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Abstract In this work, we study continuous reformulations of zero—one program-
ming problems. We prove that, under suitable conditions, the optimal solutions of
a zero—one programming problem can be obtained by solving a specific continuous
problem.

Keywords Zero—one programming - Concave functions - Continuous programming

1 Introduction

Several important problems arising in operations research, graph theory and mathe-
matical programming are formulated as 0—1 programming problems. A possible ap-
proach for solving this class of problems can be that of transforming the original
problem into an equivalent continuous problem. Various transformations have been
proposed in the literature (see, e.g., [1-6]). A well-known continuous reformulation
comes out by relaxing the integrality constraints on the variables and by adding a
penalty term to the objective function. This approach has been first introduced by
Raghavachari [7] to solve 0—1 linear programming problems, then extended by Gian-
nessi and Niccolucci [8] to general nonlinear integer programming problems. Many
other reformulations related to the one by Raghavachari have been proposed in the
literature (see, e.g., [9-14]). An interesting analysis of continuous penalty reformu-
lations for integer programming problems has been given in [15].
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In this paper, we propose a different continuous reformulation for solving 0—1 pro-
gramming problems obtained by relaxing the integrality constraints on the variables
and by making a nonlinear transformation of the variables in the objective function.
It can be proved that, under suitable assumptions, a given binary problem and its con-
tinuous reformulation are equivalent. The paper is organized as follows. In Sect. 2,
we show a general equivalence result between a 0—1 programming problem and a
continuous problem. In Sect. 3, we define various continuous reformulations, and we
show (using the general results stated in Sect. 2) that a binary problem and its contin-
uous reformulations share the same global minima. Finally, in Sect. 4, we draw some
conclusions.

2 Equivalent Continuous Reformulations for Zero—One Programming
Problems
We start from the zero—one programming problem
minc’x st xeC, xef0,1}", (IP)

where C C R” is a convex set.
Then, we consider the following nonlinear constrained problem

min f(x) st xeC, 0<x<e, (CP)
where
n n n n
FO) =) cigit)+ Y leil gitx) + Y gitx) — Y leil, €]
=0 4o =0 <0
and g; :[0,1] > R,i=1,...,n, are continuous and concave functions. We assume,

without any loss of generality, that there exists at least an extreme point y of the
feasible set related to (CP) such that y; ¢ {0, 1} for some indexi =1, ...,n.

In order to prove the equivalence between Problem (IP) and Problem (CP), we
make some assumptions on the set of extreme points of (CP) and on the functions g;
used in the definition of f. Let S C [0, 1]" be the set of extreme points of (CP). We
define two values x; and x,, as follows:

x; = inf [(x), Xy i=supu(x),
xes xXeS

where

in{x;:i=1,...,n;x; #0} if 0
1) = min{x; : i n; x; # 0} 1 X # @)
1 ifx=0;
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3

max{x; :i=1,...,n;x; #1} ifxs#e
ulx) = .
0 ifx=e.

Then, for any component x; ¢ {0, 1} of a point x € S we have that

x; € [x7, xy].

Assumption 2.1 For the feasible set of problem (CP) there exists a value € > 0 such
that x; > e and 1 — x, > €.

This is equivalent to saying that x; # 0 and x,, # 1. In Fig. 1, we have two exam-
ples of convex feasible sets of (CP) satisfying Assumption 2.1.

Assumption 2.2 For all indices i such that ¢; > 0, we have

() 0 =0 &i(D=1;
(i) g (x) > DI if e [, x, ).

For all indices i such that ¢; < 0, we have

(i) () =1, g (1) =0;
(iv) gi(xy) > MBIy € [y, ).

For all indices i such that ¢; = 0, we have

(v) gi(0)=0, g (1) =0;
(vi) gi(x;) > nmax; |c;|+ D ; |cil if x; € [x7, xu].

We report here some important results about the minimization of a concave func-
tion over a closed and convex set (see [16] for further details):

‘X| 1

Fig. 1 Examples of feasible sets satisfying Assumption 2.1
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Proposition 2.1 Let f be a concave function, and let C be a closed and convex set
contained in dom f. Suppose that C contains no lines. If the infimum of f relative to
C is attained at all, then it is attained at some extreme points of C.

Proposition 2.2 Let f be a concave function, and let C be a nonempty polyhedral
convex set contained in dom f. Suppose that C contains no lines, and that f is
bounded from below on C. Then the infimum of f relative to C is attained at one of
the (finitely many) extreme points of C.

Now, we can prove the equivalence between the zero—one programming problem
(IP) and its continuous concave reformulation (CP).

Theorem 2.1 If Assumptions 2.1 and 2.2 hold, then problems (IP) and (CP) have the
same minimum points.

