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In this work, we consider a class of nonlinear optimization problems with convex constraints with the
aim of computing sparse solutions. This is an important task arising in various fields such as machine
learning, signal processing, and data analysis. We adopt a concave optimization-based approach, we define
an effective version of the Frank–Wolfe algorithm, and we prove the global convergence of the method.
Finally, we report numerical results on test problems showing both the effectiveness of the concave approach
and the efficiency of the implemented algorithm.
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1. Introduction

We consider a class of constrained non-smooth optimization problems of the form:

min
x∈Rn

g(x) + λ‖x‖0

x ∈ C,
(1)

where λ > 0, C is a compact convex set, g is a continuously differentiable function, and ‖x‖0 is
the zero-norm of x defined as

‖x‖0 = card{xi : xi �= 0}.
The zero-norm is a non-convex discontinuous function; so dealing with it is a very hard task. The
problem (1) is quite general and includes as special cases a wide variety of problems arising from
different fields (e.g. machine learning, signal processing, and data analysis).

In machine learning, for instance, an interesting problem that can be formulated as in (1) is the
sparse linear discriminant analysis (SLDA) [26]. Given a pair of symmetric matrices:

(i) between-class covariance matrix: A positive semi-definite;
(ii) within-class covariance matrix: B positive definite;
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2 F. Rinaldi

in SLDA, we want to find a sparse vector x which maximizes a class-separability criterion defined
by the generalized Rayleigh quotient:

R(x; A, B) = xTAx

xTBx
.

Namely, we want to solve the following optimization problem:

min
x∈Rn

− 1

2
xTAx + λ‖x‖0

xTBx ≤ 1.

(2)

Sparse principal component analysis (SPCA) is a well-known problem in data analysis [4,11,31].
In SPCA, given a (symmetric positive semi-definite) covariance matrix C, the goal is finding a
sparse vector x which explains the maximum amount of variance. The zero-norm formulation
related to this problem is

min
x∈Rn

− 1

2
xTCx + λ‖x‖0

xTx ≤ 1.

(3)

In signal analysis, a widely-studied problem is the sparse representation of signals [3,8]. Many
media types (i.e. imagery, video and audio) can be sparsely represented using transform-domain
methods, and in fact, various relevant problems dealing with such media can be easily viewed
as the problem of finding sparse solutions to a linear system. Sparsity of representation is a key
aspect in transform-based image compression [5,6,13], signal and image denoising [14–17], and
image deblurring [18–20]. In practice, given a dictionary A ∈ Rm×n of elementary signals and
a real noisy signal b, the goal is finding a sparse representation x of signal b in terms of the
dictionary A. This problem can be formulated as follows:

min
x∈Rn

‖x‖0

‖Ax − b‖2 ≤ δ,
(4)

where δ is a fixed error tolerance.
In order to make problem (1) tractable, a simple approach can be that of replacing the zero-norm

with the �1 norm [3,28,31], thus obtaining the problem

min
x∈Rn

g(x) + λ‖x‖1

x ∈ C,
(5)

which can be efficiently solved even when the dimension of the problem is large. However, some
experiments reported in [2,27] show that a concave optimization-based approach, for the special
case of a polyhedral feasible set, performs better than the �1 norm-based one.

In this paper, inspired by the idea developed in [25,27,30], we propose a concave programming
approach for solving problem (1). We replace the zero-norm with a separable concave function
thus obtaining the following formulation:

min
x∈Rn

g(x) + λ

n∑
j=1

hj (xj , u)

x ∈ C,

(6)

where hj : R → R, for j = 1, . . . , n are concave, continuously differentiable functions depend-
ing on a vector u ∈ Rm of parameters.
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Optimization Methods & Software 3

In [25], Mangasarian first proposed a Frank–Wolfe (FW) type algorithm, the well-known
successive linear approximation (SLA) algorithm, for minimizing a concave function over a
polyhedral set. The SLA algorithm has also been used for constructing kernel classifiers that
use a minimal number of data points in both generating and characterizing a classifier [22]. Two
FW-based approaches for minimizing a concave function over a polyhedral set have also been
proposed in [27,30]. We define a modified version of the FW algorithm to minimize a concave
function over a compact convex set, namely to solve problems of the form (6), in which variables
that are null at an iteration are eliminated for all the following ones, with significant savings in
computational time. The algorithm involves a sequence of convex programs (that can be effi-
ciently solved by existing solvers), and this makes possible its application to large dimensional
problems.

The paper is organized as follows. In Section 2, we describe various smooth concave functions
that can be used in place of the zero-norm when searching for sparse solutions to problems with
convex constraints. In Section 3, we report an interesting result related to convex programming.
In Section 4, after a brief review of the well-known FW method, we derive some new theo-
retical results, which have an important impact on the computational efficiency of the method.
These results suggest the definition of a version of the method that eliminates the variables set
to zero, thus allowing for a dimensionality reduction, which greatly increments the speed of the
procedure. We formally prove, by means of the result reported in Section 3, the global conver-
gence of this modified version of the FW method. In Section 5, we describe a version of the
reduced FW algorithm with unitary stepsize that can be used when the problem we want to solve
has a concave objective function. Finally, in Section 6, we report our numerical experience on
various test problems. The results obtained show both the usefulness of the new concave for-
mulations and the efficiency in terms of computational time of the implemented minimization
algorithm.

