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Abstract—Hospitals are huge and complex systems. However,
for many years the management was commonly focused on
improving the quality of the medical care while less attention was
usually devoted to operations management. In recent years, the
need of containing the costs while increasing the competitiveness
along with new policies of National Health Services hospital
financing forced hospitals to necessarily improve their operational
efficiency.

In this work we focus on a management problem usually
arising in health care. In particular, we deal with optimal
resources allocation of a ward of a big hospital. To this aim
we propose a simulation–based optimization approach based on a
discrete event simulation model reproducing the hospital services
and combined with a derivative–free multiobjective optimization
method. The results obtained on the obstetrics ward of an
Italian hospital are reported, showing the effectiveness of the
new approach proposed.

Note to Practitioners—In the last years, reducing health care
costs while providing high quality health care services became
a critical issue. Hence the necessity to make available to health
care practitioners a decision support system for determining an
optimal resources allocation.

In this paper, we develop a simulation-based optimization
framework that combines a simulation model reproducing the
main processes of a specific hospital ward with a multiobjective
optimization algorithm in order to find an approximate optimal
resources allocation.

The proposed approach can be used in practice by decision
makers in order to adjust the allocation of resources in a given
ward. The results obtained on a real obstetrics ward of an Italian
hospital show that the proposed approach is viable in practice
and allow practitioners to adopt the best strategy according to
specific indicators related to clinical risk, quality of the care

provided, economical benefits both for patients, hospitals and
for the National Health Service.
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optimization, Derivative–free multiobjective optimization meth-
ods.
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I. INTRODUCTION

IN the last years, controlling health care costs while pro-

viding the best possible health outcomes became a more

and more critical issue (see e.g. [1], [2], [3]). Moreover,

recently in many National Health Services (NHS), health

care services providers financing has changed from a budget-

oriented system to a fee-for-service system. As a consequence,

an optimal resources allocation is now strongly needed.

Hence the central role of the so called health care operations

management that, according to [4], stands for “the quantitative

management of the supporting business systems and processes

that transform resources into health care services”. In this

context, again quoting from [4], logistics is “the efficient

coordination and control of the flow of all the operations—

including patients, personnel, and other resources”.

In particular, the efficient management logistics of a hospital

ward along with the design and performance evaluation of

any hospital department is greatly important (see e.g. [5]).

The choice of the resources (number of beds, doctors, nurses,

and so on) to be employed, the patient flows, the supply

chain management, the inventory management, the operational

planning and scheduling, the staffing level and other similar

items strongly affect the management costs and the income,

as well as the quality of the services. The health care services

of a hospital essentially represent specialized procedures for

diagnosing or treating a disease of a given patient. Reducing

the overall costs for delivering such services is currently at the

forefront of any health care operations management.

On the basis of these observations, in this paper we consider

the optimal resources allocation of the emergency room and

obstetrics ward of a big hospital. The services under study are

the caesarean section without complications or comorbidities

and the vaginal childbirth without complications or comorbidi-

ties. In this case, the sources of the costs are several and mainly

due to staff salaries and management of medical equipments

and consumable goods. The incomes derive from the refunds

through the NHS of the services delivered.

In the allocation of the resources of a hospital ward several

constraints must be taken into account. They are either struc-

tural constraints or deriving from clinical and regulatory needs.

For an obstetrics ward a crucial role is played by the rate

of caesarean sections with respect to the overall childbirths.

Indeed, due to the higher risk for mother or child in the case of

caesarean delivery [6], this rate should be low. Since 1985, the

World Health Organization (WHO) recommends a caesarean
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sections rate not higher than 15% (of the overall childbirths),

but in many OECD countries1 this value is often widely

exceeded [7]. In recent decades the rate of caesarean sections

has been even increasing in some countries usually because

of economic reasons related to a lower profit associated to the

natural childbirth. For instance, Italian National NHS standard

would require a threshold value of 25%, but in some regions

of Italy the value is over 40%.

Therefore, the current goals of an obstetrics ward should be

maximizing the overall net profit and minimizing the caesarean

sections rate. Thus, two contrasting objectives must be taken

into account in the operations management of the ward.

Discrete Event Simulation (DES) methods have been widely

used over the last decade for modelling health care systems

and analyzing their performance (see e.g. [8], [9], [10]).

The use of simulation models is motivated by the need of

considering patient flow dynamics and all uncertainties related

to activities of health care providers which cannot be described

by means of analytical models. Therefore, an health care

system is represented by a stochastic model whose output is

a random vector sampled by computer simulation. Moreover,

simulation methods enable to examine the responses obtained

for a number of different input combinations (scenarios). Very

often the number of scenarios considered in a DES approach

is very small due to high computational burden. However, in

practical problems usually the “best scenario” is sought. To

this aim, recently such DES methods have been combined with

optimization techniques (see e.g. [11], [12]). Hence, the term

simulation optimization (or simulation–based optimization)

commonly used to refer to this combination. However, quoting

from [11], “combining the two techniques is a more recent

development and software effectively integrating the two is

relatively limited; thus, simulation optimization remains an

exciting and fertile area of research”.

Indeed, for many years most of the optimization routines

available in commercial simulation packages were based only

on evolutionary algorithms and metaheuristics. More recently,

many deterministic optimization algorithms have been em-

ployed in the simulation optimization context (see [13] for

a recent survey). However, very often, real problems involve

multiple objective functions, i.e. many conflicting objects must

be optimized, but as far as we are aware, almost all the

optimization algorithms embedded within simulation packages

are only for single objective problems, or reduce to this case

by aggregating the different objective functions into a single

one. The latter procedure could be a serious drawback within

a support decision system, since the solution will consist of a

single point and no choice is left to the decision maker. Instead,

when the problem is multiobjective, the solution provided

in the form of a set of (nondominated) points allows the

decision maker to choose among different strategies, according

to specific demands or preferences.

