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Nazionale dei Tumori Regina Elena, Dipartimento di Oncologia Sperimentale, Laboratorio di Oncogenesi Molecolare,
Rome, Italy

Associate Editor: Martin Bishop

ABSTRACT

Motivation: The identification of cell cycle-regulated genes through

the cyclicity of messenger RNAs in genome-wide studies is a difficult

task due to the presence of internal and external noise in microarray

data. Moreover, the analysis is also complicated by the loss of syn-

chrony occurring in cell cycle experiments, which often results in add-

itional background noise.

Results: To overcome these problems, here we propose the LEON

(LEarning and OptimizatioN) algorithm, able to characterize the ‘cycli-

city degree’ of a gene expression time profile using a two-step cas-

cade procedure. The first step identifies a potentially cyclic behavior

by means of a Support Vector Machine trained with a reliable set of

positive and negative examples. The second step selects those genes

having peak timing consistency along two cell cycles by means of a

non-linear optimization technique using radial basis functions. To

prove the effectiveness of our combined approach, we use recently

published human fibroblasts cell cycle data and, performing in vivo

experiments, we demonstrate that our computational strategy is able

not only to confirm well-known cell cycle-regulated genes, but also to

predict not yet identified ones.

Availability and implementation: All scripts for implementation can

be obtained on request.

Contact: lorenzo.farina@uniroma1.it or gurtner@ifo.it

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Cell cycle progression is achieved by a highly regulated temporal
program of gene expression where transcription is coordinated in

a series of consecutive interdependent waves. Such ‘just-in-time’
strategy is suggested by the experimental observation that genes

are expressed at peak levels at the time they are needed (Breeden
et al., 2003). To study genes regulated in a cell cycle-dependent

manner, researchers have deeply used messenger RNA expres-

sion profiling microarrays of synchronously growing cells pro-
gressing through the cell cycle. Nevertheless, the genome-wide

identification of cycling genes is a difficult task for a number of

reasons, including cell synchronization loss and intrinsic micro-

array noise. The most critical experimental issue is the degree of

synchronization as well as its loss during a time course sampling.

This is the reason why various computational methods have been

proposed to correct such experimental artifact. The key problem is

that the loss of synchronization results in a ‘flattening’ of the time

profile due to the presence of cells in different stages of the cell

cycle. To overcome this problem, Bar-Joseph et al. (2008) have

recently developed a combined experimental and computational

approach to recover ‘true’ cell cycle expression profiles. A number

of different techniques have been proposed in the literature for the

identification of cycling genes in many organisms, all of them

relying on a cyclicity scores based on the degree of regulation

(magnitude) and/or on a shape parameter (Fourier analysis).

Unfortunately, there is a remarkably poor overlap between the

gene sets identified as cyclic in different experiments even for the

same organism (Zhao et al., 2001). Therefore, none of them can be

considered as the ‘best method’ and this field is still an open area

of research.

Here, we provide a new tool to identify cycling transcripts by

integrating different features of gene expression time profiles. In

fact, the LEON (LEarning and OptimizatioN) algorithm com-

bines, in two separate steps, information contained in the ampli-

tude of the response (learning step) and information contained in

the shape of the response by considering the consistency of peak

timing between minima and maxima along two cell cycles (opti-

mization step). In particular, this last feature is suitable to over-

come the loss of synchronization problem, as peak timing of

upregulation or downregulation is not significantly affected by

such artifact. In other words, the shape of the expression profile

of the population of cells changes as a consequence of different cell

progress rate, but the up or down expression peak positions in

time remain approximately the same. This property is illustrated

in Figure 1 through the example used by Bar-Joseph et al. (2008)

where raw and deconvolved data display the same peak timing.

The authors hypothesize that cell progress rates are distributed as

a Gaussian with a mean of 1 (average time) and that observed

expression values result from a convolution with such Gaussian

kernel. Because theGaussian kernel function is symmetric around

the mean, if a certain group of cells has a cell progress rate, say

1� d, there is also a ‘symmetric’ group of cells having a progress

rate 1þ d. The total effect of these contributions leaves the
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maxima points (and the minima points) in the same time

positions.
To prove the effectiveness of our approach, we used recently

published human fibroblasts cell cycle data (Bar-Joseph et al.,

2008) and performed in vivo experiments to validate our compu-

tational predictions.

