear [9,10]. The aim of this section is that of clarifying this equivalence showing that the
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FP heuristic without any perturbation (i.e. without Step 3) can be interpreted as the Frank–Wolfe algorithm with unitary
stepsize applied to a concave, non-differentiable merit function.

At Step 4 of the FP, problem (1) has to be solved. This problem can be written as (see [5]):

min


j∈I:x̃kj =lj

(xj − lj)+


j∈I:x̃kj =uj

(uj − xj)+


j∈I:lj<x̃kj <uj

dj

s.t. Ax ≥ b
l ≤ x ≤ u

−dj ≤ xj − x̃kj ≤ dj ∀j ∈ I : lj < x̃kj < uj,

(5)

where the variables dj are introduced tomodel the nonlinear function dj = |xj − x̃kj | for integer variables xj that are not equal
to one of their bounds in the rounded solution x̃k.

In order to see the equivalence with the Frank–Wolfe method we briefly recall the unitary stepsize Frank–Wolfe method
for concave non-differentiable functions. Let us consider the problem

min f (x)
x ∈ P

(6)

where P ⊂ Rn is a non-empty polyhedral set that does not contain lines going to infinity in both directions, f : Rn
→ R is a

concave, non-differentiable function, bounded below on P .
The Frank–Wolfe algorithmwith unitary stepsize (see [26,25] for further details) at each iteration k produces a new point

xk+1
= argmin

x∈P
(gk)T x

where gk
∈ ∂ f (xk). Then, the algorithm involves only the solution of linear programming problems, and it is proved in [26]

that it converges to a stationary point x⋆ in a finite number of iterations.
In the 0–1 case the Feasibility Pump can be seen as the Frank–Wolfe algorithm applied for the minimization of the

following objective function

φ(x) =


j∈I

min{xj, 1 − xj}

over the relaxed feasible set [12]. In the general integer case the same reasoning would lead to the solution of the following
minimization problem

min

j∈I

min{xj − lj, uj − xj, |xj − s1j|, . . . , |xj − smjj|}

s.t. Ax ≥ b (7)
l ≤ x ≤ u

where for each j ∈ I we have {sij : i = 1, . . . ,mj} = (lj, uj) ∩ Z . Unlike the 0–1 case, the objective function of problem (7)
is not concave, thus the unitary stepsize Frank–Wolfe method would no more be able to converge to a stationary point in
a finite number of iterations and a suitable line search technique to guarantee the convergence should be used within the
method. However, by enlarging the variable space [5], problem (7) can be transformed in the following equivalent concave
problem

min

j∈I

min{xj − lj, uj − xj, d̂1j, . . . , d̂mjj}

s.t. Ax ≥ b
l ≤ x ≤ u

−d̂ij ≤ xj − sij ≤ d̂ij ∀j ∈ I, i = 1, . . . ,mj.

(8)

Given the point x̄kj , one iteration of the Frank–Wolfe algorithmapplied to problem (8), consists in the solution of the following
LP-problem

min


j∈I:x̄kj ≤lj+
1
2

xj −


j∈I:x̄kj >uj−
1
2

xj +


j∈I:lj+
1
2<x̄kj ≤uj−

1
2

d̂ijj

s.t. Ax ≥ b
l ≤ x ≤ u

−d̂ijj ≤ xj − sijj ≤ d̂ijj ∀j ∈ I,

(9)
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where for each j ∈ I the index ij ∈ {1, . . . ,mj} is such that

d̂kijj = min
i=1,...,mj

d̂kij. (10)

We notice that Problem (9) is a reformulation of Problem (5). Once Problem (9) has been solved, we set

d̂k+1
ij = |x̄k+1

j − sij|, ∀j ∈ I.

This step is crucial for the equivalence, as it is needed to ensure that at each iteration of the Frank–Wolfe method we have

sijj = [x̄kj ]. (11)

Now, taking into account (11) and naming variable d̂ijj as dj we get Problem (5) which is the LP Problem solved at Step 4 of
the Feasibility Pump.

Example 1. Consider the following problem of one dimension:

min cx
s.t. x ∈ {0, 1, 2}.

(12)

The use of the FP heuristic (without any perturbation) for finding a feasible solution of Problem (12) is equivalent to apply
the Frank–Wolfe method with unitary stepsize to the following problem

min{x, 2 − x, d̂} (13)
s.t. x ∈ [0, 2]

−d̂ ≤ x − 1 ≤ d̂.

In Fig. 1 we visualize, on the left, the graph of the objective function of Problem (13) and on the right, the contour lines of
the objective function and the additional constraint −d̂ ≤ x − 1 ≤ d̂.

