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Abstract Constrained global optimization problems can be tackled by using exact
penalty approaches. In a preceding paper, we proposed an exact penalty algorithm for
constrained problems which combines an unconstrained global minimization tech-
nique for minimizing a non-differentiable exact penalty function for given values of
the penalty parameter, and an automatic updating of the penalty parameter that oc-
curs only a finite number of times. However, in the updating of the penalty parameter,
the method requires the evaluation of the derivatives of the problem functions. In this
work, we show that an efficient updating can be implemented also without using the
problem derivatives, in this way making the approach suitable for globally solving
constrained problems where the derivatives are not available. In the algorithm, any
efficient derivative-free unconstrained global minimization technique can be used. In
particular, we adopt an improved version of the DIRECT algorithm. In addition, to
improve the performances, the approach is enriched by resorting to derivative-free
local searches, in a multistart framework. In this context, we prove that, under suit-
able assumptions, for every global minimum point there exists a neighborhood of
attraction for the local search. An extensive numerical experience is reported.
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1 Introduction

The search for global rather than local solutions of optimization problems has been
receiving growing attention in many fields like engineering, economics and applied
sciences. Many real-world problems in these fields are of the constrained type, while
most of the algorithms in global optimization are for unconstrained or simply bound-
constrained problems. For the unconstrained case, many algorithmic approaches, ei-
ther deterministic or probabilistic, have been developed (see [1–7] and references
therein). The more difficult case of nonlinearly-constrained global optimization prob-
lems has been investigated more recently and various approaches have been described
in, e.g., [1, 7, 8]. In this context, a particular emphasis is given to the use of some
Augmented Lagrangian function to deal with the general constraints (see [9–11]).
However, the Augmented Lagrangian approach is sequential in nature and requires,
in principle, an infinite number of global minimizations. Therefore, we adopt an exact
penalty approach so that the number of unconstrained global minimizations needed
to globally solving the original constrained problem would be finite. Moreover, by
adopting an exact penalty approach we may take advantage of efficient derivative-free
unconstrained algorithms. In this way, we can deal with constrained global optimiza-
tion problems, where the derivatives of the functions are not available, as happens, for
instance, in black-box simulation-based optimization, a topic that is receiving grow-
ing interest in the literature (see [12] and references therein). In particular, based on
the approach described in [13], we develop a new strategy having the two following
distinguishing features:

– differently from [13], derivatives of the objective and constraints functions are not
required for the penalty parameter updating;

– a local search phase is used for speeding up the convergence to a global solution
of the constrained problem: indeed, we prove that, under suitable assumptions, for
every global minimum point there exists a neighborhood of attraction for the local
search.

The paper is organized as follows. In Sect. 2, we give some preliminary results that
will be used throughout the paper. In Sect. 3, we describe the Global Optimization
Framework and we give some convergence results. In Sect. 4, we discuss the local
search properties. In Sect. 5, we report an extended numerical experience using the
proposed algorithm either alone, or combined with a derivative-free local minimiza-
tion technique, and we discuss on the efficiency of our approach. Finally, we draw
some conclusions in Sect. 6.

2 Preliminaries

In this paper, we are interested in the global solution of the general nonlinear pro-
gramming problem:

min f (x) s.t. g(x) ≤ 0, l ≤ x ≤ u, (1)
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where f : �n → �, g : �n → �p , l, u ∈ �n both finite, and we assume that f and
g are continuously differentiable functions. We assume that no global information
(convexity, Lipschitz constants, etc.) on the problem is available.

To simplify notations, we denote the bound constraints as

s(x) :=
[
l − x

x − u

]
≤ 0.

We denote by F the feasible set of problem (1):

F := {
x ∈ �n : g(x) ≤ 0, s(x) ≤ 0

}
.

In order to solve problem (1), we adopt an exact penalty function approach like that
described in [13]. In particular, we use a non-differentiable penalty function having
the following form:

Pq(x; ε) = f (x) + 1

ε

∥∥[
max

{
0, g(x)

}′
,max

{
0, s̃(x)

}′]′∥∥
q
, (2)

where 1 < q < ∞, and

s̃j (x) = sj (x)

αj − sj (x)
,

with αj > 0, j = 1, . . . ,2n.
As pointed out in [13], even if, in general, the penalty function Pq(x; ε) is non-

differentiable, it turns out to be continuously differentiable at infeasible points.
We denote by D the set

D := {
x ∈ �n : sj (x) ≤ αj , j = 1, . . . ,2n

}
.

Then, we consider the problem

min
x∈D

Pq(x; ε). (3)

We make use of the following assumptions:

Assumption 2.1 D is a compact set.

Assumption 2.2 The Mangasarian–Fromovitz Constraint Qualification (MFCQ)
holds at every global solution x� of Problem (1).

We note that Assumption 2.1 is common in global optimization and is always satis-
fied in real-world problems and Assumption 2.2 is only needed in global minimizers;
therefore they are very weak assumptions.

In the following theorem (see [13]), we recall the main exactness property of the
penalty function Pq , which is at the basis of the proposed approach:

Theorem 2.1 Under Assumption 2.2, there exists a threshold value ε̄ such that, for
any ε ∈]0, ε̄], every global solution of Problem (1) is a global solution of Problem
(3), and conversely.
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Remark 2.1 We note that by construction,

lim
x→∂D

Pq(x; ε) = +∞,

where ∂D denotes the boundary of D. Therefore Problem (3) has global solutions
contained only in the interior of D, so that determining a global solution of Problem
(3) is essentially an unconstrained problem.

Remark 2.2 Theorem 2.1 implies that, for a sufficiently small value ε, Problem (3)
has only unconstrained global minimizers.

Remark 2.3 The global solution of Problem (3) can be obtained by using any method
for unconstrained global optimization.

On these bases, in [13] we were able to describe an algorithm for the global solu-
tion of the constrained problem (1), by combining any algorithm that globally solves
the unconstrained global optimization problem (3) with an automatic updating rule
for the penalty parameter which makes use of first-order derivatives of the problem
functions.