2. Concave formulations for finding a sparse vector over a convex set

Consider the general problem of finding a vector belonging to a compact convex set C and having
the minimum number of non-zero components, that is

min
x∈Rn

‖x‖0

x ∈ C.
(7)

Since the objective function in (7) is discontinuous, we can use a continuously differentiable,
concave function that somehow approximates the behaviour of the zero-norm function. A similar
approach has already been proposed in [25,27,30] for finding sparse solutions to linear systems.
In order to illustrate the idea underlying the concave approach, we observe that the objective
function of problem (7) can be written as follows:

‖x‖0 =
n∑

i=1

s(|xi |),

where s : R → R+ is the step function such that s(t) = 1 for t > 0 and s(t) = 0 for t ≤ 0. Follow-
ing the approach described in [25], we replace the discontinuous step function by a continuously
differentiable concave function v(t) = 1 − e−αt , with t ≥ 0 and α > 0, thus obtaining a problem
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4 F. Rinaldi

of the form

min
x,y∈Rn

n∑
i=1

(1 − e−αyi )

x ∈ C

− yi ≤ xi ≤ yi i = 1, . . . , n.

(8)

The approach is well-motivated from a theoretical point of view. In fact, for y ≥ 0, it is easy to
see that,

lim
α→∞

n∑
i=1

(1 − e−αyi ) = ‖y‖0,

so the objective function is a smooth approximation of the zero-norm. Another way to solve
problem (7) can be that of using the logarithm function instead of the step function [30], and this
leads to a concave smooth problem of the form

min
x,y∈Rn

n∑
i=1

ln(ε + yi)

x ∈ C

− yi ≤ xi ≤ yi i = 1, . . . , n,

(9)

with 0 < ε 	 1. Formulation (9) is practically motivated by the fact that, due to the form of the
logarithm function, it is better to increase one variable yi while setting to zero another one rather
than doing some compromise between both, and this should facilitate the computation of a sparse
solution. The following two concave formulations, related to the ideas underlying (8) and (9)
respectively, have been proposed in [27] for finding a sparse solution to a linear system:

min
x∈Rn,y∈Rn

n∑
i=1

(yi + ε)p

x ∈ C

− yi ≤ xi ≤ yi i = 1, . . . , n

(10)

with 0 < p < 1, and 0 < ε;

min
x∈Rn,y∈Rn

−
n∑

i=1

(yi + ε)−p

x ∈ C

− yi ≤ xi ≤ yi i = 1, . . . , n

(11)

with 1 ≤ p, and 0 < ε.

3. Convex programming: a new result

In this section, we generalize some results about the big-M method [9,10] to the case of convex
programming. These results will be used to derive the convergence of a modified FW method we
will present.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
à
 
d
e
g
l
i
 
S
t
u
d
i
 
d
i
 
R
o
m
a
 
L
a
 
S
a
p
i
e
n
z
a
]
 
A
t
:
 
0
9
:
5
8
 
1
7
 
N
o
v
e
m
b
e
r
 
2
0
1
0



Optimization Methods & Software 5

Proposition 1 Consider the convex programming problems

min f (x)

s(x) ≤ 0

Ax = b

(12)

min f (x) + MeTz

s(x) + w(z) ≤ 0

Ax + Qz = b

z ≥ 0,

(13)

where

(1) e ∈ Rnz is a vector of ones, b ∈ Rp, A ∈ Rp×n, Q ∈ Rp×nz;
(2) f : Rn → R is a convex, continuously differentiable function;
(3) s : Rn → Rm is a convex, continuously differentiable function;
(4) w : Rnz → Rm is a convex, continuously differentiable function such that w(0) = 0.

Assume that problem (12) admits a solution x�, and that there exists a feasible vector x̄ satisfying
the following condition:

s(x̄) < 0. (14)

Then there exists a value M0 such that for all M ≥ M0, we have that

(i) the vector (x�, 0)T is a solution of (13);
(ii) if (x̃, z̃)T is a solution of (13), then z̃ = 0 and x̃ is a solution of (12).

Proof (i) Since x� is a solution of problem (12), we have from PropositionA2 in the appendix that
there exist Lagrange multipliers λ� ∈ Rm and μ� ∈ Rp satisfying conditions (A2) in the appendix.

Now consider problem (13) and the Karush–Kuhn–Tucker system related to it:

∇f (x) + ∇s(x)λ − ATμ = 0

Me + ∇w(z)λ − QTμ − τ = 0

λT[s(x) + w(z)] = 0

τTz = 0

z, λ, τ ≥ 0.

(15)

Since w(0) = 0, the vector (x�, 0)T is a feasible point for (13), and, as for M sufficiently large
we have

−∇w(0)λ� + QTμ� ≤ Me,

it is possible to find a vector τ � ≥ 0 such that the vector (x�, 0, λ�, μ�, τ �)T is a solution of (15).
Thus, from Proposition A3 in the appendix, we have that (x�, 0) is a global optimum of problem
(13) and the assertion is proved.

