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A NEW CLASS OF FUNCTIONS FOR MEASURING SOLUTION
INTEGRALITY IN THE FEASIBILITY PUMP APPROACH∗
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Abstract. Mixed integer optimization is a powerful tool for modeling many optimization prob-
lems arising from real-world applications. Finding a first feasible solution represents the first step
for several mixed integer programming (MIP) solvers. The feasibility pump is a heuristic for finding
feasible solutions to mixed integer linear programming (MILP) problems which is effective even when
dealing with hard MIP instances. In this work, we start by interpreting the feasibility pump as a
Frank–Wolfe method applied to a nonsmooth concave merit function. Then we define a general class
of functions that can be included in the feasibility pump scheme for measuring solution integrality,
and we identify some merit functions belonging to this class. We further extend our approach by dy-
namically combining two different merit functions. Finally, we define a new version of the feasibility
pump algorithm, which includes the original version of the feasibility pump as a special case, and we
present computational results on binary MILP problems showing the effectiveness of our approach.
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1. Introduction. Many real-world problems can be modeled as mixed integer
programming (MIP) problems, namely, as minimization problems where some (or all)
of the variables only assume integer values. Finding quickly a first feasible solution
is crucial for solving this class of problems. In fact, many local-search approaches for
MIP problems such as local branching [19], guided dives, and RINS [14] can be used
only if a feasible solution is available.

In the literature, several heuristics methods for finding a first feasible solution for
an MIP problem have been proposed (see, e.g., [4, 5, 6, 10, 21, 22, 23, 24, 25, 26, 29]).
Recently, Fischetti, Glover, and Lodi [18] proposed a new heuristic, the well-known
feasibility pump (FP), which turned out to be very useful in finding a first feasible
solution even when dealing with hard MIP instances. The FP heuristic is implemented
in various MIP solvers such as BONMIN [11].

The basic idea of the FP is that of generating two sequences of points {x̄k} and
{x̃k} such that x̄k is LP-feasible, but may not be integer feasible, and x̃k is integer,
but not necessarily LP-feasible. To be more specific, the algorithm starts with a
solution of the LP relaxation x̄0 and sets x̃0 equal to the rounding of x̄0. Then at
each iteration x̄k+1 is chosen as the nearest LP-feasible point in �1-norm to x̃k, and
x̃k+1 is obtained as the rounding of x̄k+1. The aim of the algorithm is to reduce at
each iteration the distance between the points of the two sequences, until the two
points are the same and an integer feasible solution is found. Unfortunately, it can
happen that the distance between x̄k+1 and x̃k is greater than zero and x̃k+1 = x̃k,
and the strategy can stall. In order to overcome this drawback, random perturbations
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and restart procedures are performed.
As the algorithm has proved to be effective in practice, various papers devoted

to its further improvements have been developed. Bertacco, Fischetti, and Lodi [8]
extended the ideas on which the FP is based in two different directions: handling
MIP problems with both 0-1 and integer variables, and exploiting the FP information
to drive a subsequent enumeration phase. In [1], in order to improve the quality of
the feasible solution found, Achterberg and Berthold consider an alternative distance
function which takes into account the original objective function. In [20], Fischetti
and Salvagnin proposed a new rounding heuristic based on a diving-like procedure and
constraint propagation. Recently in [3] and [9] new rounding techniques have been
proposed. They are both based on the idea of replacing rounding with a procedure
that examines rounded solutions along a line segment passing through the LP-feasible
solution. The feasibility pump has been further extended to the case of mixed integer
nonlinear programming problems in [12, 13].

In [10], Eckstein and Nediak noticed that the FP heuristic may be seen as a form
of Frank–Wolfe procedure applied to a nonsmooth merit function which penalizes
the violation of the 0-1 constraints. In practice, the FP combines a local algorithm
(namely, the Frank–Wolfe algorithm) with a suitably developed perturbing procedure
for solving a specific global optimization problem:

x∗ = argmin{f(x) : x ∈ P},
where P is the relaxation of the feasible set of the original MIP problem and f(x) is
a function penalizing the violation of the integrality constraints. Therefore the FP
can be seen as a form of iterated local search or basin hopping algorithm (see, e.g.,
[7, 28, 30]).

In this paper, we analyze in depth the relationship between the FP and the Frank–
Wolfe algorithm. In this context, we define a new class of merit functions that can be
included in the basic FP scheme [18]. A reported extended computational experience
seems to indicate that the use of these new merit functions improves the FP efficiency.

The paper is organized as follows. In sections 2 and 3, we give a brief review
of the FP and the objective feasibility pump heuristics. In section 4, we show the
equivalence between the FP heuristic and the Frank–Wolfe algorithm applied to a
nonsmooth merit function. In section 5, we define a new class of merit functions
for measuring the solution integrality, we introduce new nonsmooth merit functions,
and we discuss their properties. We present our algorithm in section 6. In section
7, we extend our approach by dynamically combining two different merit functions.
Computational results are shown in section 8, where we give a detailed performance
comparison of our algorithm with the FP. Further, we show that using somewhat
more than one merit function at a time can improve the efficiency of the algorithm.
Some conclusions are drawn in section 9.

In the following, given a concave function f : Rn → R, we denote by ∂f(x) the
set of supergradients of f at the point x, namely,

∂f(x) = {v ∈ Rn : f(y)− f(x) ≤ vT (y − x) ∀ y ∈ Rn}.
2. The feasibility pump heuristic. We consider an MIP problem of the form

(1)
min cTx
s.t. Ax ≥ b,

xj ∈ {0, 1} ∀j ∈ I,
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where A ∈ Rm×n and I ⊂ {1, 2, . . . , n} is the set of indices of 0-1 variables. Let
P = {x : Ax ≥ b, 0 ≤ xj ≤ 1 ∀ j ∈ I} denote the polyhedron of the LP relaxation of
(1). The feasibility pump FP starts from the solution of the LP relaxation problem
x̄0 := argmin{cTx : x ∈ P} and generates two sequences of points x̄k and x̃k: x̄k

is LP-feasible, but may be integer infeasible; x̃k is integer, but not necessarily LP-
feasible. At each iteration x̄k+1 ∈ P is the nearest point in �1-norm to x̃k:

x̄k+1 := argmin
x∈P

Δ(x, x̃k),

where

Δ(x, x̃k) =
∑
j∈I

|xj − x̃kj |.

The point x̃k+1 is obtained as the rounding of x̄k+1. The procedure stops if at some
index l, x̄l is an integer or, in case of failing, if it reaches a time or iteration limit. In
order to avoid stalling issues and loops, the FP performs a perturbation step. Here
we report a brief outline of the basic scheme.

The feasibility pump (FP): Basic version

Initialization: Set k = 0, let x̄0 := argmin{cT x : x ∈ P}
While (not stopping condition) do

Step 1 If (x̄k is integer) return x̄k

Step 2 Compute x̃k = round(x̄k)

Step 3 If (cycle detected) perturb(x̃k)

Step 4 Compute x̄k+1 := argmin{Δ(x, x̃k) : x ∈ P}
Step 5 Update k = k + 1

End While

Now we give a better description of the rounding and the perturbing procedures
used, respectively, at Step 2 and at Step 3 (see, e.g., [8, 18]).

• Round: This function transforms a given point x̄k into an integer one, x̃k.
The easiest choice is that of rounding each component x̄kj with j ∈ I to
the nearest integer, while leaving the continuous components of the solution
unchanged. Formally,

(2) x̃kj =

{
[x̄kj ] if j ∈ I,

x̄kj otherwise,

where [·] represents scalar rounding to the nearest integer.
• Perturb: The aim of the perturbation procedure is to avoid cycling, and it
consists in two heuristics, given specifically as follows:

– If x̃kj = x̃k+1
j for all j ∈ I, a weak perturbation is performed, namely, a

random number of integer constrained components, chosen as to mini-
mize the increase in the distance Δ(x̄k+1, x̃k+1), is flipped.

– If a cycle is detected by comparing the solutions obtained in the last 3
iterations, or in any case after R iterations, a strong random perturba-
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tion is performed. For each j ∈ I a uniformly random value is generated,
ρj ∈ [−0.3, 0.7], and if

|x̄k+1
j − x̃k+1

j |+max{ρj , 0} > 0.5,

the component x̃k+1
j is flipped.

