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Abstract

Simplicial Decomposition is a column generation method for solving con-
vex continuous optimization problems. In this work, we show that such a
method can be efficiently embedded in a branch-and-price algorithm to solve
quadratic convex mixed binary problems. This allows to efficiently reuse the
variables generated in one node of the branch-and-bound tree, thus providing
a speed-up in terms of computing time. We also analyze the interaction of
additional techniques for improving the overall performances of the frame-
work, in particular we introduce a warmstart based on projection of columns.
We finally report computational results on quadratic minimum spanning tree
problems and quadratic shortest path problems, which show the efficiency of
the proposed method, in particular when compared to the commercial solver
Cplex.
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1. Introduction

Many real-world applications can be modelled as Mixed Binary Quadratic
Problems (MBQPs). The problems we deal with have the following structure:

min f(x) = x>Qx+ c>x (1)

s. t. Ax ≥ b

Cx = d

l ≤x ≤ u

xi ∈ {0, 1} ∀i ∈ I ⊆ {1, . . . , n}

with Q ∈ Rn×n, c, l, u ∈ Rn, A ∈ Rm1×n, b ∈ Rm1 , C ∈ Rm2×n, d ∈ Rm2 ,
n,m1,m2 ∈ N.

We focus on convex problems, so we assume that the Hessian matrix Q
is positive semidefinite. Moreover, we assume that the set

X = {x ∈ Rn : Ax ≥ b, Cx = d, l ≤ x ≤ u}

is non-empty and bounded. Furthermore, among all possible problems of
type (1), we are particularly interested in those in which the matrix Q is
dense and with the following additional property: there exists an efficient
method for minimizing a linear function over the feasible set X, i.e., there
exists an efficient linear minimization oracle that, for a given y ∈ Rn, solves
the problem:

min
x∈X

y>x.

We present an algorithm for tackling this class of NP-Hard problems that
combines a classic Branch and Bound (B&B) strategy with a Simplicial De-
composition (SD) type approach (used to handle the continuous relaxation
of the problem). We introduce ad-hoc techniques that exploit the combi-
nation of SD in a B&B framework and in particular we show how columns
generated in one node can be efficiently projected to produce a warmstart
for the child nodes and improve the performance of the algorithm. In [1], it
is showed that SD can easily handle quadratic programming problems with
the aforementioned structure. This is another motivation for our choice to
use it to solve the continuous relaxation at a given node of the B&B tree.
However, it is worth noticing that the proposed algorithm can handle any
convex problem of type (1) and can be easily modified in order to deal with
general mixed integer convex optimization problems. We further exploit the
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SD structure by implementing several warm-up techniques to quickly solve
the nodes in the B&B tree. Within this framework we obtain promising re-
sults compared with the state-of-the-art solver Cplex on some specific classes
of instances.

The paper is organized as follows: in Section 2 we present a state of the
art related to binary quadratic problems and decomposition techniques. In
Section 3 we introduce Simplicial Decomposition and in Section 4 we show
how to efficiently use Simplicial Decomposition in a B&B framework. Finally,
in Section 5 we show the performances of our method and Section 6 concludes
the paper.

2. State of the art

Classical approaches to solve exactly binary quadratic problems are mainly
based on semidefinite relaxations or linearization techniques. A branch-and-
bound method for solving binary quadratic problems using semidefinite re-
laxations is proposed in [2]. In [3], a recent theoretical and computational
study of the classical linearization techniques for binary quadratic problems is
developed. In [4], the authors present a new linear reformulation to convert a
binary quadratically constrained quadratic program into a 0–1 mixed integer
linear program. In order to strengthen the relaxation, one could also exploit
polyhedral aspects, as in [5], where strong convex valid inequalities are de-
scribed for conic quadratic mixed 0–1 optimization. For convex problems, [6]
provides a complete characterization of the sets that appear in the feasibil-
ity version of mixed binary convex quadratic optimization problems. In [7],
the authors review convex mixed-integer quadratic programming approaches
to deal with single-objective single-period mean-variance portfolio selection
problems under real-world financial constraints. Interior point methods can
also be used to solve convex quadratic problems, as in [8].

