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Abstract Methods which do not use any derivative information are becoming popular
among researchers, since they allow to solve many real-world engineering problems.
Such problems are frequently characterized by the presence of discrete variables,
which can further complicate the optimization process. In this paper, we propose
derivative-free algorithms for solving continuously differentiable Mixed Integer Non-
Linear Programming problems with general nonlinear constraints and explicit handling
of bound constraints on the problem variables. We use an exterior penalty approach
to handle the general nonlinear constraints and a local search approach to take into
account the presence of discrete variables. We show that the proposed algorithms
globally converge to points satisfying different necessary optimality conditions. We
report a computational experience and a comparison with a well-known derivative-free
optimization software package, i.e., NOMAD, on a set of test problems. Furthermore,
we employ the proposed methods and NOMAD to solve a real problem concerning
the optimal design of an industrial electric motor. This allows to show that the method
converging to the better extended stationary points obtains the best solution also from
an applicative point of view.
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1 Introduction

Many engineering applications that can be modeled as Mixed Integer Nonlinear Pro-
gramming (MINLP) problems have a twofold difficulty. On the one hand, the objective
and nonlinear constraint functions are of the black-box type, so that first-order deriv-
atives are not available (see [1] for a recent survey on derivative-free methods). On
the other hand, the presence of discrete variables requires an ad-hoc treatment. To
the best of our knowledge, there exist only a few papers describing derivative-free
algorithms for MINLP problems. In [2], mesh adaptive direct search (MADS) algo-
rithms, originally proposed in [3], have been extended to handle categorical variables.
The extension to mixed variable programming for generalized pattern search (GPS)
algorithms, described and analyzed in [4–6], has been proposed in [7,8] for bound-
constrained problems. Successively, in [9,10], the filter GPS approach for nonlinear
constrained problems [11] has been extended to discrete variables. Furthermore, we
cite the paper [12], where a definition of implicitly and densely discrete problems
is considered, namely, problems where the variables lie implicitly in an unknown
“discrete” closed set (i.e., a closed set of isolated points in R

n). In [12], a modifica-
tion of a direct search algorithm is presented to tackle this kind of problems, and a
theoretical analysis is reported. In [13], a linesearch strategy for linearly constrained
problems [14] is adopted for the solution of Problem mixed variable problems. In [15],
the derivative-free algorithms proposed in [16] are extended to the solution of mixed
variable problems with bound constraints only. In [17], a probabilistic method using
surrogate models for the optimization of computationally expensive mixed integer
black-box problems is proposed. The method is proved to be convergent to the global
optimum with probability one. Finally, in the recent paper [18], a scatter search proce-
dure is proposed to solve black-box optimization problems, where all of the variables
can only assume integer values.

In this paper, we extend the approach proposed in [19] for box-constrained, mixed
integer problems using a sequential quadratic penalty approach described and ana-
lyzed in [20]. The presence of both integer variables and nonlinear constraints makes
the extension of the approaches proposed in [19] not straightforward. In particular,
the possible alternation of minimizations of continuous and discrete variables needs
new theoretical analysis of the algorithms. In our framework, continuous variables
are managed by means of a linesearch strategy with sufficient decrease acceptability
criterion (see, e.g., [21]). Discrete variables are tackled by suitably developed Local
Search procedures, which basically hinge on exploring adaptively determined discrete
neighborhoods of points.

We note that the use of a linesearch procedure needs the satisfaction of a sufficient
decrease in the new point generated along the search direction, which is a stronger
requirement with respect to the simple decrease accepted by, e.g., pattern search meth-
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ods [4–6]. However, it should be noted that the stronger requirement imposed by the
sufficient decrease condition (over the simple one) does not necessarily bring to the
definition of less efficient algorithms both in terms of number of function evaluations
and of final function value attained by the search routine. Furthermore, as recently evi-
denced in [22], the imposition of a sufficient decrease condition, like the one adopted
in the present paper, allows to derive a worst-case complexity bound on the number of
iteration of a direct search algorithm. This worst-case complexity bound, which is the
number of iterations needed to drive the norm of the objective gradient below a pre-
fixed accuracy , is similar to the one obtained for the steepest descent method in [23] in
the presence of first-order derivatives. On the contrary, if a simple decrease condition
is imposed, then the worst-case complexity bound on the number of iterations seems
only provable under additional strong conditions, like the objective function satisfying
an appropriate decrease rate.

The paper is organized as follows. In Sect. 2, some definitions and relevant notations
are introduced. Sections 3 and 4 are the main part of the paper and are devoted to
the definition and analysis of two different algorithms for the solution of a MINLP
problem. A computational experience of the methods proposed and comparison with
NOMAD is reported in Sect. 5 both on analytic test problems and on a real optimal
design problem. Finally, in Sect. 6, we draw some conclusions and discuss future
developments.

2 Definitions and Notations

In the paper, we consider the following MINLP problem

min f (x)

g(x) ≤ 0
l ≤ x ≤ u
xi ∈ Z, i ∈ Iz,

(1)

where x, l, u ∈ R
n , Iz ⊂ {1, . . . , n}, f : R

n → R and g j : R
n → R, j = 1, . . . , m.

Furthermore, we define Ic := {1, . . . , n} \ Iz .
We assume the objective and general nonlinear constraint functions to be contin-

uously differentiable with respect to xi , i �∈ Iz , even though first-order derivatives
will not be used. To simplify the mathematical analysis of the proposed methods, we
require −∞ < li < ui < +∞, for all i = 1, . . . , n. Then, let us introduce

X := {x ∈ R
n : l ≤ x ≤ u}, F := {x ∈ R

n : g(x) ≤ 0} ∩ X ,

Z := {x ∈ R
n : xi ∈ Z, i ∈ Iz}.