Remark 1. The objective function Δ(x, x̃k) discourages the optimal solution of
the relaxation from being “too far” from x̃k. In practice, the method tries to force a
large number of variables of x̄k+1 to have the same (integer) value as x̃k (see [18]).

3. The objective feasibility pump. When using a heuristic like the FP on an
MIP problem, one of the targets we have is that of finding a high-quality solution;
that is, we would like to find a feasible point with the objective function cTx as small
as possible. In general, since the FP scheme discards the original objective function
of the problem after the first iteration, the quality of the feasible solutions found by
the algorithm often tends to be poor. In order to overcome this drawback, in [1] a
different approach, called the objective feasibility pump (OFP), has been developed.
The idea is that of combining the original objective function cTx of the problem with
the FP objective function. At each iteration the algorithm gradually reduces the
influence of the objective function and increases the weight of Δ(x, x̃). In this way
the OFP, in its first iterations, concentrates its search on the region of high-quality
points. The objective function of the LPs is a convex combination of the original
objective function with the distance function Δ(x, x̃):

Δθ(x, x̃) =
1− θ

‖Δ‖ Δ(x, x̃) +
θ

‖c‖c
Tx,

where ‖Δ‖ =
√|I| and θ ∈ [0, 1]. At each iteration k, the coefficient θk is decreased

by a factor of ν < 1 (i.e., θk+1 = νθk). The introduction of the new function further
requires a modification of the cycle detection step. While in the original scheme a
cycle is found if the same integer point is visited twice, this is not the case in the
modified scheme, because the objective function Δθ has changed in the meantime.
The algorithm therefore stores, at each iteration k, the pair (x̃k, θk) and a cycle is
detected if there exist two iterations ki and kj , with ki < kj , such that x̃ki = x̃kj and
θki − θkj ≤ δθ, where δθ ∈ [0, 1] is a fixed parameter.

4. The FP heuristic as a Frank–Wolfe algorithm for minimizing a non-
smooth merit function. In a recent work Eckstein and Nediak [10] noticed that
the FP heuristic may be seen as a Frank–Wolfe procedure applied to a nonsmooth
merit function. In order to better understand this equivalence we recall the unitary
stepsize Frank–Wolfe method for concave nondifferentiable functions. Let us consider
the problem

(3)
min f(x),
x ∈ P,

where P ⊂ Rn is a nonempty polyhedral set that does not contain lines going to
infinity in both directions, and f : Rn → R is a concave, nondifferentiable function,
bounded below on P .
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The Frank–Wolfe algorithm with unitary stepsize can be described as follows.

Frank–Wolfe unitary stepsize (FW1) algorithm

Initialization: Set k = 0, let x0 ∈ Rn be the starting point, compute g0 ∈ ∂f(x0)

While xk /∈ argmin
x∈P

(gk)Tx

Step 1 Compute a vertex solution xk+1 of

min
x∈P

(gk)Tx

Step 2 Compute gk+1 ∈ ∂f(xk+1), update k = k + 1

End While

The algorithm involves only the solution of LP problems, and the following re-
sult, proved in [32], shows that the algorithm generates a finite sequence and that it
terminates at a stationary point x�, namely, a point satisfying the following condition:

(4) (g�)T (x− x�) ≥ 0 ∀x ∈ P

with g� ∈ ∂f(x�).
Proposition 1. The Frank–Wolfe algorithm with unitary stepsize converges to

a vertex stationary point of problem (3) in a finite number of iterations.
Now we consider the basic FP heuristic without any perturbation (i.e., without

Step 3), and we show that it can be interpreted as the Frank–Wolfe algorithm with
unitary stepsize applied to a concave, nondifferentiable merit function.

First of all, we can easily see that

Δ(x, x̃k) =
∑

j∈I:x̃k
j =0

xj +
∑

j∈I:x̃k
j =1

(1− xj).

At each iteration, the FP for mixed 0-1 problems computes, at Step 2, the rounding
of the solution x̄k, thus giving x̃k. Then, at Step 4, it computes the solution of the
LP problem

(5)
x̄k+1 ∈ argmin Δ(x, x̃k)

s.t. Ax ≥ b,
0 ≤ xj ≤ 1 ∀j ∈ I.

These two operations can be included in the unique step of calculating the solution
of the following LP problem:

(6)

min
∑

j∈I:x̄k
j<

1
2

xj −
∑

j∈I:x̄k
j≥ 1

2

xj

s.t. Ax ≥ b,
0 ≤ xj ≤ 1 ∀j ∈ I.

Since the function

(7) v(t) =

{
1 if t < 1

2 ,

−1 if t ≥ 1
2
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is such that v(t) ∈ ∂min{t, 1 − t}, problem (6) can be seen as a generic iteration of
the Frank–Wolfe method with unitary stepsize applied to the following minimization
problem:

(8)

min
∑
i∈I

min{xi, 1− xi}

s.t. Ax ≥ b,
0 ≤ xi ≤ 1 ∀i ∈ I.

5. New nonsmooth merit functions for the feasibility pump approach.
As we have seen in the previous section, the basic FP is equivalent to minimizing a
separable nonsmooth function which penalizes the 0-1 infeasibility, namely,

(9) f(x) =
∑
i∈I

min{xi, 1− xi}.

When using the Frank–Wolfe unitary stepsize algorithm for solving problem (8), at
each iteration, if xk is not a stationary point, we get a new point xk+1 such that

(gk)T (xk+1 − xk) < 0,

with gk ∈ ∂f(xk). Then from the concavity of the objective function we have

(10) f(xk+1) ≤ f(xk) + (gk)T (xk+1 − xk) < f(xk),

which means that at each iteration a reduction of the merit function is obtained.
Anyway, this might not correspond to a reduction in the number of variables that
violate integrality.

Example 1. Let us consider the following two points:

x =
(
0,

1

2
, 0, 0

)T

; y =
(
0,

1

6
,
1

6
, 0
)T

.

Let f be the function defined in (9). It is easy to notice that

f(y) < f(x),

but the number of noninteger components of y is greater than the number of noninteger
components of x. As the main goal is finding an integer feasible solution, it would
be better to use a function having the following features:

(i) it decreases whenever the number of integer variables increases;
(ii) if it decreases, then the number of noninteger variables does not increase.

A function satisfying these features is the following:

(11) ψ(x) = card{ xi : i ∈ I, xi /∈ {0, 1} }.
The function (11) can be rewritten as:

(12) ψ(x) =
∑
i∈I

s(min{xi, 1− xi}),

where s : R → R+ is the step function:

s(t) =

⎧⎨
⎩

1 if t > 0,

0 otherwise.
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Since the step function is a nonconvex and discontinuous function, minimizing (12)
over a polyhedral set is a very hard problem. In the following we prove a general
result to define approximations of function (12) that are easier to handle from a
computational point of view and guarantee satisfaction of (i) and (ii) when evaluated
on the vertices of a polyhedron.

Proposition 2. Let V ⊂ [0, 1]n be the set of vertices of a polytope P = { x :
Ax ≥ b, x ∈ [0, 1] }. Let αl and αu be the following values:

αl = min
x∈V

l(x),

αu = min
x∈V

u(x),

where

l(x) =

{
min{ xi : i = 1, . . . , n; xi 	= 0} if x 	= 0,
1 if x = 0;

u(x) =

{
max{ xi : i = 1, . . . , n; xi 	= 1} if x 	= e,
1 if x = e.

Let φ : [0, 1]n → R be a separable function

(13) φ(x) =
∑
i∈I

ϕ(xi).

We assume that ϕ : [0, 1] → R satisfies the following:
(1)

(14) ϕ(0) = ϕ(1);

(2) there exists an M > 0 such that
(i) for ᾱ ∈ {0, 1} and α̃ ∈ [αl, αu] we have

(15) ϕ(ᾱ)− ϕ(α̃) ≤ −M ;

(ii) for ᾱ, α̃ ∈ [αl, αu] we have

(16) |ϕ(ᾱ)− ϕ(α̃)| ≤ M

n
.

