
Comput Optim Appl
DOI 10.1007/s10589-011-9405-3

Derivative-free methods for bound constrained
mixed-integer optimization

G. Liuzzi · S. Lucidi · F. Rinaldi

Received: 16 November 2010
© Springer Science+Business Media, LLC 2011

Abstract We consider the problem of minimizing a continuously differentiable func-
tion of several variables subject to simple bound constraints where some of the vari-
ables are restricted to take integer values. We assume that the first order derivatives
of the objective function can be neither calculated nor approximated explicitly. This
class of mixed integer nonlinear optimization problems arises frequently in many in-
dustrial and scientific applications and this motivates the increasing interest in the
study of derivative-free methods for their solution. The continuous variables are han-
dled by a linesearch strategy whereas to tackle the discrete ones we employ a local
search-type approach. We propose different algorithms which are characterized by
the way the current iterate is updated and by the stationarity conditions satisfied by
the limit points of the sequences they produce.
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1 Introduction

In the paper we consider the following bound constrained mixed variable problem

minf (x)

l ≤ x ≤ u,

xi ∈ Z i ∈ Iz,

(1)

where x ∈ R
n, l, u ∈ R

n, and Iz ⊆ {1, . . . , n}. We assume li < ui , for all i = 1, . . . , n,
li , ui ∈ Z, for all i ∈ Iz and f : R

n → R to be a continuously differentiable function
with respect to xi , i �∈ Iz. We define the following sets,

X = {x ∈ R
n : l ≤ x ≤ u}, Z = {x ∈ R

n : xi ∈ Z, i ∈ Iz},
and assume throughout the paper that X is a compact set, hence li and ui can not be
infinite.

In [1, 3, 6, 14] a problem more general than (1) has been considered by allowing
also for the presence of categorical variables. The algorithms proposed in the papers
[1, 3, 6, 14] are based on the idea of alternating between a local minimization with
respect to the continuous variables and a local search with respect to the discrete vari-
ables. The common feature of the methods is represented by the fact that the discrete
neighborhood structure (that is needed to define the local search) is fixed a priori at
every iterate. The cited papers substantially differ in the definition of the continu-
ous minimization phase. In [6] this phase is carried out by a pattern search strategy
for box constrained problems [17, 19]. In [14] a linesearch strategy for linearly con-
strained problems [16] is adopted to carry out the continuous minimization phase.
A pattern search strategy combined with a filter approach [5] to tackle general non-
linear constraints has been proposed in [3]. Finally, in [1] for the general nonlinear
constrained problem an extreme barrier penalty is adopted and a mesh adaptive direct
search strategy [4] is used to force convergence.

In this paper we propose the use of linesearch-type algorithms to solve the prob-
lem. For the continuous variables we adopt a well-studied linesearch with sufficient
decrease strategy [15]. For the discrete variables we propose the use of different local
search procedures. They explore a discrete neighborhood of points whose structure is
not defined a priori but it is adaptively determined by a linesearch-type procedure.

The paper is organized as follows. In Sect. 2 we introduce some definitions and
relevant notations. Section 3 is the main part of the paper and is devoted to the defini-
tion and analysis of three different algorithms for the solution of Problem (1). Finally,
in Sect. 5 we draw some conclusions and discuss future developments.

2 Definitions and notations

We introduce the set of indices of continuous variables

Ic = {1, . . . , n} \ Iz.
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Given a vector v ∈ R
n we introduce the following subvectors vc ∈ R

|Ic| and vz ∈ R
|Iz|

given by

vc = [vi]i∈Ic , vz = [vi]i∈Iz .

For every continuously differentiable function h : R
n → R with respect to the con-

tinuous variables, we use the notation ∇ch(x) ∈ R
|Ic| to denote the gradient of the

function with respect to the continuous variables, namely:

∇ch(x) =
[
∂h(x)

∂xi

]
i∈Ic

.

We introduce the following definition of neighborhoods with respect to continuous
and discrete variables. Given a point x̄ ∈ R

n, let us define

Bc(x̄, ρ) = {x ∈ R
n : xz = x̄z, ‖xc − x̄c‖2 ≤ ρ},

Nz(x̄) = {x ∈ R
n : xc = x̄c, ‖xz − x̄z‖2 = 1}.

Due to the mixed-integer nature of Problem (1), different definitions of a local min-
imum point can be envisaged. In this paper, we consider the following definition of
minimum points for Problem (1).

Definition 1 (Local minimum point) A point x∗ ∈ X is a local minimum of Problem
(1) if, for some ε > 0,

f (x∗) ≤ f (x), ∀x ∈ Bc(x
∗; ε) ∩ X,

f (x∗) ≤ f (x), ∀x ∈ Nz(x
∗) ∩ X,

(2)

and, every point x̄ ∈ Nz(x
∗)∩X such that f (x̄) = f (x∗) satisfies (2) for some ε̄ > 0.

Proposition 2 Let x∗ ∈ X ∩ Z be a local minimum of Problem (1). Then

∇cf (x∗)T (x − x∗)c ≥ 0, for all x ∈ X, (3)

f (x∗) ≤ f (x) for all x ∈ Nz(x
∗) ∩ X. (4)

Proposition 2 essentially states that a minimum point of Problem (1) has to be
stationary with respect to the continuous variables and, with respect to the discrete
variables, it must be a local minimum within the discrete neighborhood Nz(x

∗).
With reference to Problem (1), we introduce the following definitions of stationary

point and strong stationary point.

Definition 3 (Stationary point) A point x∗ ∈ X ∩ Z is a stationary point of Problem
(1) when it satisfies (3) and (4).

Definition 4 (Strong stationary point) A point x∗ ∈ X ∩ Z is a strong stationary
point of Problem (1) when it satisfies (3) and (4), and, for all x̄ ∈ Nz(x

∗) ∩ X such
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that f (x̄) = f (x∗), it holds that

∇cf (x̄)T (x − x̄)c ≥ 0, for all x ∈ X, (5)

f (x̄) ≤ f (x), for all x ∈ Nz(x̄) ∩ X. (6)

We denote

D = {±e1, . . . ,±en}, Dc = {±ei : i ∈ Ic}, Dz = {±ei : i ∈ Iz}

where ei , i = 1, . . . , n, is the unit coordinate vector.
Given x ∈ X, we denote by

L(x) = {i ∈ {1, . . . , n} : xi = li}, U(x) = {i ∈ {1, . . . , n} : xi = ui}.