For any vector v ∈ R
n , we denote by vc ∈ R

|Ic| and vz ∈ R
|Iz | the subvectors

vc := [vi ]i∈Ic , vz := [vi ]i∈Iz .
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Furthermore, for every continuously differentiable function h : R
n → R, we use the

notation ∇ch(x) ∈ R
|Ic| to denote the gradient of the function with respect to the

continuous variables, namely

∇ch(x) :=
[
∂h(x)

∂xi

]
i∈Ic

.

Now we give different definitions of neighborhoods that correspond to variations of
continuous and discrete variables. These are necessary since the characterization of
local minimum points in mixed problems strongly depends on the particular neigh-
borhood we use.

Hence, we introduce, for any point x̄ ∈ R
n and ρ > 0, the following:

Bc(x̄, ρ) := {
x ∈ R

n : xz = x̄z, ‖xc − x̄c‖ ≤ ρ
}
,

Bz(x̄) := {x ∈ Z : xc = x̄c, ‖xz − x̄z‖ ≤ 1} .

Now we can define a local minimum point for Problem (1).

Definition 2.1 (Local minimum point) A point x� ∈ F ∩ Z is a local minimum of
Problem (1) iff, for some ε > 0,

f (x�) ≤ f (x), ∀x ∈ Bc(x�; ε) ∩ F ,

f (x�) ≤ f (x), ∀x ∈ Bz(x�) ∩ F .

It is possible to give a different definition of local minimum, which has stronger
property with respect to discrete variables.

Definition 2.2 (Extended local minimum point) A point x� ∈ F ∩ Z is an extended
local minimum of Problem (1) iff

(i) x� is a local minimum;
(ii) every point x̄ ∈ Bz(x�) ∩ F , with x̄ �= x�, such that f (x̄) = f (x�) is a local

minimum as well.

Now, we introduce the following sets of directions that will be used to describe the
main theoretical results related to the MINLP algorithms proposed in the paper.

D := {±e1, . . . ,±en}, Dc := {±ei : i ∈ Ic}, Dz := {±ei : i ∈ Iz},

where ei , i = 1, . . . , n, is the unit coordinate vector. Given x ∈ X , we denote by

L(x) := {i ∈ {1, . . . , n} : xi = li }, U (x) := {i ∈ {1, . . . , n} : xi = ui }.

Given x ∈ X , let

D(x) := {d ∈ R
n : di ≥ 0, ∀i ∈ L(x), di ≤ 0, ∀ i ∈ U (x)}.
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The following two technical propositions are reported from [20] and [24], to which
we refer the interested reader for their proofs.

Proposition 2.1 For every x ∈ X , it results

cone{D ∩ D(x)} = D(x).

Proposition 2.2 Let {xk} be a sequence of points such that xk ∈ X for all k, and
xk → x̄ for k → ∞. Then, for k sufficiently large,

D(x̄) ⊆ D(xk).

Throughout the paper, we consider the following assumptions to hold true.

Assumption 2.1 For every x ∈ X , there exists a vector d̂ ∈ D(x) such that d̂i = 0,
for all i ∈ Iz , and

∇c g�(x)T d̂c < 0, ∀ � ∈ I +(x),

where I +(x) := {i : gi (x) ≥ 0}.
Assumption 2.2 One of the following conditions holds

(i) for all j = 1, . . . , m, we have g j (x) = g̃ j (xc) with g̃ j : R
|Ic| → R;

(ii) For every sequence of points {wk}, with wk ∈ X ∩ Z for all k, converging to the
point w̄ ∈ F ∩ Z , and for all the sequences w̃k ∈ X ∩ Z such that, for all k

(wk)c = (w̃k)c, ‖(wk − w̃k)z‖ = 1,

there exists an index k̃ such that either w̃k ∈ F for all k ≥ k̃ or w̃k /∈ F for all
k ≥ k̃.

Assumption 2.1 is quite standard and it is needed to guarantee existence and bound-
edness of the lagrange multipliers. We note that Assumption 2.1 is well-posed thanks
to the standing assumption that Ic �= ∅. Finally, Assumption 2.2 is more technical and
specific to MINLP problems. Part (i) states that the constraints do not depend on the
discrete variables. Part (ii) basically states a regularity property of sequences obtained
considering points belonging to the discrete neighborhood of wk (where wk are the
points of the sequence considered in Assumption 2.2) and is needed to force feasibility
of points in the discrete neighborhood of the limit point.

In order to give stationarity conditions for Problem (1), we need to introduce the
Lagrangian function associated with it, that is

L(x, λ) := f (x) +
m∑

i=1

λi gi (x).

Repeating the proof of results reported in [25], we can prove the following necessary
optimality conditions.

123



938 J Optim Theory Appl (2015) 164:933–965

Proposition 2.3 Let x� ∈ F ∩Z be a local minimum of Problem (1). Then there exists
a vector λ� ∈ R

m such that

∇c L(x�, λ�)T (x − x�)c ≥ 0, ∀ x ∈ X , (2)

f (x�) ≤ f (x), ∀ x ∈ Bz(x�) ∩ F , (3)

(λ�)T g(x�) = 0, λ� ≥ 0. (4)

Proposition 2.4 Let x� ∈ F ∩Z be an extended local minimum of Problem (1). Then
there exists a vector λ� ∈ R

m such that (2), (4), and (3) are satisfied.
Furthermore, for every point x̄ ∈ Bz(x�)∩F with f (x̄) = f (x�), there exists a vector
λ̄ ∈ R

m such that the pair (x̄, λ̄) satisfies (2), (4), and (3).