4. Nonsmooth merit functions for solving general MIPs

In the previous section,we have seen that the Feasibility Pump for generalMIP problems is equivalent to the Frank–Wolfe
algorithm applied to the following problem

min f (x, d̂) =


j∈I

min{xj − lj, uj − xj, d̂1j, . . . , d̂mjj}

s.t. Ax ≥ b
l ≤ x ≤ u

−d̂ij ≤ xj − sij ≤ d̂ij ∀j ∈ I, i = 1, . . . ,mj

(14)

where d̂ = (d̂11, . . . , d̂m11, d̂12, . . . , d̂m22, . . . , d̂1N , . . . , d̂mNN) and N = |I|.
In general, there is no relationship between the reduction of the objective function f (x, d̂) and the reduction in thenumber

of variables that violate integrality. This can be easily seen from the following example.

Example 2. Let us consider the following two points x, y ∈ [0, 2]4:

x =


0,

3
2
, 0, 2

T

; y =


0,

7
6
,
7
6
, 2

T

.

It is easy to notice that

4
j=1

min{yj, 2 − yj, |yj − 1|} =
1
3
<

1
2

=

4
j=1

min{xj, 2 − xj, |xj − 1|},

but the number of fractional components of y is greater than the number of fractional components of x.

As we have already noticed in [12], it would be better to use a function having the following features:

(i) it decreases whenever the number of integer variables increases;
(ii) if it decreases, then the number of fractional variables does not increase.
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Fig. 1. Problem (13).

In this context, a good choice would be the following:

ψ(x) = card{ xj : j ∈ I, xj ∉ Z ∩ [lj, uj]}. (15)

The function (15) can be rewritten as:

ψ(x) =


j∈I

σ(min{xj − lj, uj − xj, |xj − sj1|, . . . , |xj − sjmj |}) (16)

where σ : R → R+ is the step function:

σ(t) =


1 if t > 0
0 otherwise

and {sij : i = 1, . . . ,mj} = (lj, uj) ∩ Z .
Obviously minimizing function (16) over a polyhedral set is a very tough problem, as the step function is nonconvex and

discontinuous. In this context, it would be useful to define approximations of function (16) that are easier to handle from
a computational point of view and guarantee satisfaction of (i) and (ii) when evaluated on the vertices of a polyhedron.
In order to do that, we generalize the results in [12] to the general MIP case. We first introduce the following two scalar
functions:

Definition 1. For all i ∈ I , let ρi : R → R+ be a function such that

ρi(t) = 0 if t ∈ (li, ui) ∩ Z;

ρi(t) > 0 if t ∉ (li, ui) ∩ Z .

Definition 2. Let ϕϵ : R+ → R be a function that verifies the following properties: for all γ > 0, a value ϵ̄ > 0 and a value
M > 0 exist such that

(i) for α̃ > γ we have

ϕϵ(0)− ϕϵ(α̃) ≤ −M; (17)

(ii) for ᾱ, α̃ > γ we have

|ϕϵ(ᾱ)− ϕϵ(α̃)| ≤
M
n

(18)

for all ϵ ∈ (0, ϵ̄].

The first function penalizes the fact that a scalar is fractional and the second one can be seen as an approximation of the step
function. By combining the two functions, we get the following separable function:

φϵ(x) =


i∈I

ϕϵ(ρi(xi)), (19)

that can be considered a suitable approximation of function (16).

Proposition 1. Let V ⊂ [l, u]n be the set of vertices of a polytope P = { x : Ax ≥ b, x ∈ [l, u] }.
Let φϵ(x) defined as in (19).
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Then, for x, y ∈ V :

(a) ψ(x) < ψ(y) implies φϵ(x) < φϵ(y);
(b) φϵ(x) < φϵ(y) implies ψ(x) ≤ ψ(y).

Proof. LetV ⊂ V be the set of the fractional vertices of P .
Let x ∈ V , we define the setI(x) asI(x) = {i ∈ I : xi ∉ Z}.

We define

ρ⋆ = min
x∈V min

i∈I(x) ρ(xi),
where ρ(·) is the function described in Definition 1.
Let ϵ̄ > 0 be the threshold value such that the properties (17), (18) of ϕϵ(·) in Definition 2 hold, when γ = ρ⋆.
In the sequel of the proof we assume ϵ ∈ (0, ϵ̄].

(a) We first start considering two vertices x, y of the polytope P satisfying the following condition:

ψ(x) < ψ(y). (20)

We notice that y is not integer feasible, otherwise ψ(x) = ψ(y) = 0. Therefore, we can define the set of indices related
to its fractional components:

W = {j ∈ {1, . . . , n} | j ∈ I, ρj(yj) ≠ 0}.

