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Abstract Given a non empty polyhedral set, we consider the problem of finding a
vector belonging to it and having the minimum number of nonzero components, i.e., a
feasible vector with minimum zero-norm. This combinatorial optimization problem
is NP-Hard and arises in various fields such as machine learning, pattern recogni-
tion, signal processing. One of the contributions of this paper is to propose two new
smooth approximations of the zero-norm function, where the approximating func-
tions are separable and concave. In this paper we first formally prove the equivalence
between the approximating problems and the original nonsmooth problem. To this
aim, we preliminarily state in a general setting theoretical conditions sufficient to
guarantee the equivalence between pairs of problems. Moreover we also define an
effective and efficient version of the Frank-Wolfe algorithm for the minimization of
concave separable functions over polyhedral sets in which variables which are null
at an iteration are eliminated for all the following ones, with significant savings in
computational time, and we prove the global convergence of the method. Finally,
we report the numerical results on test problems showing both the usefulness of the
new concave formulations and the efficiency in terms of computational time of the
implemented minimization algorithm.
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1 Introduction

Given a polyhedral set, we consider the problem of finding a vector belonging to it
and having the minimum number of nonzero components. Formally, the problem is

min
x∈Rn

‖x‖0

x ∈ P

(1)

where ‖x‖0 is the zero-norm of x defined as ‖x‖0 = card{xi : xi �= 0}, P ⊂ Rn is a
non empty polyhedral set.

This combinatorial optimization problem is NP-Hard [2], and arises in various
fields such as machine learning (see, e.g., [9]), pattern recognition (see, e.g., [11]),
signal processing (see, e.g., [4–6]).

In order to make the problem tractable, the simplest approach can be that of re-
placing the zero-norm, which is a nonconvex discontinuous function, by the �1 norm
thus obtaining the linear programming problem

min
x,y∈Rn

n∑

i=1

yi

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n,

(2)

which can be efficiently solved even when the dimension of the problem is very large.
Under suitable assumptions on the polyhedral set P (defined by an underdetermined
linear system of equations) it is possible to prove that a solution of (1) can be ob-
tained by solving (2) (see, e.g., [8]). However, these assumptions may be not satisfied
in many cases, and some experiments concerning machine learning problems and re-
ported in [3] show that a concave optimization-based approach performs better than
that based on the employment of the �1 norm.

In order to illustrate the idea underlying the concave approach, we observe that
the objective function of problem (1) can be written as follows

‖x‖0 =
n∑

i=1

s(|xi |)

where s : R → R+ is the step function such that s(t) = 1 for t > 0 and s(t) = 0 for
t ≤ 0. The nonlinear approach experimented in [3] was originally proposed in [10],
and is based on the idea of replacing the discontinuous step function by a continu-
ously differentiable concave function v(t) = 1 − e−αt , with α > 0, thus obtaining a
problem of the form

min
x,y∈Rn

n∑

i=1

(1 − e−αyi )

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n.

(3)
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The replacement of (1) by the smooth concave problem (3) is well-motivated (see
[10]) both from a theoretical and a computational point of view:

– for sufficiently high values of the parameter α there exists a vertex solution of
(3) which provides a solution of the original problem (1), and in this sense the
approximating problem (3) is equivalent to the given nonsmooth problem (1);

– the Frank-Wolfe algorithm [7] with unitary stepsize is guaranteed to converge to a
vertex stationary point of (3) in a finite number of iterations (this convergence re-
sult was proved for a general class of concave programming problems); thus the al-
gorithm requires the solution of a finite sequence of linear programs for computing
a stationary point of (3), and this may be quite advantageous from a computational
point of view.

A similar concave optimization-based approach has been proposed in [12], where the
idea is that of using the logarithm function instead of the step function, and this leads
to a concave smooth problem of the form

min
x,y∈Rn

n∑

i=1

ln(ε + yi)

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n,

(4)

with 0 < ε � 1. Formulation (4) is practically motivated by the fact that, due to the
form of the logarithm function, it is better to increase one variable yi while setting to
zero another one rather than doing some compromise between both, and this should
facilitate the computation of a sparse solution. A relation of (4) with the minimization
of the zero-norm has been given in [12], and similarly to [10], the Frank-Wolfe al-
gorithm with unitary stepsize has been applied to solve (4), and good computational
results have been obtained.

In this paper, in Sect. 2 we derive new results on the equivalence, in a sense to be
made more precise later, between a specific optimization problem and a parameter-
ized family of problems. This analysis allows us to derive, within a general frame-
work, results about two previously known families of approximations schemes for the
zero-norm problem. Then, in Sect. 3 we introduce two new families of approximation
problems for which, thanks to the theory developed in Sect. 2, it is possible to obtain
equivalence results. In Sect. 4 after a brief review of the well known Frank-Wolfe
method, we derive some new theoretical results which have an important impact on
the computational efficiency of the method when applied to concave optimization
over polyhedra. In particular we prove that once the algorithm sets a variable to zero,
it will not change this variable any more. This result suggests the definition of a
version of the method that eliminates the variables set to zero, thus allowing for a
dimensionality reduction which greatly increments the speed of the procedure. We
formally prove the global convergence of this modified version of the Frank-Wolfe
method. Finally, in Sect. 5 we report the numerical results on test problems showing
both the usefulness of the new concave formulations and the efficiency in terms of
computational time of the implemented minimization algorithm.