To deal with the aforementioned optimal resources alloca-

tion problem of an obstetrics ward, in this paper we propose

to represent the behavior of the given ward by means of a

1Countries members of the Organisation for Economic Co-operation and

Development

DES model and optimize its performance by using a novel

Derivative-Free Multiobjective Optimization method. In [14]

the management of an obstetrics ward was already tackled by

the same authors of this paper, but a single objective model

was considered, being the objective to be maximized only the

net profit. In that model, only the growth of the rate of cae-

sarean sections was controlled by adding a constraint (an upper

bound) to that rate according to the WHO recommendations.

The paper is organized as follows. In Section II, a literature

review is reported. Section III describes the methodology used

in our work, namely the service delivery description, the model

formulation, the DES model, the derivative–free multiobjective

algorithm and the implementation. Section IV includes the

case study, namely the resources allocation problem for the

obstetrics ward of one of the most important Italian hospital

for childbirth located in Rome. In Section V some concluding

remarks and future study directions are reported, along with

some policy recommendations.

II. RELATED WORKS

In the recent years, multiobjective simulation optimization

techniques have been used in many different contexts: in-

dustrial engineering, systems management, design technology,

production and inventory planning and many others. Some

examples are described in the papers [15], [16], [17], [18],

[19], [20], However, very few papers have been published

proposing the use of multiobjective optimization in connec-

tion with a DES model without reducing the multiobjective

problem to a single objective problem. Namely, the so called

“a priori” articulation of preferences approach is applied, i.e.

the multiobjective optimization is transformed into a single

objective one by aggregating the different objective functions.

However, as well known, this procedure presents a serious

drawback since in this case the solution is very sensitive to

the preferences used [21].

In health care, multiobjective simulation optimization

method have been also used in some cases study. As example,

in [22], Baesler and Sepulveda developed a methodology inte-

grating simulation and Genetic Algorithms to solve a problem

with four objectives arising in health care treatment. In [23]

the authors study the inpatient flow process of a large acute–

care hospital by means of multiobjective DES optimization.

However, also in the health care framework, the multiobjec-

tive problem is usually transformed into a single objective one.

At this regards, see also the discussion reported in Section II

of [24]. The latter very recent paper [24] by Song, Qiu and

Liu represents the closest to our approach. Indeed, they studied

the optimal patient flow distribution both “intra-hospital” and

“inter-health care facilities” by integrating a DES model and an

multiobjective optimization algorithm. Their aim is to improve

the overall system performance by finding an approximate

Pareto set representing the patient flow distribution.

III. METHODOLOGY

This work is based on a simulation–based optimization

methodology. First we construct a DES model reproducing

the real patients flows through the Emergency Room to the
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obstetric ward. Then a careful validation of the model is

performed to guarantee its good accuracy. The simulation

model is then used to estimate some relevant performance

indexes related to the processes of interest. Since the problem

is stated as a bi-objectives optimization problem, a derivative–

free multiobjective algorithm is connected to the simulation

model by using a suitable interface. The simulation opti-

mization procedure is then executed starting form the current

operating condition of the ward. Finally, results are analyzed

and compared with those obtained by an “a priori” preferences

based approach which aggregates the two objective functions

into a single one.

A. Service Delivery Description

The service delivery under study is related to the caesarean

section without complications or comormidities and the vagi-

nal childbirth without complications or comormidities which

are the most common health services provided by hospitals.

The service delivery can be described as follows: pregnant

women go through the Emergency Room. Also pregnant

women for which a caesarean section was scheduled in ad-

vance arrive to the ER for registration and verification. At the

beginning, nurses perform a first triage and assign a priority. In

case of a scheduled caesarean section the patient flows directly

to the ward, and wait for the availability of an operating room.

Otherwise another triage (a specialistic one) is performed by

obstetricians along with a continuous fetal monitoring. More-

over, a gynaecologist visits the patient, confirms or changes

the assigned priority, decides if the hospitalization is required

and if a caesarean section is needed or not. As concerns the

subsequent activities, the patients undergo different treatments

on the basis of the assigned priority. Patients which do not

need hospitalization are discharged. The patients flow keeps

on as described in the sequel.

• Those patients for which the highest priority is confirmed

(or newly assigned) need to quickly flow to delivery room

in case of vaginal childbirth or to the operating room

in case of caesarean section. Therefore the availability

of a bed or a stretcher in the ward is checked, and the

patient is driven to the required room, eventually waiting

for its availability. After the delivery, the patient remains

for a while in the room under observation, then if a

bed is available she is driven to the ward, otherwise

she settles herself on a stretcher. If neither a bed or a

stretcher is available, due to the emergency, the delivery

takes place anyhow, but both woman and newborn are not

hospitalized and after a period under observation they

are transferred to another hospital. In the sequel, this

occurrence will be named “extra” childbirth or “extra”

delivery.

• The patients with a low assigned priority (i.e. which do

not need an immediate delivery), undergo some visits

and clinical exams in order to decide if hospitalization

is needed. If it is not required, the patient is discharged,

otherwise the availability of a bed in the ward or a

stretcher is checked. In case of no availability, the patient

is transferred to another hospital. Otherwise, the patient

is driven to the ward and prepared for the delivery. After

the childbirth the women goes back to her bed, if it has

been previously assigned, otherwise (i.e. only a stretcher

was assigned to the patient) a check is carried out to

verify if in the meantime a bed has been released. If no

accommodation is available, the patient will settle herself

again on a stretcher.

The length of the hospitalization depends on the delivery: it

usually lasts less in the case of vaginal childbirth (e.g., 2 days)

than in case of caesarean section (e.g., 3 days). Finally, the

discharge of mother and newborn from the hospital can occur

only in a specific time slot when a gynecologist in charge of

this task is available.