Then, for x, y ∈ V ,
(a) ψ(x) < ψ(y) implies φ(x) < φ(y);
(b) φ(x) < φ(y) implies ψ(x) ≤ ψ(y).
Proof.
(a) We consider two points x, y ∈ V such that ψ(x) < ψ(y). We can define two

sets of indices related to the noninteger components of x and y:

U = {i ∈ {1, . . . , n} | i ∈ I, xi /∈ {0, 1}},

W = {j ∈ {1, . . . , n} | j ∈ I, yj /∈ {0, 1}}.
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Then we can write

φ(x) − φ(y) =
∑
i∈I

ϕ(xi)−
∑
j∈I

ϕ(yj)

=
∑
i∈U

ϕ(xi) +
∑

i∈I\U
ϕ(xi)−

∑
j∈W

ϕ(yj)−
∑

j∈I\W
ϕ(yj).(17)

Since ψ(x) < ψ(y), we have that

|U | < |W |
and

|I \ U | > |I \W |.
Let us first consider the case

|W | − |U | = 1.

We can assume that there exists an index j̄ such that

W \ {j̄} = U,

(I \ U) \ {j̄} = I \W.
Then we can write

φ(x) − φ(y)

= ϕ(xj̄)− ϕ(yj̄) +
∑
j∈U

ϕ(xj) +
∑

j∈I\U
j �=j̄

ϕ(xj)−
∑
j∈W
j �=j̄

ϕ(yj)−
∑

j∈I\W
ϕ(yj)

= ϕ(xj̄)− ϕ(yj̄) +
∑
j∈W
j �=j̄

ϕ(xj) +
∑

j∈I\U
j �=j̄

ϕ(xj)−
∑
j∈W
j �=j̄

ϕ(yj)−
∑

j∈I\U
j �=j̄

ϕ(yj)

= ϕ(xj̄)− ϕ(yj̄) +
∑

j∈I\U
j �=j̄

(ϕ(xj)− ϕ(yj)) +
∑
j∈W
j �=j̄

(ϕ(xj)− ϕ(yj))

≤ ϕ(xj̄)− ϕ(yj̄) +
∑

j∈I\U
j �=j̄

(ϕ(xj)− ϕ(yj)) +
∑
j∈W
j �=j̄

|ϕ(xj)− ϕ(yj)|.

By using (14) we obtain

φ(x) − φ(y) ≤ ϕ(xj̄)− ϕ(yj̄) +
∑
j∈W
j �=j̄

|ϕ(xj)− ϕ(yj)|.(18)

Now we notice that xj̄ ∈ {0, 1}, yj̄ ∈ [αl, αu], and xj , yj ∈ [αl, αu] for all
j ∈W \ {j̄} . Then, by using (15) and (16), we have

φ(x) − φ(y) ≤ ϕ(xj̄)− ϕ(yj̄) +
∑
j∈W
j �=j̄

|ϕ(xj)− ϕ(yj)|

≤ −M + (|I| − 1)
M

n
< 0.
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Hence we have

φ(x) < φ(y).

Let us now consider the case

|W | − |U | > 1.

We can assume that there exists a set J̄ such that

W \ J̄ = U,

(I \ U) \ J̄ = I \W.
Then we can write

φ(x) − φ(y) =
∑
j∈J̄

(ϕ(xj)− ϕ(yj))

+
∑
j∈U

ϕ(xj) +
∑

j∈I\U
j/∈J̄

ϕ(xj)−
∑
j∈W
j/∈J̄

ϕ(yj)−
∑

j∈I\W
ϕ(yj).

By using the same arguments used before we obtain

φ(x) − φ(y) ≤
∑
j∈J̄

(ϕ(xj)− ϕ(yj)) +
∑

j∈W\J̄
|ϕ(xj)− ϕ(yj)|.(19)

Now we notice that xj ∈ {0, 1}, yj ∈ [αl, αu] for all j ∈ J̄ and xj , yj ∈ [αl, αu]
for all j ∈ W \ J̄ . Then, by using (15) and (16), we have

φ(x) − φ(y) ≤
∑
j∈J̄

(ϕ(xj)− ϕ(yj)) +
∑

j∈W\J̄
|ϕ(xj)− ϕ(yj)|

≤ −M |J̄ |+ (|I| − |J̄ |)M
n
< 0.

Once again we have

φ(x) < φ(y).

(b) We assume by contradiction that there exist two points x, y ∈ V such that
φ(x) < φ(y) and

(20) ψ(x) > ψ(y).

By (20), recalling the first part of the proof, we have that φ(x) > φ(y), which
contradicts our initial assumption.

Summarizing, if an approximation φ(x) satisfying the assumptions of Proposition
2 is available, we can solve, in place of the original FP problem (8), the following
problem:

min φ(x) =
∑
i∈I

ϕ(xi)

s.t. Ax ≥ b,
0 ≤ xi ≤ 1 ∀i ∈ I.
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As the method we use for solving the minimization problem stated above is the Frank–
Wolfe algorithm, which at each step moves from one vertex to another, guaranteeing
the reduction of the chosen approximation, we have (by point (b) of Proposition 2)
that, at each iteration of the algorithm, the number of the noninteger components of
the current solution does not increase.

Taking into account Proposition 2 and the ideas developed in [31, 34, 35], we
consider the following ϕ(·) terms to be used in the objective function of problem (21).

Logarithmic function:

(21) ϕ(t) = min
{
ln(t+ ε), ln[(1− t) + ε]

}
.

Hyperbolic function:

(22) ϕ(t) = min
{− (t+ ε)−p,−[(1− t) + ε]−p

}
.

Exponential function:

(23) ϕ(t) = min
{
1− exp(−αt), 1− exp(−α(1 − t))

}
.

Logistic function:

(24) ϕ(t) = min
{
[1 + exp(−αt)]−1, [1 + exp(−α(1 − t))]−1

}
.

In (21)–(24), ε, α, p > 0. In Figure 1, we compare the ϕ term related to the FP
heuristic with those given by (21)–(24).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Logistic function with α = 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−8

−6

−4

−2

0

2

Hyperbolic function with ε = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

Logarithmic function with ε = 0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Concave function with α = 5

Fig. 1. Comparison between the original FP term (dotted line) and the new terms (solid line).

Now we prove that, for a particular choice of the ϕ term, the assumptions of
Proposition 2 are satisfied.

Proposition 3. For the term (21), there exists a value ε̄ > 0 such that for any
ε ∈ (0, ε̄] assumptions (1) and (2) of Proposition 2 are satisfied.
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Proof. It can be easily noticed that when x ∈ {0, 1} we have

ϕ(x) = ln ε;

then assumption (1) of Proposition 2 is satisfied.
Now, without any loss of generality, we suppose

(25) αl = min{αl, 1− αu}
and notice that there exists a value ε̄ > 0 such that for any ε ∈ (0, ε̄] the following
inequality holds:

ln ε− ln(αl + ε) + n(ln(1/2 + ε)− ln(αl + ε)) ≤ 0.(26)

As the function ϕ(t) is strictly increasing in [0, 12 ] and strictly decreasing in ( 12 , 1], and
it is symmetric with respect to the point t = 1

2 , we have for ᾱ ∈ {0, 1} and α̃ ∈ [αl, αu]

ϕ(ᾱ)− ϕ(α̃) ≤ ϕ(0)− ϕ(αl).

Then we set

(27) M = ϕ(αl)− ϕ(0) = ln(αl + ε)− ln ε,

and (i) in assumption (2) of Proposition 2 is satisfied.
As the maximum of ϕ(t) is attained at t = 1

2 and due to the structure of function
ϕ(t), we have the following for any choice of ᾱ, α̃ ∈ [αl, αu]:

(28) |ϕ(ᾱ)− ϕ(α̃)| ≤ ϕ(1/2)− ϕ(αl).

Since (ii) in assumption (2) needs to be verified for any choice of ᾱ, α̃ ∈ [αl, αu], by
(28) it is sufficient to show that

ϕ(1/2)− ϕ(αl) ≤ M

n
.

By using (27) and (26), we can easily verify that for any ε ∈ (0, ε̄], the following
inequality holds:

ϕ(0)− ϕ(αl) + n(ϕ(1/2)− ϕ(αl))(29)

= ln ε− ln(αl + ε) + n(ln(1/2 + ε)− ln(αl + ε)) ≤ 0.