F. Rinaldi et al.

2 Results on the equivalence between problems

In this section we state general conditions sufficient to ensure that a problem depend-
ing on a vector of parameters is equivalent to a given (unspecified) problem. Consider
the problem

min
x∈T

g(x) (5)

where g : Rn → R, T ⊆ Rn, and assume that it admits solutions. Let G� be the set of
such solutions.

Let f (·, u) : Rn → R be a function depending on a vector of parameters u ∈ U ⊆
Rm. For any u ∈ U , consider the following problem

min
x∈T

f (x,u) (6)

Assumption 1 There exists a finite set S� ⊂ Rn having the property that, for any
u ∈ U , a point x(u) ∈ S� exists such that

x(u) ∈ arg min
x∈T

f (x,u). (7)

Theorem 1 Let {uk} ⊂ U be an infinite sequence such that for every x̃ ∈ T \ G� and
every x� ∈ G�, for all but finitely many indices k we have:

f (x̃, uk) > f (x�,uk). (8)

Then, under Assumption 1, there exists a finite index k̄ such that, for any k ≥ k̄,
problem (6), with u = uk , has a solution xk that also solves the original problem (5).

Proof Let x� ∈ G� be a solution of (5). In order to prove the thesis, by contradiction
let us assume that there exists a subsequence {uk}K such that, for all k ∈ K , denoting
by xk a point in S� such that

xk ∈ arg min
x∈T

f (x,uk), (9)

we have

g(xk) > g(x�). (10)

Since S� is finite, we can extract a further subsequence such that xk = x̄ for all k ∈ K ,
and hence, from (10), we can write

g(x̄) > g(x�). (11)

Thus x̄ ∈ T \ G� and, as a consequence,

f (x̄, uk) > f (x�,uk) (12)

for all k sufficiently large. But this contradicts (9). �

Using the above theorem we can state the next proposition.
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Proposition 1 Let {uk} ⊂ U be an infinite sequence such that

lim
k→∞

f (x̃, uk) − f (x�,uk)

a + |f (x�,uk)| = C · [g(x̃) − g(x�)] ∀x̃ ∈ T ,x� ∈ G� (13)

with a ≥ 0 and C > 0. Under Assumption 1, there exists a finite index k̄ such that, for
any k ≥ k̄, problem (6), with u = uk , has a solution xk that also solves the original
problem (5).

Proof If x̃ ∈ T \ G� then the right hand side in (13) is strictly positive. From this it
follows that, for k large enough, also f (x̃, uk)−f (x�,uk) will be strictly positive. �

As immediate consequence of Proposition 1 we have the following result.

Corollary 1 Let {uk} ⊂ U be an infinite sequence such that

lim
k→∞f (x,uk) = g(x) ∀x ∈ T . (14)

Under Assumption 1, there exists a finite index k̄ such that, for any k ≥ k̄, problem (6),
with u = uk , has a solution xk that also solves the original problem (5).

Under additional assumptions on the feasible set T and on the objective function
f (x,u) we can prove the following results.

Proposition 2 Suppose that the feasible set T is a polyhedral set and that it admits
a vertex. Assume that, for any u ∈ U , the objective function of (6) is concave, contin-
uously differentiable, and bounded below on T . Let {uk} ⊂ U be an infinite sequence
such that

lim
k→∞

f (x̃, uk) − f (x�,uk)

a + |f (x�,uk)| = C · [g(x̃) − g(x�)] ∀x̃ ∈ T ,x� ∈ G� (15)

with a ≥ 0 and C > 0. There exists a finite index k̄ such that, for any k ≥ k̄, problem
(6), with u = uk , has a solution xk that also solves the original problem (5).

Proof Let S� be the set of vertices of T . Since the objective function of (6) is con-
cave, continuously differentiable, and bounded below on T , it follows that S� satisfies
Assumption 1, and hence the thesis follows from Proposition 1. �

Corollary 2 Suppose that the feasible set T is a polyhedral set and that it admits a
vertex. Assume that, for any u ∈ U , the objective function of (6) is concave, continu-
ously differentiable, and bounded below on T . Let {uk} ⊂ U be an infinite sequence
such that

lim
k→∞f (x,uk) = g(x) ∀x ∈ T . (16)

There exists a finite index k̄ such that, for any k ≥ k̄, problem (6), with u = uk , has a
solution xk that also solves the original problem (5).
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3 Concave formulations equivalent to the zero-norm problem

In this section we define two concave smooth problems depending on some para-
meters, and we show (using the general results stated in the preceding section) that
these problems, for suitable values of their parameters, are equivalent to the original
nonsmooth problem (1), which for our convenience is rewritten as follows:

min
x∈Rn,y∈Rn

‖y‖0

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n

(17)

We state the following assumption.