In Figure 1, the main patient flow (the pregnant women

for which a caesarean section is not scheduled in advance)

and the related service processes are reported. Note that two

other more simple patients flows (not reported in Figure 1)

are also included in the model: pregnant women for which

a caesarean section is scheduled in advance and women that

need hospitalization in the ward with diagnosis different from

childbirth. Even if the patients belonging to the latter flows

are not part of the services under study, if hospitalized in the

ward, they use ward resources and hence must be considered.

In this organization, the sources of the costs are several

and mainly due to staff salaries and management of medical

equipments, consumable goods and utilization of the operating

rooms. The income derives from the refunds through the NHS

of the services delivered. At each choice of the resources

corresponds a different “case-mix”, i.e. a different number of

patients to treat for each of the two kind of childbirth. The

allocation of the resources is subject to several constraints.

They are structural constraints or derive from clinical and

regulatory needs.

The hospital top managers require the maximization of

the net profit determined by the overall childbirths and the

minimization of the caesarean rate. These are two goals which

are contrasting since the profit for a caesarean section is greatly

higher than the one for natural childbirth.

B. Model Formulation

The variables represent the resources which can be con-

trolled by the hospital manager. Namely there are 7 counters

zi of allocated resources and one service demand indicator t1:

z1 : number of stretchers

z2 : number of gynecologists

z3 : number of gynecologists who discharge a patient

from the hospital

z4 : number of nurses

z5 : number of midwives

z6 : number of hospital beds

z7 : number of operating rooms

t1 : mean value of the patient interarrival time (in hours).

Note that, even if t1 is not a resource, its value can be

controlled due to the possibility, in some cases, to reduce or

rise admissions of patients by adopting appropriate strategies.

We denote by z = (z1, z2, z3, z4, z5, z6, z7) ∈ Z
7 the vector

of the integer variables and by t = t1 ∈ R the real variable.
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Fig. 1. Patient flow for pregnant women for which a caesarean section is not scheduled in advance
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Moreover, the patient case-mix of the service provider is

given by the following 6 counters yj (expressed as number of

patients per year):

y1 : number of caesarean sections

y2 : number of vaginal childbirths

y3 : number of “extra” caesarean sections

y4 : number of “extra” vaginal childbirths

y5 : number of hospitalized woman not for childbirths

y6 : number of woman transferred to another hospital

before the childbirth.

Actually, they are estimates of the expected values of the

output of the service delivery model which depends on z and

t. In practice, the values yj = yj(z, t), j = 1, . . . , 6, are

obtained as an average over the output of a certain number of

independent replications of the simulation. We denote by

y(z, t) = (y1(z, t), y2(z, t), y3(z, t), y4(z, t), y5(z, t), y6(z, t))

this response vector.

The objective functions are two: the first one represents the

net profit to be maximized and can be stated as follows:

f1(z, t) = Pcs(y1(z, t)− y3(z, t)) + Pvc(y2(z, t)− y4(z, t))

−C1 max{0, z1 − z01} − C2 max{0, z2 − z02}

−C3 max{0, z3 − z03} − C4 max{0, z4 − z04}

−C5 max{0, z5 − z05} − C6 max{0, z6 − z06}

−C7 max{0, z7 − z07} − C8z1 − C9z6.

The first two terms correspond to the profit due to caesarean

sections (cs) and vaginal childbirths (vc), being Pcs and

Pvc the corresponding unit profit. The terms of the form

Ci max{0, zi − z0i } correspond to set up costs and the last

two terms correspond to some additional costs for stretchers

and beds utilization.

The second objective function represents the rate of cae-

sarean sections (with respect to the overall childbirths) to be

minimized and it can be stated as follows:

f2(z, t) =
y1(z, t)− y3(z, t)

y1(z, t)− y3(z, t) + y2(z, t)− y4(z, t)
.

The constraints are general constraints and box constraints

on the variables. They are derived from some guidelines of

the NHS or from local clinical and logistic requirements:

• a lower bound on the number of caesarean sections

to guarantee a minimum number of expected caesarean

sections per year

y1(z, t) ≥ Y 1
min;

• a lower bound on the overall number of childbirths per

year required by some guidelines in order to guarantee a

good efficiency of the ward

y1(z, t) + y2(z, t) ≥ Y 12
min;

• a lower bound on the overall patient occupation rate in

order to avoid the underutilization of the ward; this rate is

defined as the ratio between the effective overall length

of the patients stay and the (theoretical) length of stay

available

1

365(z1 + z6)

(

Lvc(y2(z, t)− y4(z, t))

+Lcs(y1(z, t)− y3(z, t)) + Lothersy5(z, t)

)

≥ Orate;

• an upper bound on the number of transferred women

before delivery imposed to keep low the risks of transfers

y6(z, t) ≤ Trate(y1(z, t) + y2(z, t)).

The box constraints, namely lower and upper bound on

the variables zi , i = 1 . . . , 7, are mainly due to budget and

logistic restrictions, while for t1 derive from specific clinical

and managerial policy on patients admission. They are the

following:

Z l
1 ≤ z1 ≤ Zu

1

Z l
2 ≤ z2 ≤ Zu

2

Z l
3 ≤ z3 ≤ Zu

3

Z l
4 ≤ z4 ≤ Zu

4

Z l
5 ≤ z5 ≤ Zu

5

Z l
6 ≤ z6 ≤ Zu

6

Z l
7 ≤ z7 ≤ Zu

7

T l
1 ≤ t1 ≤ T u

1 .

Thus, the resulting problem is a bi-objective mixed integer

nonlinearly constrained problem with box constraints on the

variables z and t, namely a problems of the following general

form

min F (z, t) = (f1 (z, t) , . . . , fl (z, t))
⊤

g1 (z, t) ≤ 0

... (1)

gm (z, t) ≤ 0

0 ≤ lz ≤ z ≤ uz

0 ≤ lt ≤ t ≤ ut

where the objective functions fh, h = 1, . . . l and the general

constraints gi, i = 1, . . . ,m are real valued functions, fh, gi :
Z
p×R

q×R
r −→ R. The distinguishing feature of this problem

with respect the one considered in [14] is the multiobjective

formulation, i.e. the presence of two of objective functions.

