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Abstract In this work, we propose a global optimization approach for mixed-integer
programming problems. To this aim, we preliminarily define an exact penalty algo-
rithm model for globally solving general problems and we show its convergence prop-
erties. Then, we describe a particular version of the algorithm that solves mixed-integer
problems and we report computational results on some MINLP problems.

Keywords Mixed-integer programming · Global optimization ·
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1 Introduction

Many real-world problems in Engineering, Economics and Applied Sciences can be
formulated as a nonlinear minimization problem where some of the variables only
assume integer values. A reasonable approach can be that of transforming the original
problem into an equivalent continuous problem. A number of different transformations
have been proposed in the literature (see, e.g. [1,4,8,15–17]). A particular continuous
reformulation, which comes out by relaxing the integer constraints on the variables and
by adding a penalty term to the objective function, was first described by Ragavachari
in [18] to solve zero-one linear programming problems. There are many other papers
closely related to the one by Ragavachari (see, e.g. [5,7,9,10,14,19]). In [7], the
exact penalty approach has been extended to general nonlinear integer programming
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problems. In [19], various penalty terms have been proposed for solving zero-one con-
cave programming problems. In [14], the results described in [7] have been generalized.
Furthermore, it has been shown that a general class of penalty functions, including the
ones proposed in [19], can be used for solving general nonlinear integer problems.

In this work, we propose an exact penalty method for globally solving mixed-integer
programming problems. We consider a continuous reformulation of the original prob-
lem using a penalty term like that proposed in [14]. It is possible to show that, under
weak assumptions, there exists a threshold value ε̄ > 0 of the penalty parameter ε

such that, for any ε ∈ (0, ε̄], any solution of the continuous problem is also a solu-
tion of the related integer problem (see [14] for further details). On these bases, we
describe an algorithm that combines a global optimization technique for solving the
continuous reformulation for a given value of the penalty parameter ε and an automatic
updating of ε occurring a finite number of times. The main feature of the algorithm is
that the sequence of points {xk} generated is convergent to a solution of the original
mixed-integer programming problem.

The paper is organized as follows. In Sect. 2 we recall a general result concerning
the equivalence between an unspecified optimization problem and a parameterized
family of problems. In Sect. 3, we describe an exact penalty global optimization algo-
rithm model for solving general problems based on the equivalence result reported
in Sect. 2 and we show its convergence properties. In Sect. 4, we describe an exact
penalty algorithm for globally solving mixed integer problems based on the model
described in Sect. 3. Finally, in Sect. 5 we report preliminary computational results
on some MINLP problems.

2 A general equivalence result

We start from the general nonlinear constrained problem:

min
x∈W

f (x) (1)

where W ⊂ R
n and f (x) : R

n → R.
For any ε ∈ R+, we consider the following problem:

min
x∈X

f (x) + ϕ(x, ε). (2)

where W ⊆ X ⊂ R
n , and ϕ(·, ε) : R

n → R. In (1), (2) and in the sequel, “min”
denotes global minimum.

Throughout the paper, we make the following two assumptions:

Assumption 1 f is bounded on X , and there exists an open set A ⊃ W and real
numbers α, L > 0, such that, ∀ x, y ∈ A, f satisfies the following condition:

| f (x) − f (y)| ≤ L‖x − y‖α. (3)

Assumption 2 the function ϕ satisfies the following conditions:
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(i) ∀x, y ∈ W , and ∀ ε ∈ R+

ϕ(x, ε) = ϕ(y, ε).

(ii) There exists a value ε̂ and, ∀z ∈ W , there exists a neighborhood S(z) such that
∀ x ∈ S(z) ∩ (X \ W ), and ε ∈]0, ε̂], we have:

ϕ(x, ε) − ϕ(z, ε) ≥ L̂‖x − z‖α (4)

where L̂ > L and α is chosen as in (3). Furthermore, let S = ⋃
z∈W S(z), ∃ x̂ /∈ S

such that:

lim
ε→0

[ϕ(x̂, ε) − ϕ(z, ε)] = +∞, ∀ z ∈ W, (5)

ϕ(x, ε) ≥ ϕ(x̂, ε), ∀ x ∈ X \ S, ∀ ε > 0. (6)

The following Theorem shows that, when assumptions on f and ϕ hold, Problems (1)
and (2) are equivalent.