In the paper, given a vector v ∈ �n, we denote by v′ its transpose, by ‖v‖q its
q-norm, and by v+ = max{0, v} the n-vector (max{0, v1}, . . . ,max{0, vn}).

3 Derivative-Free Exact Penalty Global Optimization Algorithm

In this section, we introduce the DF-EPGO (Derivative-Free Exact Penalty Global
Optimization) algorithm model for finding a global solution of Problem (1) using the
exact penalty function (2), and we analyze its convergence properties.

We assume that Fk ∈ �n approximates the gradient of the objective function f

calculated in xk , in the sense that there exists a value τ k ≥ 0 such that:
∥∥Fk − ∇f

(
xk

)∥∥
q

≤ M1τ
k, (4)

with M1 > 0. In the same way, we assume that V k approximates the gradient of the
function ∥∥[

g+(x)′, s̃+(x)′
]′∥∥

q
(5)

calculated in xk /∈F , in the sense that there exists a value τ k ≥ 0 such that
∥∥V k − ∇∥∥[

g+(
xk

)′
, s̃+(

xk
)′]′∥∥

q

∥∥
q

≤ M2τ
k, (6)

with M2 > 0.
In Fig. 1 we report the scheme of the DF-EPGO Algorithm, where we use the

following condition to check if an updating of the penalty parameter is timely:

εk
(‖Fk‖q + ∥∥[

g+(
xk

)′
, s̃+(

xk
)′]′∥∥

q

)
> ρ‖V k‖q, (7)

with ρ ∈]0,1[.
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Fig. 1 Scheme of DF-EPGO algorithm (iteration k)

At iteration k of the algorithm, we first calculate xk as a δk-global minimizer of
Problem (3), defined as a point xk such that

Pq

(
xk, εk

) ≤ Pq

(
x, εk

) + δk, ∀x ∈D.

In principle, any global unconstrained optimization method can be used to compute
a δk-global minimizer xk . Then, we check feasibility of xk for Problem (1) and, if
xk is not feasible, we check if an updating of the penalty parameter is timely by
means of condition (7). Finally, we reduce the value of δk in order to find a better
approximation of the global solution of Problem (3) and the value τ k to obtain a
better approximation of the problem functions derivatives.

We point out that the DF-EPGO is a conceptual algorithm model; in practice, as
usual in global optimization, it will be stopped when a δk-global minimizer xk which
is reputed a good approximation of a global minimizer x� is found.

In order to state the convergence properties of the algorithm, we preliminary prove
the following lemma.

Lemma 3.1 Every accumulation point x̄ of a sequence {xk} produced by DF-EPGO
Algorithm belongs to the set F .
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Proof We consider two different cases:

Case 1. An index k̄ exists such that, for any k ≥ k̄, εk = ε̄.

We assume, by contradiction, that there exists an accumulation point x̄ /∈ F . We
have, for k sufficiently large, that the following inequality holds:∥∥[

g+(
xk

)′
, s̃+(

xk
)′]′∥∥

q

≤ ρ

ε̄

∥∥∇∥∥[
g+(

xk
)′
, s̃+(

xk
)′]′∥∥

q

∥∥
q

− ∥∥∇f
(
xk

)∥∥
q

+ (M1 + M2)τ
k.

Let x̄ be the limit of the subsequence {xk}K . Taking the limit for k → ∞ on both
sides, as τ k → 0, we get

∥∥[
g+(x̄)′, s̃+(x̄)′

]′∥∥
q

≤ ρ

ε̄

∥∥∇∥∥[
g+(x̄)′, s̃+(x̄)′

]′∥∥
q

∥∥
q

− ∥∥∇f (x̄)
∥∥

q
. (8)

From this point, the proof follows the same steps of the proof of Lemma 1 in [13].

Case 2. {εk} → 0.

The proof is a verbatim repetition of the proof of Case 2 of Lemma 1 in [13]. �

Then we can state the first convergence result.

Theorem 3.1 Every accumulation point x̄ of a sequence {xk} produced by DF-
EPGO Algorithm is a global minimizer of Problem (1).

Proof See proof of Theorem 2 in [13]. �

In next theorem, we prove that, if Assumption 2.2 holds, the penalty parameter ε

is updated a finite number of times.

Theorem 3.2 Let us assume that Assumption 2.2 holds. Let {xk} and {εk} be the
sequences produced by DF-EPGO Algorithm. Then an index k̄ and a value ε̄ > 0
exist such that, for any k ≥ k̄, εk = ε̄.

Proof By contradiction, let us assume {εk} → 0. Then, from the scheme of the DF-
EPGO Algorithm, there exists a subsequence {xk}K such that, for all k ∈ K , xk /∈ F
and the test

εk
(‖Fk‖q + ∥∥[

g+(
xk

)′
, s̃+(

xk
)′]′∥∥

q

)
> ρ‖V k‖q (9)

is satisfied. By rewriting (9) as

εk
(∥∥∇f

(
xk

)∥∥
q

+ M1τ
k + ∥∥[

g+(
xk

)′
, s̃+(

xk
)′]′∥∥

q

)

> ρ‖∇‖[g+(
xk

)′
, s̃+(

xk
)′]′‖q‖q − ρM2τ

k,

and considering the fact that τ k → 0, we obtain:

lim
k∈K,k→∞∇∥∥[

g+(
xk

)′
, s̃+(

xk
)′]′∥∥

q
= 0. (10)

From this point, the proof follows the same steps of the proof of Theorem 3 in [13]. �
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4 Enriching the Global Search by a Derivative-Free Local Approach

In practice, we can enrich the global search by means of a derivative-free local min-
imization algorithm using as starting point the δk-global minimizer xk obtained at
iteration k by the DF-EPGO algorithm. In this section, we motivate analytically this
enrichment by proving that, under reasonable assumptions, the sequence generated
by the derivative-free local algorithm is attracted by a global solution of Problem (3).