C. Discrete-Event Simulation model

The simulation model of the Hospital ER and obstetrics

ward is implemented by using Arena 14.7 simulation software

[25], [26], a general–purpose simulation environment and one

of the most popular DES software. In order to construct an

accurate simulation model, a database containing all the data

related to hospitalizations (e.g. hospital childbirth records,

hospital discharge forms, all cost and income items) of a

given period is needed. By simple database queries, it is

possible to obtain clinical and economical information for each
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childbirth. Our particular focus is on: operational times of

any activity of the entire service delivery; interarrival times

of pregnant women to the Emergency Room; arrival times of

pregnant women for which a caesarean section was scheduled

in advance; percentage of the different priorities assigned to

patients at the obstetric triage; information on all the possible

movements of patients.

On the basis of these information it is possible to perform

an accurate input analysis for determining the service-time

probability distributions (with the related parameters) of all

the processes used in the model along with the corresponding

resources seized.

D. Derivative-free multiobjective optimization algorithm

In this section, we describe the algorithm used to deal

with the mixed integer nonlinear multiobjective optimization

problem (1) within the simulation-based optimization frame-

work. Since both the objective functions and constraints values

come from a simulation tool, there is no way to obtain first

order information for the problem. Therefore, derivative based

methods cannot be used in this context. Furthermore, due

to the presence of noise coming from the simulation runs,

finite-differences derivative cannot be applied (since wrong

estimates of the first order derivatives would be obtained).

Hence, a Derivative-Free Optimization (DFO) approach needs

to be considered in this case (see [27] for an overview on DFO

methods).

The proposed approach is basically obtained by the com-

bination of the DFMO method proposed in [28], which is

an efficient DFO algorithm for constrained multiobjective

continuous problems, with a rounding step that guarantees

satisfaction of the integrality constraints. The main features

of the algorithm are the following:

• An exact penalty approach, which is needed in order to

handle the constraints g1, . . . , gm. Those constraints are

simply removed from the model, and a penalty measuring

their violation is included in the objective functions.

Hence, the new problem to be solved is

min Z (z, t; ǫ) = (Z1 (z, t; ǫ) , . . . , Zl (z, t; ǫ))
⊤

0 ≤ lz ≤ z ≤ uz

0 ≤ lt ≤ t ≤ ut

where, for all h = 1, . . . , l,

Zh(z, t; ǫ) = fh(z, t) +
1

ǫ

m
∑

i=1

max {0, gi(z, t)} ,

is the so called penalty function, and ǫ > 0 is the penalty

parameter (used for weighting the penalty term).

• The use of a list of “candidate” Pareto points that evolves

as the algorithm goes on. In practice, at each iteration,

the list is updated by including new suitably generated

nondominated points and by filtering those ones that

become dominated.

• A line-search approach for obtaining the new nondomi-

nated points.

At each iteration, first a search direction is generated.

Then, starting from each point in the list, a line-search

is performed along that direction. More specifically, a

point is suitably selected along the given direction and,

in case it satisfies a specific condition of “sufficient”

decrease (i.e. there exists at least one objective function

that reduces enough), a “sufficiently” large movement is

performed in order to generate some new nondominated

points. This way of moving along the search direction is

somehow needed in order to guarantee that the points are

properly spread and get close enough to the real Pareto

front.

• A rounding step, performed in order to guarantee that

variables z satisfy integrality constraints. In the algorithm,

integrality is relaxed and all variables are considered

continuous. Hence, before passing the point to the simu-

lation software, the algorithm needs to properly round z

variables up:

zj = ⌊zj + 0.5⌋, for all j = 1, . . . , p.

More specifically, the k-th iteration of the algorithm can

be summarized in the scheme reported below, where
[

z, t
]

r

denotes the projection (followed by a proper rounding) of the

point (z, t) on the box-feasible set of the previous multiobjec-

tive problem, and γ is a positive constant:

Algorithm 1 Scheme of the algorithm (iteration k)

1 given the list Lk of “candidate” Pareto points;

2 choose a direction dk = (dkz , d
k
t );

3 compute all
[

z̃ + α̃dkz , t̃ + α̃dkt
]

r
where (z̃, t̃) ∈ Lk and α̃

is an initial stepsize associated to (z̃, t̃);

4 if there exists (ẑ, t̂) ∈ Lk such that

Zh(
[

z̃ + α̃dkz , t̃+ α̃dkt
]

r
; ǫ) > Zh(ẑ, t̂; ǫ)− γα2

for every h = 1, . . . , l,
then

[

z̃ + α̃dkz , t̃+ α̃dkt
]

r
is rejected and α̃ is halved;

else

- α̃ is doubled until (ẑ, t̂) ∈ Lk exists such that

Zh(
[

z̃+2r̂α̃dkz , t̃+2r̂α̃dkt
]

r
; ǫ) > Zh(ẑ, t̂; ǫ)−γ(2r̂α̃)2

for every h = 1, . . . , l;

- α̃ is updated to the value 2r̂−1α̃:

- Lk+1 is constituted by all non-dominated points con-

tained in the set

Lk ∪
{

[z̃ + 2iα̃dkz , t̃+ 2iα̃dkt ]r : i = 0, . . . , r̂ − 1
}

;

endif

In the continuous case, if the sequence {dk} of the search

directions used in the algorithm satisfies a suitable assumption,

the previous algorithm has interesting theoretical properties.