Quadratic Convex Reformulation approaches are another way to tackle
mixed integer nonlinear problems (MINLP). These methods have been ap-
plied to binary quadratic problems [9], general mixed integer quadratic prob-
lems [10] and, recently, to unconstrained binary polynomial problems [11].
Other convexification approaches have been proposed, as in [12], where the
methodology relies on a convex reformulation of the proposed MINLP and
a branch-and-cut algorithm based on outer approximation cuts, or in [13],
where the authors employ quadratic surrogate functions and convexify all the
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quadratic inequality constraints to construct quadratic convex reformulation
for nonconvex binary quadratically constrained quadratic problems.

Dantzig-Wolfe Reformulation (DWR) is a well known technique used to
obtain tight bounds for MILPs (see for example [14, 15, 16]). Its principle is
to replace the feasibility region corresponding to a subset of the constraints
of a model by the convex hull of its extreme points through an inner rep-
resentation. A recent research trend is indeed investigating on how to em-
bed automatic decomposition techniques into general purpose MILP solvers
[17, 18].

DWR can be applied in principle also to nonlinear mathematical pro-
gramming models, provided a subset of constraints exists whose correspond-
ing feasible region can be represented as a polyhedron. In fact, the extension
of DWR to nonlinear problems has been analyzed in several theoretical pa-
pers in the past years (see for example [19, 20, 21]). However, whether or
not its application to MINLP may yield successful computational methods
is still an open research question.

One of the main issues is the following: the application of DWR leads to
a formulation with an exponential number of variables. It can be solved via
iterative procedures like Column Generation (we refer the reader to [15] for
an extensive review of such a method), but additional conditions have to be
fulfilled to ensure convergence.

In this paper, computational experiments will focus on the Quadratic
Minimum Spanning Tree (QMST) Problem and on the Quadratic Shortest
Path (QSP) Problem. Specific works in order to solve these problems have
been proposed in literature. For the QMST problem, [22] firstly introduced
the problem and proved NP hardness. Exact algorithms are proposed in [22,
23, 24] and recently in [25]. Lower bounds for QMST are described in [26]
and DWR is used in the special case of adjacent only QMST problem [27].
For the QSP problem, one can refer to [28] and [29].

3. Simplicial Decomposition Methods

SD represents a class of methods used for dealing with convex problems.
It was first introduced by Holloway in [30] and then further studied in other
papers (see, e.g., [31, 32, 33]). A complete overview of this kind of methods
can be found in [34].

This method has been developed as an extension of the Frank-Wolfe al-
gorithm, but it can also be seen as an application of Column Generation
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to a particular DWR of nonlinear problems. In fact, it is based on the
Caratheodory theorem, stating that any point x in the convex hull of a set
X ∈ Rn can be represented as a convex combination of at most as many
elements of X as its dimension (notice that such a number is lower or equal
than n + 1). The method works as follows: it alternates between the exact
solution of a reduced problem (master problem) that uses an inner approx-
imation of the feasible set (based on the convex hull of a subset of extreme
points/columns), and the generation of a new extreme point/column that
improves the inner description. Such an extreme point is obtained by mini-
mizing a linearization of the original function (calculated w.r.t. the optimum
of the reduced problem) over the original feasible set (pricing problem). More
specifically, we consider a minimization problem of the following form:

min f(x) (2)

s. t. x ∈ X

where f is a continuous, convex function and X ⊂ Rn is a convex and
compact set.

The column generation is done in the following way: starting from a single
point, the domain of a master program at a given iteration is the convex hull
of a finite set of affinely independent points, i.e. a simplex, and these points
are the solution of the pricing problems solved so far.