To simplify notation, we will develop the analysis making reference to a locally
Lipschitz function φ : �n → � and to the problem

min
x∈�n

φ(x). (11)

Let us denote by d◦φ(x, d) the Clarke-directional derivative of φ at x ∈ �n in the
direction d ∈ �n:

d◦φ(x, d) := lim sup
y→xt↓0+

φ(y + td) − φ(y)

t
;

then we can recall the definition of stationary point for the non-smooth problem (11):

Definition 4.1 An x is a Clarke stationary point for φ, iff the following condition is
satisfied:

d◦φ(x, d) ≥ 0, ∀d ∈ �n. (12)

An alternative definition of Clarke stationary point for Problem (11) can by given by
using the Clarke subdifferential ∂φ(x) of φ at x, given as:

∂φ(x) = conv
{
v ∈ �n | ∃{

xk
} : xk ∈ T , xk → x,∇φ

(
xk

) → v
}
,

T being the subset of �n where φ is differentiable. Even if we will not use the al-
ternative definition, we will make use of the Clarke subdifferential in order to exploit
some second-order properties of function φ. To this aim we need some additional
notations and definitions.

Definition 4.2 The sequence {xk} converges to x in the direction d , denoted by

xk →d x, iff xk �= x and the sequence { (xk−x)

‖xk−x‖ } converges to d
‖d‖ .

Then, we can denote by ∂dφ(x) the subset of ∂φ(x), defined as follows:

∂dφ(x) := {
g : ∃xk and gk ∈ ∂φ

(
xk

)
such that xk →d x and gk → g

}
.

Definition 4.3 Let g ∈ ∂dφ(x). Then φ′′−(x, g, d) is defined as the infimum of all
numbers

lim inf
1

(tk)2

{
φ
(
xk

) − φ(x) − g′(xk − x
)}

(13)

taken over all triples of sequences {xk}, {gk} and {tk}, for which
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• tk > 0 for each k and {tk} converges to 0;
• {xk} converges to x and (xk − x)/tk converges to d ;
• {gk} converges to g with gk in ∂φ(xk) for each k.

Moreover, let us denote by d+φ(x, d) the lower Dini-directional derivative at x ∈
�n in the direction d ∈ �n:

d+φ(x, d) := lim inf
d̄→dt↓0

φ(x + t d̄) − φ(x)

t
.

We can now introduce the definition of second-order Dini stationary point for
Problem (11).

Definition 4.4 An x is a second-order Dini stationary point for φ, iff the following
conditions are satisfied:

(i) d+φ(x, d) ≥ 0 for all unit vectors d ∈ �n;
(ii) φ′′−(x,0, d) ≥ β > 0 for all unit vectors d ∈ �n for which d+φ(x, d) = 0.

We state a preliminary result [14] that will be used to prove the main result:

Lemma 4.1 Suppose that φ(x) ≥ φ(x̄) for all x ∈ B(x̄, δ). Let 0 �= d ∈ �n, t > 0,
α > 1 and 0 < η < (α‖d‖)2 such that

φ(x̄ + td) − φ(x̄) ≤ tη and t
(‖d‖ + η1/2) < δ.

Then there exist z �= x̄ in �n and g ∈ ∂φ(z) such that

(i) ‖z − x̄ − td‖ ≤ tη1/2α−1(< tη1/2);
(ii) φ(z) ≤ φ(x̄ + td); and

(iii) ‖g‖ ≤ αη1/2.

Now we can prove the following result:

Proposition 4.1 Let x̄ ∈ �n be a local minimum point of φ which satisfies the con-
ditions for being a second-order Dini stationary point. Then there exists a neighbor-
hood B(x̄, η) and a value γ > 0 such that

‖x − x̄‖2 ≤ 1

γ

(
φ(x) − φ(x̄)

)
, ∀x ∈ B(x̄, η).

Proof Suppose, by contradiction, that ∀ηk > 0 and ∀γ k > 0 there exists a point xk ∈
B(x̄, ηk) such that

‖xk − x̄‖2 >
1

γ k

(
φ
(
xk

) − φ(x̄)
)
. (14)

Let xk−x̄
‖xk−x̄‖ = dk ; we consider the sequences {γ k}, {ηk}, {dk} such that

γ k → 0, ηk → 0, dk → d.
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Now, by (14) and (i) of Definition 4.4, when k is large enough, we can write the
following:

‖xk − x̄‖ >
1

γ k

(φ(xk) − φ(x̄))

‖xk − x̄‖ ≥ (φ(xk) − φ(x̄))

‖xk − x̄‖ ≥ d+φ(x̄, d) ≥ 0. (15)

Taking the limit for k → ∞, we have

d+φ(x̄, d) = 0. (16)

Now, we can denote

dk = xk − x̄

‖xk − x̄‖ and tk = ‖xk − x̄‖, (17)

and, by (14), we can write

φ
(
x̄ + tkdk

)
< φ(x̄) + γ k

(
tk

)2
. (18)

Using Lemma 4.1 with α = 2 and η = γ ktk , there exists a sequence {zk} such that

(i) ‖zk − x̄ − tkdk‖ ≤ tk(γ ktk)1/2

2 ;
(ii) φ(zk) ≤ φ(x̄ + tkdk); and

(iii) ‖gk‖ ≤ 2(γ ktk)1/2.

By using (i) and (iii), we have that

lim
k→∞ zk = x̄, (19)

lim
k→∞

zk − x̄

tk
= lim

k→∞dk = d, (20)

lim
k→∞

‖zk − x̄‖
tk

= 1, (21)

lim
k→∞gk = g = 0 ∈ ∂dφ(x̄). (22)

By using (ii) and (14), we have

φ
(
zk

) ≤ φ
(
xk

)
< φ(x̄) + γ k

(
tk

)2
. (23)

Then, we can write

φ(zk) − φ(x̄)

‖zk − x̄‖2

‖zk − x̄‖2

(tk)2
≤ γ k.

By using (21) and the fact that γ k → 0, we have

lim
k→∞

φ(zk) − φ(x̄)

‖zk − x̄‖2
≤ 0. (24)
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Finally, taking into account (ii) of Definition 4.4, (13) and (16), we get the follow-
ing contradiction:

0 ≥ lim
k→∞

φ(zk) − φ(x̄) − g′(zk − x̄)

‖zk − x̄‖2
≥ f ′′−(x̄,0, d) ≥ β > 0. �

Now, we extend to the case of locally Lipschitz functions a result established in
[15].