Given x ∈ X, let

D(x) = {d ∈ R
n : di ≥ 0 ∀i ∈ L(x), di ≤ 0 ∀i ∈ U(x)}.

We report two technical proposition whose proofs can be found, respectively, in
[13] and [12].

Proposition 5 For every x ∈ X, it results

cone{D ∩ D(x)} = D(x). (7)

Proposition 6 Let {xk} be a sequence of points such that xk ∈ X for all k, and xk → x̄

for k → ∞. Then, for k sufficiently large,

D(x̄) ⊆ D(xk).

3 Algorithms for bound constrained mixed integer nonlinear optimization

This section is devoted to the definition of different algorithms for the solution of
Problem (1) and to the analysis of their convergence properties. The first two algo-
rithms are convergent towards stationary points of the problem. The first algorithm,
that is called DFL (Derivative-Free Linesearch), explores the coordinate directions
and updates the iterate whenever a sufficient reduction of the objective function is
found. Hence it performs a minimization distributed along all the variables. The sec-
ond algorithm, which is called DFLord, carries out a minimization which is only dis-
tributed along the continuous variables while, along the discrete ones, it updates the
iterate by choosing the coordinate that yields the largest objective function reduction.
The last algorithm, SDFL, is convergent to strong stationary points. To achieve such
a result, Algorithm SDFL performs a deeper investigation of the discrete neighbor-
hoods by means of a local search procedure.
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3.1 A distributed algorithmic scheme

In this subsection, we define the distributed derivative-free algorithm for bound
constrained mixed integer problems. The basic ingredients of the method are the
Continuous search and Discrete search procedures. They are needed to explore the
coordinate directions associated with, respectively, continuous and discrete variables.
The current point is updated as soon as a sufficient reduction of the objective func-
tion is achieved by one of the procedures. The Continuous search procedure is quite
standard in a derivative-free context and we refer the interested reader to [15]. The
Discrete search procedure is similar to the Continuous search but the sufficient reduc-
tion is governed by a control parameter ξ , which is reduced during the optimization
process. In particular, the control parameter ξ is reduced whenever no discrete vari-
able has been updated by the Discrete search procedure and the tentative steps along
the discrete variables are equal to one. For this reason, the convergence properties of
Algorithm DFL can be characterized only with respect to a particular subsequence of
iterates. We denote with α̃i the tentative steps used to sample the objective function
along the direction di , with i = 1, . . . , n. Whenever the step must be reduced, a con-
stant factor θ ∈ (0,1) is adopted. Finally, x0 denotes the starting point. The algorithm
is described as follows.

Then we formally define the Continuous search and Discrete search procedures.
The Continuous search procedure is defined by specifying values for parameters γ

Algorithm DFL

Data. θ ∈ (0,1), ξ0 > 0, x0 ∈ X ∩ Z , α̃i
0 > 0, i ∈ Ic, α̃i

0 = 1, i ∈ Iz, and set
di

0 = ei , for i = 1, . . . , n.

For k = 0,1, . . .

Set y1
k = xk .

For i = 1, . . . , n

If i ∈ Ic then compute α by the Continuous search(α̃i
k, y

i
k, d

i
k;α)

If α = 0 then set αi
k = 0 and α̃i

k+1 = θα̃i
k .

else set αi
k = α, α̃i

k+1 = α.

else compute α by the Discrete Search(α̃i
k, y

i
k, d

i
k, ξk;α)

If α = 0 then set αi
k = 0 and α̃i

k+1 = max{1, �α̃i
k/2�}.

else set αi
k = α, α̃i

k+1 = α.

Set yi+1
k = yi

k + αi
kd

i
k and di

k+1 = di
k .

End For
If (yn+1

k )z = (xk)z and α̃i
k = 1, i ∈ Iz, then set ξk+1 = θξk else set ξk+1 =

ξk .
Find xk+1 ∈ X ∩ Z such that f (xk+1) ≤ f (yn+1

k ).
End For
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Continuous search (α̃, y, d;α)

Data. γ > 0, δ ∈ (0,1).
Step 1. Compute the largest ᾱ such that y + ᾱd ∈ X ∩ Z . Set α = min{ᾱ, α̃}.
Step 2. If α > 0 and f (y + αd) ≤ f (y) − γ α2 then go to Step 6.
Step 3. Compute the largest ᾱ such that y − ᾱd ∈ X ∩ Z . Set α = min{ᾱ, α̃}.
Step 4. If α > 0 and f (y − αd) ≤ f (y) − γ α2 then set d ← −d and go to
Step 6.
Step 5. Set α = 0 and return.

Step 6. While
(

α < ᾱ and f

(
y + α

δ
d

)
≤ f (y) − γ

α2

δ2

)

α ← α/δ.
Step 7. Set α ← min{ᾱ, α} and return.

Discrete search (α̃, y, d, ξ ;α)

Step 1. Compute the largest ᾱ such that y + ᾱd ∈ X ∩ Z . Set α = min{ᾱ, α̃}.
Step 2. If α > 0 and f (y + αd) ≤ f (y) − ξ then go to Step 6.
Step 3. Compute the largest ᾱ such that y − ᾱd ∈ X ∩ Z . Set α = min{ᾱ, α̃}.
Step 4. If α > 0 and f (y − αd) ≤ f (y) − ξ then set d ← −d and go to

Step 6.
Step 5. Set α = 0 and return.
Step 6. While (α < ᾱ and f (y + 2αd) ≤ f (y) − ξ )

α ← 2α.
Step 7. Set α ← min{ᾱ, α} and return.

and δ which are used, respectively, in the sufficient reduction criterion and for the
expansion of the step.