Assumption 2 The polyhedral set P has at least a vertex.

We denote by T the feasible set of (17), i.e.,

T =
{(

x

y

)
∈ R2n : x ∈ P,−yi ≤ xi ≤ yi i = 1, . . . , n

}
. (18)

Assumption 2 implies that the polyhedral feasible set T has at least a vertex.
We introduce two concave formulations related to the ideas developed in [10] and

[12], respectively.

Formulation 1

min
x∈Rn,y∈Rn

n∑

i=1

(yi + ε)p

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n

(19)

with 0 < p < 1, and 0 < ε.
We observe that:

– given p and ε, the objective function is concave, continuously differentiable,
bounded below on the feasible set;

– limp→0
∑n

i=1y
p
i = ‖y‖0, so that the objective function can be view as a smooth

approximation of the zero-norm.

The following proposition shows the equivalence between the approximating prob-
lem (19) and the zero-norm problem (17).

Proposition 3 There exist values p̄ > 0, ε̄ > 0, γ̄ > 0 such that, for any pair
(p, ε)T ∈ R2+ and satisfying

p ≤ p̄

ε ≤ ε̄

εp ≤ γ̄ ,

(20)
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problem (19) has a vertex solution (x(p, ε), y(p, ε))T which is also solution of the
original problem (17).

Proof In order to prove the thesis, assume by contradiction that there exists a se-
quence {(pk, εk, γ k)T } converging to (0,0,0)T , with

(εk)p
k ≤ γ k, (21)

and such that, any vertex solution of (19), with p = pk and ε = εk , is not a solution
of (17).

Set z = (x, y)T , u = (p, ε)T , g(z) = ‖y‖0, f (z,u) = ∑n
i=1(yi + ε)p . Problems

(17) and (19) can be written as follows

min
z∈T

g(z)
(22)

min
z∈T

f (z,u)
(23)

where T is defined in (18). From (21), as γ k → 0, we can write

lim
k→∞(εk)p

k = 0. (24)

Let {uk} = {(pk, εk)T } be the sequence convergent to (0,0)T and satisfying condi-
tion (24). Since for any y ∈ R+ we have

lim
k→∞(yi + εk)p

k =
{

1 if yi > 0,

0 if yi = 0

we obtain

lim
k→∞f (z,uk) = g(z) ∀z ∈ T . (25)

For any u ∈ U the objective function of (23) is concave, continuously differentiable,
and bounded below on T , so that, recalling (25), the assumptions of Corollary 2 hold
and hence, for any k sufficiently large there exists a vertex solution (xk, yk)T which
is also a solution of (22), in contradiction with our initial assumption. �

Formulation 2

min
x∈Rn,y∈Rn

−
n∑

i=1

(yi + ε)−p

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n

(26)

with 1 ≤ p, and 0 < ε.
We observe that:
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Fig. 1 Graph of functions (3) with α = 5, (4) with ε = 10−9, (19) with ε = 10−9,p = 0.1, (26) with
ε = 10−9,p = 1

– given p and ε, the objective function is concave, continuously differentiable,
bounded below on the feasible set;

– similarly to the logarithm functions appearing in problem (4), the functions
−(yi + ε)−p favor sparse vectors rather than points having many small nonzero
components; indeed, when a variable is set to zero the decrease of the function is
strong compared to the increase for a larger value of another variable;

– differently from the logarithm functions of problem (4), the functions −(yi + ε)−p

are bounded above for positive values of the independent variables, and this may
be a useful additional feature for finding sparse solutions.

For easier reference, in Fig. 1 we report the graphs of the four concave functions
analyzed in this paper.

The equivalence between problem (26) and the original problem (17) is formally
proved below.

Proposition 4 Assume that problem (17) admits a solution y� such that ‖y�‖0 < n.

There exists a value ε̄ > 0 such that, for any ε ∈ (0, ε̄], problem (26) has a vertex
solution (x(ε), y(ε))T which is also solution of the original problem (17).

Proof In order to prove the thesis, assume by contradiction that there exists a se-
quence {εk} converging to zero and such that, any vertex solution of (26), with ε = εk ,
is not a solution of (17).
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Set z = (x, y)T , u = ε, g(z) = ‖y‖0, f (z,u) = −∑n
i=1(yi +u)−p . Problems (17)

and (26) can be written as follows

min
z∈T

g(z)
(27)

min
z∈T

f (z,u)
(28)

where T is defined in (18). Let {uk} = {εk} be the sequence convergent to 0. For any
z ∈ T we have

f (z,u) = −
∑

i:yi=0

u−p −
∑

i:yi �=0

(yi + u)−p = −(n − ‖y‖0)u
−p −

∑

i:yi �=0

(yi + u)−p,

so that, recalling that uk → 0 for k → ∞, we can write for each z̃ ∈ T and for each
z� ∈ G� (being G� the set of optimal solutions for problem (17))