Since y is not integer feasible,W ≠ ∅. Then we can write the function φϵ as follows:

φϵ(y) =


j∈I

ϕϵ(ρj(yj)) =


j∈W

ϕϵ(ρj(yj))+


j∈I\W

ϕϵ(ρj(yj)).

Similarly we define the set of indices related to the fractional components of x:

U = {i ∈ {1, . . . , n} | i ∈ I, ρi(xi) ≠ 0},

and we write

φϵ(x) =


i∈I

ϕϵ(ρi(xi)) =


i∈U

ϕϵ(ρi(xi))+


i∈I\U

ϕϵ(ρi(xi)).

It is easy to see that, by (20), we have

|U| < |W | and |I \ U| > |I \ W |.

Now, we consider two different cases:
(i) |W | − |U| = 1:

We can assume that there exists an index ȷ̄ such that

W \ {ȷ̄} = U and (I \ U) \ {ȷ̄} = I \ W .

Then we can write:

φϵ(x) = ϕϵ(ρȷ̄(xȷ̄))+


j∈W
j≠ȷ̄

ϕϵ(ρj(xj))+


j∈I\U
j≠ȷ̄

ϕϵ(ρj(xj)) (21)

and

φϵ(y) = ϕϵ(ρȷ̄(yȷ̄))+


j∈W
j≠ȷ̄

ϕϵ(ρj(yj))+


j∈I\U
j≠ȷ̄

ϕϵ(ρj(yj)). (22)

By (21) and (22) and the fact that ρj(xj) = ρj(yj) = 0 for all j ∈ (I \ U) \ {ȷ̄}, we obtain:

φϵ(x)− φϵ(x) = ϕϵ(ρȷ̄(xȷ̄))− ϕϵ(ρȷ̄(yȷ̄))+


j∈W
j≠ȷ̄

(ϕϵ(ρj(xj))− ϕϵ(ρj(yj)))

≤ ϕϵ(ρȷ̄(xȷ̄))− ϕϵ(ρȷ̄(yȷ̄))+


j∈W
j≠ȷ̄

|ϕϵ(ρj(xj))− ϕϵ(ρj(yj))|. (23)
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From Definition 1, we have that ρȷ̄(xȷ̄) = 0, ρȷ̄(yȷ̄) > ρ⋆, ρj(xj) > ρ⋆ and ρj(yj) > ρ⋆ for all j ∈ W \ {ȷ̄}. Then, by (17)
and (18):

φϵ(x)− φϵ(y) ≤ ϕϵ(ρȷ̄(xȷ̄))− ϕϵ(ρȷ̄(yȷ̄))+


j∈W
j≠ȷ̄

|ϕϵ(ρj(xj))− ϕϵ(ρj(yj))|

≤ −M + (|I| − 1)
M
n
< 0. (24)

Thus obtaining

φϵ(x) < φϵ(y).

(ii) |W | − |U| > 1.
In this case, we can assume that there exists a set J̄ such that

W \ {J̄} = U and (I \ U) \ {J̄} = I \ W .

Then we can write

φϵ(x) =


j∈J̄

ϕϵ(ρj(xj))+


j∈U

ϕϵ(ρj(xj))+


j∈I\U
j∉J̄

ϕϵ(ρj(xj))

and

φϵ(y) = ϕϵ(ρj(yj))+


j∈W
j∉J̄

ϕϵ(ρj(yj))+


j∈I\W

ϕϵ(ρj(yj)).

By the same reasoning as before, we obtain:

φϵ(x)− φϵ(y) ≤


j∈J̄

(ϕϵ(ρj(xj))− ϕϵ(ρj(yj)))+


j∈W\{J̄}

|ϕϵ(ρj(xj))− ϕϵ(ρj(yj))|.

Nowwe notice that ρj(xj) = 0, ρj(yj) > ρ⋆ for all j ∈ J̄ and ρj(xj) > ρ⋆, ρj(yj) > ρ⋆ for all j ∈ W \ {J̄}. Then, by using
(17) and (18), we have

φϵ(x)− φϵ(y) ≤


j∈J̄

(ϕϵ(ρj(xj))− ϕϵ(ρj(yj)))+


j∈W\{J̄}

|ϕϵ(ρj(xj))− ϕϵ(ρj(yj))|

≤ −M|J̄| + (|I| − |J̄|)
M
n
< 0,

thus obtaining

φϵ(x) < φϵ(y).