At every iteration k Algorithm DFL, starting from the current iterate xk , explores
all the coordinate directions and produces the intermediate points yi

k , i = 1, . . . , n.
When i ∈ Ic, that is for the continuous variables, the actual steps αi

k are computed
and the tentative steps α̃i

k are updated as described in [15]. When i ∈ Iz, the algorithm
performs a Discrete search which is very similar to the Continuous search procedure
except for the fact that the sufficient reduction is governed by the parameter ξk . The
updating formula of tentative steps α̃i

k is such that 1 ≤ α̃i
k ∈ Z.

Lemma 7 Let {xk}, {ξk}, {yi
k}, {αi

k}, {α̃i
k}, i = 1, . . . , n, the sequences produced by

Algorithm DFL. Then,

(i) Algorithm DFL is well-defined;
(ii) for all i ∈ Ic

lim
k→∞αi

k = 0, (8)
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lim
k→∞ α̃i

k = 0; (9)

(iii)

lim
k→∞ ξk = 0.

Proof In order to prove that Algorithm DFL is well defined, we have to ensure that
both the Continuous search and Discrete search procedures, when performed along
a direction di

k , with i ∈ {1, . . . , n}, terminates in a finite number j of steps. This is
clearly true since, by the instructions of the two procedures,

yi
k + δ−jαdi

k ∈ X for all i ∈ Ic,

yi
k + 2jαdi

k ∈ X for all i ∈ Iz,

and X, by assumption, is a compact set.
Now we prove assertion (ii). For every i ∈ Ic, we prove (8) by splitting the iteration

sequence {k} into two parts, K
′

and K
′′
. We identify with K

′
those iterations where

αi
k = 0 (10)

and with K
′′

those iterations where αi
k �= 0 is produced by the Continuous search.

Then the instructions of the algorithm imply

f (xk+1) ≤ f (yi
k + αi

kd
i
k) ≤ f (yi

k) − γ (αi
k)

2‖di
k‖2 ≤ f (xk) − γ (αi

k)
2‖di

k‖2
. (11)

Taking into account the compactness assumption on X, it follows from (11) that
{f (xk)} tends to a limit f̄ . If K

′′
is an infinite subset, recalling that ‖di

k‖ = 1 we
obtain

lim
k→∞,k∈K ′′ α

i
k = 0. (12)

Therefore, (10) and (12) imply (8).
In order to prove (9), for each i ∈ Ic we split the iteration sequence {k} into two

parts, K1 and K2. We identify with K1 those iterations where the Continuous search
procedure, along the direction di

k , returns an αi
k > 0, for which we have:

α̃i
k+1 = αi

k. (13)

We denote by K2 those iterations where we have failed in decreasing the objective
function along the directions di

k and −di
k . By the instructions of the algorithm it

follows that for all k ∈ K2

α̃i
k+1 ≤ θα̃i

k, (14)

where θ ∈ (0,1).
If K1 is an infinite subset, from (13) and (8) we get that

lim
k→∞,k∈K1

α̃i
k+1 = 0. (15)
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Now, let us assume that K2 is an infinite subset. For each k ∈ K2, let mk (we omit
the dependence from i) be the biggest index such that mk < k and mk ∈ K1. Then we
have:

α̃i
k+1 ≤ θ(k+1−mk)α̃i

mk
≤ α̃i

mk
(16)

(we can assume mk = 0 if the index mk does not exist, that is, K1 is empty).
As k → ∞ and k ∈ K2, either mk → ∞ (namely, K1 is an infinite subset) or

(k + 1 − mk) → ∞ (namely, K1 is finite). Hence, if K2 is an infinite subset, (16)
together with (15), or the fact that θ ∈ (0,1), yields

lim
k→∞,k∈K2

α̃i
k+1 = 0, (17)

so that (9) is proved, and this concludes the proof of point (ii).
Now we prove point (iii). By the instruction of Algorithm DFL the sequence {ξk} is

monotonically non-increasing, that is, 0 < ξk+1 ≤ ξk , for all k. Hence {ξk} converges
to a limit M ≥ 0. Let us suppose, by contradiction, that M > 0. If this were the case,
then an index k̄ > 0 would exist such that ξk+1 = ξk = M for all k ≥ k̄. Moreover, for
every index k ≥ k̄, a index ı̄ ∈ Iz (possibly depending on k) would exist such that

f (xk+1) ≤ f (yı̄
k ± αı̄

kd
ı̄
k) ≤ f (yı̄

k) − M ≤ f (xk) − M, (18)

otherwise the algorithm would have set ξk+1 = θξk . Relation (18) implies f (xk) →
−∞ thus contradicting the assumption that f is continuous on the compact set X,
and this concludes the proof. �

By Point (iii) of the preceding proposition and the updating rule of parameter ξk

in Algorithm DFL, it follows that the set

H = {k : ξk+1 < ξk}

is infinite.

Proposition 8 Let {xk} be the sequence of points produced by Algorithm DFL. Let
H ⊆ {1,2, . . .} be defined as in Lemma 7 and x∗ be any accumulation point of {xk}H ,
then

∇cf (x∗)T (x − x∗)c ≥ 0, for all x ∈ X.

Proof For any accumulation point x∗ of {xk}H , let K ⊆ H be an index set such that

lim
k→∞,k∈K

xk = x∗. (19)

Let us note that, by the instructions of Algorithm DFL, for all k ∈ K , (yn+1
k )z = (xk)z

and α̃i
k = 1, i ∈ Iz. Hence, for all k ∈ K , by recalling (19), the discrete variables are

no longer updated. Then the proof follows by analogous reasoning as in [15]. �
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Proposition 9 Let {xk}, {ξk}, {yi
k}, i = 1, . . . , n, be the sequence of points produced

by Algorithm DFL. Let H ⊆ {1,2, . . .} be defined as in Lemma 7 and x∗ be any ac-
cumulation point of {xk}H , then

f (x∗) ≤ f (x̄), for all x̄ ∈ Nz(x
∗) ∩ X.

Proof Let K ⊆ H be an index set such that

lim
k→∞,k∈K

xk = x∗.