lim
k→∞

f (z̃, uk) − f (z�,uk)

|f (z�,uk)|

= lim
k→∞

−(n − ‖ỹ‖0)(u
k)−p − ∑

i:ỹi �=0(ỹi + uk)−p + (n − ‖y�
i ‖0)(u

k)−p + ∑
i:y�

i �=0(y
�
i + uk)−p

| − (n − ‖y�‖0)(uk)−p − ∑
i:y�

i �=0(y
�
i + uk)−p|

= ‖ỹ‖0 − ‖y�‖0

n − ‖y�‖0
= C · [g(z̃) − g(z�)]. (29)

For any u ∈ U = R+ the objective function of (28) is concave, continuously differ-
entiable, and bounded below on T , so that, recalling (29), the assumptions of Propo-
sition 2 hold (by setting a equal to zero) and hence, for any k sufficiently large there
exists a vertex solution (xk, yk)T which is also a solution of (27), in contradiction
with our initial assumption. �

We terminate the section by showing that the general results of Sect. 2 allow us
to prove the equivalence between the smooth concave problems (3) and (4) and the
given nonsmooth problem (17). We remark that the theoretical equivalence between
(3) and (17) was proved in [10], while the equivalence between (4) and (17) was not
formally proved.

Proposition 5 There exists a value ᾱ > 0 such that, for any α ≥ ᾱ, problem (3) has
a vertex solution (x(α), y(α))T which is also solution of the original problem (17).

Proof In order to prove the thesis, assume by contradiction that there exists a se-
quence {αk} such that αk → ∞, and any vertex solution of (3), with α = αk , is not a
solution of (17).

Set z = (x, y)T , u = α, g(z) = ‖y‖0, f (z,u) = ∑n
i=1(1 − e−uyi ) and consider the

problems

min
z∈T

g(z)
(30)
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min
z∈T

f (z,u)
(31)

where T is defined in (18). Let {uk} = {αk} be the sequence convergent to +∞. Since
for any y ∈ R+ we have

lim
k→∞

(
1 − e−ukyi

)=
{

1 if yi > 0
0 if yi = 0

we obtain

lim
k→∞f (z,uk) = g(z) ∀z ∈ T . (32)

For any u ∈ U = R+ the objective function of (31) is concave, continuously dif-
ferentiable, and bounded below on T , so that, recalling (32), the assumptions of
Corollary 2 hold and hence, for any k sufficiently large there exists a vertex solution
(xk, yk)T which is also a solution of (30), in contradiction with our initial assump-
tion. �

Proposition 6 Assume that problem (17) admits a solution y� such that ‖y�‖0 < n.

There exists a value ε̄ > 0 such that, for any ε ∈ (0, ε̄], problem (4) has a vertex
solution (x(ε), y(ε))T which is also solution of the original problem (17).

Proof In order to prove the thesis, assume by contradiction that there exists a se-
quence {εk} such that εk → 0, and any vertex solution of (4), with ε = εk , is not a
solution of (17).

Set z = (x, y)T , u = ε, g(z) = ‖y‖0, f (z,u) = ∑n
i=1 log(yi + u) and consider

the problems

min
z∈T

g(z)
(33)

min
z∈T

f (z,u)
(34)

where T is defined in (18). Let {uk} = {εk} be the sequence convergent to 0. For any
z ∈ T we have

f (z,u) =
∑

i:yi=0

logu +
∑

i:yi �=0

log(yi + u) = (n − ‖y‖0) logu +
∑

i:yi �=0

log(yi + u),

so that, recalling that uk → 0 for k → ∞, we can write for each z̃ ∈ T , z� ∈ G� (being
G� the set of optimal solutions for problem (17))

lim
k→∞

f (z̃, uk) − f (z�, uk)

|f (z�, uk)|

= lim
k→∞

(n − ‖ỹ‖0) loguk + ∑
i:ỹi �=0 log(ỹi + uk) − (n − ‖y�‖0) loguk − ∑

i:y�
i �=0 log(y�

i + uk)

|(n − ‖y�‖0) loguk + ∑
i:y�

i �=0 log(y�
i + uk)|

= ‖ỹ‖0 − ‖y�‖0

n − ‖y�‖0
= C · [g(z̃) − g(z�)] (35)
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For any u ∈ U = R+ the objective function of (34) is concave, continuously differ-
entiable, and bounded below on T , so that, recalling (35), the assumptions of Propo-
sition 2 hold (by setting a equal to zero) and hence for any k sufficiently large there
exists a vertex solution (xk, yk)T which is also a solution of (33), in contradiction
with our initial assumption. �

4 The Frank-Wolfe algorithm for the minimization of concave separable
functions

Let us consider the problem

min
x∈P

f (x) (36)

where P ⊂ Rn is a non empty polyhedral set, f : Rn → R is a concave, continuously
differentiable function, bounded below on P .