(b) We prove point (b) by contradiction. Let us assume that there exist two vertices x, y of the polytope P such that
φϵ(x) < φϵ(y) and

ψ(x) > ψ(y). (25)

By (25), recalling the first part of the proof, we have that φϵ(x) > φϵ(y). This contradicts our initial assumption. �

For what concern the function ρ(·) a straightforward choice can be the following: for all i ∈ I ,
ρi(xi) = min{xi − li, ui − xi, |xi − si1|, . . . , |xi − simi |}.

As regarding functionϕϵ(·), taking into account Definition 2 and the ideas developed in [24,27,28], we consider the following
terms:

Logarithmic function

ϕϵ(t) = ln(t + ϵ) (26)

Hyperbolic function

ϕϵ(t) = −(t + ϵ)−p (27)

Exponential function

ϕϵ(t) = 1 − exp


−
1
ϵ
t


(28)
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Logistic function

ϕϵ(t) =


1 + exp


−

1
ϵ
t
−1

(29)

where ϵ, p > 0.

In the following we prove that for a particular choice of the ϕϵ term, the properties (17), (18) in Definition 2 are satisfied.

Proposition 2. For the term (26), there exists a value ε̄ > 0 such that for any ε ∈ (0, ε̄] properties (17), (18) in Definition 2 are
satisfied.

Proof. Let γ > 0. As the function ϕϵ(t) is strictly increasing, for any choice of α̃, ᾱ > γ we have

|ϕϵ(α̃)− ϕϵ(ᾱ)| ≤ ϕϵ(1)− ϕϵ(γ ).

We set

M = n(ϕϵ(1)− ϕϵ(γ )),

therefore

|ϕϵ(α̃)− ϕϵ(ᾱ)| ≤
M
n
. (30)

Let us define ε̄ > 0 such that for all ε ∈ (0, ε̄)

ln(ε)− ln(γ + ε) ≤ −M. (31)

From (30) and (31) properties (17), (18) of Definition 2 follow. �

The result proved in Proposition 2 for the term (26) can also be proved for the terms (27)–(29) repeating the same arguments,
thus all the merit functions proposed are suitable to penalize the variables that violate the integrality constraints.

Summarizing, given an approximation φϵ(x) defined as in (19) with the ρi(·) and the ϕϵ(·) proposed, we can solve, in
place of the original FP problem (8), the following problem

min φϵ(x) =


j∈I

ϕϵ(ρj(xj))

s.t. Ax ≥ b (32)
l ≤ x ≤ u;

where {sij : i = 1, . . . ,mj} = (lj, uj) ∩ Z . As it has been done in Section 3, we enlarge the variable space and transform
problem (32) to the following equivalent concave problem

min

j∈I

ϕϵ(min{xj − lj, uj − xj, d̂1j, . . . , d̂mjj})

s.t. Ax ≥ b
l ≤ x ≤ u

−d̂ij ≤ xj − sij ≤ d̂ij ∀j ∈ I, i = 1, . . . ,mj.

(33)

Taking into account the monotonicity of the functions ϕϵ (26)–(29), we notice that problem (33) can be rewritten as

min fp(x, d) =


j∈I

min{ϕϵ(xj − lj), ϕϵ(uj − xj), ϕϵ(d̂1j), . . . , ϕϵ(d̂mjj)}

s.t. Ax ≥ b
l ≤ x ≤ u

−d̂ij ≤ xj − sij ≤ d̂ij ∀j ∈ I, i = 1, . . . ,mj.

(34)

The Frank–Wolfe algorithm is used for solving the minimization problem (34). This choice is mainly due to the fact that the
algorithm, at each step, moves from a vertex to another guaranteeing the reduction of the chosen approximation. Therefore,
Proposition 1 ensures that, at each iteration, the number of the fractional components of the current solution does not
increase.
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5. The reweighted Feasibility Pump for MIPs

As in [12], the use of the ϕϵ functions (26)–(29) leads to a new FP scheme in which the ℓ1-norm used for calculating the
next LP-feasible point is replaced with a ‘‘weighted’’ ℓ1-norm of the form

∆W (x, x̃) =


j∈I:x̃kj =lj

wj(xj − lj)+


j∈I:x̃kj =uj

wj(uj − xj)+


j∈I:lj<x̃kj <uj

wjdj (35)

where the variables dj = |xj − x̃j| satisfy the constraints

− dj ≤ xj − x̃j ≤ dj ∀j ∈ I : lj < x̃j < uj, (36)

andwj, j = 1, . . . , n are positive weights depending on the ϕϵ term chosen. Here we report an outline of the algorithm:

Reweighted Feasibility Pump (RFP) for general MIPs - basic version

Initialization: Set k = 0, let x̄0 := argmin{cT x : x ∈ P}

While (not stopping condition) do

Step 1 If (x̄k is integer) return x̄k
Step 2 Compute x̃k = round(x̄k)
Step 3 If (cycle detected) perturb(x̃k)
Step 4 Compute x̄k+1