For every k ∈ H , it results

(yn+1
k )z = (xk)z,

α̃i
k = 1, i ∈ Iz,

that is, no discrete variable is updated by the Discrete search procedure.
Let us consider any point x̄ ∈ Nz(x

∗)∩X. Then a direction d̄ ∈ D(x∗)∩Dz exists
such that

x̄ = x∗ + d̄. (20)

Recalling the definition of yi
k in Algorithm DFL and the definition of the discrete

neighborhood Nz(x), we have, for all k ∈ H and sufficiently large, that

(x∗)z = (xk)z = (yi
k)z, i = 1, . . . , n.

Further, by Lemma 7, we have

lim
k→∞,k∈K

yi
k = x∗, i = 1, . . . , n.

Then, (20) implies

(xk + d̄)j = (yi
k + d̄)j = (x∗ + d̄)j = (x̄)j , i = 1, . . . , n, j ∈ Iz.

Now, Proposition 6 guarantees that for k ∈ K and sufficiently large, a direction dı̄
k ∈

D(xk) ∩ Dz exists such that dı̄
k = d̄ , so that

(xk + dı̄
k)j = (yı̄

k + dı̄
k)j = (x∗ + dı̄

k)j = (x̄)j , j ∈ Iz,

for all k ∈ K and sufficiently large. Hence, for k sufficiently large and k ∈ K ,

yı̄
k + dkı̄ ∈ X ∩ Z.

Then, we have

f (yı̄
k + dı̄

k) > f (yı̄
k) − ξk. (21)

Now, by (iii) of Lemma 7, and taking the limit for k → ∞, k ∈ K in (21), the result
follows. �
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Theorem 10 Let {xk} be the sequence of points generated by Algorithm DFL. Let
H ⊆ {1,2, . . .} be defined as in Lemma 7. Then,

(i) a limit point of {xk}H exists;
(ii) every limit point x∗ of {xk}H is stationary for Problem (1).

Proof Point (i). Since {xk}H belongs to the compact set X, it admits limit points. The
prove of point (ii) follows by considering Propositions 8 and 9. �

3.2 A partially distributed algorithmic scheme

In this subsection we introduce a partially distributed Algorithm DFLord for bound
constrained nonlinear mixed variable programming problems. The algorithm consists
of two distinct phases. In the first one the continuous variables are updated by means
of distributed linesearches thus returning a point ỹ. Then, in the second phase, start-
ing from ỹ, the directions related to the discrete variables are investigated and the
point that yields the best objective function reduction is returned. Differently from
Algorithm DFL, the discrete search procedure only requires a simple reduction of
the objective function. Algorithm DFLord has slightly stronger convergence proper-
ties than DFL. Indeed, it is possible to show that every limit point of the sequence
of iterates generated by the algorithm is stationary for Problem (1). However, these
stronger convergence properties are balanced by a reduced flexibility in the discrete
variables exploration.

Proposition 11 Let {xk} be the sequence of points produced by Algorithm DFLord
and x∗ be an accumulation point. Then

∇cf (x∗)T (x − x∗)c ≥ 0, for all x ∈ X.

Proof The proof follows by analogous reasoning as in reference [15]. �

Proposition 12 Let {xk} be the sequence of points produced by Algorithm DFLord
and x∗ be an accumulation point. Then,

f (x∗) ≤ f (x̄),

for all x̄ ∈ N (x∗) ∩ X.

Proof Let K be an index set such that

lim
k→∞,k∈K

xk = x∗. (22)

By the instructions of Algorithm DFLord, we know that the sequence {f (xk)} is
monotonically non-increasing. Since by the stated assumptions the objective func-
tion is bounded from below, we have that {f (xk)} is convergent to a limit f ∗. Then,
we also have that

lim
k→∞,k∈K

f (xk) = f (x∗) = f ∗.
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Algorithm DFLord
Data. θ ∈ (0,1), x0 ∈ X ∩ Z , α̃i

0 > 0, i ∈ Ic, α̃i
0 = 1, i ∈ Iz, and set di

0 = ei , for
i = 1, . . . , n.

Ic = {1, . . . , r}, Iz = {r + 1, . . . , n}.

For k = 0,1, . . .

Set y1
k = xk .

For i = 1, . . . , r

compute α by the Continuous search (α̃i
k, y

i
k, d

i
k;α)

If α = 0 then set αi
k = 0 and α̃i

k+1 = θα̃i
k .

else set αi
k = α, α̃i

k+1 = α.

Set yi+1
k = yi

k + αi
kd

i
k and di

k+1 = di
k .

End For

For i = r + 1, . . . , n

compute α by the Discrete Search(α̃i
k, y

r+1
k , di

k,0;α)

If α = 0 then set αi
k = 0 and α̃i

k+1 = max{1, �α̃i
k/2�}.

else set αi
k = α, α̃i

k+1 = α.

Set yi+1
k = yr+1

k + αi
kd

i
k and di

k+1 = di
k .

End For
Set x̃k+1 = arg min

y∈{yr+1
k ,...,yn+1

k }
f (y).

Find xk+1 ∈ X ∩ Z such that f (xk+1) ≤ f (x̃k+1).
End For

Let us consider any point x̄ ∈ N(x∗) ∩ X. Then a direction d̄ ∈ D(x∗) ∩ Dz exists
such that

x̄ = x∗ + d̄.

We suppose, by contradiction that d̄ is such that

f (x∗ + d̄) = f (x∗) − δ < f (x∗), (23)

with δ > 0. Let ε > 0, and consider the neighborhood B(x∗; ε) such that

|f (x) − f (x∗)| ≤ δ/2,

|f (x + d̄) − f (x∗ + d̄)| ≤ δ/2,

for all x ∈ B(x∗; ε) ∩ X.
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By considering (22) and point (ii) of Lemma 7, we have that, for k ∈ K and suffi-
ciently large, yr+1

k ∈ B(x∗; ε) ∩ X. Further, Proposition 6 guarantees that for k ∈ K

and sufficiently large, an index j̄ > r exists such that a direction d
j̄
k ∈ D(xk) ∩ Dz

can be found such that d
j̄
k = d̄ and y

j̄+1
k satisfies

|f (y
j̄+1
k ) − f (x∗ + d̄)| ≤ δ/2. (24)

The above relation along with (23) implies that

f (y
j̄+1
k ) ≤ f (x∗) − δ/2.