The Frank-Wolfe algorithm with unitary stepsize can be described as follows.
Frank-Wolfe—Unitary Stepsize (FW1) Algorithm

1. Let x0 ∈ Rn be the starting point;
2. For k = 0,1, . . . ,

if xk /∈ arg minx∈P ∇f (xk)T x then compute a vertex solution xk+1 of

min
x∈P

∇f (xk)T x (37)

else exit.

The algorithm involves only the solution of linear programming problems, and the
following result, proved in [10], shows that the algorithm generates a finite sequence
and that it terminates at a stationary point.

Proposition 7 The Frank-Wolfe algorithm with unitary stepsize converges to a vertex
stationary point of problem (36) in a finite number of iterations.

Now consider the problem

min f (x) =
n∑

j=1

fj (xj )

x ∈ P

xi ≥ 0, i ∈ I ⊆ {1, . . . , n}

(38)

where fj : R → R, for j = 1, . . . , n are concave, continuously differentiable func-
tions. We assume that f is bounded below on P .

We observe that problem (38) includes as particular cases the concave program-
ming problems presented in the preceding section.

The next proposition shows that, under suitable conditions on the concave func-
tions fj , the algorithm does not change a nonnegative variable once that it has been
fixed to zero.
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Proposition 8 Let {x0, x1, . . . , xh} be any finite sequence generated by the Frank-
Wolfe algorithm with unitary stepsize. There exists a value M such that, if i ∈ I and
f

′
i (0) ≥ M , then we have that

xk
i = 0 implies xk+1

i = . . . = xh
i = 0.

Proof At each iteration k of the Frank-Wolfe algorithm the linear problem to be
solved is

min
∑

j :xk
j �=0

f ′
j (x

k
j ) xj +

∑

j /∈I :xk
j =0

f ′
j (0)xj +

∑

j∈I :xk
j =0

f ′
j (0)xj

x ∈ P

xi ≥ 0, i ∈ I ⊆ {1, . . . , n}
(39)

Let xk+1 be a vertex solution of (39). For any i ∈ I such that xk
i = 0, by (ii) of

Proposition 10 it follows that there exists a value Mk such that, if f
′
i (0) ≥ Mk , then

we have xk+1
i = 0. Thus, if i ∈ I , xk

i = 0 and f
′
i (0) ≥ Mk , then we obtain xk+1

i =
xk
i = 0. Letting

M = max
0≤k≤h

{Mk},
and assuming

f
′
i (0) ≥ M

the thesis follows by induction. �

On the basis of Proposition 8 we can define the following version of the Frank-
Wolfe algorithm with unitary stepsize, where the linear problems to be solved are of
reduced dimension. In particular, whenever a variable is set to zero at an iteration, the
method eliminates this variable for all the following ones.

We denote by � the feasible set of problem (38), i.e.,

� = {x ∈ Rn : x ∈ P,xi ≥ 0, i ∈ I }.
Frank-Wolfe—Unitary Stepsize—Reduced Dimension (FW1-RD) Algorithm

1. Let x0 ∈ Rn be the starting point;
2. For k = 0,1, . . . , let I k = {i ∈ I : xk

i = 0}, P k = {x ∈ � : xi = 0 ∀i ∈ I k}
if xk /∈ arg minx∈Pk ∇f (xk)T x then compute a vertex solution xk+1 of

min
x∈Pk

∇f (xk)T x (40)

else exit.

Note that the linear programming problem (40) is equivalent to a linear problem of
dimension n − |I k|, and that I k ⊆ I k+1, so that the linear problems to be solved are
of nonincreasing dimensions. This yields obvious advantages (shown in the next sec-
tion) in terms of computational time. Since Algorithm FW1-RD is different from the
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standard Frank-Wolfe method, its convergence properties cannot be derived from the
known result given by Proposition 7. By exploiting the result stated in the appendix,
we can formally prove the finite convergence of the algorithm at a stationary point.

Proposition 9 There exists a value M such that, if f
′
j (0) ≥ M for j = 1, . . . , n, then

Algorithm FW1-RD converges to a vertex stationary point of problem (38) in a finite
number of iterations.

Proof Since f is a concave differentiable function and is bounded below on �, we
can write

−∞ < inf
x∈�

f (x) − f (xk) ≤ f (x) − f (xk) ≤ ∇f (xk)T (x − xk), ∀ x ∈ �.

Therefore, as P k ⊆ �, it follows that ∇f (xk)T x is bounded below on the polyhedral
set P k and hence problem (40) admits a vertex solution xk+1, so that Step 2 is well-
defined.
We observe that the number of polyhedral sets P k is finite and hence the number of
vertex points generated by the algorithm is finite.