Theorem 4.1 Let φ be a locally Lipschitz function and {xk} be a sequence of points
generated by an iterative method

xk+1 = xk + βkdk

satisfying the following condition:

φ
(
xk+1) ≤ φ

(
xk

) − ν
(
βk‖dk‖)2

,

for all k, where ν > 0, and such that every accumulation point is a Clarke stationary
point. Then, for every global minimum point x� of φ(x), which is an isolated Clarke
stationary point and a second-order Dini stationary point, there exists an open set L
containing x� such that, if xk̄ ∈ L for some k̄ ≥ 0, then we have:

– xk ∈ L for all k ≥ k̄;
– {xk} → x�.

Proof Let B(x�, η) be a neighborhood introduced in Proposition 4.1, where we have

φ
(
xk̄

) − φ
(
x�

) ≥ γ ‖xk̄ − x�‖2, ∀x ∈ B
(
x�, η

)
. (25)

We consider now the following open set:

L =
{
x ∈ B

(
x�, η

)
, φ(x) < φ

(
x�

) + η2γ ν

2(2ν + γ )

}
. (26)

Now we prove that, if xk̄ ∈ L for some k̄ ≥ 0, then xk ∈ L for all k ≥ k̄ and {xk} → x�.
Recalling the hypothesis φ(xk+1) ≤ φ(xk) − ν(βk)2‖dk‖2, we have

(
βk̄

)2‖dk̄‖2 ≤ 1

ν

(
φ
(
xk̄

) − φ
(
xk̄+1)) (27)

≤ 1

ν

(
φ
(
xk̄

) − φ
(
x�

))
,

where the second inequality follows from the hypothesis that x� is a global minimum.
By using (25) and (27), we have

‖xk̄+1 − x�‖2 = ‖xk̄ − x� + βk̄dk̄‖2 (28)

≤ 2‖xk̄ − x�‖2 + 2
(
βk̄

)2‖dk̄‖2
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≤ 4

γ

(
φ
(
xk̄

) − φ
(
x�

)) + 2

ν

(
φ
(
xk̄

) − φ
(
x�

))

= 2(2ν + γ )

γ ν

(
φ
(
xk̄

) − φ
(
x�

))
.

Recalling that xk̄ ∈ L, we have

φ
(
xk̄

) − φ
(
x�

)
<

η2γ ν

2(2ν + γ )
.

Combining the above inequality with (28), we obtain

‖xk̄+1 − x�‖ < η. (29)

Furthermore, by using again the hypothesis φ(xk+1) ≤ φ(xk) − ν(βk)2‖dk‖2, we
have that φ(xk+1) ≤ φ(xk) for all k and hence

φ
(
xk̄+1) ≤ φ

(
xk̄

)
< φ

(
x�

) + η2γ ν

2(2ν + γ )
. (30)

Using the above two inequalities, it follows that xk̄+1 ∈ L and similarly xk ∈ L for
all k ≥ k̄. In particular, using the fact that L ⊂ B(x�, η), then xk ∈ B(x�, η) for all
k ≥ k̄. Then, the sequence {xk} is bounded and will have at least one limit point
which must be a stationary point of Problem (11). Since within B(x�, η) the only
Clarke stationary point is x�, then xk → x�. �

As in the derivative-free local search used to enrich the global algorithm we min-
imize the exact penalty function Pq , which is a locally Lipschitz function, we can
apply to it all the results given for φ in this section. Then, recalling Remark 2.1, we
have that, under the assumptions of Theorem 4.1, there exists a neighborhood L of a
global solution of Problem (3), where the sequence produced by the derivative-free
local algorithm applied to Pq remains and is attracted by the global solution.

5 Numerical Results

In the numerical experimentation of the derivative-free exact penalty approach, we
used:

– the set A of 20 small dimensional test problems reported in [9], where a global
optimization algorithm for general constrained problems, which uses first- and
second-order derivatives of the problem functions, is described;

– the set B of 97 problems from the GLOBALLib collection of COCONUT [16]
with dimension n ≤ 10.

These choices are motivated by the fact that derivative-free approaches cannot tackle
large dimensional problems.
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All test problems are of the kind

minf (x) s.t. g(x) ≤ 0, h(x) = 0, l ≤ x ≤ u (31)

with h(x) : �n → �t , with t ≤ n. Of course, the DF-EPGO Algorithm can be easily
adapted in order to take into account also the equality constraints h(x) = 0.

In the practical application of the proposed approach, we must choose:

– A value q for the vector norm. We chose q = 2.
– A method for approximating the derivatives. We chose the simple forward differ-

ence:

∂Pq(xk; ε)
∂xi

� Pq(xk + γ ei; ε) − Pq(xk; ε)
γ k

, (32)

with γ k+1 = ξγ k, γ 0 = 10−6 and ξ = 0.9. Of course, by this choice the conditions
(4) and (6) are satisfied.

– A method for globally solving the problem with bounded feasible set. In principle,
any method could be used. In our numerical experience we used:

(1) the DIRECT method as improved in [17];
(2) the DIRECT method as improved in [17], enriched by a derivative-free local

search phase (DFN method) based on the same exact penalty function (2) used
in the global search [18].

– Values for the data of the exact penalty approach. We set ε0 = 0.1, σ = 0.9 and
ρ = 0.5.

Our choice in case (1) is motivated by the fact that DIRECT is reputed to be one
of the most efficient methods for problems with simple bounds. DIRECT belongs
to the class of derivative-free deterministic methods, which perform the sampling of
the objective function in points generated by the previous iterates of the method. The
derivative-free algorithm used in case (2) seems to be very effective when first-order
information is not available.

The practical computation of a δk-global minimizer xk of Problem (3) has been
performed in case (1) using as stopping rule the standard stopping rule of the DI-
RECT Algorithm [19]. Namely, the DIRECT algorithm stops when the diameter of
the hyperrectangle containing the best found value of the objective function is less
than a given threshold ζ k . We set ζ 0 = 10−10 and ζ k+1 = θζ k with θ = 0.1. In case
(2) the local search phase starts from the point obtained by the DIRECT algorithm as
described before and stops as soon as the stepsize α in [18] is lower than 10−3.