In practice, the feasible set X is approximated with the convex hull of an
ever expanding finite set Xk = {x̃1, x̃2, . . . , x̃m} where x̃i, i = 1, . . . , m are
extreme points of X. We denote this set with conv(Xk):

conv(Xk) = {x | x =
m∑
i=1

λix̃i,
m∑
i=1

λi = 1, λi ≥ 0} (3)

At each iteration, it is possible to add new extreme points to Xk in such a
way that a function reduction is guaranteed when minimizing the objective
function over the convex hull of the new (enlarged) set of extreme points. If
the algorithm does not find at least one new point, the solution is optimal
and the algorithm terminates.

The use of the proposed method is particularly indicated when the fol-
lowing two conditions are satisfied:

1. Minimizing a linear function over X is much simpler than solving the
original nonlinear problem;
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2. Minimizing the original objective function over the convex hull of a
relatively small set of extreme points is much simpler than solving the
original nonlinear problem (i.e. tailored algorithms can be used for
tackling the specific problem in our case).

The first condition is needed due to the way a new extreme point is generated.
Indeed, this new point is the solution of the following linear programming
problem

min ∇f(xk)>(x− xk)
s.t. x ∈ X (4)

where a linear approximation calculated at the last iterate xk (i.e. the solu-
tion obtained by minimizing f over conv(Xk) ) is minimized over the original
feasible set X.

Below, we report the detailed scheme related to the classical simplicial
decomposition algorithm [31, 34, 35] (see Algorithm 1). At a generic iteration
k of the simplicial decomposition algorithm, given the set of extreme points
Xk, we first minimize f over the set conv(Xk) (Step 1), thus obtaining the
new iterate xk then, at Step 2, we generate an extreme point x̃k by solving
the linear program (6). Finally, at Step 3, we update Xk.

Algorithm 1 Simplicial Decomposition Algorithm

Initialization: Choose a starting set of extreme points X0.

For k = 1, 2, . . .

Step 1) Generate iterate xk by solving the master problem

min f(x)
s.t. x ∈ conv(Xk)

(5)

Step 2) Generate an extreme point x̃k by solving the subproblem

min ∇f(xk)>(x− xk)
s.t. x ∈ X

(6)

Step 3) If ∇f(xk)>(x̃− xk) ≥ 0, Stop. Otherwise Set Xk+1 = Xk ∪ {x̃k}
End For

Finite convergence of the method is stated in the following Proposition
(see, e.g., [31, 35]):

Proposition 3.1. Simplicial Decomposition algorithm obtains a solution of
Problem (2) in a finite number of iterations, if X is polyhedral.
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As already written in [31], a vertex dropping rule is also used to remove
those vertices in Xk whose weight is zero in the representation of the master
solution xk. This dropping phase does not modify the formulation of the
pricing, so it does not change the steps of the algorithm. However, it can
guarantee significant savings in terms of CPU time, since it keeps the dimen-
sions of the master problem small, thus justifying the name of the algorithm
(the domain of the master is always a simplex).

The most significant advantage of Simplicial Decomposition is that the di-
mensions of the master programs are always small: in practice, the maximal
dimension of the master problems is often much smaller than the dimension
of the original problem. The overall computing time can hence be reduced
thanks to this decomposition. Another really important feature of this tech-
nique is the fact that all the constraints are in the pricing, so, since the
problem is convex, all the master programs are feasible and no dual informa-
tion is necessary.

It is worth noticing that the minimization of the linearized function in the
pricing problem, thanks to the convexity of the objective function, always
gives a valid lower bound for the original problem. This specific feature will
be exploited when dealing with mixed integer problems.

4. Embedding SD in a Branch and Bound Scheme

In our B&B algorithm, at each node we solve the continuous relaxation
with SD; in particular, to solve the master problems we use the ACDM
algorithm proposed in [1], which is very efficient in this case. Embedding the
SD algorithm in this structure is useful for several reasons:

• SD has a good performance in terms of computational time with respect
to Cplex when solving convex quadratic problems, so it can quickly
solve the node relaxation.