Now we show that xk /∈ arg minx∈Pk ∇f (xk)T x implies f (xk+1) < f (xk). In-
deed, in this case we have ∇f (xk)T (xk+1 − xk) < 0, and hence, recalling the as-
sumptions on f , we can write

f (xk+1) ≤ f (xk) + ∇f (xk)T (xk+1 − xk) < f (xk). (41)

Since the number of points visited by the algorithm is finite, from (41) we get
that the algorithm terminates in a finite number k of iterations with a point xk ∈
arg minx∈Pk ∇f (xk)T x. We prove that xk is a stationary point. Indeed, xk is a vertex
solution of

min
∑

j :xk
j �=0

f ′
j (x

k
j ) xj +

∑

j /∈I k :xk
j =0

f ′
j (0) xj

x ∈ �

xi = 0, i ∈ I k

and by (i) of Proposition 10 it follows that there exists a value M such that, if f
′
j (0) ≥

M then xk is a solution of

min
∑

j :xk
j �=0

f ′
j (x

k
j ) xj +

∑

j /∈I k :xk
j =0

f ′
j (0) xj +

∑

j∈I k :xk
j =0

f ′
j (0)xj

x ∈ �

(42)

Therefore we have

∇f (xk)T xk ≤ ∇f (xk)T x ∀x ∈ �,

and this proves that xk is a stationary point of problem (38). �

Concerning the separable concave objective functions of problems (3), (4), (19),
(26), we have for j = 1, . . . , n
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– fj (yj ;α) = 1 − e−αyj and f
′
j (0) = α;

– fj (yj ; ε) = ln(yj + ε) and f
′
j (0) = 1/ε;

– fj (yj ; ε,p) = (yj + ε)p and f
′
j (0) = p(ε)p−1 with 0 < p < 1;

– fj (yj ; ε,p) = −(yj + ε)−p and f
′
j (0) = p(ε)−p−1 with 1 ≤ p;

Therefore, the assumption of Proposition 9 holds for suitable values of the parameters
of the above concave functions, so that Algorithm FW1-RD can be applied to solve
problems (3), (4), (19), (26). The results obtained on computational experiments will
be presented in the next section.

5 Computational experiments

In our computational experiments we have considered feature selection problems
of linear classification models. Given two linearly separable sets of points in a n-
dimensional feature space, the problem is that of finding the hyperplane that sepa-
rates the two sets and utilizes as few of the feature as possible. Formally, given two
linearly separable sets

S1 = {ui ∈ Rn, i = 1, . . . , p} S2 = {vj ∈ Rn, j = 1, . . . , q},
the problem is

min
w∈Rn,θ∈R

‖w‖0

wT ui + θ ≥ 1 i = 1, . . . , p

wT vj + θ ≤ −1 j = 1, . . . , q

(43)

Thus, according to the notation adopted in the paper, the problems we used in our
experiments take the form

min
x∈Rn,θ∈R

‖x‖0

A

(
x

θ

)
≥ e

(44)

where A ∈ Rm×(n+1), e ∈ Rm is a vector of ones.
We remark that the aim of the experiments has been that of evaluating the ef-

fectiveness of various formulations in finding sparse vectors (possibly the sparsest
vectors) belonging to polyhedral sets. As said above, the class of problems (44) con-
sidered in the experimentation derives from a specific machine learning problem, that
is the feature selection problem of linear classifier models. Such a machine learning
problem would require to investigate other important issues concerning, for instance,
the generalization capability of the linear classifier model determined. This aspect
will not be considered here, since it deserves particular attention and will be the ob-
ject of a future work specifically devoted to the study and the experimentation of
feature selection techniques.
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We observe that the mixed integer linear programming problem

min
x∈Rn,θ∈R,δ∈{0,1}n

n∑

i=1

δi

A

(
x

θ

)
≥ e

−Mδi ≤ xi ≤ Mδi i = 1, . . . , n

δi ∈ {0,1} i = 1, . . . , n

(45)

is equivalent to problem (44) for sufficiently high values of M . Thus, for relatively
small dimensional test problems we can determine an optimal solution of (44) by
solving (45) by means of an exact method.

Test problems P-random. For several values of n and m we randomly generated the
matrix A. In particular, each instance of (44) was generated as follows: we randomly
defined an hyperplane in a n1-dimensional space, and we randomly determined m1
points ui in an half-space (corresponding to labels +1) and other m2 points vj in the
other half-space (corresponding to labels −1), for a total number of m = m1 + m2
points. We added to each of these vectors a number n2 of random components, thus
obtaining two linearly separable sets, of cardinality m1 and m2 respectively, in the
space of dimension n = n1 + n2. In this way, the resulting problem (44) had the
optimal objective function value less or equal than n1 < n.

Colon cancer [1]. The colon cancer dataset contains 22 normal and 40 colon cancer
tissues described by 2000 genes expression values extracted from DNA microarray
data.

Catalysis. In Catalysis Dataset targets represent the presence (or absence) of cat-
alytic activity of a protein. Inputs are gene expression levels of the genes encoding
those proteins. This version of the database was prepared for the Pascal 2004 Eval-
uating Predictive Uncertainty Challenge. The data are available at http://predict.kyb.
tuebingen.mpg.de/pages/home.php.