Then, Algorithm DFLord would generate the new iterate xk+1 such that f (xk+1) ≤
f (x∗) − δ/2, thus contradicting the fact that {f (xk)} is convergent toward f (x∗) =
f ∗. �

Theorem 13 Let {xk} be the sequence of points generated by Algorithm DFLord.
Then,

(i) a limit point of {xk} exists;
(ii) every limit point of {xk} is stationary for Problem (1).

Proof The proof of point (i) follows by considering that {xk} belongs to the set X

which is compact by assumption. Point (ii) follows by considering Propositions 11
and 12. �

3.3 An algorithm converging toward strong stationary points

In this subsection we propose another algorithm for the solution of Problem (1) and
we prove that it is convergent to strong stationary points. In order to guarantee this
stronger convergence property, a deeper investigation of the discrete neighborhood
is carried out by a so-called “local search” procedure. The local search procedure
first performs a linesearch along the direction related to a discrete variable. Then, if
a point yielding a sufficient decrease of the objective function is found, it becomes
the current point. Otherwise, if a point z is found which is promising, that is, not
significantly worse in function value than the current point, a distributed search is
performed starting from z.

Algorithm SDFL along with the Local search procedure, generates some se-
quences and, in particular, the following sequences: {xk}, {ξk}, {yi

k}, {di
k}, {αi

k}, {α̃i
k},

{zi
k}, for i = 1, . . . , n. Moreover, we remark that the Local search procedure can be

viewed as a Discrete search enriched by a Grid search. More precisely, the Grid
search is used to better explore the neighborhood of a promising point z with respect
to the current point y, that is a point z such that f (y) − ξ ≤ f (z) < f (y) + ν.

Lemma 14 The Local search procedure is well-defined.

Proof In order to prove that procedure Local search is well-defined, we need to show
that the condition at Step 3 is eventually satisfied. Let us assume, by contradiction,
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Algorithm SDFL
Data. θ ∈ (0,1), ξ0 > 0, x0 ∈ X ∩ Z , α̃i

0 > 0, i ∈ Ic, α̃i
0 = 1, i ∈ Iz, and set

di
0 = ei , for i = 1, . . . , n.

For k = 0,1, . . .

Set y1
k = xk .

For i = 1, . . . , n

If i ∈ Ic then compute α by the Continuous search(α̃i
k, y

i
k, d

i
k;α)

If α = 0 then set αi
k = 0 and α̃i

k+1 = θα̃i
k .

else set αi
k = α, α̃i

k+1 = α.
Set di

k+1 = di
k .

else compute α by the Local Search(α̃i
k, y

i
k, d

i
k, ξk;α, z̃)

If α = 0 and z̃ �= yi
k then αi

k = 0, α̃i
k+1 = α̃i

k , set yn+1
k = z̃, di

k+1 =
di
k and Exit For

If α = 0 then
compute α by the Local

Search(α̃i
k, y

i
k,−di

k, ξk;α, z̃)

If α = 0 and z̃ �= yi
k then set αi

k = 0, α̃i
k+1 = α̃i

k ,

yn+1
k = z̃, di

k+1 = −di
k

and Exit For
If α = 0 then set αi

k = 0, α̃i
k+1 = max{1, �α̃i

k/2�}
and di

k+1 = di
k .

else set αi
k = α, α̃i

k+1 = α and di
k+1 = −di

k .
else set αi

k = α, α̃i
k+1 = α and di

k+1 = di
k .

Endif

Set yi+1
k = yi

k + αi
kd

i
k .

End For
If (yn+1

k )z = (xk)z and α̃i
k = 1, i ∈ Iz, then set ξk+1 = θξk else set ξk+1 =

ξk .
Find xk+1 ∈ X ∩ Z such that f (xk+1) ≤ f (yn+1

k ).
End For

the condition at Step 3 is never satisfied. If this was the case, then we would get a
contradiction with the compactness of set X. �

Lemma 15 Let {xk}, {ξk}, {yi
k}, {αi

k}, {α̃i
k}, i = 1, . . . , n, be the sequences produced

by Algorithm SDFL. Then,

(i) Algorithm SDFL is well-defined;
(ii) for all i ∈ Ic

lim
k→∞αi

k = 0, (25)
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Local search(α̃, y, d, ξ ;α, z̃)

Data. ν > 0.
Initialization. Compute the largest ᾱ such that y + ᾱd ∈ X ∩ Z . Set α =
min{ᾱ, α̃} and z = y + αd .
Step 0. If α = 0 or f (z) > f (y) + ν then Set z̃ = y, α = 0 and return.
Step 1. If α > 0 and f (z) ≤ f (y) − ξ then go to Step 2.

Else go to Step 4.
Step 2. While (α < ᾱ and f (y + 2αd) ≤ f (y) − ξ )

α ← 2α.
Step 3. Set α ← min{ᾱ, α} and z̃ = y + αd and return.
Step 4. (Grid search) Set z = y + αd .

Set w1 = z.
For i = 1, . . . , n

Let qi = ei .
If i ∈ Iz compute α by the Discrete Search(α̃i ,wi, qi, ξ ;α)

If α �= 0 and f (wi + αqi) ≤ f (y) − ξ then set z̃ = wi + αqi ,
α = 0 and return

If i ∈ Ic compute α by the Continuous search(α̃i ,wi, qi;α)

If α �= 0 and f (wi + αqi) ≤ f (y) − ξ then set z̃ = wi + αqi ,
α = 0 and return

Set wi+1 = wi + αqi.

End For
Set z̃ = y, α = 0 and return.

lim
k→∞ α̃i

k = 0; (26)

(iii)

lim
k→∞ ξk = 0.