:= argmin{∥W k(x − x̃k)∥1 : x ∈ P}

Step 5 Update k = k + 1

End While

We assume that the round procedure is the same as that described in Section 2 for the original version of the FP heuristic
[15,5]. As regards the perturb procedure, we first perturb the point x̃k using the same procedure as that described in Section 2,
then for all indices j ∈ I such that x̃k+1

≠ x̃k, we add 0.5 to x̄k+1
j (if x̄k+1

j > x̃kj ) or subtract 0.5 to x̄k+1
j (if x̄k+1

j < x̃kj ). Anyway,
different rounding and perturbing procedures can be suitably developed. In particular the scheme based on constraint
propagation proposed in [17] can be integrated in the RFP.

Following the reasoning of Section 3, we can reinterpret the reweighted FP heuristic without perturbation as the unitary
stepsize Frank–Wolfe algorithm applied to the merit function fp. Let us now consider a generic iteration k of the reweighted
FP. At Step 4, the algorithm computes the solution of the LP problem

min


j∈I:x̄kj ≤lj+
1
2

wk
j xj −


j∈I:x̄kj >uj−

1
2

wk
j xj +


j∈I:lj+

1
2<x̄kj ≤uj−

1
2

wk
j dj

s.t. Ax ≥ b
l ≤ x ≤ u

−dj ≤ xj − [x̄kj ] ≤ dj ∀j ∈ I : lj +
1
2
< x̄kj ≤ uj −

1
2
.

(37)

As in Section 3, we can prove that problem (37) is equivalent to

min


j∈I:x̄kj ≤lj+
1
2

w̃k
j xj −


j∈I:x̄kj >uj−

1
2

w̃k
j xj +


j∈I, i=1,...,mj:lj+

1
2<x̄kj ≤uj−

1
2

w̃k
ij d̂ijj

s.t. Ax ≥ b
l ≤ x ≤ u

−d̂ijj ≤ xj − sij ≤ d̂ijj ∀j ∈ I,

(38)

with sijj = [x̄kj ].

By setting

w̃k
j = |gk

xj |

w̃k
ij = |gk

d̂ij j
|
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with gk
∈ ∂ fp(x̄k, d̄k), and d̄kijj = |xj − sijj|, ∀j ∈ I , problem (38) can be seen as the iteration of the Frank–Wolfe method with

unitary stepsize applied to the following minimization problem

min fp(x, d) =


j∈I

min{ϕϵ(xj − lj), ϕϵ(uj − xj), ϕϵ(d̂1j), . . . , ϕϵ(d̂mjj)}

s.t. Ax ≥ b
l ≤ x ≤ u

−d̂ij ≤ xj − sij ≤ d̂ij ∀j ∈ I, i = 1, . . . ,mj.

(39)

In order to better understand the meaning of the Reweighted Feasibility Pump we give an example.

Example 3. By choosing ϕϵ equal to the logarithmic function, we can write problem (39) as follows:

min fp(x, d̂) =


j∈I

min{log(xj − lj + ϵ), log(uj − xj + ϵ), log(d̂1j + ϵ), . . . , log(d̂mjj + ϵ)}

s.t. Ax ≥ b
l ≤ x ≤ u

−d̂ij ≤ xj − sij ≤ d̂ij ∀j ∈ I, i = 1, . . . ,mj.

(40)

Then, at an iteration k of the Reweighted Feasibility Pump heuristic, we have

wk
j =



w̃k
j =

1
x̄kj − lj + ϵ

if x̄kj ≤ lj + 1/2

w̃k
j =

1
uj − x̄kj + ϵ

if x̄kj ≥ uj − 1/2

w̃k
ij =

1

d̂kijj + ϵ
if sijj − 1/2 ≤ x̄kj ≤ sijj + 1/2.

(41)

Example 4. Consider the problem (12) of Example 1. The use of the RFP heuristic (without any perturbation) for finding
a feasible solution of Problem (12) is equivalent to apply the Frank–Wolfe method with unitary stepsize to the following
problem

min{ϕϵ(x), ϕϵ(2 − x), ϕϵ(d̂)}
s.t. x ∈ [0, 2] (42)

−d̂ ≤ x − 1 ≤ d̂

where function ϕϵ is chosen among terms (26)–(29). In Fig. 2 we visualize, on the left, the graph of the objective function
of Problem (42) with ϕϵ chosen as the Exponential function and on the right, the contour lines of the objective function and
the additional constraint −d̂ ≤ x − 1 ≤ d̂.