(ii) By contradiction let us assume that there exists a sequence of positive scalars {Mk}, with
Mk → ∞ for k → ∞, and a corresponding sequence of vectors {(xk, zk)T} such that zk �= 0, and
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6 F. Rinaldi

(xk, zk)T is solution of (13) when M = Mk . We can then define an infinite subset K such that,
for all k ∈ K we have zk

i > 0 for some index i ∈ {1, . . . , nz}. For all k, we can write

f (xk) + MkeTzk ≥ f (xk) + MkeTzk + λ�T[s(xk) + w(zk)] + μ�T
(b − Axk − Qzk). (16)

By convexity of f , s and w, we have

f (xk) ≥ f (x�) + ∇f (x�)T(xk − x�) (17)

s(xk) ≥ s(x�) + ∇s(x�)T(xk − x�) (18)

w(zk) ≥ w(0) + ∇w(0)Tzk. (19)

Using (17)–(19), we obtain

f (xk) + MkeTzk ≥ f (xk) + MkeTzk + λ�T[s(xk) + w(zk)] + μ�T
(b − Axk − Qzk)

≥ f (x�) + ∇f (x�)T(xk − x�) + λ�T[s(x�) + ∇s(x�)T(xk − x�) + w(0)

+ ∇w(0)Tzk] + μ�T
(b − Axk + Ax� − Ax�) − μ�T

Qzk + MkeTzk

= f (x�) + [∇f (x�) + ∇s(x�)λ� − ATμ�]T(xk − x�)

+ λ�T[s(x�) + w(0) + ∇w(0)Tzk] + μ�T
(b − Ax�) − μ�T

Qzk + MkeTzk.

(20)

Since w(0) = 0, the vector (x�, 0)T is a feasible point for (13), and, as for Mk sufficiently large
we can find a vector τ �k ≥ 0 such that the vector (x�, 0, λ�, μ�, τ �k)T is a solution of (15), we
rewrite (16) as follows:

f (xk) + MkeTzk ≥ f (x�) + [Mke + ∇w(0)λ� − QTμ�]Tzk = f (x�) + τ �kT
zk. (21)

Furthermore, there exists a value M̃ such that ∀ Mk ≥ M̃ , we have τi
�k > 0, and, as zk

i > 0, we
have

f (xk) + MkeTzk ≥ f (x�) + τ �kT
zk > f (x�) (22)

but this contradicts the fact that (xk, zk)T is optimum for problem (13).
Now we need to show that, for a given value M ≥ M̃ , if (x̃, z̃)T, with z̃ = 0, is a solution of

(13), then x̃ is a solution of (12). As (x̃, z̃)T is a solution of (13), we can write

f (x̃) = f (x̃) + MeTz̃ ≤ f (x) + MeTz

for each (x, z)T feasible point of problem (13). Furthermore, it is easy to see that a vector x is a
feasible point of (12) iff (x, 0) is a feasible point of (13). Then, we have

f (x̃) ≤ f (x)

for each x feasible point of problem (12). �

4. The FW – reduced dimension algorithm

The FW algorithm is a well-known algorithm in operations research. It was originally proposed
by Marguerite Frank and Phil Wolfe in 1956 as a procedure for solving quadratic programming
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Optimization Methods & Software 7

problems with linear constraints [21]. Extensive discussion of its application to more general
problems are given in [1,12,24].

In this section, we first describe the algorithm and give some results about its convergence
to a stationary point. Then we propose a new efficient version of the FW algorithm for solving
problems of the following form:

min f (x) = g(x) + h(x) = g(x) +
n∑

j=1

hj (xj )

x ∈ C (23)

xi ≥ 0, i ∈ I ⊆ {1, . . . , n},

where:

(i) C is a compact set having the following form:

C =
{

x ∈ Rn : sl(xĪ ) +
∑
i∈I

wli(xi) ≤ 0, l = 1, . . . , m; Ax = b

}
, (24)

where A ∈ Rp×n, xĪ = {xi : i /∈ I }, sl : Rn−|I | → R, and wli : R → R, for l = 1, . . . , m

and i ∈ I , are convex, continuously differentiable functions;
(ii) g : Rn → R is a continuously differentiable function;

(iii) hj : R → R, for j = 1, . . . , n are concave, continuously differentiable functions.

We further assume that wli(0) = 0 for l = 1, . . . , m and i ∈ I .
In order to give a better explanation of problem (23), we link the notation used above to one

of the real problems described in the first section. For instance, we can consider problem (4)
and replace the zero norm by the concave exponential approximation as in (8), thus obtaining a
concave problem of the following form:

min
x,y∈Rn

n∑
i=1

(1 − e−αyi )

‖Ax − b‖2 ≤ δ (25)

− yi ≤ xi ≤ yi i = 1, . . . , n.

Then, if we view problem (25) as problem (23), we can write:

– g(x) = 0;
– hi(yi) = 1 − e−αyi , i = 1, . . . , n;
– s1(x) = ‖Ax − b‖2 − δ, w1i (yi) = 0, i = 1, . . . , n;

– s1+j (x) = xj , w1+ji(yi) =
{

0 i �= j

−yi i = j
i, j = 1, . . . , n;

– s1+n+j (x) = −xj , w1+n+ji(yi) =
{

0 i �= j

−yi i = j
i, j = 1, . . . , n.

Herein, we report the FW algorithm for minimizing a continuously differentiable function over
a compact convex set:
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8 F. Rinaldi

4.1 FW algorithm

(1) Let x0 ∈ C be the starting point.
(2) For k = 0, 1, . . . obtain solution xk by solving the following problem:

xk = arg min
x∈C

∇f (xk)T(x − xk). (26)

(3) If ∇f (xk)T(xk − xk) = 0 then STOP.
(4) Otherwise, define a feasible descent direction

dk = xk − xk

and generate a new feasible vector

xk+1 = xk + αkdk

with αk ∈ (0, 1] determined by means of an Armijo-like rule.

We want to remark that the optimization problem to be solved at Step 2 has two important
features:

(1) linear objective function;
(2) compact convex set.

So that, when our problem has linear and quadratic constraints, it can be efficiently solved by
available solvers (e.g. CPLEX) even when the dimensions are very large.