Proof In order to prove that Algorithm SDFL is well defined, we have to ensure
that, when performed along a direction di

k , with i ∈ {1, . . . , n}, Step 1 and 2 of the
Local search procedure are executed a finite number j of times, since by Lemma 14
we already have that the Local search procedure is well-defined. By the instructions
of the Continuous search procedure, when Step 2 is executed, we have

yi
k + δ−jαdi

k ∈ X for all i ∈ Ic,

then, the proof of point (i) follows by recalling that X, by assumption, is a compact
set.

Now we prove assertion (ii). For every i ∈ Ic, we prove (25) by splitting the iter-
ation sequence {k} into two parts, K ′ and K ′′. We identify with K ′ those iterations
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where

αi
k = 0 (27)

and with K ′′ those iterations where αi
k �= 0 is produced by the Continuous search.

Then the instructions of the algorithm imply

f (xk+1) ≤ f (yi
k + αi

kd
i
k) ≤ f (yi

k) − γ (αi
k)

2‖di
k‖2 ≤ f (xk) − γ (αi

k)
2‖di

k‖2
. (28)

Taking into account the compactness assumption on X, it follows from (28) that
{f (xk)} tends to a limit f̄ . If K ′′ is an infinite subset, recalling that ‖di

k‖ = 1 we
obtain

lim
k→∞,k∈K

′′ α
i
k = 0. (29)

Therefore, (27) and (29) imply (25).
In order to prove (26), for each i ∈ Ic we split the iteration sequence {k} into two

parts, K1 and K2. We identify with K1 those iterations where the Continuous search
procedure, along the direction di

k , returns an αi
k > 0, for which we have:

α̃i
k+1 = αi

k. (30)

We denote by K2 those iterations where we have failed in decreasing the objective
function along the directions di

k and −di
k . By the instructions of the algorithm it

follows that for all k ∈ K2

α̃i
k+1 ≤ θα̃i

k, (31)

where θ ∈ (0,1).
If K1 is an infinite subset, from (30) and (25) we get that

lim
k→∞,k∈K1

α̃i
k+1 = 0. (32)

Now, let us assume that K2 is an infinite subset. For each k ∈ K2, let mk (we omit the
dependence from (i) be the biggest index such that mk < k and mk ∈ K1. Then we
have:

α̃i
k+1 ≤ θ(k+1−mk)α̃i

mk
≤ α̃i

mk
(33)

(we can assume mk = 0 if the index mk does not exist, that is, K1 is empty).
As k → ∞ and k ∈ K2, either mk → ∞ (namely, K1 is an infinite subset) or

(k + 1 − mk) → ∞ (namely, K1 is finite). Hence, if K2 is an infinite subset, (33)
together with (32), or the fact that θ ∈ (0,1), yields

lim
k→∞,k∈K2

α̃i
k+1 = 0, (34)

so that (26) is proved, and this concludes the proof of point (ii).
Now we prove point (iii). By the instruction of Algorithm SDFL the sequence

{ξk} is monotonically non-increasing, that is, 0 < ξk+1 ≤ ξk , for all k. Hence {ξk}
converges to a limit M ≥ 0. Let us suppose, by contradiction, that M > 0. If this was



G. Liuzzi et al.

the case, then an index k̄ > 0 would exist such that ξk+1 = ξk = M for all k ≥ k̄.
Moreover, it would result

f (xk+1) ≤ f (yn+1
k ) ≤ f (xk) − M, and (yn+1

k )z �= (xk)z, (35)

otherwise the algorithm would have set ξk+1 = θξk . Relation (35) implies f (xk) →
−∞ thus contradicting the assumption that f is continuous on the compact set X,
and this concludes the proof. �

By Point (iii) of the preceding proposition and the updating rule of parameter ξk

in Algorithm DFL, it follows that the set

H = {k : ξk+1 < ξk}
is infinite.

Proposition 16 Let {xk}, {ξk}, {yi
k}, {zi

k}, {αi
k}, {α̃i

k}, i = 1, . . . , n, be the sequence of
points produced by Algorithm SDFL. Let H ⊆ {1,2, . . .} be defined as in Lemma 15.
Then,

(i) the subsequence {xk}H admits limit points;
(ii) every limit point x∗ of {xk}H is a strong stationary point for Problem (1).

Proof Point (i) is proved by considering that {xk}H belongs to X which is compact
by assumption.

Point (ii). Let x∗ be a limit point of {xk}H and K ⊆ H be an index set such that

lim
k→∞,k∈K

xk = x∗.

By recalling the definition of Strong Stationary Point, we have to show that x∗ satis-
fies (3) and (4), and, for all x̄ ∈ Nz(x

∗) ∩ X such that f (x̄) = f (x∗), it holds that

∇cf (x̄)T (x − x̄)c ≥ 0, for all x ∈ X, (36)

f (x̄) ≤ f (x) for all x ∈ Nz(x̄) ∩ X. (37)

Recalling the fact that the Local search is an enrichment of the Discrete search
defined in Sect. 3.1. Hence, the limit points produced by Algorithm SDFL surely
satisfy Properties (3) and (4) which can be derived by using Propositions 8 and 9.

Now we have to show that (36) and (37) hold. For any choice of x̄ ∈ Nz(x
∗) ∩ X

such that f (x̄) = f (x∗), and, reasoning as in Proposition 9, we can find a subse-
quence {zı̄

k}K , for some index ı̄ ∈ {1,2, . . . , n}, such that,

lim
k→∞,k∈K

zı̄
k = x̄, (38)

and, for all k ∈ K and sufficiently large, that

(x̄)z = (zı̄
k)z.
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Let us consider any point x̃ ∈ Nz(x̄)∩X. Then a direction d̃ ∈ D(x̄)∩Dz exists such
that

x̃ = x̄ + d̃. (39)

Then, (39) implies

(zı̄
k + d̃)j = (x̄ + d̃)j = (x̃)j , j ∈ Iz.

Now, Proposition 6 guarantees that for k ∈ K and sufficiently large, a direction d
j̄
k ∈

D(zk) ∩ Dz exists such that d
j̄
k = d̃ , so that

(zı̄
k + d

j̄
k )j = (x̄ + d

j̄
k )j = (x̃)j , j ∈ Iz,

for all k ∈ K and sufficiently large. Hence, for k sufficiently large and k ∈ K ,

zı̄
k + d

j̄
k ∈ X ∩ Z.