2 METHODS

The LEON algorithm identifies cycling genes by a two-step procedure.

The first step computes a suitably trained Support Vector Machine

(SVM) classifier to decide whether a given profile is cycling or not and,

accordingly, a binary cyclicity score of c ¼ 1or c ¼ 0 is assigned. The

second step consists in an optimization-based approach, which identifies

consistency of peak timing along two cell cycles and accordingly assigns

to each gene a cyclicity score p between 0 and 1. The SVM prediction and

the optimization procedure are then combined into a single overall score

pcomb characterizing the degree of cyclicity for each transcript.

2.1 First step: SVM classification

The SVMs, first described by Vapnik in the 90 s (Vapnik, 1998), have

been successfully applied to a large number of pattern recognition prob-

lems, including classification of microarray data (Brown et al., 2000).

Each expression profile vector with n time samples can be seen as a

point in an n-dimensional space. To separate in this space cycling genes

from non-cycling genes, the simplest approach is to consider a linear

decision boundary region (i.e. a hyperplane) that separates the two

given classes (positive and negative examples) in the original n-dimen-

sional space. In our case such simple rule is not satisfactory, as the ‘best’

hyperplane separating the two classes still misclassifies a large number of

genes. Therefore, we adopted the common approach of mapping the

dataset into a higher dimensional space (the so-called feature space).

This point is illustrated in Figure 2. Then, a reliable subset of cycling

and non-cycling genes was used as positive and negative examples for the

training set. On this basis, the first step of LEON algorithm, classifies all

genes as ‘cyclic’ or ‘not cyclic’ (see Fig. 3) using an SVM (see Section 3).

2.2 Second step: non-linear optimization-based gene

expression profile analysis

Cyclicity of a time series can be characterized in many ways. A common

choice is the use of the first Fourier coefficient (Spellman et al., 1998), but

often the shape of a time series is different from a pure sinusoid.

Additionally, owing to the already mentioned synchronization loss, the

shape of the curve is also different between two subsequent cycles of the

same transcript.

Among the many possible alternatives, we selected a feature that is

independent from the overall shape and robust with respect to the loss of

synchronization problem (see Fig. 1), as previously described. Such fea-

ture is the distance in time dmin between two subsequent minima and the

distance dmax between two subsequent maxima (illustrated in Fig. 4).

Therefore, cell cycle time series having dmin and dmax near to the dupli-

cation time �, namely, the time needed by a cell to complete a cell div-

ision cycle obtained by flow cytometry [Fluorescence-Activated Cell

Sorting (FACS)] analysis, are considered good candidates for being asso-

ciated to cycling genes.

Unfortunately, microarray time series are noisy and provide expression

values only at sampling times. To robustly evaluate peak times, data were

preprocessed to reduce noise and then values outside the range of sam-

pling times were extrapolated. By doing so, we could obtain a precise

estimation of times at which maxima or minima are attained.

Therefore, we needed an appropriate mathematical tool to get a

smooth continuous representation of the experimental data that enables

us to estimate unobserved time points. Radial basis functions (RBFs) are

tools to approximate functions by linear combinations of terms based on

a single univariate function (the RBF).

The use of RBFs is motivated by the fact that they have excellent ap-

proximation properties (as shown, e.g. in Girosi and Poggio, 1990) and are

widely used also in the bioinformatics field (Chen et al., 2011; Chiang and

Ho, 2008; Takasaki et al., 2006). They are usually applied to approximate

data that are only known at a limited number of points—as for the case of

microarray experiments—so that the approximating function can be eval-

uated often and efficiently. In fact, once the RBFs are generated, one can

resample the curve to estimate expression values at any time points.