The following result, proved in [1], provides an analysis of convergence behavior of the FW
algorithm.

Proposition 2 Let {xk} be a sequence generated by the FW algorithm

xk+1 = xk + αkdk.

Assume that the method used for choosing stepsize αk satisfies the following conditions:

(i) f (xk+1) < f (xk), with ∇f (xk) �= 0;
(ii) if ∇f (xk) �= 0 ∀ k, then we have

lim
k→∞ ∇f (xk)Tdk = 0.

Then every limit point x̄ of {xk} is a stationary point.

The next proposition shows that, under suitable conditions on the concave functions hj , the FW
algorithm does not change a non-negative variable once that it has been fixed to zero.

Proposition 3 Let {xk} be any sequence generated by the FW algorithm. There exists a value
M such that, if i ∈ I and

h
′
i (0) ≥ M

then we have that

xk
i = 0 implies xk+1

i = 0.
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Optimization Methods & Software 9

Proof At each iteration k of the FW algorithm, the problem to be solved is

min
n∑

j=1

∇gj (x
k)xj +

∑
j :xk

j �=0

h′
j (x

k
j )xj +

∑
j /∈I :xk

j =0

h′
j (0)xj +

∑
j∈I :xk

j =0

h′
j (0)xj

x ∈ C

xi ≥ 0, i ∈ I ⊆ {1, . . . , n}. (27)

Let x̄k be a solution of (27). As g is continuously differentiable and C is compact, there exists a
value L < ∞ such that

‖∇g(x)‖∞ ≤ L ∀x ∈ C. (28)

For any i ∈ I such that xk
i = 0, by (ii) of Proposition 1 it follows that there exists a value S such

that if ∇gi(x
k) + h

′
i (0) ≥ S then we have x̄k

i = 0. Thus, if i ∈ I , xk
i = 0 and h

′
i (0) ≥ M = S + L,

then we obtain

xk+1
i = xk

i + αk(x̄k
i − xk

i ) = 0.

�

On the basis of Proposition 3, we can define the following version of the FW algorithm, where
the convex problems to be solved are of reduced dimension. We denote by 	 the feasible set of
problem (23), i.e.

	 = {x ∈ Rn : x ∈ C, xi ≥ 0, i ∈ I }.

4.2 FW – reduced dimension (FW-RD) algorithm

(1) Let x0 ∈ C be the starting point.
(2) For k = 0, 1, . . ., let I xk = {i ∈ I : xk

i = 0} and Cxk = {x ∈ 	 : xi = 0, ∀i ∈ I xk } obtain
solution xk by solving the following problem:

xk = arg min
x∈Cxk

∇f (xk)T(x − xk). (29)

(3) If ∇f (xk)T(xk − xk) = 0 then STOP.
(4) Otherwise, define a feasible descent direction

dk = xk − xk

and generate a new feasible vector

xk+1 = xk + αkdk

with αk ∈ (0, 1] determined by means of an Armijo-like rule.

Note that the convex programming problem (29) is equivalent to a convex problem of dimension
n − |I xk |, and that I xk ⊆ I xk+1

, so that the problems to be solved are of non-increasing dimensions.
This yields obvious advantages in terms of computational time.
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10 F. Rinaldi

The following technical result will be used in the proof of the convergence of the modified FW
method:

Proposition 4 Let xk → x be a sequence of points in 	 such that

Cxk+1 ⊆ Cxk

(30)

and

Cx ⊆ Cxk

. (31)

Then, for any y ∈ Cx , there exists a sequence {yk} converging to y, with yk ∈ Cxk

.

Proof By using (30) and (31), we obtain

y ∈ Cxk

. (32)

Since xk ∈ 	, it follows that xk ∈ Cxk

. Let us now consider the following sequence:

yk = λky + (1 − λk)xk,

where {λk} is a sequence converging to 1, with λk ≤ 1. As Cxk

is a compact convex set, we have

yk ∈ Cxk

and

yk −→ y.

�

Now, we can formally prove the convergence of the proposed algorithm to a stationary point.

Proposition 5 Let {xk} be a sequence generated by the FW-RD Algorithm

xk+1 = xk + αkdk.

Assume that method used for choosing stepsize αk satisfies the following conditions:

(i) f (xk+1) < f (xk), with ∇f (xk) �= 0;
(ii) if ∇f (xk) �= 0 ∀ k, then we have

lim
k→∞ ∇f (xk)Tdk = 0.

Suppose there exists a value S such that h
′
i (0) ≥ S ∀xi = 0 with i ∈ I , then every limit point x̄ of

{xk} is a stationary point.

Proof As we assumed compactness of C, a limit point x̄ ∈ C exists and the norm of vector dk

is bounded above

‖dk‖ = ‖x̄k − xk‖ ≤ ‖x̄k‖ + ‖xk‖.
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Optimization Methods & Software 11

We can now define a subsequence {xk}K such that

lim
k→∞,k∈K

xk = x̄, lim
k→∞,k∈K

dk = d̄.

By using hypothesis (ii), we obtain

∇f (x̄)Td̄ = 0.

Let dk be a direction generated by the FW method; we have

∇f (xk)Tdk ≤ ∇f (xk)T(x − xk), ∀ x ∈ Cxk

. (33)

We want to show that, by taking the limit as k ∈ K , k → ∞, we obtain

0 = ∇f (x̄)Td̄ ≤ ∇f (x̄)T(x − x̄), ∀ x ∈ Cx̄.