As concerns the checking of feasibility for the new point xk , we consider xk fea-
sible if the constraints violation

cv = max
{∥∥g+(x)

∥∥∞,
∥∥h(x)

∥∥∞
}
,

is lower than or equal to 10−3, and infeasible otherwise.
The numerical experimentation was carried out on an Intel Core 2 Duo 3.16-GHz

processor with 3.25-GB RAM. DF-EPGO and DFN algorithms were implemented in
Fortran 90 (double precision).
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Table 1 Performance of the DF-EPGO algorithm on the test set A

Problem n me mi CPU time f (x�) cv f �

problem01 5 3 0 0.375 0.06256 2.35168E-07 0.02930

problem02a 5 0 10 3.328 −134.09839 2.16604E-04 −400.00000

problem02b 5 0 10 6.016 −705.13184 1.29510E-03 −600.00000

problem02c 5 0 10 2.109 −82.95282 2.16604E-04 −750.00000

problem02d 5 0 12 4.828 −399.76355 0.00000E+00 −400.00000

problem03a 6 4 1 2.000 −0.38612 3.14639E-06 −0.38880

problem03b 2 0 1 0.047 −0.38881 0.00000E+00 −0.38880

problem04 2 0 1 0.047 −6.66665 0.00000E+00 −6.66660

problem05 3 3 0 0.094 201.15915 2.48965E-04 201.16000

problem06 2 0 1 0.047 376.29266 0.00000E+00 376.29190

problem07 2 0 4 0.125 −2.80585 0.00000E+00 −2.82840

problem08 2 0 2 0.047 −118.70476 0.00000E+00 −118.70000

problem09 6 3 4 3.344 −13.40125 2.16372E-05 −13.40200

problem10 2 0 2 0.109 0.74178 0.00000E+00 0.74170

problem11 2 0 1 0.031 −0.50000 0.00000E+00 −0.50000

problem12 2 1 0 0.031 −16.73887 9.66333E-06 −16.73900

problem13 3 2 0 0.063 195.94547 3.28121E-04 189.35000

problem14 4 1 2 0.266 −4.35233 3.55751E-06 −4.51420

problem15 3 3 0 0.078 0.00000 4.94518E-05 0.00000

problem16 5 3 0 0.391 0.71809 1.11013E-04 0.70500

The results for the problem set A are collected in Tables 1 and 2, which refer
respectively to case (1) and (2). In both tables we report the name of the problem, the
number n of variables, the number me and mi of equality and inequality constraints
(excluding simple bounds), the CPU time required to attain the stop condition, the
optimal function value f (x�), the constraints violation cv, and the reference value f �

reported in [9].
In Table 1, we note that the values f (x�) and f � are practically the same for all

problems 3–12, 15 and 16, f (x�) is lower than f � for problem 2b, while f � is lower
than f (x�) for problems 1, 2a, 2c, 2d, 13 and 14. These results can be considered
satisfactory considering that the results reported in [9] are obtained using first- and
second-order derivatives. Furthermore, we point out that the results reported in Ta-
ble 1 are comparable with the ones reported in [13] where first-order derivatives of the
problem functions are used. In particular, the values of f (x�) and cv are practically
the same, while there is a slight increase of the CPU time, as expected.

In Table 2, we note that the values f (x�) are practically the same as the ones
reported in Table 1, but we have better results in terms of constraints violation.

The results for the problem set B are collected in Tables 3–4. Again, in Tables 3–4
we report the name of the problem, the number n of variables, the number me and
mi of equality and inequality constraints (excluding simple bounds), the CPU time
required to attain the stop condition, the optimal function value f (x�), the constraints
violation cv. In order to synthesize the results, we make reference to Figs. 2 and 3. The
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Table 2 Performance of the DF-EPGO+DFN algorithm on test set A

Problem n me mi CPU time f (x�) cv f �

problem01 5 3 0 0.594 0.06256 8.53713E-08 0.02930

problem02a 5 0 10 3.641 −134.09631 4.23516E-22 −400.00000

problem02b 5 0 10 6.516 −705.13984 6.77626E-21 −600.00000

problem02c 5 0 10 2.266 −82.95170 0.00000E+00 −750.00000

problem02d 5 0 12 4.969 −399.81891 0.00000E+00 −400.00000

problem03a 6 4 1 2.313 −0.38612 1.87907E-08 −0.38880

problem03b 2 0 1 0.125 −0.38881 0.00000E+00 −0.38880

problem04 2 0 1 0.063 −6.66667 0.00000E+00 −6.66660

problem05 3 3 0 0.250 201.15933 2.43315E-07 201.16000

problem06 2 0 1 0.516 376.29195 0.00000E+00 376.29190

problem07 2 0 4 0.234 −2.80588 0.00000E+00 −2.82840

problem08 2 0 2 0.188 −118.70486 0.00000E+00 −118.70000

problem09 6 3 4 3.781 −13.40116 6.14165E-07 −13.40200

problem10 2 0 2 0.125 0.74178 0.00000E+00 0.74170

problem11 2 0 1 0.047 −0.50000 0.00000E+00 −0.50000

problem12 2 1 0 0.172 −16.73885 4.13864E-08 −16.73900

problem13 3 2 0 0.188 195.94551 3.90716E-05 189.35000

problem14 4 1 2 0.281 −4.35235 1.65255E-08 −4.51420

problem15 3 3 0 0.188 0.00000 4.94518E-05 0.00000

problem16 5 3 0 0.406 0.71809 1.68887E-09 0.70500

plot in Fig. 2 gives on the y-axis the number of obtained solutions whose constraints
violation is smaller or equal than the value given on the x-axis. The plot in Fig. 3
gives on the y-axis the number of obtained solutions whose objective function value
has a relative error, given by

|f (x�) − f �|
max{1, |f �|} ,

where f � is the best known value reported in [16], smaller or equal than 0.01 and
whose constraints violation is smaller or equal than the value given on the x-axis.
From both figures we note that the DF-EPGO algorithm guarantees quite good per-
formances in terms of feasibility and optimality and that these performances are much
improved by combining the DF-EPGO algorithm with a local search phase based on
the DFN algorithm.