The second step of LEON algorithm consists in the approximation and

resampling of (noisy) expression time profiles using a linear combination

of RBF. When estimating RBFs from expression data, we did not fit each

time course individually. Owing to noise and missing values, such an

approach could lead to overfitting. Instead, we constrained the RBF co-

efficients to have good smoothness (or regularity) properties (see Section

3.2) based on the same training set (golden standard genes) used for

SVM. Then, a cyclicity score p can be computed for each gene using a

non-linear optimization-based method to find optimal parameter values

of the RBFs. That is, a set of optimal RBF parameters (the same for all

Fig. 1. Experimental gene expression time profile (triangles) and decon-

volved data (squares) using BIRC5 (data taken from Bar-Joseph et al.,

2008). It is worth noting that peaks remain located approximately at the

same position in time both in raw and deconvolved data

Fig. 2. Examples of SVM decision boundary regions. (A) linear and (B)

non-linear
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genes) is calculated by means of an optimization-based method. The ra-

tionale behind this choice is to determine the set of parameters that best

represent the biological process under analysis. Then, for a given gene, we

calculated the RBF approximation and executed a cyclicity analysis to get

a score p. Precisely, once the smoothed expression profile is computed,

the cyclicity score p is defined as follows:

p ¼
mmax þmmin

2

mmax ¼ 1�
dmax ��j j

�
, mmin ¼ 1�

dmin ��j j

�

where dmax, dmin are, respectively, the distances in time between the two

maximum peaks and the two minimum peaks of the approximation curve

and � is the duplication period. A score value close to 1 indicates a high

consistency of peak timing and, therefore, a good indication of the pres-

ence of a cyclic behavior. To find optimal parameters values, we evalu-

ated the performance of the smoothing algorithm by generating a

Receiver-Operating Characteristic (ROC) curve according to the p

score (Fig. 5). Then, a global optimization algorithm (namely, the

PRICE algorithm see e.g. Brachetti et al., 1997; Liuzzi et al., 2003)

found the parameters giving the best ROC curve (larger area under

curve) obtaining A:U:C: ¼ 0:86. The final RBF coefficients were

�1 ¼ 4� 10�4, �2 ¼ 1� 10�4, � ¼ 2, and the number of RBFs used

was 8. The overall algorithm scheme is illustrated in Figure 6.

2.3 Combined cyclicity score

In sum, the proposed methodology is the following: first, we decided

whether a given gene expression is sufficiently ‘fluctuating’ (cycling

genes usually have such a kind of expression). Then, we identify among

those fluctuating genes, the ones that are cycling by means of a peak

consistency analysis. In particular, the SVM is used to extract the infor-

mation contained in the amplitude of fluctuations and to get rid of bad

shaped expression profiles (e.g. flat profiles) that usually identify not

cycling genes. Then, the p score, which is related to the consistency of

peak timing along two cell cycles, identifies those genes that are cycling.

Once each gene in our test set was classified (c score) by the learning

machine (first step) and the p score for that gene was calculated (second

step), we built a combined score as follows:

pcomb ¼
cþ p

2

where c is the SVM output related to the gene under analysis (c ¼ 1

cyclic, c ¼ 0 not cyclic). Then we ranked genes according to their pcomb

value. Ideally, the first gene in the list should be the one classified as

cycling (c ¼ 1) and with a pcomb score equal to 1, whereas the last one

should be the one classified as non-cycling (c ¼ 0) and with a pcomb score

equal to 0.