By contradiction, let us assume that there exists a point s̃ ∈ Cx̄ satisfying the following inequality:

∇f (x̄)Td̄ > ∇f (x̄)T(s̃ − x̄). (34)

By using Proposition 4, as s̃ ∈ Cx̄ , there exists a subsequence {sk}K converging to s̃, with sk ∈ Cxk

.
For k sufficiently large we have from inequality (34)

∇f (xk)Tdk > ∇f (xk)T(sk − xk),

but this contradicts (33).
Now we prove that x̄ is a stationary point. Indeed, x̄ is a solution of

min ∇f (x̄)Tx = min
∑

j :x̄j �=0

(∇gj (x̄) + h′
j (x̄j )) xj +

∑
j /∈I x̄ :x̄j =0

(∇gj (x̄) + h′
j (0)) xj

x ∈ 	

xi = 0, i ∈ I x̄ . (35)

As g is continuously differentiable and C is compact, there exists a value L < ∞ such that

‖∇g(x̄)‖∞ ≤ L (36)

and by (i) of Proposition 1 it follows that there exists a value M such that, if ∇gj (x̄) + h′
j (0) ≥ M ,

with j ∈ I x̄ , then x̄ is a solution of

min
∑

j :x̄j �=0

(∇gj (x̄) + h′
j (x̄j ))xj +

∑
j /∈I x̄ :x̄j =0

(∇gj (x̄) + h′
j (0)) xj +

∑
j∈I x̄ :x̄j =0

(∇gj (x̄) + h′
j (0))xj

(37)

x ∈ 	.

Therefore, if h
′
j (0) ≥ S = M + L, we have

∇f (x̄)Tx̄ ≤ ∇f (x̄)Tx ∀x ∈ 	,

and this proves that x̄ is a stationary point of problem (23). �
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12 F. Rinaldi

Concerning the separable concave functions used in problems (8)–(11), we have for
j = 1, . . . , n

– hj (yj ; α) = 1 − e−αyj and h
′
j (0) = α;

– hj (yj ; ε) = ln(yj + ε) and h
′
j (0) = 1/ε;

– hj (yj ; ε, p) = (yj + ε)p and h
′
j (0) = p(ε)p−1 with 0 < p < 1;

– hj (yj ; ε, p) = −(yj + ε)−p and h
′
j (0) = p(ε)−p−1 with 1 ≤ p.

Therefore, the assumption of Proposition 5 holds for suitable values of the parameters of the above
concave functions, so that Algorithm FW-RD can be applied.

5. The FW-RD algorithm with unitary stepsize

When the function f of problem (23) is concave, we can use a constant stepsize α = 1 and still be
sure the algorithm converges to a stationary point. The following proposition shows convergence
of the FW algorithm with stepsize αk = s and s ∈ (0, 1] when a concave function is minimized
over a compact convex set:

Proposition 6 Let f be a continuously differentiable, concave function. Let {xk} be a sequence
generated by the FW algorithm

xk+1 = xk + αkdk,

where a constant stepsize is chosen

αk = s, k = 0, 1, . . .

with s ∈ (0, 1]. Then we have

∇f (xk)Tdk −→ 0,

and every limit point x̄ of {xk} is a stationary point.

Proof We have from concavity of f :

f (xk+1) ≤ f (xk) + ∇f (xk)T(xk+1 − xk) < f (xk).

Note that since {f (xk)} is monotonically decreasing, {f (xk)} either converges to a finite value or
diverges to −∞.

Let x̄ be a limit point of {xk}; since f is continuous f (x̄) is a limit point of {f (xk)}, and so it
follows that the entire sequence converges to f (x̄). Therefore, we obtain

f (xk) − f (xk+1) −→ 0.

From concavity of f :

f (xk) − f (xk+1) ≥ −αk∇f (xk)Tdk.

Since αk is a constant stepsize, we have that

∇f (xk)Tdk −→ 0.

By Proposition 2 it follows that every limit point x̄ of {xk} is a stationary point. �
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Optimization Methods & Software 13

Here is a version of the modified FW algorithm, with unitary stepsize, for concave functions.

5.1 FW-RD algorithm with unitary stepsize (FW-RDUS)

(1) Let x0 ∈ C be the starting point.
(2) For k = 0, 1, . . ., let I xk = {i ∈ I : xk

i = 0} and Cxk = {x ∈ 	 : xi = 0, ∀ i ∈ I xk } obtain
solution xk by solving the following problem:

xk = arg min
x∈Cxk

∇f (xk)T(x − xk). (38)

(3) If ∇f (xk)T(xk − xk) = 0 then STOP.
(4) Otherwise

xk+1 = x̄k.

The following result about the convergence of the FW-RDUS algorithm is an immediate
consequence of Proposition 5.

Corollary 1 Let {xk} be a sequence generated by the FW-RDUS Algorithm. Suppose there
exists a value S such that h

′
i (0) ≥ S ∀ xi = 0 with i ∈ I, then every limit point x̄ of {xk} is a

stationary point.

The assumption of Corollary 1 holds for suitable values of the parameters of the concave functions
presented in Section 2, so that algorithm FW-RDUS can be applied when using those functions.
The results obtained on computational experiments will be presented in the next section.

6. Computational experiments

In our computational experiments, we have considered the problem of finding a sparse represen-
tation of a signal (see (4), Section 1). We remark that the aim of the experiments has been that
of evaluating the effectiveness of the various formulations in finding sparse vectors (possibly the
sparsest vectors) belonging to a convex set.