Then, we have

f (zı̄
k + d

j̄
k ) > f (yı̄

k) − ξk. (40)

Now, recalling (38) and that, by Lemma 15,

lim
k→∞,k∈K

yı̄
k = x∗, lim

k→∞,k∈K
ξk = 0, (41)

relation (37) follows by taking the limit for k → ∞, k ∈ K in (40), and considering
that, by assumption, f (x̄) = f (x∗).

Then we show that point x̄ is stationary with respect to the continuous variables,
that is (36) holds.

For every k ∈ K , it results that

f (zı̄
k) = f (w1

k) ≥ f (w2
k) ≥ · · · ≥ f (wn

k ) > f (yı̄
k) − ξk. (42)

Taking the limit for k → ∞, k ∈ K in (42), and considering (38) and (41) and that,
by assumption, f (x̄) = f (x∗), we obtain that

lim
k→∞,k∈K

f (wi
k) = f (x̄), i = 1, . . . , n. (43)

For every i ∈ Ic such that

f (wi
k + α̃i

kq
i
k) > f (wi

k) − γ (α̃i
k)

2,

we have that wi+1
k = wi

k and, by Lemma 15, α̃i
k → 0, for all i ∈ Ic.

On the other hand, for those indices i ∈ Ic such that

f (wi
k + αi

kq
i
k) ≤ f (wi

k) − γ (αi
k)

2,
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we have that wi+1
k = wi

k + αi
kq

i
k and αi

k → 0, by (43). Hence, since w1
k = zı̄

k , by (38),
zı̄
k → x̄ and α̃i

k → 0 and αi
k → 0, for k ∈ K , we have that

lim
k→∞,k∈K

wi
k = x̄. (44)

Now, for k sufficiently large, D(x̄) ⊆ D(xk). Since the grid search step in the
Local search procedure explores, for every index i, both the directions ei and −ei .
Thus, for every i ∈ Ic and d̄ i ∈ D(x̄), we can define ηk as follows:

ηk =
{

α̃i
k if f (wi

k + α̃i
kd̄

i ) > f (wi
k) − γ (α̃i

k)
2,

αi
k

δ
if f

(
wi

k + αi
k

δ
d̄i

)
> f (wi

k) − γ
(αi

k

δ

)2.
(45)

Then we can write

f (wi
k + ηkd̄

i) − f (wi
k)

ηk

> −γ ηk.

By taking the limit, for k → ∞ and k ∈ K , in the above relation and recalling that
ηk → 0, we obtain

∇cf (x̄)T d̄i ≥ 0,

which, by recalling Proposition 5, concludes the proof. �

4 Numerical experience

In this section we report the results obtained using the two algorithms DFL and SDFL
on a set of well-known test problems in continuous optimization which have been
suitably modified by letting some variables assume only a finite number of values. In
particular, for every even index i, variable xi ∈ Xi with

Xi =
{
li + h

(ui − li )

10

}
for h = 0, . . . ,10.

First we use a set of test problems for local optimization [8, 10, 18]. On these prob-
lems we compare the performances of the proposed algorithms DFL, SDFL and of the
state-of-the-art solver for derivative-free mixed integer nonlinear optimization NO-
MAD release 3.4.1 [2, 11]. We remark that NOMAD is designed for more general
optimization problems, as it does not require the objective function to be continuously
differentiable, and allows nonsmooth constraints. Then we use a set of test problems
for global optimization [7, 9, 20] in order to highlight the differences between DFL
and SDFL.

DFL and SDFL have been implemented in Fortran90. All the codes have been run
on an Intel Core2 quad CPU 2.66 GHz with 4 GB main memory. DFL and SDFL have
been run using a tolerance 10−3 in the stopping condition on the trial steps along the
search directions. As for NOMAD, all the experiments have been conducted by using
its default parameters except for MIN_MESH_SIZE = 10−3 to be comparable with
the stopping condition of DFL and SDFL.
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Table 1 Comparison between Algorithms DFL, SDFL, and NOMAD