According to Proposition 2.4, an extended minimum point of Problem (1) has to satisfy
the following:

(i) it has to be stationary with respect to the continuous variables,
(ii) it must be a local minimum with respect to the discrete variables within the

discrete neighborhood Bz(x�),
(iii) all the points x̄ ∈ Bz(x�)∩F such that f (x̄) = f (x�) have to satisfy requirements

(i) and (ii).

Next, we define stationary points and extended stationary points for Problem (1).

Definition 2.3 (Stationary point) A point x� ∈ F ∩Z is a stationary point of Problem
(1) iff a vector λ� ∈ R

m exists such that the pair (x�, λ�) satisfies (2), (4), and (3).

Definition 2.4 (Extended stationary point) A point x� ∈ F ∩ Z is an extended sta-
tionary point of Problem (1) iff a vector λ� ∈ R

m exists such that the pair (x�, λ�)

satisfies (2), (4), and (3), and for all x̄ ∈ Bz(x�) ∩ F such that f (x̄) = f (x�), it is
possible to find a λ̄ ∈ R

m so that

∇c L(x̄, λ̄)T (x − x̄)c ≥ 0, ∀ x ∈ X , (5)

f (x̄) ≤ f (x), ∀ x ∈ Bz(x̄) ∩ F , (6)

(λ̄)T g(x̄) = 0, λ̄ ≥ 0. (7)

In the paper, we consider the following penalty function:

P(x; ε) := f (x) + 1

ε

m∑
i=1

max{0, gi (x)}q ,

where q > 1. We also introduce the following approximation of multiplier functions.

λ j (x; ε) := q

ε
max{0, g j (x)}q−1, ∀ j = 1, . . . , m. (8)

We are now ready to define different algorithms for the solution of Problem (1) and
to analyze their convergence properties. The first algorithm (i.e., DFL) is convergent
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toward stationary points of the problem. It explores the coordinate directions and
updates the iterate whenever a sufficient reduction of the penalty function is found.
Hence it performs a minimization of the penalty function distributed along all the
variables. The second algorithm (EDFL), which is convergent to extended stationary
points, is based on a Local Search procedure that is devised to better investigate the
discrete neighborhoods.

3 A Linesearch Algorithm Model

In this section, we define a first Derivative-Free Linesearch algorithm (DFL) for
MINLP problems. The proposed method combines two basic ingredients, which are
a derivative-free optimization for bound-constrained, mixed integer problems and a
penalty function approach for handling of nonlinear constraints. In particular, inte-
ger variables are tackled by a Discrete search procedure which is similar to the one
defined in [19]. The presence of nonlinear constraints is accounted for by means
of a derivative-free sequential penalty approach like that described and analyzed
in [20].

3.1 Algorithm DFL

The main parts of the method are the Continuous search and Discrete search proce-
dures. The Continuous search and Discrete search procedures, which investigate the
corresponding coordinate direction, are similar to those described in [19], but they
are applied to the penalty function P(x; ε). At the end of every main iteration, the
algorithm computes the new values both for the penalty parameter and the sufficient
decrease parameter, which are fundamental ingredients in the MINLP case as they
allow us to guarantee the convergence of the proposed algorithm. The idea is that,
when no discrete variable has been updated during the iteration and the tentative steps
for discrete variables are all equal to one, the method updates the sufficient decrease
parameter and then checks if the penalty parameter has to be updated.

The scheme of the proposed algorithm is reported in Algorithm 3.1. The Contin-
uous search and Discrete search (see [19]) are reported in Procedures 3.2 and 3.3,
respectively.

As it can be seen, Algorithm DFL performs derivative-free searches along the
coordinate directions by means of two different procedures that depend on the current
coordinate type, namely the Continuous Search and Discrete Search procedures. When
the coordinate is continuous, that is, i ∈ Ic, the stepsize αi

k and the tentative stepsize α̃i
k

are computed as described in [21]. On the other hand, when the coordinate is discrete,
that is, i ∈ Iz , a kind of “discrete” linesearch is carried out by the method. This dis-
crete linesearch is characterized by a sufficient reduction, controlled by the parameter
ξk . When all the coordinate directions have been explored (inner for loop, i.e., Steps
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Algorithm 3.1 Derivative-Free Linesearch (DFL) Algorithm

3–12), the algorithm computes (by Steps 13–18) the new values ξk+1, εk+1, and ηk+1
for the sufficient reduction, penalty, and feasibility violation parameters, respectively.
In particular, provided that no discrete variable has been updated and that the tentative
steps along discrete coordinates are equal to one, the sufficient reduction parameter
is decreased. Furthermore, the procedure checks if the penalty parameter has to be
updated. It is worth noting that, in Algorithm DFL, the next iterate xk+1 is required
to satisfy the condition f (xk+1) ≤ f (xk). This enables to obtain xk+1 by minimizing
suitable approximating models of the objective function, and thus possibly improving
the efficiency of the overall scheme.
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Procedure 3.2 Continuous search (α̃, y, p, ε;α, p+)

3.2 Preliminary Convergence Results

In order to carry out the convergence analysis of Algorithm DFL, we introduce the
following two sets of iteration indices:

Kξ := {k : ξk+1 < ξk} ⊆ {0, 1, . . .}, and (9a)

Kε := {k : ξk+1 < ξk, εk+1 < εk} ⊆ Kξ . (9b)

Lemma 3.1 Algorithm DFL is well defined (i.e., it produces an infinite sequence of
iterates {xk}).
Proof To show that Algorithm DFL is well defined, we need to show that both the
Continuous and Discrete search procedures cannot cycle between Steps 6 and 8. If
this is not the case, then a sequence {βl} should exist such that

lim
l→∞ P(y + βl p; ε) = −∞,

but this would contradict the assumption that set X is compact. ��
Procedure 3.3 Discrete search (α̃, y, p, ξ, ε;α, p+)
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In the following lemma, we characterize the asymptotic behavior of the sequences
{αi

k} and {α̃i
k}, i ∈ {1, . . . , n}, produced by DFL.