Nova. This dataset consists of 1754 articles collected from 20 different newsgroups.
There are 499 articles related to politics or religion topics and 1255 articles related to
other topics. Input variables use a bag-of-words representation with a vocabulary of
approximately 17000 words. This version of the database was prepared for the WCCI
2006 challenge on performance prediction. The data are available at http://clopinet.
com/isabelle/Projects/modelselect/.

Experiments For each problem we performed experiments using:

– formulation (2), denoted by �1;
– formulation (3), denoted by exp, with α = 5;
– formulation (4), denoted by log, with ε = 10−9;
– formulation (19), denoted by Formulation 1, with ε = 10−9 and p = 0.001;
– formulation (26), denoted Formulation 2, with ε = 10−9 and p = 1.

http://predict.kyb.tuebingen.mpg.de/pages/home.php
http://predict.kyb.tuebingen.mpg.de/pages/home.php
http://clopinet.com/isabelle/Projects/modelselect/
http://clopinet.com/isabelle/Projects/modelselect/
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Table 1 Comparison on P-random problems (average zero-norm value/best zero-norm value/percentage
of best values attained)

P-random m n ‖x∗‖0 l1 Exp Log Form. I Form. II

1 20 10 2 3 3.0/3/100 2.1/2/93 2.1/2/93 2.0/2/97

2 20 10 3 4 4.0/4/100 3.6/3/66 3.6/3/66 3.9/3/45

3 40 20 3 8 8.0/8/100 6.3/4/9 6.2/4/9 5.7/3/6

4 40 20 4 10 10.0/10/100 7.7/5/1 7.7/5/1 6.5/5/15

5 60 30 6 12 12.0/12/100 10.0/8/2 10.0/8/2 8.8/6/3

6 60 30 7 14 13.9/13/3 10.9/8/1 11.0/8/1 9.7/7/6

7 80 40 6 14 14.0/14/100 10.4/7/1 10.4/7/1 9.4/6/3

8 80 40 9 24 23.4/22/14 16.4/12/1 16.4/12/1 14.1/11/4

9 100 50 8 19 19.0/19/100 15.1/11/1 15.2/11/1 13.0/8/2

10 100 50 10 28 28.0/28/100 18.5/14/3 18.5/14/2 16.0/12/6

Table 2 Comparison on three benchmark problems (average zero-norm value/best zero-norm
value/percentage of best values attained)

Problem m n l1 Exp Log Form. I Form. II

Colon Cancer 62 2000 57 8.5/6/10 13.8/7/1 13.7/7/1 9.4/6/3

Catalysis 873 617 422 199.3/184/1 222.1/201/1 221.0/201/1 189.8/173/1

Nova 1754 16 969 448 168.5/147/2 127.0/105/1 126.7/105/1 131.9/114/1

We applied the Frank-Wolfe algorithm for solving the instances of (3), while we used
Algorithm FW1-RD, that is the version of the Frank-Wolfe algorithm presented in
the preceding section, for solving problems (4), (19), (26). The reason for which we
employed the standard version of the Frank-Wolfe algorithm, instead of Algorithm
FW1-RD, for solving the instances of (3) is that the chosen value α = 5, suggested
in [3], did not seem sufficiently high to ensure that the assumptions of Proposition 9
were satisfied. We used 100 random initial points for all the problems.

Implementation details The instances of problem (45) were solved by means of
CPLEX (8.0). Algorithms FW1 and FW1-RD were implemented in C using GLPK
(4.9) as solver of the linear programming problems. The experiments were carried
out on Intel Pentium 4 3.2 GHz 512 MB RAM.

Results The results obtained on P-random problems and on the other three test prob-
lems are shown in Tables 1 and 2 respectively, where we report

– the number m of constraints, the number n of variables;
– for formulation �1, the zero-norm of the optimal solution attained;
– for each nonlinear concave formulation:

• the average of the zero-norm value of the stationary points determined;
• the best zero-norm value of those stationary points;
• percentage of runs where the best zero-norm value was attained.
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Table 3 Comparison using
Formulation 1 between the two
versions of the Frank-Wolfe
algorithm in terms of CPU-time
(seconds)

Problem FW1 FW1-RD

Colon Cancer 225 24

Catalysis 2776 465

Nova 10 448 1003

In Table 1, which concerns relatively small dimensional problems, we also report the
optimal value ‖x∗‖0 determined by solving (45).

From Table 1 we can observe that the best results are obtained by means of Formu-
lation 2. Indeed, in seven problems over ten, a simple multi-start strategy applied to
Formulation 2 allowed us to attain the certificated optimal solution. We may note that
the results obtained by means of formulations log and Formulation 1 are comparable,
and clearly better than those corresponding to formulations �1 and exp.