For each class of problems, we performed experiments using:

• formulation (8), denoted by exp, with α = 5;
• formulation (9), denoted by log, with ε = 10−5;
• formulation (10), denoted by Formulation I, with ε = 10−7 and p = 0.1;
• formulation (11), denoted by Formulation II, with ε = 10−5 and p = 1.

6.1 Implementation details

Algorithms FW and FW-RDUS were implemented in C using CPLEX (10.0) as solver of the
quadratic programming problems. The experiments were carried out on an Intel Pentium 4,
3.2 GHz, 1.0 GB RAM.

6.2 Random test problems

For several values of n and m, we randomly generated the matrix A, the vector b, and a value
of the tolerance δ1. Then we obtained two more values of the tolerance as follows: δ2 = 2δ1;
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14 F. Rinaldi

Table 1. Comparison on random test problems (average zero-norm value/best zero-norm value/percentage of best
values attained).

Problem n m δ �1 exp log Form. I Form. II

1 100 20 0.93 8 7.6/4/12 4.4/4/58 4.4/4/58 5.2/4/30
2 100 20 1.86 5 5.0/2/25 2.1/2/92 2.0/2/97 3.0/2/52
3 100 20 3.71 3 3.0/1/43 1.1/1/99 1.0/1/100 1.6/1/80
4 200 40 3.00 19 14.6/6/18 6.7/6/39 6.7/6/42 8.1/6/18
5 200 40 6.00 10 10.0/3/10 3.8/3/18 3.3/3/17 4.7/3/18
6 200 40 12.01 4 6.2/2/26 2.0/2/100 2.0/2/100 3.0/2/72
7 400 80 13.24 36 29.5/16/1 13.7/12/4 13.6/12/5 17.0/13/10
8 400 80 26.49 30 20.7/7/1 6.1/6/94 6.1/6/95 8.9/6/34
9 400 80 52.99 5 11.7/4/10 4.0/4/100 4.0/4/100 5.5/4/52

10 800 160 58.77 80 57.1/43/1 26.6/23/2 26.0/23/3 38.3/24/1
11 800 160 117.54 42 39.7/22/1 11.9/11/21 11.8/11/24 20.8/11/1
12 800 160 235.08 16 21.9/7/1 7.0/7/100 7.0/7/100 10.0/7/46
13 1600 320 263.96 147 109.5/75/1 48.4/45/5 48.1/44/1 92.0/48/1
14 1600 320 527.92 82 73.1/29/1 20.2/20/77 20.2/20/81 56.3/21/1
15 1600 320 1055.80 22 37.7/14/2 12.2/12/75 12.6/12/37 19.7/12/15

δ3 = 4δ1. The results obtained on these problems are shown in Table 1, where we report:

(1) The number n of variables, the number m of constraints.
(2) For the �1 norm formulation,

min
x∈Rn

‖x‖1

‖Ax − b‖2 ≤ δ,

denoted by �1, the zero-norm of the optimal solution attained.
(3) For each nonlinear concave formulation:

(i) the average of the zero-norm value of the stationary points determined;
(ii) the best zero-norm value of those stationary points;

(iii) percentage of runs where the best zero-norm value was attained.

We used 100 random starting points for all the problems. From Table 1, we can see that For-
mulation I gives the best results among all the formulations. We further note that the results
obtained by means of the concave formulations are clearly better than those corresponding to the
�1 formulation.

Summarizing, the computational experiments confirm the effectiveness of the concave-based
approach for finding sparse solutions to problems with convex constraints, and show that the
concave formulations here proposed represent good alternatives to the �1 formulation. We remark
that a wider availability of efficient formulations is important as it can make easier the search of
sparse solutions for different classes of problems.

Finally, in order to assess the differences in terms of computational time between the standard
FW algorithm and a new version of the algorithm presented in the preceding section and denoted
by Algorithm FW-RDUS, we report in Table 2 the results obtained by the two algorithms using
log formulation. As we might expect, the differences are noticeable and show the usefulness
of Algorithm FW-RDUS. Further experiments not here reported and performed using the other
concave formulations point out the same differences between the two algorithms in terms of
computational time. In all the tests, we detected no difference between the two algorithms in
terms of computed solution.

Finding a global optimal solution to a concave function over a compact convex set is an NP-
Hard problem in general. Then, we decided to try some random examples where the matrix A
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Optimization Methods & Software 15

Table 2. Comparison using log formulation between the two
versions of the FW algorithm in terms of CPU-time (s).

Problem FW FW-RDUS

1 0.453 0.094
2 0.141 0.047
3 0.140 0.032
4 1.000 0.188
5 0.890 0.141
6 0.625 0.109
7 8.219 1.015
8 7.515 1.563
9 6.579 1.359

10 73.015 6.391
11 81.656 7.437
12 76.391 4.141
13 767.657 93.094
14 866.719 51.89
15 812.609 46.32

Table 3. Comparison on random global optimization problems (average zero-norm
value/percentage of best values attained).

Problem n m ‖ x� ‖0 exp log Form. I Form. II

G1 100 20 2 81.6/18 6.7/72 6.6/74 11.3/46
G2 200 40 4 101.2/49 4.0/100 4.0/100 8.5/87
G3 400 80 8 128.1/69 8.0/100 8.0/100 13.3/92
G4 800 160 16 147.47/79 16.0/100 16.0/100 24.0/94
G5 1600 320 32 415.72/69 32.0/100 32.0/100 47.8/94

includes many linear dependent columns, and check if the various formulations can filter out those
columns. For several values of n and m, we randomly generated a matrix A with many linear
dependent columns and the vector b as a linear combination of the linear independent columns.
The results obtained on these problems are shown in Table 3, where we report:

(1) The number n of variables, the number m of constraints.
(2) The number of non-zero components of the sparsest solution x�.
(3) For each nonlinear concave formulation:

(i) the average of the zero-norm value of the stationary points determined;
(ii) percentage of runs where the sparsest solution was attained.