Then (ii) in assumption (2) of Proposition 2 is satisfied.
The result proved in Proposition 3 for the term (21) can also be proved for the

terms (22)–(24) repeating the same arguments, and thus all the merit functions (21)–
(24) are suitable to penalize the number of variables that violate the integrality con-
straints.

We remark that functions (21)–(24) have also another interesting theoretical prop-
erty: they can be used in an exact penalty approach like that proposed in [31]. In
fact, it is possible to prove that terms (21)–(24) can be used to transform an MIP
problem into an equivalent continuous problem.

Proposition 4. Let f be a Lipschitz continuous function bounded on P. For
every penalty term

φ(x) =
∑
i∈I

ϕ(xi)
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with ϕ as in (21)–(24) a value ε̄ > 0 exists such that, for any ε ∈ ]0, ε̄], problem

(30) min f(x) s.t. x ∈ P, xi ∈ {0, 1} ∀i ∈ I,

and problem

(31) min f(x) + φ̃(x, ε) s.t. x ∈ P, 0 ≤ xi ≤ 1 ∀i ∈ I,

where

φ̃(x, ε) =

⎧⎨
⎩

φ(x) if ϕ is given by (21)–(22),

1

ε
φ(x) if ϕ is given by (23)–(24),

have the same minimum points.
Proof. The proof follows the same arguments as in [31]. See [16] for further

details.
This result suggests that these new merit functions can be used to define new

FP heuristics that improve the quality of the solution in terms of objective function
value like those proposed in [1] and [10]. In fact, the heuristic proposed in [1] can be
seen as a Frank–Wolfe algorithm applied to problem (31) with the penalty term (9).
Furthermore, the restarting rules used in the FP algorithm can be reinterpreted as
techniques for escaping from noninteger stationary points.

We can also include these functions into an algorithmic framework to determine
the minimizer of a nonlinear programming problem with integer variables (see, e.g.,
[33]). Anyway, the use of the continuous reformulation of the original mixed integer
problem is beyond the scope of this paper and will be the subject of future work.

In the next section we will focus on finding a first feasible solution to an MIP
problem. In particular, we tackle problem (21) by a modified FP approach based on
the concave functions described above.

6. A reweighted version of the feasibility pump heuristic. The use of the
merit functions (21)–(24) defined in the previous section leads to a new FP scheme
where the �1-norm used for calculating the next LP-feasible point is replaced with a
“weighted” �1-norm of the form

(32) ΔW (x, x̃) =
∑
j∈I

wj |xj − x̃j | = ‖W (x− x̃)‖1,

where

W = diag(w1, . . . , wn)

and wj , j = 1, . . . , n, are positive weights depending on the merit function φ chosen.
The main feature of the method is the use of an infeasibility measure that

• tries to discourage the optimal solution of the relaxation from being far from
x̃ (similarly to the original FP algorithm);

• takes into account, in some way, the information carried by the LP-feasible
points obtained at the previous iterations of the algorithm for speeding up
the convergence to 0-1 feasible points.

A possible choice for the weights wj , j = 1, . . . , n, is the following:

wj = |gj |, j = 1, . . . , n,
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where g ∈ ∂φ(x̄) and x̄ is the LP-feasible point obtained at the previous iteration of
the algorithm.

Here we report an outline of the algorithm.

Reweighted feasibility pump (RFP): Basic version

Initialization: Set k = 0, let x̄0 := argmin{cT x : x ∈ P}
While (not stopping condition) do

Step 1 If (x̄k is integer) return x̄k

Step 2 Compute x̃k = round(x̄k)

Step 3 If (cycle detected) perturb(x̃k)

Step 4 Compute x̄k+1 := argmin{‖W k(x− x̃k)‖1 : x ∈ P}
Step 5 Update k = k + 1

End While

We assume that the round and perturb procedures are the same as those described
in section 2 for the original version of the FP heuristic. Anyway, different rounding
and perturbing procedures can be suitably developed.

In particular, the rounding procedure could be replaced with a scheme based
on constraint propagation like that one proposed in [20]. Other possibilities can be
inspired by the procedures recently proposed in [3, 9] examining rounded solutions
along suitable line segments.

Following the same reasoning as that of section 4, we can reinterpret the reweighted
FP heuristic without perturbation as the unitary stepsize Frank–Wolfe algorithm
applied to the merit function φ. Let us now consider a generic iteration k of the
reweighted FP. At Step 2, the algorithm rounds the solution x̄k, thus giving x̃k.
Then, at Step 4, it computes the solution of the LP problem

x̄k+1 ∈ argmin ΔWk(x, x̃k)
s.t. Ax ≥ b,

0 ≤ xj ≤ 1 ∀j ∈ I.

Similarly to the FP algorithm, these two operations can be included in the unique
step of calculating the solution of the following LP problem:

(33)

min
∑

j∈I:x̄k
j <

1
2

wk
j xj −

∑
j∈I:x̄k

j≥ 1
2

wk
j xj

s.t. Ax ≥ b,
0 ≤ xj ≤ 1 ∀j ∈ I.

By setting

wk
j = |gkj |

with gk ∈ ∂φ(x̄k), problem (33), as we have already said, can be seen as the iteration
of the Frank–Wolfe method with unitary stepsize applied to the minimization problem
(21).

In order to highlight the differences between the �1-norm and the weighted �1-
norm we report the following example.
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Example 2. Consider the following mixed integer linear programming problem:

min cTx(34)

s.t. x ∈ P,

x ∈ {0, 1}3,
where P ⊂ [0, 1]3 is the polyhedron in Figure 2. Let xL =

(
9
20 ,

1
8 ,

1
8

)
be the solution

of the linear relaxation of (34) and let xI = (0, 0, 0) be its rounding.
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Fig. 2. Feasible set of problem 34.

The minimization of Δ(x, xI) = ‖x− xI‖1 over P leads to xN =
(
1
8 ,

1
8 ,

1
8

)
, since

‖xN − xI‖1 < ‖x− xI‖1 for all x ∈ P .
Consider now the weighted �1-norm obtained using the logarithmic merit function

φ(x) =
∑
i∈I

min
{
ln(xi + ε), ln[(1− xi) + ε]

}
,

where ε is a small positive value. By minimizing the weighted distance between x and
xI over P , we obtain the point xF = (1, 0, 0). In fact, we have

ΔW (xF , xI) < ΔW (x, xI)

for all x ∈ P . Thus the �1-norm finds a solution which does not satisfy the integrality
constraints, while the reweighted �1-norm gets an integer feasible solution.

We want to remark that the original FP algorithm is a special case of the RFP
obtained by setting W k = I.

We can further use the merit functions (21)–(24) in the OFP approach recalled
in section 3 to obtain a reweighted version of the algorithm, the objective reweighted
feasibility pump (ORFP). The new objective function of the LPs becomes the follow-
ing:

(35) ΔW,θ(x, x̃) =
1− θ

‖Δ‖ ΔW (x, x̃) +
θ

‖c‖c
Tx,

where ‖Δ‖ =
√|I| and θ ∈ [0, 1]. As in the standard OFP, at each iteration k, the

coefficient θk is decreased by a factor ν < 1 (i.e., θk+1 = νθk).
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Anyway, this choice follows exactly the approach proposed in [1] and does not
take into account the fact that the proposed merit functions and the original FP
merit function have different behaviors. Hence, new approaches could be developed
to combine those merit functions with the original objective function (e.g., a convex
combination with different coefficients and updating rules).