Lemma 3.2 Let {xk}, {ξk}, {εk}, {yi
k}, {αi

k}, {α̃i
k}, i ∈ {1, . . . , n} be the sequences

produced by Algorithm DFL. Then

(i) If the monotonically nonincreasing sequence of positive numbers {εk} is such that

lim
k→∞ εk = ε̄ > 0,

for all i ∈ Ic, then

lim
k→∞ αi

k = 0,

lim
k→∞ α̃i

k = 0.

(ii) If the monotonically nonincreasing sequence of positive numbers {εk} is such that

lim
k→∞ εk = 0,

for all i ∈ Ic, then

lim
k→∞,k∈Kε

αi
k = 0,

lim
k→∞,k∈Kε

α̃i
k = 0.

Proof For i ∈ Ic, the proof follows from Proposition 5 in [20]. ��
Lemma 3.3 Let {ξk} and {εk} be the sequences produced by Algorithm DFL. Then

(i)

lim
k→∞ ξk = 0;

(ii) the set Kξ , defined in (9a), has infinitely many elements. Moreover, if limk→∞ εk =
0, then also the set Kε , defined in (9b), has infinitely many elements.

Proof First we prove point (i). As it can be seen, the sequence {ξk} generated by
Algorithm DFL is monotonically nonincreasing, that is, 0 < ξk+1 ≤ ξk , for all k.
Therefore,

lim
k→∞ ξk = M ≥ 0.

By contradiction, we assume that M > 0. In this case, we would have

ξk+1 = ξk = M,
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for all k ≥ k̄, with k̄ > 0 a sufficiently large index. Then, by step 17 of Algorithm DFL,
we would also have εk+1 = εk = ε̄, for all k ≥ k̄. Then, by definition of Algorithm
DFL and by Step 2 and 4 of the Discrete search procedure, for all k ≥ k̄, an index
ı̄ ∈ Iz (depending on k) would exist such that

P(xk+1; ε̄) ≤ P(yı̄
k ± α ı̄

kdı̄
k; ε̄) ≤ P(yı̄

k; ε̄) − M ≤ P(xk; ε̄) − M, (10)

otherwise the algorithm would have performed the parameter updating (i.e., ξk+1 =
θξk). By (10), we have

lim
k→∞ P(xk; ε̄) = −∞,

and this contradicts the assumption that P(·; ε̄) is continuous on the compact set X .
Finally, we prove point (ii). Point (i) and the updating rule of parameter ξk in

Algorithm DFL imply that the set Kξ is infinite. Furthermore, if

lim
k→∞ εk = 0,

the updating rule of Algorithm DFL for ξk and εk implies that the set Kε is infinite as
well. ��

Lemma 3.4 Let {xk} and {yi
k}, i = 1, . . . , n + 1 be the sequences of points produced

by Algorithm DFL and let K̃ ⊆ Kξ , where Kξ is defined in (9a), be such that

lim
k→∞,k∈K̃

xk = x∗. (11)

Then

lim
k→∞,k∈K̃

yi
k = x∗, i = 1, . . . , n + 1.

Proof By considering limit (11), for k ∈ K̃ and sufficiently large,

(xk)z = (x�)z . (12)

Thus, we have a failure along all the search directions related to the discrete variables,
and the trial steps related to those directions cannot be further reduced.

Recalling the definition of Kξ in (9a), by the instructions of the algorithm DFL, for
k ∈ K̃ , we have

(yi
k)z = (xk)z, i = 1, . . . , n + 1

α̃i
k = 1, i ∈ Iz .

123



944 J Optim Theory Appl (2015) 164:933–965

Recalling (12), for k ∈ K̃ and sufficiently large, we further have that

(yi
k)z = (x�)z, i = 1, . . . , n + 1. (13)

Lemma 3.2 guarantees
lim

k→∞,k∈K̃
αi

k = 0, i ∈ Ic, (14)

so that by (13) and (14), we can write

lim
k→∞,k∈K̃

yi
k = x�, i = 1, . . . , n + 1,

which completes the proof. ��

3.3 Main Convergence Results

Now we show that accumulation points exist, which are stationary in the sense of
Definition 2.3. For the sake of simplicity, we first show stationarity with respect to the
continuous variables and then with respect to the discrete ones.

Proposition 3.1 Let {xk} be the sequence of points produced by Algorithm DFL and
let Kξ and Kε defined in (9). Then,

(i) if limk→∞ εk = ε̄, then every limit point of {xk}Kξ is stationary for Problem (1)
with respect to the continuous variables;

(ii) if limk→∞ εk = 0, then every limit point of {xk}Kε is stationary for Problem (1)
with respect to the continuous variables.

Proof Let us consider any limit point x̄ of the subsequence {xk}Kξ (point (i)) or {xk}Kε

(point (ii)). Then, for k sufficiently large

(xk)z = (x̄)z . (15)

Now, let us note that, by the instructions of Algorithm DFL, for all k ∈ Kξ ,

(yn+1
k )z = (xk)z and α̃i

k = 1, i ∈ Iz .

Hence, by (15), for k sufficiently large and k ∈ Kξ (point (i)) or k ∈ Kε (point (ii)),
the discrete variables of xk are no longer updated.