As a preliminary step, we generated synthetic data to evaluate the dif-

ferentiating ability of the proposed method. To produce realistic synthetic

data, we followed the approach of Zhao et al. (2001). The authors propose

an algorithm to generate synthetic time series by assuming that cell cycle-

regulated genes are transcribed at one invariant time and that synchrony

deteriorates with time, leading to the attenuation of simple pulses into

smooth peaks that dampen out with time. Using this algorithm, we gen-

erate 1000 synthetic time courses covering two cell cycles, and 1000 ran-

domly fluctuating profiles, obtained by random time shuffling of cyclic

data. Then, we generated, using the same algorithm, 50 positive and 50

negative synthetic examples for the learning step. We also added to all

synthetic data a multiplicative white Gaussian noise having 10 and 20%

of noise standard deviation.We applied the proposedmethod to such data

and computed ratios of genes scored40.5 and50.5 for cyclic (Rc) and

non-cyclic (Rnc), respectively, and obtained a ratio of Rc/Rnc¼ 1/

0.997¼ 1.003 with 10% of noise and a ratio of Rc/Rnc¼ 1/0.993¼ 1.007

Fig. 6. Optimization-based gene expression cyclicity analysis via RBFs

Fig. 5. ROC curve. (A.U.C.¼ 0.86)

Fig. 4. Time series parameters used to characterize cyclicity

Fig. 3. Gene expression profile classification procedure using an SVM
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with 20%ofnoise thus, indicating a high differentiating power on synthetic

data, slightly favoring positive examples (cyclic genes).

To test our methodology on real experiments, we used microarray data

taken from Bar-Joseph et al. (2008), which consist of a population of

synchronized foreskin fibroblast cells at 2h intervals after their release

from double-thymidine blockarrest (two cell cycles). The list of all genes

and the corresponding scores are reported in Supplementary Table S2.

We computed the pcomb score of the 480 genes indicated as cyclic by Bar-

Joseph et al. (2008) and the resulting pcomb score distribution is reported in

Figure 7. The picture shows a clear bimodal distribution composed of a

group of high pcomb score (dark bars) and a group of low score (light

bars). Two main features of the score distribution (Fig. 7) indicate a good

performance of the proposed methodology: first, the low values (flat

profile genes) are almost uniformly distributed, thus indicating that the

value of score p does not add any information, consistently with the ‘flat’

nature of the time series revealed by the c score. Second, the high values

(fluctuating profile genes) are skewed toward the maximal value 1, thus

indicating that the score p actually provides additional information about

cyclicity. In other words, the combination of the two scores performs

better then each single one.

To further verify LEON performance, we also used an independent

source to check cyclicity. We considered the Cyclebase database

(Gauthier et al., 2009) where human genes are classified as cyclic using

cell cycle expression data of HeLa cells (Whitfield et al, 2002).

Supplementary Table S3 reports, for each gene of the low pcomb score

group, the annotation and the Cyclebase classification. We found 91

genes, of which 18 are classified as cyclic, 44 non-cyclic and 29 not clas-

sified. Therefore, not considering the unclassified genes, we found 71% of

the genes in this group classified by Cyclebase as non-cyclic, in good

agreement with our analysis. Moreover, among the genes for which a

Cyclebase ranking is not available, we considered PRKD1 for in vivo

validation, and we actually found a non-cyclic pattern (Fig. 8).

3 IMPLEMENTATION

3.1 SVM classification

We selected 50 gene expression profiles as positive examples,

compiled from the literature that had been shown to be cell

cycle-regulated in cells synchronized experiments (Supplemen-

tary Table S1). Known cell cycle-regulated genes were limited

to those regulated at the messenger RNA level during a continu-

ous human cell cycle, as determined by traditional experimental

methods. We selected also 50 profiles generated by a random

time shuffling procedure, considered as negative ones. Even-

tually, we obtained a sample of 100 genes each one having

dimension 17 (time points).
Then, we trained the SVM using the LIBSVM software, a

library for SVMs developed by the Machine Learning Group

at National Taiwan University (Chang et al., 2008) and selected

a radial basis kernel. The parameters C and gamma were deter-

mined by a standard k-fold cross-validation procedure (with

k¼ 5) combined with a grid search. This procedure is done to

prevent overfitting problems (Bishop et al., 1996; Hsu et al.,

2010). In particular, we first divided the training set into five

subsets of equal size. Sequentially one subset was tested using

the classifier trained on the remaining four subsets. Thus, each

instance of the whole training set was predicted once, so the k-

fold cross-validation accuracy is the percentage of data that are

correctly classified. Various pairs of C and values (selected from

a suitably chosen grid) were tried and the one with the best k-fold

cross-validation accuracy was picked. The final values were

C¼ 1 and ¼ 0:06. The final k-fold cross-validation accuracy

and standard error were, respectively, 93.1%, and 0.02.