7. Combining two merit functions. As we have already said, the main draw-
back of the FP heuristic is its tendency to stall (i.e., to get stuck in a point that is not
an integer feasible solution). For this reason, a random perturbation (or a restart)
is performed. A good idea might be that of modifying the objective function (in
addition to the random perturbation/restart usually adopted) anytime the algorithm
stalls. This modification may help escaping from the last stationary point obtained
and speed up the convergence to an integer feasible solution. A possibility might be
that of considering a convex combination of two different merit functions,

(36) φ(x) = λφ1(x) + (1− λ)φ2(x),

with λ ∈ [0, 1], and modifying the λ parameter as soon as the algorithm stalls. This
is equivalent to using, in the RFP algorithm, the following:

(1) a matrix W k with the terms

wk
j = λk|gkj |+ (1− λk)|hkj |, j = 1, . . . , n,

where gkj ∈ ∂φ1(x̄
k) and hkj ∈ ∂φ2(x̄

k);
(2) an updating rule for the λ parameter that slightly (significantly) changes the

penalty term anytime a perturbation (restart) is performed.
In Figure 3 we can see the behavior of a function obtained by combining the expo-
nential and the logistic function.
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Fig. 3. Behavior of the function obtained combining exponential and logistic function.
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8. Numerical results. In this section we report computational results to com-
pare our version of the FP algorithm with the original FP described in [18] and the
OFP described in [1]. The test set used in our numerical experience consists of 153
instances of 0-1 problems from the MIPLIB2003 [2] and COR@L libraries. All the
algorithms were implemented in C, and we have used ILOG Cplex [27] as the solver of
the LP problems. All tests have been run on an Intel Core2 E8500 system (3.16GHz)
with 3.25GB of RAM.

We compare the FP with the reweighted version in different scenarios:
1. Randomly generated starting points. For the terms (9), (21)–(24), we solved

the corresponding penalty formulation (21) by means of the Frank–Wolfe
algorithm using 1000 randomly generated starting points. The aim of the
experiment was to highlight the ability of each penalty formulation to find an
integer feasible solution.

2. FP vs. RFP. In order to evaluate the effectiveness of the new penalty func-
tions, we compared the FP algorithm with the RFP algorithm, where the
distance ΔW (x, x̃) is defined using the terms (21)–(24).

3. FP vs. combined RFP. We made a comparison between the FP algorithm
and the RFP algorithm where the distance ΔW (x, x̃) is the combination of
two different penalty terms. The aim of the experiment was to show that
the combination of two different functions can somehow improve the RFP
algorithm performance.

4. OFP vs. ORFP. We made a comparison between the OFP and the ORFP.
In this experiment, the distance ΔW,θ(x, x̃) is the combination of the original
objective function of the problem considered and the exponential and logistic
penalty terms.

5. OFP vs. combined ORFP. We made a comparison between the OFP and the
combined ORFP. In this experiment, the distance ΔW,θ(x, x̃) is the combina-
tion of the original objective function of the problem considered and a term
given by the combination of the exponential and logistic penalty terms. The
aim of the experiment was to show that the combination of the two merit
functions proposed is beneficial also for the OFP.

The choice of the merit function parameters is critical for the efficiency of the al-
gorithm. On one hand, by following Proposition 2, it would be better setting the
parameter of a chosen merit function to a sufficiently small value. On the other hand,
when the parameter is very small, the slope of the graph related to the function ϕ
gets very large close to 0 or 1, thus making the problem, in some cases, hard to solve.
We performed our experiments using

• penalty term (9) denoted by FP;
• penalty term (21) denoted by Log, with ε = 0.1;
• penalty term (22) denoted by Hyp, with ε = 0.1;
• penalty term (23) denoted by Exp, with α = 0.5;
• penalty term (24) denoted by Logis, with α = 0.1.

On the basis of our numerical experiments, the values of the parameters reported
above represent a good compromise between theory and practice.

In scenarios 2, 3, 4, and 5, we stop the algorithms if an integer solution is found
or if the limit of 1500 iterations is reached. Due to the random effects introduced
by perturbations and major restarts, each problem is tested on a particular penalty
function on 10 runs (with different random seeds).
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Fig. 4. Comparison between the original FP term and the new terms for randomly generated
starting points.

8.1. Computational results for randomly generated starting points. In
this first experiment, we applied the Frank–Wolfe algorithm to solve problem (21) with
the objective functions (9), (21)–(24). The algorithm stops when it finds a stationary
point (which is not necessarily integer feasible). The goal of the experiment was to
understand how good each function is at finding an integer feasible solution. In order
to obtain reliable statistics we used 1000 randomly generated starting points. The
results obtained on the MIP problems when using randomly generated starting points
are shown in Figure 4, where we report the box plots related to the distribution of the
number of integer feasible solutions found by each function (we discarded problems
where no function found an integer feasible solution). On each box, the central mark
is the median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers, and outliers are
plotted individually.

We can observe that the results obtained by means of the Exp and the Logis
functions, in terms of number of integer feasible solutions found, are slightly better
than those obtained using the FP. FP, in turn, gives better results than Log and Hyp
penalty functions.

This preliminary computational experience seems to show that the functions have
a different behavior in forcing the integrality of the solution. These diversities could
be somehow exploited into a multistart strategy. In particular, we could develop a
new framework where the minimization of different functions is carried out in parallel.
In order to investigate the effect of the parallel use of different functions, we applied
the Frank–Wolfe algorithm to three merit functions (using three different randomly
generated starting points) and chose the solution with the highest number of integer
components among the three. We compared this strategy with the one where we use
the same merit function on three different starting points. In Figure 5, we report the
results obtained on 333 repetitions of the parallel experiment, when using for each
repetition

• the same merit function with three different starting points;
• three different merit functions (FP, Exp, and Logis), each with a different
starting point.

We discarded problems where in both cases no integer feasible solution over the
333 repetitions was found. We can see from Figure 5 that the use of three different
merit functions in parallel outperforms the use of only one merit function in the
case of FP and Exp. The difference in the performances between the use of three
different merit functions in parallel and the use of the Logis merit function is less
evident; however, the results obtained by the Logis function have a median of 298.0
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Fig. 5. Number of integer feasible solutions found in the parallel experiment.

and a 25th percentile of 95.5, while the results obtained by using three different merit
functions have a median of 302.5 and a 25th percentile of 98.5. The results obtained
in the parallel experiment suggest that, in a multistart strategy, the use of different
merit functions can help diversify the local minima computed by the algorithm, thus
increasing the number of integer feasible solutions found.

8.2. Comparison between FP and RFP. In order to evaluate the ability of
finding a first feasible solution, we report in Table 1, for each penalty term,

• the number of problems for which no feasible solution has been found (Not
found);

• the number of problems for which a feasible solution has been found at least
once, but fewer than ten times (Found at least once);

• the number of problems for which a feasible solution has been found for all
ten runs (Found 10 times);

• the average number of feasible solutions found (Average number of f.s. found).
As we can see from Table 1, FP, Exp, and Logis terms have a similar behavior

and are slightly better than Hyp and Log terms.
In order to show the efficiency in terms of objective function value, we consider

the 108 problems for which an integer feasible solution is found in all ten runs by all
of the algorithms and, in Table 2, we report for each penalty term

• the number of problems for which the best average objective function value
(average over ten runs) is obtained (Best average o.f.);

• the number of problems for which the best objective function value (minimum
over ten runs) is obtained (Best min o.f.).

As we can see by taking a look at Table 2, the Log and Hyp terms give the best
performance in terms of objective function value. Furthermore, Exp and Logis terms
are comparable and perform better than FP term.

Table 1

Comparison between FP and RFP (feasible solutions).

Not found Found at least once Found 10 times Average number of f.s. found
FP 16 9 128 8.61
Exp 15 11 127 8.75
Log 18 15 120 8.28
Hyp 27 15 111 7.65
Logis 16 11 126 8.71
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Table 2

Comparison between FP and RFP (objective function value).

Best average o.f. Best min o.f.
FP 24 24
Exp 28 27
Log 30 26
Hyp 32 28
Logis 27 25

Table 3

Comparison between FP and RFP (geometric means).