Indeed, in [28] it is proved that every accumulation point of

a sequence of points belonging to the candidates list satisfy

necessary optimality conditions to be a Pareto point.
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E. Implementation

As we already mentioned, the simulation model of the

Hospital ER and obstetrics ward is implemented by using

Arena 14.7 simulation software. Afterwards, in order to con-

nect this model with an implementation of DFMO algorithm

described in Section III-D, an interface between the Fortran90

code of the optimization algorithm and Arena simulation

software is constructed. The Visual Basic for Applications

(VBA) tool included in Arena is used to this aim.

The procedure implemented is the following: the DFMO

algorithm selects the values for the decision variables (z, t).
These values are transferred to the Arena model and a prefixed

number of independent simulation runs are performed to

estimate the response vector y. The DFMO algorithm uses

these responses to select new values for the decision variables

to transfer to Arena. The loop is carried on until a stopping

criterion is satisfied.

IV. CASE–STUDY

The case study considers the optimal resources allocation of

the emergency room and obstetrics ward of the Fatebenefratelli

San Giovanni Calibita (FBF-SGC) Hospital in Rome. It is one

of the most important hospitals of the Italian NHS in terms of

number of childbirth cases. The study was carried out within

a project named “Business Simulation for Healthcare” (BuS-

4H) by a research group composed by doctors, managers,

engineers, statisticians and other experts in health care. A

database containing all the data concerning the hospitalizations

for a two years timeline was expressly constructed for this

project. This allowed us to easily obtain the data needed to

build an accurate simulation model.

A. Input Analysis

In the sequel, we report the details of the main stochastic

processes in the simulation model. Namely, we specify the

probability distributions and the resources involved.

As regards the arrival processes to the system, we distin-

guish three kind of arrivals: pregnant women going through

the ER, pregnant women for which a caesarean section was

scheduled in advance (also going through the ER), women

which flow to the ward for diagnosis different from childbirth.

The probability distribution of the interarrival times (in hours)

are reported in Table I.

TABLE I
ARRIVALS PROCESSES

Pregnant women Pregnant women with Women with
(to the ER) scheduled caesarean section different diagnosis

(to the ER) (to the ward)

EXP(2.4) fixed schedule Gamma(7.9,1.25)

In case of caesarean sections scheduled in advance, the

arrivals scheme is based on a timeline of seven days and fixed,

namely one, two or three arrivals from 8:00 a.m to 10:00 a.m.

for each day.

As concerns the processes of the service delivery, in Table II

we report the probability distribution of the service times,

TABLE II
SERVICE DELIVERY PROCESSES

service times resources

First triage Triangular(3, 5, 10) 1 nurse
(minutes)

Specialistc triage
(fetal monitoring) Normal(30, 2) 1 midwife
and visit (minutes) 1 gynaecologist

Delivery in the 1 midwife
operating room Uniform(70, 90) 1 gynaecologist
(caesarean section) (minutes) 1 operating room

Delivery in the 1 midwife
delivery room Uniform(8, 10) 1 gynaecologist
(vaginal childbirth) (hours) 1 delivery room

1 gynecologist
Discharging Constant who discharge

5 minutes a patient

along with the resources required. The time for the delivery

room includes a period of observation just after the delivery,

while an additional time of 2 hours of observation at the

surgical unit must be considered just after a caesarean section.

All the queues discipline are based on the priority assigned in

the triage. The only exception regards the queue discipline

of the discharging process which is first come, first served,

taking into account that gynecologists who discharge a patient

are available only between 8:00 and 12:00 a.m.

As regards the stay at the ward, it depends on the type of

delivery (vaginal childbirth and caesarean section). Moreover,

a short stay before delivery and a stay after delivery is

usually expected. Finally, women hospitalized in the ward for

a diagnosis different from childbirth require a different stay.

Table III reports the probability distributions of the stay times

(in hours). Moreover, on the basis of the data available, we

TABLE III
STAY TIMES AT THE WARD

before delivery after delivery

Caesarean Uniform(0.17,0.25) 48+Lognormal(87.8, 162)
section

Vaginal Uniform(1,1.7) 20+Lognormal(2.68, 1.21)
childbirth

Different Gamma(200, 0.501)
diagnosis

infer the following probabilities of assigning the priority in

the first triage and the conditional probabilities to confirm or

change this priority in the second triage (see Table IV). In case

of a caesarean section scheduled in advance, the lowest priority

is conventionally assigned. As expected, in most cases, the

priority assigned at the first triage is confirmed in the second

one. Finally, as concerns the decision on the hospitalization,

85% of pregant women arriving at the ER (excluding the

caesarean sections scheduled in advance) are hospitalized.
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TABLE IV
PRIORITIES ASSIGNEMENT

First triage

Priority 1 Priority 2 Priority 3
0.4 0.3 0.3

Second triage

Priority 1 0.9 0.1 0.05
Priority 2 0.05 0.8 0.2
Priority 3 0.05 0.1 0.75

B. Model verification/validation and design of experiments

A careful verification of the simulation model has been

carried out by using standard techniques (e.g. self-inspection,

structured walkthrough, interactive debugger). An interaction

on regular basis with the hospital management was really help-

ful, too. Moreover, thanks to the availability of the operating

information of the ER and obstetrics ward of the hospital, a

careful validation of the model was possible, by comparing the

responses of the simulation model with the real observations in

correspondence of some relevant indexes (e.g., the case-mix).

As regards the design of experiments, the length of a

simulation run was set to one year, the number of replications

was 10 and the warm-up period was 42 days.

C. Current state

The current operating condition of the FBF-SGC, i.e. the

values currently used in the hospital for the resources are

denoted by (z0, t0) and reported in Table V.

TABLE V
RESOURCES FOR THE CURRENT OPERATING CONDITION

z0
1

z0
2

z0
3

z0
4

z0
5

z0
6

z0
7

t0
1

10 5 1 1 6 42 1 2.400

The patient case-mix (estimate of the expected values)

corresponding to the current operating condition (denoted by

y0) obtained from simulation is reported in Table VI.