• From a theoretical point of view, the extreme points given by a SD
algorithm are always feasible, and if they are also binary it is possible
to show that every node of the B&B is feasible.

• From an algorithmic point of view, it is possible to use an advanced
warm start technique called column projection to solve more efficiently
the SD during the exploration of the B&B.
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In the following subsections we will show more in detail all the mentioned
improvements.

4.1. SD and valid dual bounds

The SD pricing problem, at each cycle, gives a valid lower bound on
the solution: indeed, it solves a linear underestimator of the original objec-
tive function. Alternatively, it can be seen as the dual bound given by the
Dantzig-Wolfe decomposition method. Such a lower bound can be exploited
for pruning the nodes before the end of the SD procedure. This allows to
avoid performing the complete column generation algorithm at each node of
the B&B tree and therefore to obtain a significant speedup.

4.2. Branching rule and the shape of the B&B tree

The basic branching rule implemented in the B&B branches on variables
that are fractional in the continuous relaxation by means of the canonical
disjunction. More precisely, at each branching, we fix to 1 the variable with
the fractional part closer to one. This choice generally allows us to keep
several columns feasible in the left child node. Moreover, since the solutions
of our problems are often sparse, this choice also allows us to quickly find a
good upper bound and keep the height of the B&B tree limited.

Regardless of how we select the fractional variable to branch on, the
following result provides an interesting properties for SD-based B&B:

Theorem 4.1. Assume that the following two conditions hold at a given
node of the B&B tree:

• the SD-based B&B algorithm branches on fractional variables of the
continuous relaxation;

• the SD algorithm only generates integer extreme points in the solution
of the continuous relaxation.

Then both child nodes are feasible.

Proof. Let Xk = {x̃1, x̃2, . . . , x̃k} be the set of extreme points of X generated
during the solution of the continuous relaxation associated to a B&B node,
let (λ∗) be the obtained optimal solution: the values of the corresponding
original variables can be computed as x∗ =

∑k
i=1 λix̃

∗
i . Let [x]j be the j-th

element of the vector x. Let ̂ be the index of the branching variable selected.
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The branching rule implies that 0 < [x∗]̂ < 1. All the extreme points in
Xk are integer by definition of SD, this implies that, in order to have [x̃∗]̂
fractional, we must have at least two extreme points, say x̃∗h and x̃∗l where
[x̃∗h]̂ = 0 and [x̃∗l ]̂ = 1. This implies that x̃∗h and x̃∗l are feasible solutions for
the partial branching associated to each of the child nodes, respectively, and
therefore both branching nodes are feasible.

4.3. Tree exploration and column projection

We use the depth first search in the exploration of the tree. More specif-
ically, after each branching, we selected the left child as the next node to
explore. Such a choice allows to keep the number of open nodes very small.
Indeed, at any step of the algorithm, at most n+ 1 nodes are opened. More-
over, it allows to quickly find a feasible solution (and hence an upper bound).

Another useful enhancement of the SD algorithm is that all the columns
generated at each node can be reused in the children nodes. Indeed, when
at a given node a fractional solution is found for the continuous relaxation,
and branching is performed for the ith variable, then all the columns with
ith component equal to 1 or 0 can be stored either for the left child node or
for the right child node. In this way, we can have an initial set of extreme
columns for every node of the B&B tree. This enables us to warmstart the
SD algorithm at every node. We note that this procedure is cheap in terms of
memory when we adopt a depth first search strategy, because only two sets of
columns are needed to be stored at each node (those with a component fixed
to 0 and to 1), and the number of open nodes is small enough. A different
strategy, like the breadth first search for instance, where the number of open
nodes can be much higher, would be much more memory consuming.