Theorem 1 Let W and X be compact sets. Let ‖ · ‖ be a suitably chosen norm. Then,
∃ ε̃ ∈ R+ such that, ∀ε ∈]0, ε̃], Problems (2) and (1) have the same minimum points.

Proof See [14]. ��

3 An exact penalty algorithm model

In this section, we introduce the EXP (EXact Penalty) algorithm model for finding a
solution of Problem (1) and we analyze its convergence properties.

EXP Algorithm

Data. k = 0, ε0 > 0, δ0 > 0, α > 0, β > 0, σ ∈ (0, 1).

Step 1. Compute xk ∈ X such that

f (xk) + ϕ(xk, εk) ≤ f (x) + ϕ(x, εk) + δk (7)

∀ x ∈ X .

Step 2. If xk /∈ W and

[ f (xk) + ϕ(xk, εk)] − [ f (zk) + ϕ(zk, εk)] ≤ εkβ‖xk − zk‖α (8)

where zk ∈ W minimizes the distance between xk and S(zk),

then εk+1 = σεk, δk+1 = δk .

Else εk+1 = εk, δk+1 = σδk .

Step 3. Set k = k + 1 and go to Step 1.
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In the algorithm, at Step 1 the point xk is a δk-global minimizer of Problem (2). At
Step 2, we check feasibility of the current solution xk , and, in case xk is feasible, we
reduce the value of δk for finding a better approximation of the optimal solution of
Problem (2). When xk is not feasible, we use test (8) to verify if an updating of the
penalty parameter is timely. The sets S(zk) are those ones used in Assumption 2.

Throughout the paper we assume, without any loss of generality, that the scaling
parameter β = 1. We preliminarily prove the following Lemma, that will be used to
state the convergence properties of the EXP Algorithm. In the Lemma, we assume
that the sequence {xk} is well defined. It means that the δk-global minimizer of the
penalty function can always be found. The compactness of X is sufficient to ensure
that this assumption holds.

Lemma 1 Let {xk} be the sequence produced by the EXP Algorithm. One of the fol-
lowing possibilities hold:

(1) an index k̄ exists such that for any k ≥ k̄, εk = ε̄ and every accumulation point
of the sequence belongs to the set W;

(2) {εk} → 0, and every accumulation point of a subsequence {xk}K , with k ∈ K the
set of indices such that test (8) is satisfied, belongs to the set W;

Proof We consider two different cases:

Case (1) an index k̄ exists such that for any k ≥ k̄, εk = ε̄: By contradiction, let us
assume that there exists a subsequence {xk}K → x̄ such that x̄ /∈ W . Since for any
k ≥ k̄, we have that εk = ε̄, then the test (8) is not satisfied:

f (zk) − f (xk) < ϕ(xk, ε̄) − ϕ(zk, ε̄) − ε̄‖xk − zk‖α (9)

from which we have

f (zk) + ϕ(zk, ε̄) < f (xk) + ϕ(xk, ε̄) − ε̄‖xk − zk‖α (10)

and, by using (7), we get the following contradiction

f (zk) + ϕ(zk, ε̄) < f (xk) + ϕ(xk, ε̄) − ε̄‖xk − zk‖α ≤ f (zk) + ϕ(zk, ε̄)

+δk − ε̄‖xk − zk‖α (11)

where δk → 0 and ε̄‖xk − zk‖α → ρ̄ > 0.
Case (2) {εk} → 0:
Once again, by contradiction, we assume that there exists a limit point x̄ of the
subsequence {xk}K such that x̄ /∈ W . We define a subsequence {xk}K̂ → x̄ , with

K̂ ⊂ K .
If a subsequence {xk}K̃ , with K̃ ⊂ K̂ , exists such that xk ∈ S(zk), by taking into
account (4) into assumption (ii) of Theorem 1 and the test (8), we obtain

L̂‖xk − zk‖α ≤ ϕ(xk, εk) − ϕ(zk, εk) ≤ f (zk) − f (xk) + εk‖xk − zk‖α. (12)
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Then by assumption 1 we can write