6. Adding the original objective function to the FP scheme

One of the targets we have when we use a heuristic like the Feasibility Pump on a MIP problem is that of finding a high-
quality solution, which means to find a feasible point for the problem with the objective function cT x as small as possible.
A drawback of the original Feasibility Pump scheme is that the quality of the solutions in terms of the objective value often
tends to be poor. This is easily explained by the fact that the original scheme discards the original objective function of the
problem after the first iteration. Different approaches have been developed for dealing with this issue. Bertacco, Fischetti
and Lodi in [5] make use of improvement heuristics based on local search, such as local branching [16] or RINS [11]. In [1] a
different approach, called Objective Feasibility Pump, is developed by Achterberg and Berthold. The idea is that of gradually
reducing the influence of the objective function and increasing theweight of the artificial objective function of the Feasibility
Pump, so that the algorithm concentrates its search on the region of high-quality points. In particular, the objective function
of the LPs is a convex combination of the original objective function with the distance function∆(x, x̃):

∆θ (x, x̃) =
1 − θ

∥∆∥
∆(x, x̃)+

θ

∥c∥
cT x

where ∥∆∥ =
√

|I| and θ ∈ [0, 1]. At each iteration k, coefficient θ k is geometrically decreased by a factor ν < 1
(i.e. θ k+1

= νθ k). The introduction of the new function further requires a modification of the cycle detection step. While in
the original scheme if we visit the same integer point twice we can be sure that we are in a cycle, this is not the case in the
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Fig. 2. Problem (42).

Table 1
Comparison between Obj FP and Obj RFP (geometric means).

Obj FP Obj Exp, 1/ϵ = 0.5 Obj Logis, 1/ϵ = 0.1
Iter Time Iter Time Iter Time

All instances 20.6516 2.0746 12.4590 1.7896 22.1848 2.0558
MIPLIB instances 35.4144 1.977 25.1857 1.9491 38.9995 1.9587
COR@L instances 18.7410 2.0926 10.9765 1.7623 20.0426 2.0737

modified scheme, because the objective function ∆θ has changed in the meantime. We therefore store, at each iteration k,
the pair (x̃k, θ k) and a cycle is detected if there exist two iterations ki and kj, with ki < kj, such that x̃ki = x̃kj and θ ki−θ kj ≤ δθ ,
where δθ ∈ [0, 1] is a fixed parameter (see [1] for further details). This approach can be easily adapted to the Reweighted
Feasibility Pump, where the new objective function of the LPs becomes:

∆W ,θ (x, x̃) =
1 − θ

∥∆∥
∆W (x, x̃)+

θ

∥c∥
cT x. (43)

7. Numerical results

In this section, we describe the details of the computational experiments we have performed. The aim is to analyze the
possible effects of the merit functions proposed on the Feasibility Pump scheme. In order to do that, we suitably modified
the Objective Feasibility Pump (Obj FP) described in [1] to include the new functions, and compared this new version of the
code, namely the Objective Reweighted Feasibility Pump (Obj RFP), with the original one.

The test set used consists of 403 instances from MIPLIB2003 [2] and COR@L libraries [7]. The algorithms were imple-
mented in C++ and we used ILOG Cplex 12.0.0 [8] as solver of the linear programming problems. All tests have been run on
an Intel Core2 3.00 GHz with 16 GB of RAM.

The numerical experience reported in [12] for MIP 0–1 instances showed that, among the penalty terms proposed, the
Exponential function and the Logistic function give the best results, and the RFP algorithm obtained using this two penalty
terms is competitive with the original FP. Hence, we decided to analyze the behavior of both the Exponential function (Exp)
and the Logistic function (Logis) when embedded in the objective RFP (Obj RFP) defined in Section 6, and how they compare
with the Obj FP [1]. In particular, in the Obj RFP-Exp the distance∆W (x, x̃) is defined using the term (28) with 1/ϵ = 0.5 and
in the Obj RFP-Logis the distance ∆W (x, x̃) is defined using the term (29) with 1/ϵ = 0.1. The choice of the merit function
parameters is critical for the efficiency of the algorithm and the values 1/ϵ = 0.5 for the Exp term and 1/ϵ = 0.1 for the
Logis term represent a good compromise between theory and practice. Indeed, from Proposition 1, it would be better to set
the parameter of a chosen merit function to a sufficiently small value. However, if the parameter is very small, numerical
difficulties arise, as the slope of the graph of the function to be minimized gets very large when approaching integer values.
For the Obj FP we set the parameters to the default values used in [5] enabling the use of the modified objective function as
proposed in [1]. In order to better assess the effectiveness of the new approach, we ran the algorithms with stage 3 disabled
and we compared the number of iterations and the CPU time needed to find a first feasible solution and the quality of the
feasible solution found. The Obj FP and the Obj RFP-Logis failed to find a feasible solution on 90 problems while Obj RFP-Exp
failed on 81 problems.