The idea of reusing columns coming from the father node can be pushed
further via a specific column projection. The basic idea of such a technique is
to warmstart, at a given node, the SD method with a set of columns obtained
by suitably modifying the columns of the father node.

Let X t be the feasible region at a node t (X t is the original feasible set
X with some fixed variables) and suppose we branch on variable j. We
introduce two projections p0

j and p1
j as follow: p0

j : X t → {x ∈ X t : [x]j = 0}
and p1

j : X t → {x ∈ X t : [x]j = 1}. For ease of notation we omit the node
index t. For each extreme column of the father node x̃ ∈ X t, p0

j(x̃) and p1
j(x̃)

will be feasible for one of the child nodes respectively and as close as possible
to x̃.
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Let XF
k = {x̃1, x̃2, . . . , x̃k} be the set of extreme points of X generated

during the solution of the continuous relaxation associated to the father
of a given node of the B&B tree. We propose to use a suitable subset of
projected columns {p1

j(x̃1), p1
j(x̃2), . . . , p1

j(x̃k)} as a starting set of feasible
columns for the child node obtained after fixing [x]j = 1 (and an analogous
procedure when solving the child node obtained after fixing [x]j = 0). The
idea behind this procedure is to accelerate the solution of a node by mimicking
the solution of its father node. Moreover, we want to add columns only if
they provide a descent direction: in this way, indeed, we assure that the new
columns will improve the solution, and there is no redundancy in the set.
Below we report the pseudocode of the warmstart procedure obtained when
fixing [x]j to 0 or 1 and 1 ≤ j ≤ n.

Algorithm 2 Warmstart by projection on [x]j = i (i = 0, 1)

Initialization: Set x̄1 = pij(x̃1), P = {x̄1}, xopt = x̄1, and gopt = ∇f(xopt).

For k = 2, 3, . . .m :

x̄k = pij(x̃k). If g>opt(x̄k − xopt) < 0 set: P = P ∪ {x̄k}, xopt = arg minx∈conv(P ) f(x),

gopt = ∇f(xopt).

End For

An essential requirement for such a column projection to be successful is
being able to quickly execute p(). In Section 5.2, we give a detailed descrip-
tion of the column projection used for each class of instances solved.

5. Computational Results

In this section, we first present the instances used in the tests. We con-
sider instances of combinatorial problems and in particular, we focus on
the quadratic minimum spanning tree (QMST) problem and the quadratic
shortest path (QSP) problem. Then we describe, for each class of instances
studied, the related column projection we used. Finally, we report exten-
sive computational results obtained with the SD based B&B algorithm we
presented in the previous sections.

5.1. Instance descriptions

5.1.1. Quadratic Minimum Spanning Tree (QMST) Problem

Given an undirected graph G with n nodes and m edges, the QMST prob-
lem is to find the subtree of G spanning all the vertices of G with minimum
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cost, where the cost is given by the total weight of the edges and the sum
of interaction costs over all pairs of edges on the tree. We generate graphs
of QMST in two ways. Firstly, we consider squared grid graphs, of three
different sizes. Secondly we use random graphs, of three different sizes, with
three different densities: 1/3, 2/3, or 1 (that is complete graphs). For each
class of graphs, we generate quadratic costs on the edges as in [1] and the
linear terms are randomly chosen in three different intervals. In each case we
generate data with three different seeds, thus obtaining 9 instances for every
choice of n and m. We thus have 18 QMST instances on grid graphs, with
40 to 84 edges and 25 to 49 nodes, and 54 instances of random graphs, with
10 to 20 nodes and with 30 to 105 edges. (Indeed we exclude the instances
with 10 nodes and d = 1/3 since they are too small).

5.1.2. Quadratic Shortest Path (QSP) Problem

Given a directed graph, with one source (s) and one destination (t) node,
the QSP problem is to find the path between s and t with minimum cost,
where the cost is given by the total weight of the arcs and the sum of inter-
action costs over all pairs of arcs on the path.