We set the tolerance δ = 10−6 and used 100 random starting points for all the problems. From
Table 3 we can see that Formulation I gives the best results among all the formulations. Anyway,
all formulations show a good ability in finding a global solution. So, the use of these formulations,
combined with a simple global approach (e.g. random multistart), seems to ensure that a good
sparse solution can be easily found.

6.3 Comparison with other existing methods

In order to better assess the performance of our algorithm, we have compared it with two well-
known and deeply used methods for sparse reconstruction of signals, namely l1–ls [23] and
l1-magic [7]. l1–ls is an implementation of the interior-point method for �1-regularized least
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16 F. Rinaldi

squares. l1–ls solves an optimization problem of the form

min
x∈Rn

‖Ax − b‖2 + λ‖x‖1,

with A ∈ Rm×n, b ∈ Rm, x ∈ Rn and λ ∈ R+ a suitably chosen parameter.
l1-magic implements an interior-point method for finding a sparse reconstruction of a given

signal. The problem solved by l1-magic has the following form:

min
x∈Rn

‖x‖1

‖Ax − b‖2 ≤ ε,

where ε ∈ R+ is a user-specified parameter.
We considered two different classes of problems:

(1) Signal recovery problems similar to those described in [7]: we have a dictionary A ∈ Rm×n

of elementary signals and a real noisy signal b (noise level σ ). The goal is finding a sparse
representation x of signal b in terms of the dictionary A.

(2) Pathological problems similar to those described in [29]: these small problems (m = 128
and n = 512) are pathological because the magnitudes of the non-zero entries of the exact
solutions x lie in a large range (i.e. the largest magnitudes are significantly larger than the
smallest magnitudes).

The parameters used for the algorithms are:

• l1–ls : λ = 0.001‖ATb‖∞;
• l1-magic: ε = σ 2(n + 2

√
2);

• FW-RDUS: δ = ε.

In Tables 4–8, we report the results for five different problems (dimensions of the problems in
Table 9) belonging to the first class. In Figures 1–2, we, respectively, show the original solution
for Problem S5 and the solution obtained by the FW-RDUS using Formulation I. In Tables 10–13,
we report the results for four different problems belonging to the second class.

Table 4. Problem S1: comparison with other existing methods.

Algorithm Error Time

FW-RDUS-exp 9.60602E−003 7.800E−002
FW-RDUS-log 1.00381E−002 6.200E−002
FW-RDUS-Form. I 9.96317E−003 7.800E−002
FW-RDUS-Form. II 1.04946E−002 7.800E−002
l1–ls 1.48100E−002 1.234
l1-magic 1.11700E−002 0.266

Table 5. Problem S2: comparison with other existing methods.

Algorithm Error Time

FW-RDUS-exp 4.17507E−003 0.360
FW-RDUS-log 3.63983E−003 0.281
FW-RDUS-Form. I 3.64687E−003 0.219
FW-RDUS-Form. II 3.76712E−003 0.219
l1–ls 8.13100E−003 2.141
l1-magic 1.44500E−002 1.109
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Optimization Methods & Software 17

Table 6. Problem S3: comparison with other existing methods.

Algorithm Error Time

FW-RDUS-exp 7.98488E−003 2.843
FW-RDUS-log 6.27492E−003 3.046
FW-RDUS-Form. I 6.40922E−003 2.968
FW-RDUS-Form. II 6.15745E−003 3.109
l1–ls 1.54800E−003 6.438
l1-magic 1.54800E−002 6.031

Table 7. Problem S4: comparison with other existing methods.

Algorithm Error Time

FW-RDUS-exp 4.30954E−003 17.625
FW-RDUS-log 4.12071E−003 17.578
FW-RDUS-Form. I 4.11681E−003 17.641
FW-RDUS-Form. II 4.16755E−003 18.546
l1–ls 1.09100E−002 29.030
l1-magic 2.31800E−002 43.157

Table 8. Problem S5: comparison with other existing methods.

Algorithm Error Time

FW-RDUS-exp 9.08758E−004 89.172
FW-RDUS-log 1.07722E−003 89.515
FW-RDUS-Form. I 1.05751E−003 91.140
FW-RDUS-Form. II 1.35252E−003 88.485
l1–ls 5.98705E−003 136.400
l1-magic 1.39400E−002 196.760

Table 9. Dimensions of the signal recovery
problems used in the experiments.

Problem n m

S1 100 20
S2 200 40
S3 400 80
S4 800 160
S5 1600 320

For each algorithm, we report:

• the relative error between the recovered solution x and the sparsest solution x�, namely
‖x − x�‖/‖x�‖;

• the CPU time in seconds.

From the results of Tables 4–8, 10–13, we get that our algorithm outperforms l1–ls and l1-magic
in terms of CPU time. Indeed, the accuracy, in terms of the relative error, of our algorithm is
better than that of the other two algorithms in the vast majority of the problems. This confirms
the robustness and efficiency of the algorithm proposed in this work.
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Figure 1. Problem S5: original sparse solution.
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Figure 2. Problem S5: approximated solution (FW-RDUS-Form. I).

Table 10. Problem CT1: comparison with other existing methods.