6 Conclusions

In this paper we have shown that the approach for constrained global optimization
developed in [13], and based on the use of a non-differentiable exact penalty function,
can be fruitfully modified in such a way that the derivatives of the problem functions
are not required, thus making the approach derivative-free. Moreover, the approach
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Table 3 Performance of the DF-EPGO algorithm on the test set B

Problem n me mi time val funct viol f �

ex542 8 0 6 10.41 7478.98948 4.51760E+00 7512.22590

ex6212 4 2 0 0.68 0.28916 5.07053E-05 0.28920

chance 4 1 2 1.67 29.98343 1.01631E-04 29.89440

circle 3 0 10 0.80 4.57425 4.60491E-04 4.57420

dispatch 4 1 1 1.20 3155.95496 9.52624E-04 3155.28790

ex1411 3 0 4 0.43 0.00000 7.11417E-07 0.00000

ex1412 6 1 8 12.22 0.00000 7.93071E-01 0.00000

ex1413 3 0 4 1.17 0.00000 7.18566E-01 0.00000

ex1414 3 0 4 0.53 0.00000 2.38548E-08 0.00000

ex1415 6 4 2 6.54 0.00000 1.89759E-03 0.00000

ex1416 9 1 14 30.15 0.00000 2.36529E-04 0.00000

ex1417 10 1 16 76.31 9.99983 8.66320E-01 0.00000

ex1418 3 0 4 0.81 0.00000 2.13646E-02 0.00000

ex1419 2 0 2 0.16 0.00000 1.02138E-10 0.00000

ex1421 5 1 6 9.49 0.60995 8.32512E-07 0.00000

ex1422 4 1 4 2.39 0.47597 5.16869E-05 0.00000

ex1423 6 1 8 13.97 0.62500 5.48775E-03 0.00000

ex1424 5 1 6 12.60 0.61728 2.05562E-03 0.00000

ex1425 4 1 4 1.62 0.38095 2.46906E-04 0.00000

ex1426 5 1 6 14.01 0.62500 1.46327E-02 0.00000

ex1427 6 1 8 14.99 0.61728 2.98000E-06 0.00000

ex1428 4 1 4 3.68 0.27438 1.64625E-02 0.00000

ex1429 4 1 4 2.88 0.41155 2.54450E-07 0.00000

ex211 5 0 1 0.49 −16.99902 0.00000E+00 −17.00000

ex212 6 0 2 1.10 −24.46025 0.00000E+00 −213.00000

ex214 6 0 4 1.89 −9.76893 1.94638E-04 −11.00000

ex215 10 0 11 23.33 −266.23034 0.00000E+00 −268.01460

ex216 10 0 5 9.17 −38.99588 0.00000E+00 −39.00000

ex219 10 1 0 1.69 −0.24327 1.86710E-07 −0.37500

ex311 8 0 6 12.72 4738.66027 3.19336E-01 7049.20830

ex312 5 0 6 7.46 −30664.31710 9 0.00000E+00 −30665.54000

ex313 6 0 6 10.74 −9350.74943 0.00000E+00 −310.00000

ex314 3 0 3 0.52 −3.82507 0.00000E+00 −4.00000

ex411 1 0 0 0.00 −7.48729 0.00000E+00 −7.48730

ex412 1 0 0 0.00 −663.49989 0.00000E+00 −663.50010

ex413 1 0 0 0.00 −443.67169 0.00000E+00 −443.67170

ex414 1 0 0 0.00 0.00000 0.00000E+00 0.00000

ex415 2 0 0 0.00 0.35731 0.00000E+00 0.00000

ex416 1 0 0 0.00 7.00734 0.00000E+00 7.00000

ex417 1 0 0 0.01 −7.50000 0.00000E+00 −7.50000

ex418 2 1 0 0.30 −16.73887 9.65481E-06 −16.73890

ex419 2 0 2 0.31 −5.50801 3.85276E-05 −5.50800
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Table 3 (Continued)