We first analyze the average results of the various algorithms. In Table 1, the geometric means of the iterations and
the CPU time needed for each algorithm to find a first feasible solution are reported. In the calculations of the geometric
means individual values smaller than 1 are replaced by 1. The reported results seem to confirm that the Exp and Logis RFP
algorithms are competitive with the FP algorithm.

To give a further interpretation of the results of the various algorithms in terms of number of iterations and CPU time
needed to find a first feasible solution, we decided to use performance profiles [13]. Given a set A of na solvers and a set P of
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Fig. 3. Comparison between Obj FP, Obj RFP-Logis and Obj RFP-Exp.

np problems we compare the performance on a performance measuremp,a (e.g. number of iteration, CPU time) on problem
p ∈ P by algorithm a ∈ Awith the best performance by any algorithm on this problem using the following performance ratio

rp,a =
mp,a

min{mp,a : a ∈ A}
.

Then, we obtain an overall assessment of the performance of the algorithm by defining the following value

ρa(τ ) =
1
np

size{p ∈ P : rp,a ≤ τ },

which represents the probability for algorithm a ∈ A that the performance ratio rp,a is within a factor τ ∈ R of the best
possible ratio. The function ρa represents the distribution function for the performance ratio. Thus ρa(1) gives the fraction
of problems for which the algorithm a was the most effective, ρa(2) gives the fraction of problems for which the algorithm
a is within a factor of 2 of the best algorithm, and so on.

In Fig. 3, we report the performance profiles related to the comparison between Obj FP, Obj RFP-Exp and Obj RFP-Logis
in terms of number of iterations and CPU time. We indicate with TOT, MIPLIB and CORAL the performance profiles related
respectively to all problems,MIPLIB problems and CORAL problems. In the x-axis, τ is reported in logarithmic scale. By taking
a look at Fig. 3 we can notice that there are large gaps in the beginning of the performance diagrams between Obj RFP-Exp
and the other two. This means that Obj RFP-Exp has a higher number of wins both in terms of number of iterations and in
terms of computational time. Furthermore the Obj RFP-Exp profile always dominates the other two. The Obj FP and the Obj
RFP-Logis have very similar profiles both for the number of iterations and for the computational time.

Now, we want to analyze the behavior of the algorithms in terms of solution quality. To this aim, for all MIP instances
such that an integer feasible solution is found by all the algorithms, we consider the gap from the best known solution. Given
a problem p ∈ P and an algorithm a ∈ A we denote by sol(p) the best known solution of problem p and by obj(p, a) the
objective function evaluated in the integer feasible solution found by algorithm a for problem p. We define the gap of the
solution found by algorithm a for the problem p as

gap(p, a) =
|sol(p)− obj(p, a)|

|sol(p)|
.

In the computation of the gap, we excluded any instance p such that sol(p) = 0, or forwhich at least an algorithm fails to find
an integer feasible solution. We mention that, in our test set, 292 instances are considered for the gap computation. Over
these 292 instances the Obj FP found the best (optimal) solution for 30 (19) instances, the Obj RFP-Logis for 31 (22) instances
and the Obj RFP-Exp for 25 (15) instances. We further report the number of wins (minimum CPU time and minimum Gap)



14 M. De Santis et al. / Discrete Applied Mathematics ( ) –

Fig. 4. Box plots of the GAP.

for the three algorithms: the Obj FP has 116 number of wins, the Obj RFP-Logis 100 and the Obj RFP-Exp 123. We report, in
Table 2, the detailed results for a meaningful subset of instances over the 292 considered for the gap computation.

In order to better assess the differences in terms of the gap among the Obj FP, the Obj RFP-Logis and the Obj RFP-Exp, we
considered the 292 problems for which the gap was computable and we divided the problems in three different classes:

– Class A. Problems for which all the algorithms found a solution with a gap between 0% and 10% (76 problems);
– Class C. Problems for which any algorithm found a solution with a gap greater than 100% (98 problems);
– Class B. All the problems that are neither in Class A nor in Class C (118 problems).

We report in Fig. 4 the box plots related to the distribution of the gap for the Obj FP, the Obj RFP-Logis and the Obj RFP-Exp
on the three classes of problems. We indicate with TOT, MIPLIB and COR@L the plots related respectively to all problems,
MIPLIB problems and COR@L problems. On each box, the central mark is the median, the edges of the box are the 25th and
75th percentiles, thewhiskers extend to themost extreme data points not considered outliers, and outliers (i.e. single values
that do not belong to the intervals drawn) are plotted individually.