We use two types of QSP instances: Quadratic Grid Shortest Path (QGSP)
instances, that is graphs represented by a squared grid, and Quadratic Ran-
dom Shortest Path (QRSP) instances, that is randomly generated graphs
(obtained by the generator ch9-1-1 used in the 9th DIMACS implementation
challenge [36]). For grid graphs, we generate quadratic costs on the arcs as
in [1] and the linear terms are randomly chosen in two different intervals.
Thus we obtain 2 instances for every choice of n, and we have 6 different val-
ues for n. For randomly generated graphs we generate instances combining
three different choices for the number of arcs, two values for the number of
nodes, three different choices of linear coefficients and two seeds; we generate
quadratic costs on the arcs as described in [1] with two different seeds.

The benchmark consists of 12 QGSP instances (with 180 to 420 variables,
and 100 to 225 constraints) and 72 QRSP instances (1000, 3000 or 5000
variables, 100 to 300 constraints).

5.2. Tailored column projections

In this section, we describe the projections devised for each class of in-
stances. We highlight that in both cases of QMST and QSP, the problem
is on a undirected or directed graph, respectively, where all columns x̃ are
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binary and correspond to a subset of edges (arcs). Hence, projecting a col-
umn can be seen as adding and removing edges (arcs). In the rest of this
section we indicate with x̃ the column to be projected, with j the variable to
branch on, and with g the gradient ∇f(xopt) of the function in the optimal
point according to Algorithm 2. We are then interested in defining p0

j(x̃) and
p1
j(x̃).

5.2.1. Column projection for the QMST problem

In the QMST problem, the columns x̃ represent feasible spanning trees
of the graph. Before describing each projection, we start with a proposition.

Proposition 5.1. Both projections p0
j(x̃) and p1

j(x̃) of a column x̃, at each
node of the B&B, can be obtained by either keeping the column x̃ as it is, or
switching the value of exactly two components of x̃.

Proof. In both projecting x̃ to [x]j = 0 or [x]j = 1, either x̃ is already feasible,
and it is kept unchanged, or the edge j must be respectively removed or
added. If it is removed, then x̃ has now two connected components, each of
which is a tree. We shall add another edge to obtain a feasible spanning tree.
From Theorem 4.1, we know that the branching is feasible, so there must be
at least one edge connecting the two connected components, different from
i, which is not fixed to 0, and can be added to get a feasible projection.
Similarly, if the edge j is added, a cycle is obtained and another edge of the
cycle must be removed. Again, from Theorem 4.1, we know that not all other
edges of the cycle are fixed to 1, thus at least one of them can be removed,
obtaining a feasible projected spanning tree.

The projections p0
j(x̃) and p1

j(x̃) for the QMST problem are defined as
follows.

If [x̃]j = 0, then p0
j(x̃) = x̃; instead, p1

j(x̃) is obtained by the following
steps: firstly we add the edge j to x̃, then we detect the cycle C that is
generated and remove from it the edge h of maximal component in g among
the edges of C, different from j, which are not fixed to 1. Indeed, such an
edge exists for Proposition 5.1 and this clearly provides the best candidate
projection to satisfy the condition g>opt(x̄k − xopt) < 0 in Algorithm 2.

If on the other hand [x̃]j = 1, then similarly p1
j(x̃) = x̃; p0

j(x̃) is calculated
by removing from x̃ the edge j and finding the two connected sub-trees of x̃;
then adding the edge h that connects the two sub-trees, which has minimal
component in g, among the edges which are not fixed to 0. Such an edge
exists and is the best candidate for the same reasons as in the previous case.
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5.2.2. Column projection for the QSP problem

In the QSP problem, the columns x̃ represent directed paths form the
source to the termination nodes. Although a projection can be defined in
any graph, for the sake of clarity we restrict ourselves to the class of grid
graphs (QGSP); moreover, these graphs are more challenging than the ran-
dom graphs, as will be clear from the computational results.