3.2 Radial basis approximation

The approximating function ~y : R! Rused was as follows:

~y tð Þ ¼
Xm

j¼1

aj� t� cj
�� ��� �

Fig. 8. In vivo validation of LEON predicted cell cycle-regulated genes.

(A) Cell cycle synchronization. The cell cycle distribution of synchronized

cells was monitored by FACS. The position of the gates is referred to that

in proliferation cells. (B) Total RNA was isolated from synchronized cells

at the indicated phases of the cell cycle and used for RT-PCR of nine

LEON predicted cycling genes and four LEON predicted non-cycling

genes. Cyclin A2 and cyclin B1 were used as positive controls.

GAPDH and aldolase genes were used as housekeeping constitutive ex-

pressed genes (negative control)

Fig. 7. pcomb score distribution for the 480 genes considered as cyclic by

Bar-Joseph et al. (2008)
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where � is a suitably chosen RBF, aj are the coefficients of the

linear expansion and cj are the centers of the RBFs. We used the

inverse multiquadric RBF in our experiments:

� rð Þ ¼ r2 þ �2
� ��1=2

where � is a positive scalar. This choice was mainly motivated by

the fact that the multiquadric function showed the best perform-

ance in expression profile approximation. To find the approxi-

mation, we solved the following regularized problem:

min
a, c

XP

i¼1

y tið Þ � ~y tið Þð Þ þ �1kak
2 þ �2kck

2

where y tið Þ is the expression of the gene at the sampling instant ti.

The number of RBFs, the RBF parameter � and the regulariza-

tion parameters �1 and �2 were the same for all the approxima-

tions and were obtained by means of a global optimization

algorithm. The idea behind this approach is that of determining

the values of the parameters that better represent the biological

process under analysis. For a given choice of m, �, �1 and �2, we
computed the expression profile approximations and the corres-

ponding scores p of the genes in the dataset used for the training

of the SVM.

3.3 Cell culture, synchronization and FACS analysis

Early passage of human foreskin fibroblasts was grown in

Dulbecco’s Modified Eagle Medium (DMEM) with 10% Fetal

Calf Serum (FCS). For G0/G1 synchronization, cells were ar-

rested with 0.5% FCS (48h) and then released in 10% FCS.

Cells were harvested at specific time points following serum

stimulation and were processed. The progression of cells through

the cell cycle was monitored by flow cytometric (FACS) analysis

of replicate samples of propidium iodide-stained cells (Gurtner

et al., 2008).
RNA extraction and reverse transcriptase-polymerase chain

reaction (RT-PCR). Total RNA was extracted using the Trizol

reagent (Gibco BRL) and following the manufacturer’s instruc-

tions. The first strand of complementary DNA was synthesized

according to manufacture instructions of the M-MLV RT kit

(Invitrogen). PCR was performed with HOT-MASTER Taq

(Eppendorf) using 2ml of complementary DNA reaction. The

primer sequences of the human genes are as follows:

hCycA2f: 50-AGCAGCCTGCAAACTGCAAAGTTG

hCycA2r:50-TGGTGGGTTGAGGAGAGAAACACC

hCycB1f :50-CCTCTACCTTTGCACTTCCTTCGG

hCycB1r: 50-GAGTGCTGCTCTTAGCATGCTTCG

hMTX2F:50-CTGCAGAACCTTGGCCTGAA

hMTX2R :50-CTGCACTGCAAGAGAAGCTG

hEDF1F:50-GCACAGAGACGAGGAGAAGA

hEDF1R:50-ACCTTGCTGGATCACCTTGC

hDNAJF:50-TCAAGGAGATCGCTGAGGCC

hDNAJR: 50-GCCCATAGGGAAGCCAGAGA

hLMO4F:50-GGAAATAGCGGTGCTTGCAG

hLMO4R:50-GGCAGTAGTGGATTGCTCTG

hNCOR1F:50-GACCTGACCAATATGCCTCC

hNCOR1R:50-AAGCTGCAGCAATCCGTTCC

hMARCKSL1F :50-AGCCAGAGCTCCAAGGCTC

hMARCKSL1R:50-CTCTTCCTCTGTGGGTGAGG

hSART1F:50-GTCCAAGAAGCATCGCGGAG

hSART1R:50-GTAGCCGTCATCGCGCTTCT

hSTK10F:50-TGCGCCTGTCTACCTTCGAG

hSTK10R:50-CCTCTTGCTGTGCAGGAAGT

hCRIP1F:50-CCAAGTGCAACAAGGAGGTG

hCRIP1R:50-CTTGAAAGTGTGGCTCTCGG

hCDC27F:50-GGTTTTCCTCGCAGAACGCC

hCDC27R:50-CCTTTGGCAAGCCATCTGT

RThGSDMDF:50-GTGGCAGGAGCTTCCACTTC

RThGSDMDR:50-CCTCAGTCACCACGTACACG

hALADF:50-GAAGCGGCTGGAAGAGATGC

hALADR:50-CTCAGCCCGGAATGCTCCGT

hC18F:50-CATCTGGCAATGCGCCACTC

hC18R:50-CTGCTGGTGAGCCCAAGTC

hGAPDHF :50-TCCATGACAACTTTGGCATCGTGG

hGAPDHR:50-GTTGCTGTTGAAGTCACAGGAGAC

hAldF:50-CGC AGA AGG GGT CCT GGT GA

hAldR:50-CAG CTC CTT CTT CTG CTG CG

hPRKD1F:50-AATGCTGTGGGGGCTGGTAC

hPRKD1R:50-GTACCAGCCCCCACAGCATT

4 RESULTS

4.1 In vivo validation of LEON predicted cell cycle-

regulated genes

Using LEON algorithm we selected 50 genes having the highest

pcomb score and excluded 5 genes that were identified as cycling

also by Bar-Joseph et al. (2008). Among the remaining 45 new

putatively cycling genes, we experimentally validated the cell

cycle-dependent expression of 9 of them. To this purpose, pri-

mary human fibroblasts prepared from human foreskin were

grown to �50% confluence and synchronized in G0 by serum

deprivation. Cultures were then released from arrest, and cells

were collected at different time points covering one complete cell

cycle (Fig. 8A).
We used RT-PCR to measure the expression level of the nine

genes with higher combined score (see Supplementary Table S2

and Fig. 7) along synchronized cell populations. None of these

genes result to be cell cycle-regulated in the study by Bar-Joseph

et al. (2008), demonstrating the strength of the LEON algorithm

in identifying cell cycle-expressed genes. As shown in Figure 8B

(RT-PCR) and Supplementary Figure S1 (densitometric ana-

lysis), the expression of these nine genes is cell cycle-regulated

being maximum on S phase for six and on G1 phase for four of

them, respectively.
Interestingly, the expression of two of these genes, NCOR1

and EDF-1, is already known to be cell cycle-regulated further
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confirming the predictive power of the LEON algorithm
(Altintas et al., 2011; Bolognese et al., 2006). Next we measured
the expression level of four genes with a low combined score. Of
note, the expression of these genes is not regulated during the cell

cycle further demonstrating that the LEON algorithm specific-
ally identifies the cell cycle gene expression. We measured cyclin
A and cyclin B1 as well as GAPDH and aldolase genes as posi-

tive and negative controls, respectively. It is well known that
cyclin A and B1 expression is cell cycle dependent being high
in S phase and in G2, respectively (Pines and Hunter, 1989,

1990). On the contrary, the expression of GAPDH and aldolase
genes is constant during the cell cycle (Eisenberg and Levanon,
2003). As expected, cyclin expression is cell cycle dependent,

whereas GAPDH and aldolase expression is constant. These re-
sults demonstrate that our approach is successful in identifying
cell cycle-regulated genes.
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