TABLE VI
PATIENT CASE-MIX FOR THE CURRENT OPERATING CONDITION

y0
1

y0
2

y0
3

y0
4

y0
5

y0
6

883.40 2514.70 12.80 220.60 1080.00 551.70

The cost parameters (which appears in the first objective

function f1) are specified in Table VII.

The resulting net profit and the rate of caesarean sec-

tions corresponding to the current operating condition are

f1(z
0, t0) = 400876.00 euros and f2(z

0, t0) = 0.27, respec-

tively.

The values of the parameters of the general constraints are

reported in Table VIII.

Finally, Table IX reports lower and upper bounds of the box

constraints. Moreover, since in the obstetrics ward of FBF-

SGC Hospital three beds are in each room, it is required that

z6 = 3ℓ, ℓ ∈ Z.

TABLE VII
COSTS PARAMETERS (IN EUROS)

Pcs 382.00

Pvc 309.00

C1 4500.00

C2 10352.00

C3 10352.00

C4 9589.00

C5 9589.00

C6 5000.00

C7 50000.00

C8 2737.00

C9 14600.00

TABLE VIII
GENERAL CONSTRAINTS PARAMETERS

Y 1

min
Y 12

min
Lvc Lcs Lothers Orate Trate

500 3500 3.3 5.0 5.0 0.75 0.25

D. Optimization experiments

In the experiments, the current operating condition, namely

the point (z0, t0), is taken as starting point even if it is

infeasible. This is possible since the optimization algorithm

used is based on an exact penalty approach. We refer to [28]

for all the details concerning the algorithm DFMO and its

implementation.

The use of the DFMO algorithm enables us to obtain a set

of Pareto points whose objective functions values are reported

in Table X.

These results clearly point out that, as expected, starting

from the current operating condition and due to the tight

constraints provided (especially the small width of the box

constraints) the decrease of the caesarean section rate with

respect to the current one is moderate. Indeed, from the value

0.27 corresponding to the current operating condition the least

value obtained is approximately 0.23. Anyhow, a decrease by

4% is assessed relevant from the hospital management.

As regards the net profit, a significant increase can be ob-

tained with respect to the current one, namely from 400876.00
euros to at least 499632.00 euros. Of course, to a higher

value of the profit corresponds a higher caesarean sections

rate. In Table XI, the values of the resources (z, t) for the

two “best” points are reported, namely the one corresponding

to the best value of the net profit and the one corresponding

to the best value of the caesarean sections. In between, the

TABLE IX
LOWER AND UPPER BOUND CONSTRAINTS PARAMETERS

l u

z1 8 15

z2 2 7

z3 1 3

z4 1 5

z5 2 9

z6 33 45

z7 1 3

t1 1.000 4.000
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TABLE X
PARETO POINTS OBJECTIVE FUNCTIONS VALUES

net profit (euros) c.s. rate

f1 f2
1 499632.00 0.22966
2 510629.30 0.22973
3 523259.60 0.22986
4 527757.40 0.22987
5 530838.20 0.23085
6 538476.40 0.23147
7 546969.00 0.23246
8 553506.00 0.23359
9 560811.10 0.23383
10 565000.90 0.23483
11 572146.00 0.23846

TABLE XI
RESOURCES VALUES CORRESPONDING TO THE TWO “BEST” POINTS

z∗
1

z∗
2

z∗
3

z∗
4

z∗
5

z∗
6

z∗
7

t∗
1

point 1 15 7 1 1 6 45 1 1.805
point 11 15 5 1 1 6 42 1 1.753

remaining points are other nondominated points representing

“intermediate” solutions. It is worthwhile to highlight that to

provide a set of (nondominated) points (instead of a single

point) as solution enables the hospital managers to select the

strategy to be adopted according to their preferences (or some

special needs).

By comparing Table XI with Table V, it can be easily

observed that, the improvements in terms of net profit and/or

in terms of rate of caesarean sections are obtained even if few

changes are required with respect to the present setting. This

is very appreciated by the hospital managers, since they can

adopt new strategies without dramatically changing the current

conditions.

The DFMO algorithm used in our simulation optimization

framework belongs to the so called class of methods with “a

posteriori” articulation of preferences, i.e. methods which try

to reconstruct the whole Pareto front for the multiobjective

problem under analysis. As far as the authors are aware,

this is a novel feature in the solution of a simulation–based

multiobjective optimization problem. Indeed, the optimization

procedures embedded in simulation packages are usually able

to only tackle single objective problems (see e.g. OptQuest

for Arena [29]). In other cases, methods with “a priori”

articulation of preferences are adopted to handle the multiob-

jective problems. This means, as we already said, that objective

functions are combined into a single one by means of an

aggregation criterion (see e.g. [30]) and the original problem

is transformed into a single objective one. As consequence,

this class of algorithms provides a unique solution point.

In order to compare the results obtained by using the DFMO

algorithm and those obtained by transforming the original

multiobjective into a single objective one, we transformed

the bi-objective problem from our case study into a single

objective problem by means of weighted sum of the two

objective functions f1 and f2. Namely, we defined several

combinations of the form

η1
f1(z, t)

f1(z0, t0)
+ η2

f2(z, t)

f2(z0, t0)
, (2)

where η1 ≥ 0, η2 ≥ 0, η1 + η2 = 1.

We tried several combinations obtained by selecting dif-

ferent weights η1 and η2. For each combination we applied

the DFL (single objective) algorithm proposed in [31], i.e.

the same used in [14], obtaining one solution point for each

combination. For sake of brevity we do not report the detailed

results of this experiment, but we only display in Figure 2

(top) these points (red squares) along with the points obtained

by DFMO and reported in Table X (blue circles). Note that the

values on the y-axis are reported with the minus sign, since

the multiobjective problem is reformulated in terms of the

minimization of the two objective functions. It can be easily

seen that all the points obtained by different minimizations

of the transformed single objective problem are dominated

by the points obtained by DFMO algorithm which represent

an approximate Pareto front. Note that both the strategies

aim at finding approximations of local Pareto optimal points.