The results obtained on problems Colon cancer, Catalysis, and Nova are reported
in Table 2, where we can observe that the multi-start strategy applied to the nonlinear
concave formulations performed clearly better than the approach based on the mini-
mization of the �1 norm. Furthermore, we can note that the best results on problem
Colon Cancer were obtained by exp and Formulation 1, the best results on problem
Catalysis were obtained by Formulation 2, while the best results on problem Nova
were obtained by log and Formulation 1.

Summarizing, the computational experiments confirm the validity of the concave-
based approach for the minimization of the zero-norm over a polyhedral set, and
show that the concave formulations here proposed are valid alternatives to known
formulations. Indeed, Formulation 1 and Formulation 2 attained the best results in 3
tests over 13 and 9 tests over 13 respectively. We remark that a wider availability of
efficient formulations is important since it can facilitate the search of sparse enough
solutions for different classes of problems.

Finally, in order to assess the differences in terms of computational time between
the standard Frank-Wolfe (FW1) algorithm and the version of the algorithm presented
in the preceding section and denoted by Algorithm FW1-RD, we report in Table 3
the results obtained by the two algorithms on the three benchmark problems using
Formulation 1. As we might expect, the differences are remarkable and show the
usefulness of Algorithm FW1-RD. Further experiments not here reported and per-
formed using the other concave formulations point out the same differences between
the two algorithms in terms of computational time. In all the tests we did not detect
differences between the two algorithms in terms of computed solution.

6 Conclusions

In this work we have considered the general hard problem of minimizing the zero-
norm over polyhedral sets, which arises in different important fields, such as ma-
chine learning and signal processing. Following the concave optimization-based ap-
proach, we have proposed two new smooth concave formulations and we have for-
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mally proved the equivalence of these and other formulations with the original non-
smooth problem. The main contributions of this paper are both theoretical and com-
putational. From the theoretical point of view, we have been able to introduce some
general results on approximability for concave optimization problems and we ob-
tained an important characterization of the behavior of the Frank-Wolfe algorithm
which has, as we could confirm in computational experiments, a dramatic influence
on the efficiency of the method. The computational evidence we report suggests a
speed-up in the range 5 to 10 when using the variable fixing variant of the Franke-
Wolfe method in place of the traditional one. This very high speed-up might prove
to be extremely beneficial when multiple runs of the algorithm are performed, e.g.
in a Multistart method. Apart from the great improvement in efficiency, the compu-
tational experiments also evidenced that the new formulations are valid alternatives
to known formulations, as in most cases they allowed us to compute highly sparse
solutions. We remark that a wider availability of efficient formulations is important
since it can facilitate the search of sparse enough solutions for different classes of
problems.

Future work will be devoted to develop global optimization algorithms for the min-
imization of concave separable functions over polyhedral sets and to define suitable
techniques for the feature selection problem.

Appendix

For convenience of the reader we report a known result (and its proof) that we have
used to derive some new convergence results of the Frank-Wolfe method and of the
modified version we have presented.

Proposition 10 Consider the linear programming problems

min cT x

Ax ≥ b

Hx = d

(46)

min cT x + MeT z

Ax + Qz ≥ b

Hx + Sz = d

z ≥ 0

(47)

where c ∈ Rn, e ∈ Rnz is a vector of ones, b ∈ Rm, d ∈ Rp , A ∈ Rm×n, H ∈ Rp×n,
Q ∈ Rm×nz , S ∈ Rp×nz . Assume that problem (46) admits a solution x�. Then, there
exists a value M0 such that for all M ≥ M0 we have that

(i) the vector (x�,0)T is a solution of (47);
(ii) if (x̄, z̄)T is a solution of (47), then z̄ = 0 and x̄ is a solution of (46).
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Proof (i) Since x� is a solution of problem (46) we have that the dual problem

max bT λ + dT μ

AT λ + HT μ = c

λ ≥ 0

(48)

admits a solution (λ�,μ�)T ∈ Rm+p and we have

cT x� = bT λ� + dT μ�. (49)

Now consider problem (47) and its dual

max bT λ + dT μ

AT λ + HT μ = c

QT λ + ST μ ≤ Me

λ ≥ 0.

(50)

The vector (x�,0)T is a feasible point for (47), and for M sufficiently large the vector
(λ�,μ�)T is a feasible point for (50). Thus, from (49) the assertion is proved. Fur-
thermore, we can also conclude that (λ�,μ�)T is a solution of (50) for M sufficiently
large.

(ii) By contradiction let us assume that there exist a sequence of positive scalars
{Mk}, with Mk → ∞ for k → ∞, and a corresponding sequence of vectors
{(xk, zk)T } such that zk �= 0, and (xk, zk)T is solution of (47) when M = Mk . We
can then define an infinite subset K such that, for all k ∈ K

– we have zk
i > 0 for some index i ∈ {1, . . . , nz};

– the vector (λ�,μ�)T is a solution of (50) when M = Mk .

Then, using the complementarity conditions we can write
(
eT
i QT λ� + eT

i ST μ� − Mk
)

= 0 ∀k ∈ K,

which contradicts the fact that Mk → ∞. �
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