Problem n me mi time val funct viol f �

ex522case1 9 4 2 11.82 −1566.38978 3.49591E+02 −400.00000

ex522case2 9 4 2 13.93 −1606.91460 3.48753E+02 −600.00000

ex522case3 9 4 2 11.88 −1566.40248 3.49591E+02 −750.00000

ex524 7 1 5 15.95 −375.84342 8.47754E-06 −450.00000

ex611 8 6 0 8.07 −0.00666 4.95270E-01 −0.02020

ex612 4 3 0 1.67 −0.35714 8.27209E-01 −0.03250

ex614 6 4 0 3.89 −0.19229 8.68996E-01 −0.29450

ex6210 6 3 0 2.44 −3.05156 1.00000E-07 −3.05200

ex6211 3 1 0 0.10 0.00000 3.95557E-09 0.00000

ex6213 6 3 0 1.95 −0.21621 1.00000E-07 −0.21620

ex6214 4 2 0 0.76 −0.69527 1.00000E-07 −0.69540

ex625 9 3 0 5.65 −70.27806 4.62036E-04 −70.75210

ex626 3 1 0 0.08 0.00000 3.78794E-09 0.00000

ex627 9 3 0 3.54 −0.13872 4.19333E-04 −0.16080

ex628 3 1 0 0.12 −0.02701 1.04575E-05 −0.02700

ex629 4 2 0 0.43 −0.03407 1.00000E-07 −0.03410

ex721 7 0 14 60.39 1233.78232 5.79486E-06 1227.18960

ex722 6 4 1 4.06 −0.38747 7.72148E-06 −0.38880

ex723 8 0 6 15.75 6250.82305 5.26349E-02 7049.21810

ex724 8 0 4 5.20 4.15120 2.42912E-04 3.91800

ex725 5 0 6 9.05 10122.11468 1.31508E-04 10122.48280

ex726 3 0 1 0.49 −83.24917 0.00000E+00 −83.24990

ex727 4 0 2 0.95 −5.73910 0.00000E+00 −5.73990

ex728 8 0 4 5.69 −5.92094 0.00000E+00 −6.08200

ex729 10 0 6 7.98 1.58356 0.00000E+00 1.14360

ex731 4 0 7 1.43 1.69153 7.61315E-06 0.34170

ex732 4 0 7 2.26 1.20427 0.00000E+00 1.08990

ex733 5 2 6 2.86 18.59974 5.55021E-03 0.81750

ex736 1 2 0 0.07 0.00000 7.39103E-06 0.00000

ex811 2 0 0 0.00 −2.00171 0.00000E+00 −2.02180

ex812 1 0 0 0.00 −1.07086 0.00000E+00 −1.07090

ex813 2 0 0 0.01 6.30961 0.00000E+00 3.00000

ex814 2 0 0 0.01 0.00000 0.00000E+00 0.00000

ex815 2 0 0 0.01 0.00000 0.00000E+00 −1.03160

ex816 2 0 0 0.00 −0.49350 0.00000E+00 −10.08600

ex817 5 1 4 3.81 0.05927 2.30923E-07 0.02930

ex818 6 4 1 4.04 −0.38747 7.72148E-06 −0.38880

ex912 10 9 0 18.97 −14.78998 1.86894E-01 −16.00000

ex914 10 9 0 14.20 −48.28091 1.03696E+00 −37.00000

ex921 10 9 0 55.23 381.75430 1.08010E+01 17.00000

ex922 10 8 1 21.26 218.61468 4.26866E+00 99.99950
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Table 3 (Continued)

Problem n me mi time val funct viol f �

ex924 8 7 0 5.35 0.49028 8.85329E-02 0.50000

ex925 8 7 0 10.30 2.35042 2.39896E+00 5.00000

ex927 10 9 0 22.79 38.40080 6.06722E-01 17.00000

ex928 3 2 0 0.62 1.54572 1.90069E-06 1.50000

himmel11 9 3 0 7.10 −1882.80508 2.20301E+01 −30665.54000

house 8 4 4 11.99 −840.97921 1.35572E+01 −4500.00000

least 3 0 0 0.02 752888.00000 0 0.00000E+00 14085.13980

like 9 0 0 12.59 1131.41721 6.20713E-02 32341.50191

meanvar 7 2 0 2.29 7.30674 8.52345E-06 5.24340

mhw4d 5 3 0 3.05 64.36495 3.11330E-05 0.02930

process 8 6 0 20.80 −1928.29596 2.01812E+01 −1161.33660

rbrock 2 0 0 0.02 0.24211 0.00000E+00 0.00000

sample 4 0 2 1.74 700.74063 6.64664E-04 726.63670

wall 6 6 0 3.67 0.00000 1.00000E+00 −1.00000

Fig. 2 Performance
comparison of the DF-EPGO
algorithm (dotted line) and the
DF-EPGO+DFN algorithm
(dash-dot line) on the test set B:
number of feasible solutions

has been enriched by a local search phase that uses the same penalty function used
in the global search phase. This is motivated by the fact that the local searches are
performed in such a way that the sequence produced by the algorithm, under suitable
assumptions, is attracted by any global minimum point.

Avoiding the use of derivatives makes the approach suitable to deal with real-world
problems where the analytical expressions of the problem functions are not available,
as happens for instance in black-box simulation-based optimization.

The extensive numerical experimentation, which has been carried out on a well-
known set of problems, shows that the new method is efficient and the results are
comparable with those obtained by other methods which instead rely on the use of
derivatives.
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Table 4 Performance of the DF-EPGO+DFN algorithm on the test set B