We consider grid graphs in which the source and the destination are
respectively as the top-left and the bottom-right node. In order to define
projections p0

j(x̃) and p1
j(x̃) for the QGSP problem we need a little more

notation. We indicate with o and d respectively the origin and destination
nodes of the arc j. Moreover, since we consider grids, every node can be
described by two coordinates u and v in the grid, where the origin is the
source node. Let uo and vo be the coordinates of o, and ud and vd be the
coordinates of d.

If x̃j = 0 then p0
j(x̃) = x̃; instead, the path p1

j(x̃) is obtained by making
the slightest change to the original path x̃ as follows. From o we add arcs
”backward” (if they are not fixed to 0) keeping one of the coordinates uo
and vo fixed (and decreasing the other one) until we get a node n0 traversed
by x̃, or the origin. Similarly, from d we add arcs forward (if they are not
fixed to 0) fixing one of the coordinates ud and vd (and increasing the other
one) until we get a node n1 of x̃ or the destination. Now, the arcs of p1

j(x̃)
coincide with those of x̃ from s to n0 and from n1 to t and are given by the
added arcs between n0 and n1. This is done if none of the arcs of x̃ from n0

to n1 are fixed to 1.
If on the other hand x̃j = 1, then similarly p1

j(x̃) = x̃; in order to obtain
p0
j(x̃), we consider the arcs h and ` obtained by shifting j by one position in

parallel in the grid (we notice that one of them may not exist, if j is on the
boundary of the grid); then we compute y = p1

h(x̃) and z = p1
`(x̃) and we

define p0
j(x̃) as one between y and z, if they exist; if both exist, p0

j(x̃) will be
the one between y and z for which the scalar product with g is minimal.

5.3. Numerical results

In this section, we collect the computational results obtained for the con-
sidered problems. In particular, we propose two versions of our framework:
in the first one, called SDBB-basic, we embed SD in the B&B with no warm-
start; then we present an advanced version, SDBB-advanced, in which we also
introduce the projection of the columns from the father to the child nodes.
In order to get the most efficient setting, we do not project all columns at
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every node, but only those with larger weight in the final simplex of the fa-
ther node: indeed, as we will see, this is enough to get a good improvement,
without overloading the master problems with too many columns.

5.3.1. QMST problems

In this section, we present the results of our tests on the QMST instances.
In Table 1, we can see, for all instances with the same number of nodes (n)

and edges (m), the average CPU time in seconds, together with the average
number of nodes and the average number of SD iterations generated in our
framework, for the basic and advanced settings. In the last line, we report
the overall average. We notice that 5 out of the 9 instances with 105 edges
are not solved within the time limit of 3 hours, and are not considered in the
table.

n m SDBB-basic SDBB-advanced

T(s) #nodes #its T(s) #nodes #its

10 30 0.1 776 6526 0.1 777 3932
10 45 2.3 9143 102233 2.0 9139 66368
15 35 0.4 2183 19411 0.3 2190 11119
15 70 285.9 603770 9751849 241.9 603836 6481872
15 105 2001.6 3087969 55444482 1719.3 3087306 36940699
20 64 73.9 149602 2365146 60.1 149529 1448596
25 40 0.3 1474 12959 0.2 1476 6383
36 60 60.0 180790 1879460 37.2 180177 827665
49 84 5353.3 9175201 126114913 3175.3 9144096 58401499

Average 653.0 1125163 16418334 431.3 1122283 8586314

Table 1: Results for QMST instances.

These results show that the CPU time can vary a lot depending on the
instance type, but the projections always guarantee significant performance
improvements. We can also notice a reduction in the number of generated
columns, when switching from the basic to the advanced version, while the
number of nodes stays the same, as expected.