The rest of the proof follows exactly the same reasoning as in the proof of Theorem
1 in [20]. The only difference can be found in the definition of subsequence {xk}K̄ . In
[20],

K̄ := {0, 1, 2, . . .}, if lim
k→∞ εk = ε̄ > 0,

K̄ := {k : εk+1 < εk}, if lim
k→∞ εk = 0.
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Here, due to the presence of the discrete variables, we have to consider different
subsequences, namely,

K̄ := Kξ , if lim
k→∞ εk = ε̄ > 0,

K̄ := Kε, if lim
k→∞ εk = 0,

where Kξ and Kε are defined as in Lemma 3.3. ��
Now we prove that accumulation points exist, which are local minima with respect

to the discrete variables.

Proposition 3.2 Let {xk} be the sequence of points produced by Algorithm DFL. Let
Kξ ⊆ {1, 2, . . .} and Kε ⊆ Kξ be defined in (9). Then,

(i) if limk→∞ εk = ε̄, then every limit point x� of {xk}Kξ is a local minimum for
Problem (1) with respect to the discrete variables, namely f (x�) ≤ f (x̄), for all
x̄ ∈ Bz(x�) ∩ F;

(ii) if limk→∞ εk = 0, then every limit point x� of {xk}Kε is a local minimum for
Problem (1) with respect to the discrete variables, namely f (x�) ≤ f (x̄), for all
x̄ ∈ Bz(x�) ∩ F .

Proof Let us denote

K̃ :=
{

Kξ , if limk→∞ εk = ε̄,

Kε, if limk→∞ εk = 0,

where Kξ and Kε are defined in (9). Let x� be any accumulation point of {xk}K̃ and
let K̄ ⊆ K̃ be an index set such that

lim
k→∞,k∈K̄

xk = x�.

By Lemma 3.4, we have

lim
k→∞,k∈K̃

yi
k = x�, i = 1, . . . , n + 1. (16)

Let us consider any point x̄ ∈ Bz(x�) ∩ F . By the definition of the discrete neighbor-
hood Bz(x) and of the set Dz , a direction d̄ ∈ D(x�) ∩ Dz exists such that

x̄ = x� + d̄. (17)

Taking into account (13) and (17), for k ∈ K̄ and sufficiently large, we can write

(x̄)z = (x� + d̄)z = (yi
k + d̄)z, i = 1, . . . , n + 1. (18)
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Now, by Proposition 2.2, we have, for k ∈ K̄ and sufficiently large,

d̄ ∈ D(xk) ∩ Dz .

Therefore, there exists dik
k such that dik

k = d̄ . As we have a finite set of search directions,
we can consider, without any loss of generality, a subsequence such that ik = ı̄ , and
we can write

(x̄)z = (x� + dı̄
k)z = (yı̄

k + dı̄
k)z, (19)

for all k ∈ K̄ and sufficiently large. Thus, by (16) and (19), we can write

lim
k→∞,k∈K̄

yı̄
k + dı̄

k = x� + d̄ = x̄

Hence, for all k ∈ K̄ and sufficiently large, by (18),

(yı̄
k + dı̄

k) j = (x̄) j , j ∈ Iz . (20)

Furthermore, for all k ∈ K̄ and considering that ı̄ ∈ Iz ,

(yı̄
k + dı̄

k) j = (yı̄
k) j j ∈ Ic. (21)

Then, for k ∈ K̄ and sufficiently large, by (20) and (21) and recalling that x̄, yı̄
k ∈

X ∩ Z , we have

yı̄
k + dı̄

k ∈ X ∩ Z.

Therefore, for k ∈ K̄ and sufficiently large, the algorithm evaluates the function P in
the point yı̄

k + dı̄
k , and obtains

P(yı̄
k + dı̄

k; εk) > P(yı̄
k; εk) − ξk . (22)

Recalling the expression of the penalty function P(x; ε) and of the functions λl(x; ε)

(defined in (8)), we can write

P(yı̄
k; εk) = f (yı̄

k) + 1

εk

m∑
l=1

max{0, gl(yı̄
k)}q

= f (yı̄
k) + 1

q

m∑
l=1

λl(yı̄
k; εk)max{0, gl(yı̄

k)}.

Noting that points yi
k , i ∈ Ic, satisfy the assumptions of Proposition 7.1 in Appendix

and recalling that x� ∈ F , we have (by Proposition 7.1)

lim
k→∞,k∈K̄

λl(yı̄
k; εk)max{0, gl(yı̄

k)} = 0.
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Therefore, we obtain

lim
k→∞,k∈K̄

P(yı̄
k; εk) = f (x�).

Now, if part (i) of Assumption 2.2 holds, then we have

λl(yı̄
k + dı̄

k; εk)max{0, gl(yı̄
k + dı̄

k)} = λl(yı̄
k; εk)max{0, gl(yı̄

k)},

which yields
lim

k→∞,k∈K̄
P(yı̄

k + dı̄
k; εk) = f (x̄). (23)

If, on the other hand, part (ii) of Assumption 2.2 holds, then for k ∈ K̄ and sufficiently
large, we have

λl(yı̄
k + dı̄

k; εk)max{0, gl(yı̄
k + dı̄

k)} = 0

and, hence, we obtain again

lim
k→∞,k∈K̄

P(yı̄
k + dı̄

k; εk) = f (x̄). (24)

Finally, by making the limit in (22) and by using (23) and (24), we obtain

f (x̄) ≥ f (x�)

which completes the proof. ��
Finally, we can now derive the main theoretical result concerning the global conver-
gence properties of Algorithm DFL.