L̂‖xk − zk‖α ≤ ϕ(xk, εk) − ϕ(zk, εk) ≤ f (zk) − f (xk) + εk‖xk − vzk‖α

≤ (L + εk)‖xk − zk‖α, (13)

and by taking into account the fact that {εk} → 0, we obtain the contradiction
L̂ ≤ L .
On the other hand, if the subsequence {xk}K̂ is such that xk /∈ S(zk), the choice

of zk guarantees that xk ∈ X\S for every k ∈ K̂ . By taking into account (6) into
assumption (ii) of Theorem 1 and the test (8), we obtain

ϕ(x̂, εk) − ϕ(ẑ, εk) ≤ ϕ(xk, εk) − ϕ(zk, εk) ≤ f (zk) − f (xk) + εk‖xk − zk‖α,

(14)

where ẑ is any point belonging to the set W . Now, due to the fact that xk and zk

belong to a compact set, we have that

ϕ(x̂, εk) − ϕ(ẑ, εk) ≤ M (15)

for every k ∈ K̂ , which contradicts (5) into assumption (ii) of Theorem 1.

��
In the next proposition, we show that in the EXP Algorithm the penalty parameter

ε is updated only a finite number of times.

Lemma 2 Let {xk} and {εk} be the sequences produced by the EXP Algorithm. Then
an index k̄ exists such that for any k ≥ k̄, εk = ε̄.

Proof By contradiction, let us assume {εk} → 0, and there exists a subsequence {xk}K

converging to x̄ such that the test (8) is satisfied for all k ∈ K . By Lemma 1, we have
that x̄ ∈ W , then there exists an index k̃ such that for any k ≥ k̃ and k ∈ K we obtain
xk ∈ S(zk) = S(x̄). By using (4) of Assumption 2 we have

ϕ(xk, εk) − ϕ(x̄, εk) ≥ L̂‖xk − x̄‖α ≥ L‖xk − x̄‖α + (L̂ − L)‖xk − x̄‖α (16)

where L is the constant used in Assumption 1. Now, by means of Assumption 1 we
obtain the following inequality:

ϕ(xk, εk) − ϕ(x̄, εk) ≥ | f (xk) − f (x̄)| + (L̂ − L)‖xk − x̄‖α, (17)

and when k is sufficiently large, we have

ϕ(xk, εk) − ϕ(x̄, εk) ≥ f (x̄) − f (xk) + (L̂ − L)‖xk − x̄‖α > f (x̄) − f (xk)

+ εk‖xk − x̄‖α (18)

with k ∈ K , which contradicts the fact that test (8) is satisfied for all k ∈ K . ��
Then, we can state the main convergence result.
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Theorem 2 Every accumulation point x̄ of a sequence {xk} produced by the EXP
Algorithm is a global minimizer of the Problem (1).

Proof By using Lemma 2, and the fact that δk → 0, we can write

f (x̄) + ϕ(x̄, ε̄) ≤ f (x) + ϕ(x, ε̄) (19)

for all x ∈ X . Then

f (x̄) + ϕ(x̄, ε̄) ≤ f (z) + ϕ(z, ε̄) (20)

for all z ∈ W . By Lemma 1 we have that x̄ ∈ W , and by (i) of Assumption 2, we
obtain

f (x̄) ≤ f (z) (21)

for all z ∈ W . ��

4 An exact penalty algorithm for solving mixed integer problems

Let us consider now the problem

min f (x)

x ∈ C
xi ∈ Z i ∈ Iz

(22)

with f : Rn → R, C ⊂ Rn a compact convex set, and Iz ⊆ {1, . . . , n}. We notice
that, due to the compactness of C , there always exist finite values li and ui such that
li ≤ xi ≤ ui , i = 1, . . . , n. Using Theorem 1, we can show that the mixed-integer
Problem (22) is equivalent to the following continuous formulation:

min f (x) + ϕ(x, ε), x ∈ C, (23)

where ε ∈ (0, ε̄], and ϕ(x, ε) is a suitably chosen penalty term.
In [14], the equivalence between (22) and (23) has been proved for a class of penalty

terms including the following two:

ϕ(x, ε) =
∑

i∈Iz

min
li ≤d j ≤ui ,

d j ∈Z

{log[|xi − d j | + ε]} (24)

ϕ(x, ε) = 1

ε

∑

i∈Iz

min
li ≤d j ≤ui ,

d j ∈Z

{[|xi − d j | + ε]p} (25)

with ε > 0 and 0 < p < 1.
The following proposition shows the equivalence between Problems (22) and (23).
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Proposition 1 Let us consider the penalty terms (24) and (25). We have that:

(i) when S(z) = {x ∈ R
n : ‖x − z‖∞ < ρ} and ρ is a sufficiently small positive

value, the two terms satisfy Assumption 2;
(ii) there exists a value ε̄ > 0 such that, for any ε ∈ (0, ε̄], Problem (22) and Problem

(23) have the same minimum points.

Proof See [14]. ��

Remark I When dealing with problems with boolean variables, we can define specific
penalty terms:

ϕ(x, ε) =
∑

i∈Iz

min{log(xi + ε), log[(1 − xi ) + ε]} (26)

ϕ(x, ε) = 1

ε

∑

i∈Iz

min{(xi + ε)p, [(1 − xi ) + ε]p} (27)

ϕ(x, ε) =
∑

i∈Iz

{log(xi + ε) + log[(1 − xi ) + ε]} (28)

ϕ(x, ε) = 1

ε

∑

i∈Iz

{
(xi + ε)p + [(1 − xi ) + ε]p} (29)

where ε > 0 and 0 < p < 1.

We state a result that will be useful to describe a specific version of the EXP Algo-
rithm for Mixed-Integer Bound Constrained Problems. The symbol [·]R indicates the
scalar rounding to the nearest integer.

Proposition 2 Let S(z) be a set defined as follows

S(z) = {x ∈ R
n : ‖x − z‖∞ < ρ}.

Given a point x ∈ Rn and a sufficiently small positive value ρ, the point z ∈ Z that
minimizes the distance between x and S(z) is

z = [x]R .

Proof Let z∗ ∈ Z be the point such that z∗ = [x]R . If x ∈ S(z∗), then the distance
between x and S(z∗) is equal to 0 and the proposition is trivially proved.

Now, let us assume x /∈ S(z∗) and, by contradiction, there exists a point z̃ ∈ Z such
that the distance between x and S(z̃) is lower than the distance between x and S(z∗),
that is

inf
p∈S(z̃)

‖x − p‖∞ < inf
p∈S(z∗)

‖x − p‖∞. (30)
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Hence, we can find two points p̃ and p∗ such that:

p̃ = arg inf
p∈S(z̃)

‖x − p‖∞ (31)

p∗ = arg inf
p∈S(z∗)

‖x − p‖∞. (32)

Then we have

‖ p̃ − z̃‖∞ = ‖p∗ − z∗‖∞ = ρ. (33)

Furthermore, from (31), (32) and (33), we can write

‖x − z̃‖∞ = ‖x − p̃‖∞ + ‖ p̃ − z̃‖∞
‖x − z∗‖∞ = ‖x − p∗‖∞ + ‖p∗ − z∗‖∞.

(34)

Using the fact that z∗ = [x]R �= z̃, we have

‖x − z∗‖∞ ≤ 0.5 ‖x − z̃‖∞ > 0.5. (35)

Then, by (30), (33) and (34),

‖x− z̃‖∞ − ‖x−z∗‖∞ = ‖x− p̃‖∞+‖ p̃− z̃‖∞−‖x− p∗‖∞−‖p∗−z∗‖∞ < 0,

but this contradicts (35). ��
Now, we can describe a version of the EXP Algorithm for solving Problem (22).

We set

W =
{

x ∈ Rn : x ∈ C, xi ∈ Z , i ∈ Iz

}
, X = C.

We remark that the set X is obtained by relaxing the integrality constraints in the set
W . When we have

W =
{

x ∈ Rn : x ∈ C, xi ∈ {0, 1}, i ∈ Iz

}

the relaxed set we obtain is

X =
{

x ∈ Rn : x ∈ C, 0 ≤ xi ≤ 1, i ∈ Iz

}
.