5.3.2. QSP problems

For the QSP problems, which have a compact formulation, we can com-
pare our performance with the commercial solver Cplex. The results are
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performed with the version 12.8, but tests on newer versions provide simi-
lar outcome. It is worth noticing that the linearization option of the solver
Cplex makes an important role for our instances. By default, indeed, the
solver firstly linearizes the problem before solving it, but without this lin-
earization, the solution is always much faster. We hence consider only this
second option for Cplex.

We notice that the projection is implemented on QGSP problems only. In
Table 2, we present in detail the average results for this class of problems (we
use the same notation as the one in the previous table); here we also report
the results of CPU time and number of nodes of Cplex for comparison.

n m Cplex SDBB-basic SDBB-advanced

T(s) #nodes T(s) #nodes #its T(s) #nodes #its

100 180 5.7 5295 7.4 7596 43674 4.1 7644 21393
121 220 20.7 13039 27.8 23047 144249 15.4 23020 69217
144 264 62.4 29081 76.0 45546 346718 43.4 45533 177583
169 312 349.1 117044 364.8 188983 1466319 208.9 189083 737974
196 364 1152.1 281713 1177.2 494343 4094175 687.9 493437 2076179
225 420 2829.7 483860 2823.6 847296 8776642 1667.3 847058 4587965

Averages 736.6 155005 746.1 267802 2478629 437.8 267629 1278385

Table 2: Results for QGSP instances.

We observe that all algorithms solve the given instances to optimality
within the imposed timelimit of three hours. We see that the basic setting
give slightly worse CPU time performances than Cplex, while the advanced
setting outperforms both. As for the QMST problems, this is mainly due
to the generated columns that seem to boost the solver. We notice that the
number of nodes is similar in the two version of our algorithm, and is always
larger than the number of nodes for Cplex.

Devising an efficient projection for general random graphs is not straight-
forward; nevertheless, even a simplified projection can be improving in the
end. For the QRSP problems, we introduce the following strategy in the
SDBB-advanced: we just keep the columns (from the father node) that are
feasible in the child node.

We finally present the average results on all instances of QRSP problems
in Table 3, together with the average results for the QGSP problem. As
before, we show the CPU time (in seconds) and number of nodes to solve
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the instances for Cplex ; then, for our algorithm, we report the CPU time in
seconds, the number of B&B nodes, and the number of columns generated in
the two cases without (BBSD-basic) and with projection (BBSD-advanced).

type Cplex SDBB-basic SDBB-advanced

T(s) #nodes T(s) #nodes #its T(s) #nodes #its

QGSP 736.6 155005 746.1 267802 2478629 437.8 267629 1278385

QRSP 75.0 47.7 41.7 829.4 9173.7 13.2 829.5 2372.2

Table 3: Quadratic Shortest Path Problem.

These results show that the QRSP problem is easier than the QGSP
problem. The solutions are generally much sparser and hence less nodes are
needed to get the solution. The proposed algorithm can fully exploit this
sparsity and is much faster than Cplex in the QRSP instances. Our algo-
rithm generates a larger number of nodes on average than Cplex in all QSP
instances: since the overall time is shorter, it means that SD is much faster in
solving the relaxation at the node. It can be noticed that the column projec-
tion is effective: while the number of nodes is almost unchanged, projecting
columns allows significant savings in terms of CPU time.

6. Conclusions

We presented a new framework for mixed binary convex quadratic prob-
lems that efficiently combines a tailored SD algorithm with a B&B scheme.
The method exploits all the good features of the SD algorithm (that is the
lower bound and the warmstart given by the structure of the simplices) in
an efficient way. We showed, through a numerical experience, that our al-
gorithm performs better than Cplex when dealing with Quadratic Shortest
Path instances with a dense Hessian matrix. We also provided results for
the Quadratic Minimum Spanning Tree problem. In conclusion, we showed
how the SD algorithm, originally designed for continuous problems, can be
profitably embedded in a framework for mixed binary quadratic problems.
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