Theorem 3.1 Let {xk} and {εk} be the sequences generated by Algorithm DFL. Let
Kξ ⊆ {1, 2, . . .} and Kε ⊆ Kξ be defined in (9). Then, {xk} admits limit points and

(i) if limk→∞ εk = ε̄, then every limit point of {xk}Kξ is stationary for Problem (1);
(ii) if limk→∞ εk = 0, then every limit point of {xk}Kε is stationary for Problem (1).

Proof By the instructions of Algorithm DFL, every iterate xk belongs to X which is
compact. Hence {xk} admits limit points. Then, points (i) and (ii) follow by considering
Propositions 3.1 and 3.2. ��

4 Convergence to Extended Stationary Points

In this section, we suitably modify Algorithm DFL to ensure convergence to extended
stationary points. Convergence to such points can be enforced by refining the searches
along the directions related to the discrete variables. Indeed, we replace the Discrete
Search used in Algorithm DFL with a new one, namely the Local search procedure,
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which explores more deeply the discrete neighborhoods. Below we report the scheme
of the Local Search procedure.

In this procedure, we first verify if a point along the search direction guarantees
a sufficient decrease of the penalty function. If so, we accept the point similar to
Algorithm DFL. Otherwise and differently from the Discrete Search procedure, we
consider two different cases:

(i) the new point is significantly worse (in terms of penalty function value) than the
current one, then we discard the new point;

(ii) the new point is not significantly worse than the current one, then we perform
a “grid search” (i.e., a new search both along continuous and discrete directions
starting from the new point). If we find, by means of this “grid search,” a new
point that guarantees a sufficient decrease of the penalty function, then it becomes
the current point.

Figure 1 illustrates how the Local Search procedure works in practice. We assume d1
and d2 to be the directions related to the discrete variables and d3 the direction related
to the continuous variable. Let us suppose that, along the discrete direction d1, the
Local Search finds a new point z that is not significantly worse than the current one
y (See Fig. 1a). Then the Local Search procedure performs the Grid Search starting
from z (see Fig. 1b). Finally, Fig. 1c depicts the situation in which the Grid Search
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d2

d1y z

d3

(a)

z
d2

d1

d3

(b)

z̃

d2

d1

d3

(c)

Fig. 1 How the Local Search works in practice. a The Local Search finds a new point z that is not
significantly worse than the current one. b The Grid Search starts from z. c The Grid Search finds a point z̃
that guarantees a sufficient decrease of the penalty function

finds a point z̃ that guarantees a sufficient decrease of the penalty function with respect
to the central point y.

Algorithm EDFL can be seen as an enrichment of algorithm DFL. Indeed, along
the continuous directions the Continuous Search is performed, whereas the discrete
directions are investigated by means of the Local Search procedure. Depending on the
results of the Local Search, one case out of three is executed. They are denoted L1±,
L2±, and L3±, where the subscript ± distinguishes if the Local Search is invoked along
di

k or −di
k . More in particular

(i) Case L1+ is executed when the Local Search returns α = 0 and z̃ �= yi
k , that is,

when a point yielding a sufficient decrease of the penalty function is found by
the Grid Search in the Local Search procedure. In this case, the algorithm sets
αi

k = 0, α̃i
k+1 = α̃i

k , yn+1
k = z̃, di

k+1 = di
k exit the inner For loop (step 3–24)

and jumps directly to step 25, where ξk+1, εk+1 and ηk+1 are computed.
(ii) Case L2+ is executed when the Local Search returns α = 0 and z̃ = yi

k , which
means that the Local Search along direction di

k failed. In this case, the algorithm
tries to compute α by means of the Local Search along the opposite direction
−di

k .
(iii) Case L3+ is executed when the Local Search returns α �= 0, that is, when a

sufficient decrease of the penalty function is achieved along direction di
k .

As regards cases L1−, L2−, and L3−, we note that L1− and L3− are similar, respectively,
to L1+ and L3+. While in case L2−, that is, when both the Local Searches along di

k and
−di

k fail, the trial stepsize α̃i
k is reduced, namely α̃i

k+1 = max{1, �α̃i
k/2�}.
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Finally, once all directions have been investigated, or when case L1+ or L1− is
executed, the algorithm jumps directly to step 25, where ξk+1, εk+1, and ηk+1 are
computed.

In the following, we carry out the convergence analysis of Algorithm EDFL.
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Lemma 4.1 The Local Search procedure is well defined (i.e., it cannot indefinitely
cycle between Steps 2 and 4).

Proof In Lemma 3.1, we already proved that the Continuous and Discrete search
procedures are both well defined. Hence, in order to prove that the Local Search
procedure is well defined, we need to show that it could not indefinitely cycle between
Steps 2 and 4. On the contrary, if this was the case, a sequence {βl} would exist such
that

lim
l→∞ P(y + βl p; ε) = −∞,

but this would contradict the assumption that set X is compact. ��
Lemma 4.2 Algorithm EDFL is well defined (i.e., it produces an infinite sequence of
iterates {xk}).
Proof The result follows from the fact that the procedures used in Algorithm EDFL
(Continuous and Local Search) are well defined. ��
Proposition 4.1 Let {xk} and {εk} be the sequences produced by Algorithm EDFL.
Let Kξ ⊆ {1, 2, . . .} and Kε ⊆ Kξ be defined in (9). Then, {xk} admits limit points
and

(i) if limk→∞ εk = ε̄, then every limit point of {xk}Kξ is stationary for Problem (1);
(ii) if limk→∞ εk = 0, then every limit point of {xk}Kε is stationary for Problem (1).