EXP Algorithm for mixed-integer problems (EXP-MIP)

Data. k = 0, ε0 > 0, δ0 > 0, α > 0, β > 0, σ ∈ (0, 1).

Step 1. Compute xk ∈ X such that

f (xk) + ϕ(xk, εk) ≤ f (x) + ϕ(x, εk) + δk (36)

∀ x ∈ X .
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Step 2. If xk /∈ W and

[ f (xk) + ϕ(xk, εk)] − [ f (zk) + ϕ(zk, εk)] ≤ εkβ‖xk − zk‖α (37)

where zk = [xk]R ,

then εk+1 = σεk, δk+1 = δk .

Else εk+1 = εk, δk+1 = σδk .

Step 3. Set k = k + 1 and go to Step 1.

At Step 1, we can obtain a δk-global minimizer by using a specific global optimi-
zation method like, e.g. BARON [20,21], α-BB [2,3] or DIRECT [11–13]. What we
want to highlight here is that when we have a good global optimization algorithm for
continuous programming problems, if we include this algorithm in our exact penalty
framework, we can also handle problems with integer variables. Anyway, there already
exist various global optimization algorithms able to solve MINLP problems efficiently
(see e.g. BARON). In this case, we can see our approach as a different way to handle
the integrality constraints. As we have already said, Step 2 is basically a way to test
if the updating of the penalty parameter is timely. In principle, we could get rid of
this updating operation by setting the penalty parameter to a very small value thus
guaranteeing the equivalence between the original integer problem and the continu-
ous reformulation. However, such a choice of the parameter can make the continuous
reformulation very hard to be solved (see Sect. 5 for further details).

By taking into account Theorem 2, we can state the result related to the convergence
of the EXP-MIP Algorithm.

Corollary 1 Every accumulation point x̄ of a sequence {xk} produced by the
EXP-MIP Algorithm is a global minimizer of the Problem (22).

5 Preliminary computational results

In this section we report the results of a preliminary numerical experience. We imple-
mented the EXP-MIP Algorithm in MATLAB using BARON/GAMS to solve the
continuous global problem at Step 1. We compared our EXP-MIP Algorithm with
BARON on a set of well-known MINLP problems (see [6] for further details). All the
codes have been run on an Intel Pentium 4 CPU 3.2 GHz with 1 GB main memory.
The EXP-MIP Algorithm has been run with the following starting parameters:

• penalty parameter ε = 10−1;
• relative termination tolerance Eps R = 10−2.

In the following table, we report, besides the problem name, the total number of vari-
ables n, the number of integer variables ni , the number of constraints m, the total
number of branch and reduce iterations (nodes), the CPU time in seconds (time) and
the objective function value of the best solution found f ∗. As we can easily notice by
taking a look at Table 1, the EXP-MIP Algorithm shows a good behavior.
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Table 1 Comparison between EXP-MIP and BARON

Problem n ni m EXP-MIP BARON

Nodes Time f ∗ Nodes Time f ∗

P 12.2.1 5 3 5 2 0.078 7.667 1 0.093 7.667

P 12.2.2 3 1 3 0 0.093 1.076 0 0.078 1.076

P 12.2.3 7 4 9 2 0.078 4.579 5 0.078 4.579

P 12.2.4 11 8 7 1 0.093 −0.912 0 0.093 −0.904

P 12.2.5 2 2 4 1 0.109 31 1 0.109 31

P 12.2.6 2 1 3 1 0.093 −17 1 0.062 −17

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

4
original
eps=0.2
eps=0.1
eps=0.05
eps=0.01

Fig. 1 Graph of the function (38) (in black) and of the penalty function (39) for various values of the
parameter ε (eps)

In order to better assess the importance of the Step 2 in our method, we used BARON
to solve the continuous penalty reformulation related to Problem 3 where we fixed the
penalty parameter ε = 10−6. For this particular choice, BARON needs 0.25 s of CPU
time and the total number of nodes is 18. Then the adoption of an updating rule like
the one adopted at Step 2 can help improve the performance. In Fig. 1 we show the
graph of the function

f (x) = 10(x − 0.6)2 (38)

and of the related penalty function

f (x) + ϕ(x, ε) = 10(x − 0.6)2 + log(x + ε) + log[(1 − x) + ε] (39)

for various choices of ε. As we can easily see, when the penalty parameter is very
small, the slope of the graph gets very large close to 0 or 1, thus making the problem,
in some cases, hard to be solved.