FP Exp, α = 0.5 Log, ε = 0.1 Hyp, ε = 0.1 Logis, α = 0.1
Iter Time Iter Time Iter Time Iter Time Iter Time
5.774 1.793 4.851 1.683 5.684 1.657 7.193 1.757 4.869 1.678

The detailed results of the comparison between the FP algorithm and the reweight-
ed version obtained using the penalty terms (21)–(24) are reported in Tables 17–21
of [16]. In particular, both the results related to the problems for which an integer
feasible solution is found in all ten runs (see Tables 17–19 of [16]) and the results
related to the problems for which an integer feasible solution is found in fewer than
ten runs (see Tables 20–21 of [16]) are reported. By taking a look at those tables,
we can notice that the RFP algorithm obtained using the Exp merit function (Exp
RFP algorithm) and the one obtained using the Logis merit function (Logis RFP
algorithm) are competitive with the FP in terms of both number of iterations and
CPU time. They are also better than the RFP algorithm with the Log merit function
(Log RFP algorithm) and the one with the Hyp merit function (Hyp RFP algorithm)
that, in addition, have a larger number of failures. Despite these facts, Log RFP and
Hyp RFP algorithms generally give good results in terms of objective function value.
In order to better assess the differences in terms of iterations and CPU time between
FP and the various versions of the RFP algorithm, we report in Table 3 the geometric
means for all the algorithms calculated over 108 instances (those problems for which
a feasible solution is found in all the ten runs). In the calculations of the geometric
means, individual values smaller than 1 are replaced by 1. The results in Table 3
seem to confirm that Exp and Logis RFP algorithms are competitive with the FP
algorithm.

In order to better assess the differences between the FP algorithm and the RFP
algorithm, we considered the 123 problems for which an integer feasible solution is
found in all ten runs by the FP, Exp RFP, and Logis RFP algorithms. We divided the
problems into three different classes depending on the CPU time t (seconds) needed
by the algorithms to find a feasible solution:

• Easy. Problems for which a feasible solution has been found by all the algo-
rithms in a time t ≤ 1 (76 problems).

• Hard. Problems for which a feasible solution has been found by any algorithm
in a time t > 20 (12 problems).

• Medium. All the problems that are neither Easy nor Hard (35 problems).
We report in Figure 6 the results, in terms of CPU time, obtained by the FP, Exp

RFP, and Logis RFP algorithms on the three classes of problems. Exp RFP and Logis
RFP are comparable with FP on the Easy and Medium classes, while they outperform
it on the Hard class. Once again, we could develop a new framework where different
algorithms are used in parallel. In order to investigate the effect of the parallel use of
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Fig. 6. Results in terms of CPU time for the three classes of problems.
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Fig. 7. Results in terms of CPU time for the parallel experiment.

different algorithms, we ran three algorithms and chose the solution with the lowest
CPU time among the three. We report in Figure 7 the results obtained using

• three runs of the FP algorithm;
• one different algorithm (FP, Exp RFP, and Logis RFP) for each run.

By taking a look at those results, we can see that the use of different functions
improves the performance in the Medium and Hard classes, while giving comparable
results on the Easy class.

8.3. Comparison between FP and combined RFP. In this subsection, we
show the effects of combining two different functions. We report the results obtained
combining the following functions:

• FP term and Log term, denoted by FP+Log;
• Exp term and Log term, denoted by Exp+Log;
• Logis term and Log term, denoted by Logis+Log;
• Exp term and Logis term, denoted by Exp+Logis.

We set φ1(x) equal to the merit function obtained using the first term and φ2(x)
equal to the merit function obtained using the second term (see (36)). We start with
λ0 = 1 and reduce it every time a perturbation occurs. More precisely, we can have
two different cases:

• Weak perturbation update: λk+1 = 0.5λk.
• Strong perturbation update: λk+1 = 0.1λk.

When a strong perturbation occurs, it means that the algorithm is stuck in a cycle.
Then the updating rule significantly changes the penalty term, thus moving towards
the function belonging to the second class.
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Table 4

Comparison between FP and combined RFP (feasible solutions).

Not found Found at least once Found 10 times Average number of f.s. found
FP 16 9 128 8.61
FP+Log 17 11 125 8.61
Exp+Log 19 6 128 8.55
Logis+Log 17 9 127 8.58
Exp+Logis 16 10 127 8.59

Table 5

Comparison between FP and combined RFP (objective function value).

Best average o.f. Best min o.f.
FP 19 19
FP+Log 31 30
Exp+Log 35 33
Logis+Log 32 30
Exp+Logis 32 30

In order to evaluate the ability of finding a first feasible solution, we report in
Table 4, for each penalty term,

• the number of problems for which no feasible solution has been found (Not
found);

• the number of problems for which a feasible solution has been found at least
once, but fewer than ten times (Found at least once);

• the number of problems for which a feasible solution has been found for all
ten runs (Found 10 times);

• the average number of feasible solutions found (Average number of f.s. found).
As we can see from Table 4, all terms have a similar behavior.
In order to show the efficiency in terms of objective function value, we consider

the 123 problems for which an integer feasible solution is found in all ten runs by all
of the algorithms and, in Table 5, we report for each penalty term

• the number of problems for which the best objective function value (average
over ten runs) is obtained (Best average o.f.);

• the number of problems for which the best objective function value (minimum
over ten runs) is obtained (Best min o.f.).

As we can see by taking a look at Table 5, the combined terms give better performance
in terms of objective function value than the FP term. Furthermore, the Exp+Log
combination gives the best performance.

The detailed results of the comparison between the FP algorithm and the reweight-
ed version obtained using the combined penalty terms are shown in Tables 22–26 of
[16]. In particular, both the results related to the problems for which an integer fea-
sible solution is found in all the ten runs (see Tables 22–24 of [16]) and the results
related to the problems for which an integer feasible solution is found in fewer than ten
runs (see Tables 25–26 of [16]) are reported. By taking a look at those tables, we can
notice that the combined RFP algorithm obtained using the Exp and the Logis merit
functions (Exp+Logis RFP algorithm) gives the best performance. Furthermore, all
the versions of the combined RFP algorithm are competitive with the standard FP
algorithm. We report in Table 6 the geometric means for all the algorithms calcu-
lated over 123 instances (those problems for which a feasible solution is found in all
ten runs). In the calculations of the geometric means individual values smaller than
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Table 6

Comparison between FP and combined RFP (geometric means).

FP FP+Log Exp+Log Logis+Log Exp+Logis
Iter Time Iter Time Iter Time Iter Time Iter Time
6.252 2.034 6.474 1.630 6.438 1.650 6.388 1.663 5.765 1.617
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Fig. 8. Results in terms of CPU time for the three classes of problems.

1 are replaced by 1. The results in Table 6 seem to confirm that the Exp+Logis RFP
algorithm is the best among the combined versions of the RFP algorithm and that all
the combined RFP algorithms behave favorably when compared to the original FP
algorithm in terms of CPU time.

In order to better assess the differences between the FP algorithm and the Exp+
Logis RFP algorithm, we considered the 124 problems for which an integer feasible
solution is found in all ten runs by the two algorithms. We divided the problems
into three different classes depending on the CPU time t (seconds) needed by the
algorithms to find a feasible solution:

• Easy. Problems for which a feasible solution has been found by all of the
algorithms in a time t ≤ 1 (80 problems).

• Hard. Problems for which a feasible solution has been found by any algorithm
in a time t > 20 (12 problems).

• Medium. All problems that are neither Easy nor Hard (32 problems).
We report in Figure 8 the results, in terms of CPU time, obtained by the FP

and Exp+Logis RFP algorithms on the three classes of problems. As we can see,
Exp+Logis RFP improves the performance in all the classes.

8.4. Comparison between OFP and ORFP. In the following we report a
comparison between the OFP [1] and the ORFP with the Exp (Exp ORFP) and
Logis (Logis ORFP) terms. In order to evaluate the ability of finding a first feasible
solution, we report in Table 7, for each penalty term,

• the number of problems for which no feasible solution has been found (Not
found);

• the number of problems for which a feasible solution has been found at least
once, but fewer than ten times (Found at least once);

• the number of problems for which a feasible solution has been found for all
ten runs (Found 10 times);

• the average number of feasible solutions found (Average number of f.s. found).
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Table 7

Comparison between OFP and ORFP (feasible solutions).

Not found Found at least once Found 10 times Average number of f.s. found
OFP 17 29 107 7.99
Exp ORFP 17 32 104 7.94
Logis ORFP 21 21 111 7.92

Table 8

Improvement in the quality of the solution by the introduction of the objective function in the
FP and in the RFP.