Proof Since the Local Search procedure is an enrichment of the Discrete search proce-
dure used in the definition of Algorithm DFL, the proof follows easily from Theorem
3.1. ��
Proposition 4.2 Let {xk} and {εk} be the sequences produced by Algorithm EDFL.
Let Kξ ⊆ {1, 2, . . .} and Kε ⊆ Kξ be defined in (9). Then, {xk} admits limit points
and

(i) if limk→∞ εk = ε̄, then every limit point of {xk}Kξ is extended stationary for
Problem (1);

(ii) if limk→∞ εk = 0, then every limit point of {xk}Kε is extended stationary for
Problem (1).

Proof As in the proof of Proposition 3.2, let us denote

K̃ :=
{

Kξ , if limk→∞ εk = ε̄,

Kε, if limk→∞ εk = 0.

By the instructions of Algorithm EDFL, every iterate xk belongs to X , which is
compact. Hence {xk} admits limit points.

Let x� be a limit point of {xk}K̃ and K̄ ⊆ K̃ be an index set such that

lim
k→∞,k∈K̄

xk = x�.
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By recalling the definition of extended Stationary Point, we have to show that a λ� ∈
R

m exists such that the pair (x�, λ�) satisfies (2), (4), and (3). Recalling the fact that
the Local Search is an enrichment of the Discrete search defined in Sect. 3, the limit
points produced by Algorithm EDFL surely satisfy (2), (4), and (3), which can be
derived by using point (i) of Proposition 3.1 and Proposition 3.2.

Now we show that, for all x̄ ∈ Bz(x�) ∩ F such that f (x̄) = f (x�), it is possible
to find a λ̄ ∈ R

m such that the pair (x̄, λ̄) satisfies (5), (7), and (6).
First we note that, by Lemmas 3.3 and 3.4, we have

lim
k→∞,k∈K̄

ξk = 0, (25a)

lim
k→∞,k∈K̄

yi
k = x�, i = 1, . . . , n + 1. (25b)

Furthermore, for any choice of x̄ ∈ Bz(x�)∩F such that f (x̄) = f (x�), and reasoning
as in Proposition 3.2, there exist an index ı̄ and a subset of indices, which we relabel
again K̄ , such that ik = ı̄ , and recalling the definition of z in the Local Search
procedure:

lim
k→∞,k∈K̄

zı̄
k = lim

k→∞,k∈K̄
yı̄

k + dı̄
k = x� + d̄ = x̄ . (26)

Recalling the expression of the penalty function P and the functions λl (defined in
(8)), we can write

P(yı̄
k; εk) = f (yı̄

k) + 1

εk

m∑
l=1

max{0, gl(yı̄
k)}q

= f (yı̄
k) + 1

q

m∑
l=1

λl(yı̄
k; εk)max{0, gl(yı̄

k)}.

Now the proof continues by showing that

(i) the following limits hold

lim
k→∞,k∈K̄

P(yı̄
k; εk) = f (x�), (27)

lim
k→∞,k∈K̄

P(zı̄
k; εk) = f (x̄), (28)

lim
k→∞,k∈K̄

P(wi
k; εk) = f (x̄), ∀ i = 1, . . . , n + 1; (29)

(ii) point x̄ is stationary w.r.t. the continuous variables;
(iii) point x̄ is a local minimum w.r.t. the discrete variables.

Point (i). By using Proposition 7.1 in Appendix and recalling that x� ∈ F , we have

lim
k→∞,k∈K̄

λl(yı̄
k; εk)max{0, gl(yı̄

k)} = 0. (30)
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Therefore, (27) follows.
Now we show that

lim
k→∞,k∈K̄

λl(z
ı̄
k; εk)max{0, gl(z

ı̄
k)} = 0, (31)

for all l = 1, . . . , m.
If part (ii) of Assumption 2.2 holds, then by (26) and the fact that x̄ ∈ F , for

sufficiently large k ∈ K̄ , we can write

λl(z
ı̄
k; εk)max{0, gl(z

ı̄
k)} = 0.

On the other hand, if part (i) of Assumption 2.2 holds, considering that zı̄
k = yı̄

k+dı̄
k, ı̄ ∈

Iz , and recalling the expression (8) of λl(x; ε), we have

λl(z
ı̄
k; εk)max{0, gl(z

ı̄
k)} = λl(yı̄

k; εk)max{0, gl(yı̄
k)}.

Thus, relations (31) follow from the above relation and (30).
For every k ∈ K̄ , it results that

P(zı̄
k; εk) = P(w1

k ; εk) ≥ P(w2
k ; εk) ≥ · · · ≥ P(wn

k ; εk) > P(yı̄
k; εk) − ξk .

From (26) and (31), we obtain (28). Then, by (25), (27), (28) and by considering that,
by assumption, f (x̄) = f (x�), we get (29).

Point (ii). For every i ∈ Ic such that

P(wi
k + α̃i

kqi
k; εk) > P(wi

k; εk) − γ (α̃i
k)

2,

we have that wi+1
k = wi

k , and by Lemma 3.2, α̃i
k → 0, for all i ∈ Ic.