123



Exact penalty global optimization approach

References

1. Abello, J., Butenko, S., Pardalos, P.M., Resende, M.: Finding independent sets in a graph using con-
tinuous multivariable polynomial formulations. J. Glob. Optim. 21, 111–137 (2001)

2. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, α-BB, for
general twice-differentiable constrained NLPs I. Theoretical Advances. Comput. Chem. Eng. 22,
1137–1158 (1998)

3. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, α-BB, for general
twice-differentiable constrained NLPs II. Implementation and computational results. Comput. Chem.
Eng. 22, 1159–1179 (1998)

4. Balasundaram, B., Butenko, S.: Constructing test functions for global optimization using continuous
formulations of graph problems. Optim. Methods Softw. 20, 439–452 (2005)

5. Borchardt, M.: An exact penalty approach for solving a class of minimization problems with Boolean
variables. Optimization 19(6), 829–838 (1988)

6. Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gms, Z.H., Harding, S.T., Klepeis, J.L.,
Meyer, C.A., Schweiger, C.A.: Handbook of test problems in local and global optimization handbook of
test problems in local and global optimization. Nonconvex Optimization and its Applications (closed),
vol. 33 (1999)

7. Giannessi, F., Niccolucci, F.: Connections between nonlinear and integer programming problems.
Symposia Mathematica, vol. 19. Academic Press, New York, pp. 161–176 (1976)

8. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, 2nd edn. Kluwer,
Dordrecht (2000)

9. Kalantari, B., Rosen, J.B.: Penalty formulation for zero-one integer equivalent problem. Math.
Progr. 24, 229–232 (1982)

10. Kalantari, B., Rosen, J.B.: Penalty formulation for zero-one nonlinear programming. Discret. Appl.
Math. 16(2), 179–182 (1987)

11. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the lipschitz con-
stant. J. Optim. Theory Appl. 79(1), 157–181 (1993)

12. Jones, D.R. : The DIRECT global optimization algorithm. In: Floudas, C., Pardalos, P. (eds.)
Encyclopedia of Optimization, pp. 431–440. Kluwer Academic Publishers, Dordrecht (2001)

13. Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim
(2009). doi:10.1007/s10898-009-9515-y

14. Lucidi, S., Rinaldi, F.: Exact penalty functions for nonlinear integer programming problems. J. Optim.
Theory Appl. 145(3), 479–488 (2010)

15. Mangasarian, O.L.: Knapsack feasibility as an absolute value equation solvable by successive linear
programming. Optim. Lett. 3(2), 161–170 (2009)

16. Murray, W., Ng, K.M.: An algorithm for nonlinear optimization problems with binary variables. Com-
put. Optim. Appl. 47(2), 257–288 (2010)

17. Pardalos, P.M., Prokopyev, O.A., Busygin, S.: Continuous approaches for solving discrete optimization
problems. In: Handbook on Modelling for Discrete Optimization, vol. 88. Springer, US (2006)

18. Raghavachari, M.: On connections between zero-one integer programming and concave programming
under linear constraints. Oper. Res. 17(4), 680–684 (1969)

19. Rinaldi, F.: New results on the equivalence between zero-one programming and continuous concave
programming. Optim. Lett. 3(3), 377–386 (2009)

20. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-
Integer Nonlinear Programming. Theory, Algorithm, Software and Applications. Kluwer Academic
Publishers, Dordrecht (2002)

21. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.
Progr. 103(2), 225–249 (2005)

123

http://dx.doi.org/10.1007/s10898-009-9515-y

	An exact penalty global optimization approach for mixed-integer programming problems
	Abstract
	1 Introduction
	2 A general equivalence result
	3 An exact penalty algorithm model
	4 An exact penalty algorithm for solving mixed integer problems
	5 Preliminary computational results
	References