However, the obtained results seem to indicate that the use of

a list of candidate Pareto points allows the proposed DFMO

algorithm to have better global properties.

In order to assess the robustness of the proposed approach,

we performed further experiments by considering two differ-

ent scenarios. In particular, we focused on processes where

uncertainty is a more critical issue, in the sense that changes

in the probability distributions related to these processes may

significantly change the performance of the overall system.

They are the service delivery processes (see Table II). The

two situations we considered are reported in Table XII. The

first scenario corresponds to an improvement on the services

provided with respect to the real case study (obtained by

considering a decrease of the service delivery times), while the

second one is related to a worsening (obtained by considering

an increase of the service delivery times). Even though those

two scenario can be considered reasonable (according to the

experts analysis), each one represents a critical problem from

the multiobjective optimization point of view. We will analyze

in depth this fact hereinafter.

TABLE XII
TWO SCENARIOS OF THE SERVICE DELIVERY PROCESSES

Scenario 1 Scenario 2

First triage Triangular(2, 3, 7) Triangular(6, 7, 10)
(minutes) (minutes)

Specialistc triage
(fetal monitoring) Normal(20, 2) Normal(40, 2)
and visit (minutes) (minutes)

Delivery in the
operating room Uniform(50, 70) Uniform(80, 100)
(caesarean section) (minutes) (minutes)

Delivery in the
delivery room Uniform(6, 8) Uniform(10, 12)
(vaginal childbirth) (hours) (hours)

Discharging Constant Constant
5 minutes 5 minutes
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Fig. 2. Approximate Pareto front for the original two–objectives problem
(blue circles), and points obtained by different minimizations of the trans-
formed single–objective problem (red squares) - Real Case Study (top),
Scenario 1 (center), Scenario 2 (bottom)

In Figure 2 (center), we report the points obtained for

the Scenario 1. In this case, thanks to the reduction of the

service delivery times, we get that the interarrival times may

be reduced (so that more pregnant women may arrive to the

ER) still maintaining the general constraints inactive. This is

due to the fact that, to a decrease of the service delivery times,

somehow corresponds a reduction of the conflict existing

between the two objectives. Hence, when using our approach

we get that the points in the final list are clustered in some

way (it is almost like we get a single point). When considering

the points obtained aggregating the objective functions, we can

notice that there is no cluster effect and all those points are

dominated by the points generated by our algorithm. Such a

bad behavior might be due to the fact that the single objective

algorithm easily gets stuck in local solutions.

In Figure 2 (bottom), we report the points obtained for the

Scenario 2. In this case, the increase of the service delivery

times gets the resources management crucial, thus making the

problem harder to be solved. Indeed, this implies that the two

objectives become more conflicting, and it is also easier to get

stuck in local solutions. By observing the figure, we notice that

our algorithm is able to generate a Pareto front, but the number

of points obtained is smaller than the number of points in

the Pareto front obtained for the original case study. Anyway,

aggregating the objective functions gets worse results, since

a single point is obtained that is dominated by the Pareto

front generated by our algorithm. Hence, we can conclude

that our approach is fairly robust, also when compared with

the approach based on the aggregation of functions. Indeed,

it gives good results for the original case study and it also

“reacts” properly when considering changes of the parameters

of the probability distributions leading to the two critical

scenarios considered.

In Figure 3, we finally report a comparison with OptQuest

for Arena [29] on the original case study. OptQuest is the

optimization tool included in the Arena package and it is one

of the most commonly used optimization algorithms in the

simulation based optimization context. We highlight that, since

OptQuest only performs single objective optimization, we

need to aggregate the two objective functions. To this aim we

use the same approach described before, i.e. the weighted sum

defined in (2). Regarding the parameters used in OptQuest,

they were all set to their default values. The tolerance used

in the stopping criterion is the same for both the algorithms.

As we can easily see by observing the figure, the Pareto front

obtained by our method is better than the one obtained by

OptQuest. Indeed, we get a larger number of points with a

better distribution.

0.22 0.23 0.24 0.25
−6

−5.5

−5

−4.5
x 10

5
Comparison with OptQuest

 

Fig. 3. Comparison between our approach (blue circles) and OptQuest (green
diamonds) on the real case study

As final remark, we highlight that, from the computational

point of view, the use of DFMO algorithm is less expensive

with respect the approaches which aggregate the two objective

functions. This is due to the fact that the latter approaches
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require a complete run of the simulation–optimization process

for each generated point. Therefore a significant computational

saving is also obtained by using our approach.

V. CONCLUSION AND FUTURE RESEARCH

This paper proposes a novel approach for health care

services management. In particular, the use of a simulation

optimization approach is described for the optimal resources

allocation of a ward of a big hospital.

From the methodological point of view, the main contri-

bution of this work is the use of a simulation optimization

framework, which integrates a DES model and an optimization

algorithm, allowing to study the problem in hand as a mul-

tiobjective optimization problem. Then, the DFMO algorithm

used enables to obtain an approximate Pareto set of points.

From the practical point of view, this work represents an

attempt to provide a quantitative framework for deciding the

resource allocation in a hospital ward. This is an innovative

contribution since the choice of such resources is usually left to

managers which rarely make use of a decision support system.

Moreover, the solution of the multiobjective formulation of

the problem is provided as a set of points and this helps

decision makers to propose the best strategy according to

specific indicators related to clinical risk, quality of the care

provided, economical benefits both for patients, hospitals and

for the NHS.