FP OFP Exp RFP Exp ORFP Logis RFP Logis ORFP
Gap % Time Gap % Time Gap % Time Gap % Time Gap % Time Gap % Time

binkar10-1 8936 0.2 18 0.1 13388 0.2 18 0.1 14873 0.2 18 0.1
dano3-3 73 31.7 0 53.2 73 13.3 0 79.3 73 17.7 0 104.8
dano3-4 73 23.9 0 119.2 73 13.6 0 108.5 69 15.9 0 96.4
dano3-5 72 26.5 0 104.1 73 14.5 0 128.3 73 16.5 0 134.5

neos-476283 160 444.7 1 47.7 80 121.2 1 47.2 68 71.8 2 48.0
neos-780889 216 48.2 0 13.4 223 52.4 0 13.4 219 50.2 0 13.3

qap10 48 1690.5 14 27.8 19 7.5 20 36.0 19 8.7 3 21.2

As we can see from Table 7, OFP, Exp ORFP, and Logis ORFP terms have
a similar average number of feasible solutions found. Logis ORFP has the highest
number of failures in terms of number of problems for which no feasible solution has
been found, but also the highest number of problems for which a feasible solution has
been found for all ten runs.

The detailed results of the comparison between the FP algorithm and the reweight-
ed version obtained using the combined penalty terms are shown in Tables 27–31 of
[16]. In particular, both the results related to problems for which an integer feasible
solution is found in all ten runs (see 27–29 of [16]) and the results related to problems
for which an integer feasible solution is found in fewer than ten runs (see Tables 30–31
of [16]) are reported. The OFP fails to find a feasible solution in all ten runs for 46
instances, the Exp ORFP for 49, the Logis ORFP for 42.

The introduction of the objective function generally improves the quality of the
feasible solution found, and in some cases we notice a relevant improvement in the
percentage gap with respect to the best known solution. This improvement can some-
times correspond to an improvement in the computational time, too. We report in
Table 8 the CPU time and the gap with respect to the optimal solution for some
instances where the introduction of the objective function improves the quality of the
solution.

Overall, the OFP and the Logis ORFP found the optimal solution for ten in-
stances, while the Exp ORFP for twelve instances. Since in this case we are interested
in finding the algorithm with best performance in terms of both CPU time and gap
value, we compare Exp OFP and Logis OFP with OFP in terms of wins (minimum
CPU time and minimum gap):

• OFP vs. Exp ORFP: The OFP has 39 wins against 46 wins of the Exp ORFP.
• OFP vs. Logis ORFP: Both the OFP and the Logis ORFP have 38 wins.

Let us now analyze the behavior of the various algorithms in terms of number of
iterations and computational time. We report in Table 9 the geometric means for all
the algorithms calculated over those problems for which a feasible solution is obtained
in all ten runs. In the calculations of the geometric means individual values smaller
than 1 are replaced by 1. The results in Table 9 indicate that both the Exp ORFP
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Table 9

Comparison between OFP and ORFP (geometric means).

OFP Exp ORFP Logis ORFP
Iter Time Iter Time Iter Time

16.7396 1.8725 16.3445 1.8694 18.6573 1.8123
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Fig. 9. Box plots of the CPU time for OFP vs. ORFP.

and the Logis ORFP have a geometric mean in terms of CPU time slightly lower than
the geometric mean of the OFP, while the Logis ORFP has a geometric mean in terms
of number of iterations higher than the other two.

In order to better assess the differences between the OFP and the ORFP, we
considered problems for which an integer feasible solution is found in all ten runs by
the algorithms in comparison. We divided the problems into three different classes
depending on the CPU time t (seconds) needed by the algorithms to find a feasible
solution:

• Easy. Problems for which a feasible solution has been found by all the algo-
rithms in a time t ≤ 1 (66 problems).

• Hard. Problems for which a feasible solution has been found by any algorithm
in a time t > 20 (8 problems).

• Medium. All problems that are neither Easy nor Hard (27 problems).
We report in Figure 9 the results in terms of CPU time, obtained by the OFP, the
Exp ORFP, and the Logis ORFP algorithms for the three classes of problems. We
further report the CPU time and gap percentage for the instances in the Hard class
in Table 10. We can notice that in the Easy class the three algorithms have the same
behavior. In the medium class they are comparable, while in the Hard class the Logis
ORFP has the highest median. However, looking at the results in Table 10, it can be
seen that the Logis ORFP has the lowest CPU time on 5 instances over 8.

In order to analyze the behavior of the algorithms in terms of solution quality, we
consider in Figure 10 the data profiles for the gap percentage obtained by the various
algorithms for the various classes of problems. The plots in Figure 10 give on the
y-axis the number of problems whose gap is smaller than or equal to the value given
on the x-axis. We can notice that the profiles of the three algorithms are comparable.
For the Easy class the Exp ORFP profiles are slightly better than the others, while
for the Hard class the Logis ORFP is the best of the three. We further report in Table
11 some instances where the use of ORFP is beneficial in terms of gap. We want to
point out that there are four instances where at least one version of the ORFP closes
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Table 10

Detailed results for the Hard class for OFP vs. ORFP.

Problem OFP EXP ORFP LOGIS ORFP
Time Gap% Time Gap% Time Gap%

air04 23.8 4 23.3 4 23 4
dano3mip 275.6 - 282.6 - 273.9 -
dano3-3 53.2 0 79.3 0 104.8 0
dano3-4 119.2 0 108.5 0 96.4 0
dano3-5 104.1 0 128.3 0 134.5 0
neos12 28.1 37 31.8 36 6.5 0

neos476283 47.7 1 47.2 1 48 2
qap10 27.8 14 36 20 21.2 3
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Fig. 10. Profiles of the gap percentage for OFP vs. ORFP.

Table 11

Examples of instances where ORFP improves the gap.

OFP Exp ORFP Logis ORFP
opt1217 20 0 17
sp97ar 717 597 66
neos-12 37 36 0

neos-826812 1 1 0
neos-932816 1 0 1
neos-1200887 20 14 5
neos-1228986 18 7 4

qap10 14 20 3

the gap and OFP does not, while the opposite never happens.
As a concluding remark, we would like to point out the fact that Exp ORFP has

a larger number of wins than ORFP and comparable performance in terms of gap,
while Logis ORFP has the same number of wins and good performance in terms of
gap (see results for the Hard class).

8.5. Comparison between OFP and combined ORFP. In the following we
report a comparison between the OFP [1] and the combined ORFP where we consider
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Table 12

Comparison between OFP and Exp+Logis ORFP (feasible solutions).

Not found Found at least once Found 10 times Average number of f.s. found
OFP 17 29 107 7.99
Exp+Logis ORFP 23 17 113 8.06

Table 13

Improvement in the quality of the solution by the introduction of the objective function in the
FP and in the RFP combined.

FP OFP Exp+Logis RFP Exp+Logis ORFP
Gap % Time Gap % Time Gap % Time Gap % Time

binkar10-1 8936 0.15 18 0.10 8930 0.06 18 0.10
dano3-3 73 31.74 0 53.20 13 8.67 0 24.60
dano3-4 73 23.95 0 119.20 15 8.65 0 34.80
dano3-5 72 26.46 0 104.10 16 8.62 0 55.70

neos-476283 160 444.74 1 47.70 33 11.13 3 34.40
neos-780889 216 48.19 0 13.40 193 83.28 0 13.40

qap10 48 1690.54 14 27.80 19 10.64 21 19.40

the combination of the Exp and Logis terms (Exp+Logis ORFP). In order to evaluate
the ability of finding a first feasible solution, we report in Table 12, for each penalty
term,

• the number of problems for which no feasible solution has been found (Not
found);

• the number of problems for which a feasible solution has been found at least
once, but fewer than ten times (Found at least once);

• the number of problems for which a feasible solution has been found for all
ten runs (Found 10 times);

• the average number of feasible solutions found (Average number of f.s. found).
As we can see from Table 12 the Exp+Logis ORFP was not able to find a feasible

solution in six instances more than the OFP. On the other hand it found a feasible
solution for all ten runs in six instances more than the OFP. The average number of
feasible solutions found is similar for the two algorithms.