Problem n me mi time val funct viol f �

ex542 8 0 6 18.87 7526.54873 0.00000E+00 7512.22590

ex6212 4 2 0 1.02 0.29726 6.31016E-09 0.28920

chance 4 1 2 2.16 29.92691 6.64052E-10 29.89440

circle 3 0 10 1.01 4.57425 0.00000E+00 4.57420

dispatch 4 1 1 2.97 3155.46513 8.35561E-11 3155.28790

ex1411 3 0 4 0.48 0.00000 0.00000E+00 0.00000

ex1412 6 1 8 13.18 0.66512 2.62645E-11 0.00000

ex1413 3 0 4 4.67 0.00101 0.00000E+00 0.00000

ex1414 3 0 4 0.83 0.00000 0.00000E+00 0.00000

ex1415 6 4 2 8.16 0.00814 6.41406E-08 0.00000

ex1416 9 1 14 27.89 0.00019 3.45363E-12 0.00000

ex1417 10 1 16 85.00 2.65397 1.33627E-09 0.00000

ex1418 3 0 4 3.77 0.04142 0.00000E+00 0.00000

ex1419 2 0 2 0.22 0.00000 0.00000E+00 0.00000

ex1421 5 1 6 10.20 0.10675 1.36917E-10 0.00000

ex1422 4 1 4 3.19 0.15338 4.88037E-10 0.00000

ex1423 6 1 8 17.06 0.09784 7.89311E-11 0.00000

ex1424 5 1 6 14.56 0.09901 3.74105E-10 0.00000

ex1425 4 1 4 2.17 0.03701 7.61262E-10 0.00000

ex1426 5 1 6 15.83 0.35247 1.05200E-09 0.00000

ex1427 6 1 8 18.65 0.08666 1.63368E-11 0.00000

ex1428 4 1 4 5.02 0.01474 7.64843E-10 0.00000

ex1429 4 1 4 4.66 0.00341 1.03518E-08 0.00000

ex211 5 0 1 0.59 −17.00000 0.00000E+00 −17.00000

ex212 6 0 2 1.22 −24.46176 0.00000E+00 −213.00000

ex214 6 0 4 2.00 −10.73712 0.00000E+00 −11.00000

ex215 10 0 11 23.97 −267.38473 0.00000E+00 −268.01460

ex216 10 0 5 9.68 −39.00000 0.00000E+00 −39.00000

ex219 10 1 0 2.02 −0.29040 3.56220E-08 −0.37500

ex311 8 0 6 23.75 2115.03536 1.14983E+00 7049.20830

ex312 5 0 6 8.44 −30665.53920 4.94156E-07 −30665.54000

ex313 6 0 6 11.35 −249704.15463 1.14443E+02 −310.00000

ex314 3 0 3 0.66 −4.00000 0.00000E+00 −4.00000

ex411 1 0 0 0.00 −7.48729 0.00000E+00 −7.48730

ex412 1 0 0 0.00 −663.49989 0.00000E+00 −663.50010

ex413 1 0 0 0.00 −443.67169 0.00000E+00 −443.67170

ex414 1 0 0 0.00 0.00000 0.00000E+00 0.00000

ex415 2 0 0 0.00 0.35731 0.00000E+00 0.00000

ex416 1 0 0 0.00 7.00734 0.00000E+00 7.00000

ex417 1 0 0 0.01 −7.50000 0.00000E+00 −7.50000

ex418 2 1 0 0.60 −16.73887 1.36143E-09 −16.73890

ex419 2 0 2 0.53 −5.50801 0.00000E+00 −5.50800
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Table 4 (Continued)

Problem n me mi time val funct viol f �

ex522case1 9 4 2 13.89 −81.49865 6.51494E-05 −400.00000

ex522case2 9 4 2 19.68 −407.13450 5.66611E-05 −600.00000

ex522case3 9 4 2 13.65 −524.99480 1.08808E-04 −750.00000

ex524 7 1 5 21.52 −3900.02500 1.00000E+00 −450.00000

ex611 8 6 0 8.79 −0.01758 1.65232E-09 −0.02020

ex612 4 3 0 2.22 −0.02876 1.32790E-08 −0.03250

ex614 6 4 0 4.70 −0.29197 1.14183E-07 −0.29450

ex6210 6 3 0 2.86 −3.05156 1.20919E-09 −3.05200

ex6211 3 1 0 0.12 0.00002 1.09423E-09 0.00000

ex6213 6 3 0 2.58 −0.21621 2.83959E-08 −0.21620

ex6214 4 2 0 1.15 −0.69525 6.51810E-09 −0.69540

ex625 9 3 0 8.32 −70.54537 4.46143E-08 −70.75210

ex626 3 1 0 0.14 0.00000 1.11584E-10 0.00000

ex627 9 3 0 4.86 −0.13775 3.49582E-09 −0.16080

ex628 3 1 0 0.25 −0.02670 1.43204E-10 −0.02700

ex629 4 2 0 0.67 −0.03407 6.50114E-09 −0.03410

ex721 7 0 14 65.92 −832.58006 6.46226E-01 1227.18960

ex722 6 4 1 4.77 −0.38747 7.05484E-09 −0.38880

ex723 8 0 6 24.34 2100.00000 4.76207E-01 7049.21810

ex724 8 0 4 25.23 3.92148 0.00000E+00 3.91800

ex725 5 0 6 9.59 8570.47800 6.73740E-01 10122.48280

ex726 3 0 1 1.72 −83.24973 0.00000E+00 −83.24990

ex727 4 0 2 2.86 −5.73977 0.00000E+00 −5.73990

ex728 8 0 4 28.83 −6.08108 0.00000E+00 −6.08200

ex729 10 0 6 9.40 1.55547 0.00000E+00 1.14360

ex731 4 0 7 2.28 1.65056 0.00000E+00 0.34170

ex732 4 0 7 2.98 1.08986 0.00000E+00 1.08990

ex733 5 2 6 3.84 1.45836 7.56554E-08 0.81750

ex736 1 2 0 0.07 0.00000 7.39108E-06 0.00000

ex811 2 0 0 0.00 −2.00171 0.00000E+00 −2.02180

ex812 1 0 0 0.00 −1.07086 0.00000E+00 −1.07090

ex813 2 0 0 0.01 6.30961 0.00000E+00 3.00000

ex814 2 0 0 0.01 0.00000 0.00000E+00 0.00000

ex815 2 0 0 0.01 0.00000 0.00000E+00 −1.03160

ex816 2 0 0 0.00 −0.49350 0.00000E+00 −10.08600

ex817 5 1 4 4.95 0.06485 5.87662E-09 0.02930

ex818 6 4 1 4.64 −0.38747 7.05484E-09 −0.38880

ex912 10 9 0 19.41 −16.00000 6.70613E-09 −16.00000

ex914 10 9 0 28.27 −35.04563 4.46549E-06 −37.00000

ex921 10 9 0 56.11 17.00000 8.90821E-07 17.00000

ex922 10 8 1 24.28 101.38838 9.96012E-07 99.99950

ex924 8 7 0 14.59 0.55671 9.22622E-08 0.50000
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Table 4 (Continued)

Problem n me mi time val funct viol f �

ex925 8 7 0 11.31 5.00009 3.43983E-09 5.00000

ex927 10 9 0 24.51 20.64595 5.57030E-09 17.00000

ex928 3 2 0 1.01 1.50406 2.10443E-07 1.50000

himmel11 9 3 0 8.66 −30665.51717 1.92846E-09 −30665.54000

house 8 4 4 26.11 −3765.03212 5.05016E+00 −4500.00000

least 3 0 0 0.35 15067.13960 0.00000E+00 14085.13980

like 9 0 0 27.97 32341.50191 3.83495E-11 32341.50191

meanvar 7 2 0 8.24 5.47804 2.18619E-08 5.24340

mhw4d 5 3 0 2.78 0.03909 1.54289E-09 0.02930

process 8 6 0 20.80 −1928.29596 2.01812E+01 −1161.33660

rbrock 2 0 0 0.02 0.24211 0.00000E+00 0.00000

sample 4 0 2 2.80 400.00000 3.49000E-02 726.63670

wall 6 6 0 18.06 −0.99981 3.96594E-04 −1.00000

Fig. 3 Performance
comparison of the DF-EPGO
algorithm (dotted line) and the
DF-EPGO+DFN Algorithm
(dash-dot line) on the test set B:
number of best feasible
solutions
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