By taking a look at the results, we can see that, forwhat concerns the quality of the solution, the three algorithms are com-
parable. Furthermore, we would like to notice that the introduction of the objective function, similarly to [1], significantly
improves the quality of the solutions found by the RFP approach.

Finally, we want to highlight that the proposed functions can be included within other FP variants like e.g. [17] where
the rounding scheme is replaced by a scheme based on constraint propagation, or [3,6] where a new integer feasible point
is obtained by a procedure that examines rounded solutions along a given line segment. Anyway, the performance analysis
of these approaches is beyond the scope of this paper.

8. Conclusions

In this paper, we considered the problem of finding a first feasible solution to a mixed integer linear programming
problem. We exploited the relationship between the Feasibility Pump and the Frank–Wolfe algorithm to define a modified
version of the Feasibility Pump obtained applying the Frank–Wolfe algorithm to new nonsmooth concave functions. These
functions penalize the violation of the integrality constraints and have the good property that their reduction cannot
correspond to an increase in the number of fractional variables. Due to this property, the functions proposed should speed
up the convergence towards integer feasible points. We reported computational results on a set of 403 mixed integer linear
programming problems. This numerical experiments indicate that the new version of the Feasibility Pump obtained by using
the exponential term compares favorably with the Objective FP in terms of CPU time and it is comparable with respect to
the quality of the solutions found. Finally, we think that the merit functions proposed, together with the original FP merit



M. De Santis et al. / Discrete Applied Mathematics ( ) – 15

Table 2
Detailed results for some meaningful instances.

Obj FP Obj RFP-Logis Obj RFP-Exp
Gap % Iter Time Gap % Iter Time Gap % Iter Time

aflow30a 2.5 40 1 0.9 29 0 1.4 31 0
dano3-3 0.0 12 16 0.0 25 33 0.0 6 15
dano3-4 0.0 33 33 0.0 33 43 0.0 9 17
dano3-5 0.0 21 45 0.0 36 57 0.0 12 37
mcf2 0.1 107 2 0.0 80 1 0.1 160 2
neos12 0.0 22 8 0.0 12 5 0.0 3 3
neos-574665 2.3 267 0 0.1 41 0 1.0 59 0
neos-584866 1.0 59 55 1.0 40 102 1.0 36 18
neos-612162 0.0 11 1 0.0 24 1 0.0 7 0
neos-702280 1.0 7 77 1.0 6 51 1.0 4 63
neos-738098 0.0 68 6 0.0 69 9 0.0 47 8
neos-777800 0.0 97 21 0.0 57 9 0.0 48 4
neos-839859 6.4 43 0 3.6 43 0 3.8 16 0
neos-872648 1.0 33 20 1.0 33 24 1.0 31 29
neos-873061 1.0 29 21 1.0 29 17 1.0 29 20
neos-911880 2.8 79 0 2.3 66 0 1.1 33 0
neos-935627 1.0 6 27 1.0 9 18 1.0 2 4
neos-936660 1.0 6 21 1.0 7 15 1.0 2 4
neos-937446 1.0 6 17 1.0 13 8 1.0 2 4
neos-937511 1.0 6 11 1.0 13 10 1.0 2 5
neos-937815 1.0 6 25 1.0 6 12 1.0 2 5
neos-941262 1.0 17 19 1.0 6 10 1.0 2 4
neos-941313 1.0 16 24 1.0 6 17 1.0 23 48
neos-948126 1.0 17 26 1.0 11 10 1.0 2 5
neos-948268 0.0 22 14 0.0 26 14 0.0 15 9
neos-983171 1.0 17 14 1.0 9 11 1.0 2 4
neos-984165 1.0 19 15 1.0 11 11 1.0 2 4
neos-1121679 48.4 67 0 38.9 85 0 30.2 60 0
neos-1420205 7.6 217 1 0.0 29 0 0.3 29 0
neos-1420546 1.0 42 11 1.0 42 10 1.0 9 3
neos-1430811 1.0 110 109 1.0 99 86 1.0 60 67
neos-1603965 1.0 105 23 1.0 74 19 1.0 23 4
neos-1622252 0.0 26 3 0.1 17 5 0.0 7 1
markshare1 790.0 67 0 638.0 85 0 498.0 60 0
markshare2 592.0 70 0 882.0 85 0 768.0 59 0
ramos3 1.0 8 253 1.0 8 341 1.0 5 187

function, can be fruitfully used in a parallel framework and/or in a multistart strategy to define algorithms that use more
than one function at time.
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