The detailed results of the comparison between the FP algorithm and the reweighted
version obtained using the combined penalty terms are shown in Tables 27–31 of [16].
In particular, both the results related to problems for which an integer feasible solu-
tion is found in all the ten runs (see Tables 27–29 of [16]) and the results related to
problems for which an integer feasible solution is found in fewer than ten runs (see
Tables 30–31 of [16]) are reported. The OFP fails to find a feasible solution in all ten
runs for 46 instances and the Exp+Logis ORFP for 40 instances.

We report in Table 13 the CPU time and the gap with respect to the optimal
solution for some instances where the introduction of the objective function improves
the quality of the solution.

Overall, both the OFP and the Exp+Logis ORFP found the optimal solution for
ten instances. Also in this case we compare ORFP and combined ORFP in terms of
number of wins, and we have that the OFP has 28 wins, while the Exp+Logis ORFP
has 46 wins.

Let us now analyze the behavior of the two algorithms in terms of number of
iterations and computational time by computing the geometric means on those prob-
lems for which a feasible solution is calculated in all ten runs. In the calculations of
the geometric means individual values smaller than 1 are replaced by 1. The results
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Table 14

Comparison between OFP and Exp+Logis ORFP (geometric means).

OFP Exp+Logis ORFP
Iter Time Iter Time

16.7396 1.8725 11.5181 1.7134
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Fig. 11. Box plots of the CPU time for OFP vs. ORFP combined.

in Table 14 indicate that the Exp+Logis ORFP has a lower geometric mean both in
terms of number of iterations and in terms of CPU time.

In order to better assess the differences between the OFP and the Exp+Logis
ORFP, we considered the problems for which an integer feasible solution is found in
all ten runs by the algorithms in comparison. We divided the problems into three
different classes depending on the CPU time t (seconds) needed by the algorithms to
find a feasible solution:

• Easy. Problems for which a feasible solution has been found by the two
algorithms in a time t ≤ 1 (69 problems).

• Hard. Problems for which a feasible solution has been found by any algorithm
in a time t > 20 (8 problems).

• Medium. All problems that are neither Easy nor Hard (25 problems).
We report in Figure 11 the results in terms of CPU time, obtained by the OFP

and the Exp+Logis ORFP on the three classes of problems. We further report the
CPU time and gap percentage for the instances in the Hard class in Table 15. We
can notice that in the Easy class the two algorithms have a very similar behavior,
while both in the Medium and in the Hard classes the Exp+Logis ORFP improves
the performance.

In order to analyze the behavior of the algorithms in terms of solution quality,
we again consider in Figure 12 the data profiles for the gap percentage obtained by
the two algorithms for the various classes of problems. Each plot gives the number
of instances where a solution was obtained by a given algorithm within a certain gap
percentage. We can notice that the two algorithms are comparable in all the classes.
We further report in Table 16 some instances where the use of Exp+Logis ORFP is
beneficial in terms of gap.

As a concluding remark, we would like to point out the fact that Exp+Logis
ORFP has a quite larger number of wins than ORFP, better performance in terms of
CPU time, and comparable performance in terms of gap.

8.6. Benchmarking algorithms via performance profiles. In order to give
a better interpretation of the results generated by the various algorithms, we decided
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Table 15

Detailed results for the Hard class for OFP vs. Exp+Logis ORFP.

Problem OFP Exp+Logis ORFP
Time Gap% Time Gap%

air04 23.8 4 39.1 4
dano3mip 275.6 - 181.5 -
dano3-3 53.2 0 24.6 0
dano3-4 119.2 0 34.8 0
dano3-5 104.1 0 55.7 0
neos12 28.1 37 9.3 13

neos476283 47.7 1 34.4 3
qap10 27.8 14 19.4 21
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Fig. 12. Profiles of the gap percentage for OFP vs. Exp+Logis ORFP.

to use performance profiles [17]. We consider a set A of na algorithms, a set P of
np problems, and a performance measure mp,a (e.g., in our case, average number
of iterations, average CPU time). We compare the performance on problem p by
algorithm a with the best performance by any algorithm on this problem using the
following performance ratio:

rp,a =
mp,a

min{mp,a : a ∈ A} .

Then we obtain an overall assessment of the performance of the algorithm by defining
the value

ρa(τ) =
1

np
size{p ∈ P : rp,a ≤ τ},

which represents the probability for algorithm a ∈ A that the performance ratio
rp,a is within a factor τ ∈ R of the best possible ratio. The function ρa represents
the distribution function for the performance ratio. Thus ρa(1) gives the fraction of
problems for which algorithm a was the most effective, ρa(2) gives the fraction of
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Table 16

Examples of instances where Exp+Logis ORFP improves the gap.

OFP Exp+Logis ORFP
bc1 304 3

neos-522351 28 4
neos-584851 56 19
neos-829552 1038 140
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Fig. 13. Performance profiles: FP vs. RFP (upper figures); FP vs. RFP combined (lower
figures).

problems for which algorithm a is within a factor of 2 of the best algorithm, and
so on.

In Figure 13, we report the performance profiles related to the comparison among
FP, Exp RFP, and Logis RFP in terms of number of iterations (upper left) and CPU
time (upper right). It is clear that Exp RFP and Logis RFP functions have a higher
number of wins in terms of number of iterations and Exp RFP has the highest number
of wins in terms of computational time. Furthermore, the two RFP algorithms are
better in terms of robustness.

We further report, in Figure 13, the performance profiles related to the comparison
between FP and the combined version of the RFP obtained using Exp and Logis
functions in terms of number of iterations (lower left) and CPU time (lower right).
If we take a look at the profiles related to the iterations, we can notice that the FP
is slightly better in the number of wins, but the combined RFP is better in terms of
robustness. The performance profiles related to the CPU time clearly show that the
combined RFP outperforms the FP in terms of both number of wins and robustness.

In Figure 14, we report the performance profiles related to the comparison among
OFP, Exp ORFP, and Logis ORFP in terms of number of iterations (upper left) and
CPU time (upper right). The performance profiles related to the number of iterations
shows that the Logis ORFP profile is below the OFP and the Exp ORFP profiles,
which are very similar. On the contrary, the Logis ORFP profile related to the CPU
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Fig. 14. Performance profiles: OFP vs. ORFP (upper figures); OFP vs. ORFP Combined
(lower figures).

time has the highest number of wins and is slightly better than the other two in terms
of robustness.

We further report, in Figure 14, the performance profiles related to the comparison
between OFP and Exp+Logis ORFP in terms of number of iterations (lower left) and
CPU time (lower right). We can notice that the Exp+Logis ORFP profile outperforms
the OFP profile in terms of both number of iterations and CPU time.

9. Conclusions. In this paper, we focused on the problem of finding a first fea-
sible solution for a 0-1 MIP problem. We started by interpreting the feasibility pump
(FP) heuristic as a Frank–Wolfe method applied to a nonsmooth concave merit func-
tion. Then we noticed that the reduction of the merit function used in the FP scheme
can correspond to an increase in the number of noninteger variables of the solution.
For this reason, we proposed new concave merit functions that can be included in the
FP scheme having two important properties: they decrease whenever the number of
integer variables increases; if they decrease, then the number of noninteger variables
does not increase. Due to these properties, the functions proposed should speed up
the convergence towards integer feasible points. We reported computational results
on a set of 153 0-1 MIP problems. This numerical experience shows that the version
of the reweighted feasibility pump (RFP) obtained by combining two of the proposed
functions (namely, Exp and Logis) compares favorably with the FP both in its original
version and in the enhanced version with the introduction of the objective function [1].
Furthermore, it highlights that the use of more than one merit function at time (i.e.,
parallel framework, combination of functions) can significantly improve the efficiency
of the algorithm.

In [15], we reinterpret the FP for general MIP problems as a Frank–Wolfe method
applied to a suitably chosen function, and we extend our approach to this class of prob-
lems. Possible improvements of our approach could be accomplished along different
lines, for example by replacing the rounding with a scheme based on constraint prop-
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agation like in [20] or with a procedure that examines rounded solutions along a given
line segment as in [3, 9]. In particular the proposed merit functions could also be used
in order to drive the choice of the new rounded point.

Finally, we want to remark that a wider availability of functions for measuring
integrality is important since it can ease the search of feasible solutions for different
classes of MIP problems.
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