Proof We first prove that if x* is a solution of (IP) then x* is a solution of (CP). Let
x* be a solution of (IP) and suppose by contradiction that there exists a point X which
is the solution of (CP) such that

f@ < faH=clx" “)
We consider three cases:
1. Suppose that x; € {0, 1} foralli =1,...,n
Tx=f@) < fx*) =cx*

This cannot be the case as there would exists X € C N {0, 1}"* such that ¢/ x <

cTx*, contradicting the fact that x* is the optimum of (IP).

2. Suppose that 3j € {1,...,n} s.t. x; ¢ {0, 1}:
If ¢; > 0, by (i) and (ii) in Assumption 2.2, we have:

F@ =) citejgjE) == leil+minle] g;(F)) > nmaxe;].
ixi=1 i
If ¢; <0, by (iii) and (iv) in Assumption 2.2, we have:
fE® =) ci+lejlgi®) —lejl
iixi=1

> =Y leil +minci|g; () — max|¢;| > nmax ¢ .
L 1 1

i

Finally, if ¢; =0, by (v) and (vi) in Assumption 2.2, we have:

fE®= ) citgi)=— Z|cl|+g,<x,)>nmax|cl|

ixi=1
Hence, for each x € C N {0, 1}"* we have

f(&) >nmax|c;| > clx (5)
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which implies
f@ > clx*,
but this contradicts (4).

3. Suppose that 3J C {1,...,n} s.t. forall j € J, x; ¢1{0,1}:
By using a similar reasoning as in the proof of case 2, we have

fG) >,
but this contradicts (4).

We now prove that if x is a solution of (CP) then x is a solution of (IP).

If x is a solution of (CP) then, since we are minimizing a concave function over
a compact and convex set, by Proposition 2.1, we have that x is an extreme point of
cnio,1]".

We first prove that x € {0, 1}".

By contradiction, we suppose that there exists an index j € {1,...,n} such that
xj ¢ {0,1}. By repeating the same arguments used in the first part of the proof
(case 2), for all x € C N {0, 1}" we have

f@) >clx = fx),

thus obtaining a contradiction.
Now, suppose by contradiction that there exists x*, a solution of (IP), such that

cI'x*<c

Tx. (6)

Since x € {0, 1}", we have that f(x) = cT'x, thus (6) implies that f(x*) < f (%),
contradicting the optimality of x for (CP). The theorem is then proved. g

We can apply the previous result to the case of zero—one linear programming prob-
lems. Suppose that we are dealing with the following problem:

minc’x st. xeP, xe{0, 1}, (ILP)

where P is a polyhedral set. Then we can prove the equivalence of (ILP) with the
following problem
min f(x) st xeP, 0<x<e, (LP)

where the function f : [0, 1]" — R is defined as in (1). The following result is a
straightforward application of Theorem 2.1.

Proposition 2.3 If Assumption 2.2 holds, then problems (ILP) and (LP) have the
same minimum points.
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Proof First of all, we see that the feasible set of problem (LP) satisfies Assumption
2.1. Let V be the set of the vertices of the polyhedron P. Since the cardinality of V
is finite, we have

x; =min/(x), X, =maxu(x),
xeV xeV

with /(x) and u(x) defined as in (2) and (3). It is easy to see that there exists a value
€ > 0 such that x; > € and 1 — x;, > €. In other words, x; and x, are respectively the
minimum and the maximum values (different from 0 and 1) that can be assumed by
the components of the vertices in P.

The rest of the proof is a verbatim repetition of Theorem 2.1. g

We remark that if the feasible set of the continuous reformulation is polyhedral,
Assumption 2.1 is always satisfied.

3 Examples of Continuous Reformulations

In this section, starting from the ideas developed in [17], we propose various exam-
ples of continuous reformulations for solving a given zero—one programming prob-
lem, and we show (using the general results stated in the previous section) that these
reformulations have the same global minimizers of the original zero—one program-
ming problem.

First of all, we denote

G (n + D)ymax; |c;| + Y, |cil
' mini |C,‘| '

Now we can define the functions g; to be used in (1):

Casec; >0:
gi(t) = min{7/1+¢(t), L+ 00 —t)}, @)
¢ c—1
—, 7; 8
L YE S Y ) ®
Casec; <O0:
gi(t) == min{l +yi_¢@), -9 —t)}, )
c—1 ¢
, L 10
Y M Y R 10
Casec; =0:
gi (1) :==min{ye (1), Yoo (1 — 1)}, (11)
Yo > max{nmaxi leil + > |Ci|, nmax; [ci| + ), lcil }; (12)
¢ (xp) o1 —xy)

with ¢ : R — R a strictly increasing and concave function such that ¢ (0) = 0.

@ Springer



J Optim Theory Appl

By choosing functions g; equal to (7), (9) and (11), we can prove that problems
(IP) and (CP) are equivalent.

Proposition 3.1 If Assumption 2.1 holds and functions g; are defined as in (7), (9)
and (11), then problems (IP) and (CP) have the same minimum points.