Algorithm Error Time

FW-RDUS-exp 0.52245 48.984
FW-RDUS-log 0.52210 20.656
FW-RDUS-Form. I 0.51896 16.172
FW-RDUS-Form. II 0.56945 10.140
l1–ls 0.51970 36.880
l1-magic 0.52060 18.750

Table 11. Problem CT2: comparison with other existing methods.

Algorithm Error Time

FW-RDUS-exp 3.66650E−005 16.485
FW-RDUS-log 4.11663E−006 25.750
FW-RDUS-Form. I 3.72668E−005 26.156
FW-RDUS-Form. II 1.78544E−003 19.219
l1–ls 4.52100E−004 22.170
l1-magic 8.42300E−004 55.406
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Table 12. Problem CT3: comparison with other existing methods.

Algorithm Error Time

FW-RDUS-exp 5.48016E−003 47.125
FW-RDUS-log 1.17253E−003 21.500
FW-RDUS-Form. I 7.81051E−002 16.250
FW-RDUS-Form. II 5.40180E−003 18.828
l1–ls 3.96100E−002 29.720
l1-magic 6.13900E−002 68.078

Table 13. Problem CT4: comparison with other existing methods.

Algorithm Error Time

FW-RDUS-exp 9.91784E−005 64.953
FW-RDUS-log 5.27335E−005 21.969
FW-RDUS-Form. I 6.74718E−005 25.734
FW-RDUS-Form. II 3.41117E−004 21.907
l1–ls 1.58600E−004 22.000
l1-magic 2.33000E−004 51.531

6.4 Comments to the algorithm

The new algorithm we described has obviously some pros and cons. We first describe the pros:

• The algorithm solves a more general class of problems than that solved by the other FW-based
sparse techniques (e.g. SLA algorithm).

• The concave approximations of the �0 norm guarantee better results in terms of sparsity
compared with the �1 norm.

• The fact that we solve at each step of the algorithm a problem of reduced dimension helps in
decreasing the CPU-time.

Now we report the cons:

• The algorithm basically effects a greedy search. It starts with the full set of features and
progressively eliminates the ‘less promising’ ones. So, once a component is eliminated, it
cannot be reconsidered again.

• As we already said, we need to minimize a concave function over a compact convex set. As
this is an NP-Hard problem, there is no guarantee that the solution attained by our algorithm is
a global optimum.

Anyway, our numerical experience showed that both the cons are not a big deal in practice.

7. Conclusions and future work

In this work, we have considered the problem of finding a sparse solution to a problem with convex
constraints, which arises in different important fields, such as signal processing and data analysis.
We have proposed a concave optimization-based approach for dealing with this issue. Furthermore,
we described a new efficient version of the FW algorithm and we proved its convergence to a
stationary point.

The computational experiments evidenced that the concave formulations can be valid alterna-
tives to the �1 formulation, as – in most cases – they get sparser solutions. The results we report
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also show a considerable speed-up when using the variable fixing variant of the FW method in
place of the traditional one. This speed-up might be extremely beneficial when multiple runs of
the algorithm are performed, e.g. in a Multistart method.

Future work will be devoted to the development of global optimization algorithms for finding
sparse solutions to problems having convex constraints and to the definition of suitable techniques
for SLDA and SPCA.
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Appendix: Optimality conditions for constrained problems based on Lagrange multipliers

We now recall some well-known optimality conditions for constrained problems based on
Lagrange multipliers, namely Karush–Kuhn–Tuker conditions (see [1] for further details).

We consider the problem:

min f (x)

ϕ(x) ≤ 0

ψ(x) = 0, (A1)

where f : Rn → R, ϕ : Rn → Rm, and ψ : Rn → Rp are continuously differentiable functions.

Definition A1 A feasible vector x is said to be regular if the equality constraints gradients
∇ψi(x), i = 1, . . . , p, and the active inequality constraint gradients ∇ϕi(x), i ∈ A(x) = {i :
ϕi(x) = 0}, are linearly independent.

We now state necessary conditions for optimality.

Proposition A1 Let x� be a local minimum of the problem (A1). Assume that x� is regular. Then
there exists Lagrange multipliers λ� ∈ Rm and μ� ∈ Rp satisfying the following conditions:

∇f (x�) + ∇ϕ(x�)λ� − ∇ψ(x�)μ� = 0

λ�T
ϕ(x�) = 0

λ� ≥ 0. (A2)

There are a number of conditions (so-called constraint qualifications) that guarantee the existence
of Lagrange multipliers. The following proposition is due to Slater.

Proposition A2 Let x� be a local minimum of the problem (A1) Assume that ψi are affine
functions, that ϕj are convex functions and that there exists a feasible vector x̄ satisfying the
following condition:

ϕj (x̄) < 0 ∀ j ∈ A(x�). (A3)

Then x� satisfies the necessary conditions of Proposition A1.

Under some suitable convexity assumptions, we can state sufficient conditions for optimality.
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Proposition A3 Let f and ϕi i = 1, . . . , m be convex continuously differentiable functions, and
let equality constraints ψi(x) i = 1, . . . , p be affine functions. If there exists Lagrange multipliers
λ� ∈ Rm and μ� ∈ Rp satisfying the following conditions:

∇f (x�) + ∇ϕ(x�)λ� − ∇ψ(x�)μ� = 0

ϕ(x�) ≤ 0, ψ(x�) = 0

λ�T
ϕ(x�) = 0

λ� ≥ 0, (A4)

then x� is a global minimum of the problem (A1).
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