Problem n f0 DFL SDFL NOMAD

f ∗ nF f ∗ nF f ∗ nF

helval 3 5.068E+01 1.113E+00 66 1.113E+00 66 1.113E+00 188

biggsexp6 6 3.105E+00 5.741E-03 88 1.697E-03 935 1.884E-03 4379

gaussian 3 1.146E+00 2.595E-02 36 2.595E-02 58 2.595E-02 75

powbad 2 8.100E+09 9.998E+07 17 9.998E+07 17 9.998E+07 20

box 3 1.958E+00 4.974E-02 36 4.974E-02 46 4.974E-02 78

vardim 10 1.187E+06 9.454E+02 81 9.454E+02 81 9.454E+02 505

watson 9 1.225E+03 2.842E-01 154 2.230E-01 889 2.231E-01 3754

watson12 12 4.924E+02 1.434E-01 316 1.491E-01 1764 1.352E-01 20000

penalty1 10 3.022E+01 1.733E-01 81 1.733E-01 235 1.733E-01 1489

penalty2 4 4.968E+01 4.593E-01 33 4.593E-01 53 4.593E-01 134

penalty10 10 6.828E+02 2.582E+00 83 2.582E+00 164 2.582E+00 1118

brownbad 2 1.282E+12 2.210E+10 58 2.210E+10 62 2.210E+10 29

brownden 4 7.946E+06 1.679E+05 45 1.679E+05 45 1.679E+05 77

gulf 3 2.891E+01 5.025E-01 100 5.025E-01 100 5.025E-01 212

trig 10 4.843E+01 2.432E-03 196 2.007E-03 905 2.009E-03 3552

banex 2 9.252E+01 2.000E-02 22 2.000E-02 27 2.000E-02 94

powellex 4 4.369E+01 1.210E+00 37 1.210E+00 73 1.210E+00 181

beale 2 2.706E+01 2.240E-02 34 2.240E-02 57 2.241E-02 73

wood 4 1.902E+02 1.639E+00 39 1.639E+00 74 1.639E+00 391

hs1 2 3.034E+03 1.257E+00 45 7.589E-01 50 1.724E-01 39

hs2 2 6.340E+02 1.257E+00 42 1.257E+00 46 5.453E+00 15

hs3 2 1.000E-03 0.000E+00 39 0.000E+00 43 0.000E+00 39

hs4 2 3.199E+00 2.667E+00 10 2.667E+00 13 2.667E+00 10

hs5 2 5.125E+02 7.711E-01 48 7.711E-01 48 7.838E-01 21

hs25 3 3.283E+01 2.250E-03 454 2.250E-03 468 1.197E-02 571

hs38 4 4.200E+01 4.154E+01 80 4.154E+01 80 4.156E+01 76

hs45 5 1.969E+00 1.000E+00 50 1.000E+00 65 1.000E+00 275

hs229 2 1.000E+00 7.711E-01 33 7.711E-01 33 7.731E-01 28

hs242 3 7.660E+01 0.000E+00 45 0.000E+00 50 0.000E+00 125

hs247 3 8.100E+01 4.930E-30 55 4.930E-30 55 6.250E-02 34

hs257 4 4.200E+01 3.571E+01 90 3.571E+01 90 3.573E+01 51

hs307 2 2.567E+02 1.935E+02 29 1.935E+02 29 2.567E+02 9

hs328 2 1.770E+00 1.744E+00 28 1.744E+00 57 1.744E+00 36

hs357 4 1.000E+20 5.700E+02 388 4.000E-01 297 3.635E-01 814

hs358 5 1.227E+01 2.832E-01 183 2.727E-01 855 1.387E-01 5399

hs368 8 0.000E+00 -1.000E+00 63 -1.000E+00 230 -1.000E+00 583

In the following tables we report, besides the problem name, number of variables
(n), objective function value on the starting point (f0), and, for every code, the at-
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Table 2 Comparison between Algorithms DFL, SDFL on a set of global optimization problems

Problem n f0 DFL SDFL

f ∗ nF f ∗ nF

hartman 6 6 -5.0531499E-01 -3.3028103E+00 145 -3.3028151E+00 967

shekel 10 4 -8.6461583E-01 -3.8345346E+00 80 -2.8710205E+00 213

Ackley 5 1.7887799E+01 3.3009720E+00 139 3.3009720E+00 159

Ackley 10 1.7887799E+01 3.6222893E+00 277 3.0822555E+00 830

Ackley 20 1.7887799E+01 3.6222892E+00 591 3.0822555E+00 5961

Michalewics 5 0.0000000E+00 0.0000000E+00 9 0.0000000E+00 33

Michalewics 10 0.0000000E+00 0.0000000E+00 21 -2.0772108E+00 931

Michalewics 20 0.0000000E+00 -1.8861830E-01 166 -3.8945454E+00 4491

Rastrigin 5 1.5190125E+02 8.8440377E+01 126 8.8440377E+01 126

Rastrigin 10 3.0380249E+02 1.8130265E+02 230 1.8130265E+02 230

Rastrigin 20 6.0760498E+02 3.6260529E+02 465 3.6260529E+02 465

15n min. 5 5.0000001E-01 1.9625382E-01 128 1.9625382E-01 424

15n min. 10 1.0000000E+00 9.8882650E-02 243 9.8882650E-02 1132

15n min. 20 2.0000000E+00 9.8882650E-02 493 9.8882650E-02 3662

tained function value (f ∗) and the number of function evaluations required to satisfy
the stopping condition (nF).

From Table 1, we can notice that Algorithm DFL outperforms both SDFL and
NOMAD in terms of function evaluations. Furthermore, in terms of final objective
function values SDFL and NOMAD are comparable and perform slightly better than
DFL, but SDFL is less expensive, in terms of function evaluations, than NOMAD. In
order to better assess the improved convergence properties of algorithm SDFL with
respect to DFL, we run the two codes on a set of global optimization problems. In
Table 2, we report such a comparison. Both methods perform identically on the Ras-
trigin problems. On all other test problems SDFL requires more function evaluations
than DFL. On one problem the SDFL solution is slightly worse than that of DFL,
but it is significantly better on five test problems. In summary, Tables 1 and 2 reveal
that SDFL often outperforms DFL at the expense of additional function calls. The
expense of a higher number of function evaluations.

5 Conclusions

In this paper we have addressed the bound constrained mixed integer problem. First,
we have defined stationary and strong stationary points and then we have proposed
different algorithms and proved their convergence properties. The first two algorithms
converge toward stationary points whereas the last algorithm converges toward strong
stationary points. All of the proposed algorithms are of the linesearch-type. Along
the continuous variables we adopt a well-studied linesearch with sufficient decrease
strategy. The algorithms differ in the local search procedure that is used to update
the discrete variables. A common feature of the three algorithms is that they explore
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a discrete neighborhood of points whose structure is not defined a priori but it is
adaptively determined by a linesearch-type procedure. Algorithm DFL performs a
minimization distributed along all the variables, in the sense that the current point is
updated as soon as a point yielding a sufficient reduction of the objective function is
found. Algorithm DFLord, first approximately minimizes the objective function with
respect to the continuous variables. Then, the directions related to the discrete vari-
ables are investigated and the point that yields the best objective function reduction
is returned. In this sense, DFLord can be seen as a partially distributed linesearch al-
gorithm. Finally, Algorithm SDFL, in order to guarantee stronger convergence prop-
erties, performs a deeper investigation of the discrete neighborhood by a local search
procedure. In the paper, we also carried out a numerical experience with the algo-
rithms DLF and SDFL and compared them with the well-known software package
NOMAD. The results show the good behavior of the proposed algorithms and high-
light the usefulness of the improved convergence properties of Algorithm SDFL.

As concerns future developments, we aim at extending the proposed approach to
tackle the presence of general nonlinear constraints.

Acknowledgements Work partially funded by the UE (ENIAC Joint Undertaking) in the MODERN
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