Proof We only need to prove that the functions g; used in the definition of the objec-
tive function of the continuous reformulation, satisfy Assumption 2.2.
Since ¢ > 1 and

e<xi<x,<1—e¢,

we have that all the y-parameters are strictly greater than zero.
We consider three different cases:

1. ¢; > 0: the choice of the parameters y;, and y»_ , and the fact that ¢ > 1 guarantee,
i(0)=min{0, 1+, ¢(1)} =0
and
gi(D) =min{y;, ¢(1), 1} = 1.
Furthermore, for all x; € [x;, x, ], we have
8i(x) = min{y1, ¢(x), 1 +y2,0(1 —x7)}
. {E¢(Xi) (5—1)¢(1—xi)} -
> min , 1 > C.
¢ (x1) d(1 —xy)

2. ¢; < 0: the choice of the parameters y|_ and y;_, and the fact that ¢ > 1 guarantee,

gi(0)=min{l1,y_¢(1)} =1

and
gi(1) =min{1 + y;_¢(1),0} =0.
Furthermore, for all x; € [x;, x,,], we have
gi(xi) =min{l +y1_¢p(x;), y2_d(xi)}

(¢ = D¢ (xi) 5¢(1—xi)} _z
o) Pl —xu)

3. ¢; = 0: the choice of the parameter y guarantees
8i(0) = min{0, o (1)} = min{yop(1), 0} = gi(1) =0.

Furthermore, for all x; € [x;, x,,], we have

> min{l +

gi (i) = min{yop (x), yog (1 = xi)} > nmaxcil + 3 leil.— (13)

1

Then Assumption 2.2 is satisfied. g
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The following result is obtained as an immediate consequence of Proposition 2.3:

Corollary 3.1 If functions g; are defined as in (7), (9) and (11), then problems (ILP)
and (LP) have the same minimum points.

We give here some examples of ¢ functions:

Exponential Function

p)=1—e" (14)
with a > 0;
Logistic function
1— e—ott
H=——— 15
o0 =5 e (15)
with @ > 0;
Logarithmic function
¢(t) =In(t +€) —Ine (16)
with € > 0;
Hyperbolic functions
pt)=—@+e) P +e? a7

with € > 0.

By setting the functions ¢ equal to the exponential term (14), we can define the
objective function of the continuous problem (CP) as follows:

n
fx) = Z ci min{y1+(1 - eimi)ﬂ 1+ V2+(1 - eia(lfxi))}
i=1
¢j>0

n
+ 3 e min{1+y1_(1— ™), yo_ (1 —e7@170))

i=1

c;<0
n n
+ > min{yo(1— @), po(1—e TN} = el (18)
i=1 i=1
;=0 ¢ <0

In Fig. 2, we report the various functions that can be used in the reformulation of a
zero—one programming problem.
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Fig. 2 (Color online) Examples of functions g; for ¢; > 0 (in red) and ¢; < O (in blue). The green line
represents y(x) = ¢

As we can easily notice, the functions g; and then the function f depend on the
feasible set of the problem. In case x; = 0, the feasible set does not satisfy Assump-
tion 2.1 and we have that ¢ (x;) = 0, then we cannot define the continuous reformula-
tion of the original zero—one programming problem. Equivalently, in case x,, = 1, the
feasible set does not satisfy Assumption 2.1 and, as ¢ (1 — x,,) = 0, we cannot define
the continuous reformulation as well. Anyway, when the feasible set is polyhedral,
Assumption 2.1 is always satisfied. Then, the class of problems that can be solved by
means of our approach includes zero—one linear programming problems.

4 Conclusions

In this paper, we described a new continuous reformulation for solving 0—1 program-
ming problems obtained by relaxing the integrality constraints on the variables and
by making a nonlinear transformation of the variables in the objective function. We
proved that, under suitable assumptions, a given binary problem and its continuous
reformulation are equivalent. As we have seen, the class of problems that can be
solved by means of our approach includes zero—one linear programming problems.

The penalization approach described by Raghavachari in [7] for zero—one linear pro-
gramming problems has been first extended to the case where the objective function
is any concave function [11], then to general nonlinear integer programming prob-
lems [8, 15]. In [8, 15], in order to prove the equivalence, the authors only require
the feasible set to be compact. Hence a more general class of problems than the one
we consider in the paper (including those problems whose feasible set does not sat-
isfy Assumption 2.1) can be solved by using this penalization approach. The method
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described in [8, 15] has been further generalized in [12] by showing that a general
class of penalty functions, covering the ones proposed in [13], can be used for solving
general nonlinear integer programming problems. Also in this case, the authors only
assume compactness of the feasible set and a more general class of problems includ-
ing those ones with a compact feasible set that does not satisfy Assumption 2.1 can be
solved. However, we think that the assumption we made on the feasible set might be
weakened, and the new approach we described in this paper might be suitably modi-
fied to solve a more general class of integer programming problems. Finally, we want
to remark that a wider availability of equivalent formulations is important since it can
facilitate the search of optimal solutions for different classes of integer problems.
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