The application of the approach proposed in this paper to a

specific case study, namely the FBF-SGC Hospital in Rome,

showed its reliability and allowed significant improvements of

the system performance and its efficiency.

As regards future research, two different directions may be

followed. On the multiobjective optimization side, it would

be crucial developing suitable algorithms for mixed integer

problems that guarantee better theoretical and computational

properties. On the simulation side, it would be important to

use more complex and detailed models that give a better

description of the real phenomenon under analysis.
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[9] M. Günal and M. Pitt, “Discrete event simulation for performance mod-

elling in health care: a review of the literature,” Journal of Simulation,
vol. 4, pp. 42–51, 2010.

[10] B. Mielczarek and J. Uzialko-Mydlikowska, “Application of computer
simulation modeling in the health care sector: a survey,” Simulation-

Transactions of the Society for Modeling and Simulation International,
vol. 88, no. 2, pp. 197–216, 2012.

[11] M. C. Fu, Ed., Handbook of Simulation Optimization. New York:
Springer, 2015.

[12] M. C. Fu, G. Bayraksan, S. G. Henderson, B. L. Nelson, W. B. Powell,
I. O. Ryzhov, and B. Thengvall, “Simulation optimization: a panel on
the state of the art in research an practice,” in Proceedings of the 2014

Winter Simulation Conference. IEEE, 2014, pp. 3696–3706.
[13] S. Amaran, N. Sahinidis, B. Sharda, and S. Bury, “Simulation opti-

mization: a review of algorithms and applications,” 4OR, vol. 12, pp.
301–333, 2014.

[14] S. Lucidi, M. Maurici, L. Paulon, F. Rinaldi, and M. Roma, “A
derivative-free approach for a simulation-based optimization problem
in healthcare,” Optimization Letters, vol. 10, pp. 219–235, 2016.

[15] H. Ding, L. Benyoucef, and X. Xie, “Stochastic multi-objective produc-
tion distribution network design using simulation-based optimization,”
International Journal of Production Research, vol. 47, no. 2, pp. 479–
505, 2009.

[16] L. H. Lee, S. Teng, E. P. Chew, K. W. Lye, P. Lendermann, I. A.
Karimi, Y. Chen, and C. H. Koh, “Application of multi-objective
simulation-optimization techniques to inventory management problems,”
in Proceedings of the 2005 Winter Simulation Conference. IEEE, 2005,
pp. 1684–1691.

[17] A. Sallem, M. Fakhfakh, E. Tlelo-Cuautle, and M. Loulou, “Multi-
objective simulation-based optimization for the optimal design of analog
circuits,” in 2011 International Conference on Microelectronics (ICM).
IEEE, 2011, pp. 1–4.

[18] A. Sallem, B. Benhala, M. Kotti, M. Fakhfakh, A. Ahaitouf, and
M. Loulou, “Simulation-based multi-objective optimization of current
conveyors: Performance evaluations,” in 7th International Conference

on Design Technology of Integrated Systems in Nanoscale Era (DTIS).
IEEE, 2012, pp. 1–5.

[19] J. A. Joines, M. A. Gupta, D. and. Gokce, R. E. King, and K. M. G.,
“Supply chain multi-objective simulation optimization,” in Proceedings

of the 2002 Winter Simulation Conference. IEEE, 2002, pp. 1308–1314.
[20] A. Ammar, H. Pierreval, and S. Elkosantini, “A multiobjective simu-

lation optimization approach to define teams of workers in stochastic
production systems,” in 2015 International Conference on Industrial

Engineering and Systems Management (IESM). IEEE, 2015, pp. 977–
986.

[21] K. Miettinen, Nonlinear Multiobjective Optimization. Kluwer Aca-
demic Publishers, 1999.

[22] F. Baesler and J. Sepulveda, “Multi-objective simulation optimization:
A case study in healthcare management,” International Journal of

Industrial Engineering: Theory, Application and Practice, vol. 13, no. 2,
pp. 156–165, 2010.

[23] Y. Wang, L. H. Lee, E. P. Chew, S. S. W. Lam, S. K. Low, M. E. H.
Ong, and H. Li, “Multi-objective optimization for a hospital inpatient
flow process via discrete event simulation,” in Proceedings of the 2015

Winter Simulation Conference. IEEE, 2015, pp. 3622–3631.
[24] J. Song, Y. Qiu, and Z. Liu, “Integrating optimal simulation budget

allocation and genetic algorithm to find the approximate Pareto patient
flow distribution,” IEEE Transactions on Automation Science and Engi-

neering, vol. 13, no. 1, pp. 149–159, 2016.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 12

[25] Arena User’s guide, Rockwell Automation, 2010, Allen–Bradley, Rock-
well Software.

[26] W. Kelton, R. Sadowski, and D. Sturrock, Simulation with Arena,
Fourth ed. McGraw–Hill, 2007.

[27] A. Conn, K. Scheinberg, and L. Vicente, Introduction to derivative–free

Optimization, ser. MOS/SIAM Series on Optimization. Philadelphia,
MA: SIAM, 2009.

[28] G. Liuzzi, S. Lucidi, and F. Rinaldi, “A derivative-free approach to
constrained multiobjective nonsmooth optimization,” 2015, available at
http://www.optimization-online.org/DB HTML/2015/07/5037.html.

[29] OptQuest for Arena User’s guide, Rockwell Automation, 2012, Allen–
Bradley, Rockwell Software.

[30] C. Audet, G. Savard, and W. Zghal, “Multiobjective optimization
through a series of single-objective formulations,” SIAM Journal on

Optimization, vol. 19, no. 1, pp. 188–210, 2008.
[31] G. Liuzzi, S. Lucidi, and F. Rinaldi, “Derivative-free methods for mixed–

integer constrained optimization problems,” Journal of Optimization

Theory and Applications, vol. 164, pp. 933–965, 2015.