On the other hand, for those indices i ∈ Ic such that

P(wi+1
k ; εk) = P(wi

k + α̂i
kqi

k; εk) ≤ P(wi
k; εk) − γ (α̂i

k)
2, (32)

we have, by (29) and (32), that

lim
k→∞,k∈K̄

α̂i
k = 0,∀ i ∈ Ic. (33)

Hence, recalling that w1
k = zı̄

k by definition of the Local Search procedure, by (26),
and the fact that α̃i

k → 0 and α̂i
k → 0, we have that

lim
k→∞,k∈K̄

wi
k = x̄,∀ i ∈ Ic (34)

Now, for k sufficiently large, by Proposition 2.2, D(x̄) ⊆ D(xk). Since the Grid Search
step in the Local search procedure explores, for every index i , both the directions ei

and −ei , for every i ∈ Ic and d̄i ∈ D(x̄), we can define ηi
k as follows:
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ηi
k :=

⎧⎪⎨
⎪⎩

α̃i
k, if P(wi

k + α̃i
k d̄i ; εk) > P(wi

k; εk) − γ (α̃i
k)

2,

α̂i
k

δ
, if P

(
wi

k + α̂i
k

δ
d̄i ; εk

)
> P(wi

k; εk) − γ

(
α̂i

k

δ

)2

.

Then, we can write

P(wi
k + ηi

k d̄i ; εk) > P(wi
k; εk) − γ (ηi

k)
2. (35)

By Lemma 3.2, we have, for all i ∈ Ic, that

lim
k→∞,k∈K̄

ηi
k = 0. (36)

From (26) and (34), it follows that

lim
k→∞,k∈K̄

‖zı̄
k − wi

k‖ = 0 (37)

for all i ∈ Ic. Then, by (26) and the fact that x̄ ∈ F , we can write

lim
k→∞,k∈K̄

εk‖g+(zı̄
k)‖ = 0. (38)

Thus, considering that, for k sufficiently large, wi
k + ηi

k d̄i ∈ X ∩ Z , (35), (36), (37),
and (38) prove that the hypotheses of Proposition 7.1 in Appendix are satisfied. Hence,
x̄ is stationary with respect to the continuous variables.

Point (iii). Finally, again reasoning as in the proof of Proposition 3.2, considering
(33) and using w

j
k = zı̄

k + ∑ j
h=1 α̂hqh and w

j
k + q j

k (omitting the dependence of wk

and qk from the index ı̄) in place of, respectively, yi
k and yi

k + di
k , we can find an index

j̄ ∈ Iz and a subset of indices K̂ , such that

lim
k→∞,k∈K̂

w
j̄
k = x̄, (39)

lim
k→∞,k∈K̂

w
j̄
k + q j̄

k = x̃, (40)

where x̃ is a point belonging to the discrete neighborhood of x̄ . Hence, reasoning as
in Proposition 3.2, for k sufficiently large and k ∈ K̂ ,

w
j̄
k + q j̄

k ∈ X ∩ Z.

Then, we have
P(w

j̄
k + q j̄

k ; εk) > P(yı̄
k; εk) − ξk . (41)

Now we show that

lim
k→∞,k∈K̄

λl(w
j̄
k + q j̄

k ; εk)max{0, gl(w
j̄
k + q j̄

k )} = 0, (42)
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for all l = 1, . . . , m.
First, if part (ii) of Assumption 2.2 holds, then by (26), (39), (40), and the fact that

x̃ ∈ F and x̄ ∈ F , for sufficiently large k ∈ K̄ , we can write

λl(w
j̄
k + q j̄

k ; εk)max{0, gl(w
j̄
k + q j̄

k )} = 0.

On the other hand, if part (i) of Assumption 2.2 holds, considering that, by (26), (39),
and (40),

lim
k→∞,k∈K̄

λl(w
j̄
k + q j̄

k ; εk)max{0, gl(w
j̄
k + q j̄

k )} (43)

= lim
k→∞,k∈K̄

λl(z
ı̄
k + q j̄

k ; εk)max{0, gl(z
ı̄
k + q j̄

k )},

for all l = 1, . . . , m, then we show (42) by proving

lim
k→∞,k∈K̄

λl(z
ı̄
k + q j̄

k ; εk)max{0, gl(z
ı̄
k + q j̄

k )} = 0,

for all l = 1, . . . , m. Indeed, considering that zı̄
k = yı̄

k + dı̄
k , ı̄ ∈ Iz , and recalling the

expression (8) of λl(x; ε), we have

λl(z
ı̄
k + q j̄

k ; εk)max{0, gl(z
ı̄
k + q j̄

k )} = λl(z
ı̄
k; εk)max{0, gl(z

ı̄
k)}

= λl(yı̄
k + dı̄

k; εk)max{0, gl(yı̄
k + dı̄

k)}
= λl(yı̄

k; εk)max{0, gl(yı̄
k)}.

Thus, (42) follows from the above relation and (30).
Hence, by (40) and (42), we can write

lim
k→∞,k∈K̄

P(w
j̄
k + q j̄

k ; εk) = f (x̃).

Now, recalling (25) and (26), relation (6) follows by taking the limit for k → ∞, k ∈ K̄
in (41), and considering that, by assumption, f (x̄) = f (x�). ��

5 Numerical Results

In this section, we report the numerical performance of the proposed derivative-free
algorithms DFL1 and EDFL1 for MINLP (see footnote 1) problems both on a set
of academic test problems and on a real application arising in the optimal design of
industrial electric motors. Moreover, a comparison with NOMAD v3.6.0, which is a
well-known software package for derivative-free optimization [26], on the same set of
test problems and on the real problem is carried out. It is worth noting that the MADS

1 Available for download at: http://www.dis.uniroma1.it/~lucidi/DFL.
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algorithm implemented in NOMAD is designed only for continuous and categorical
variables, but can be adapted to take into account the presence of discrete variables.
Theory about MADS with discrete variables can be found in [2].

The proposed method has been implemented in double precision Fortran90 and
all the experiments have been conducted by choosing the following values for the
parameters defining Algorithm DFL: γ = 10−6, θ = 0.5, p = 2,

α̃i
0 :=

⎧⎨
⎩

max
{

10−3, min{1, |(x0)
i |}

}
, i ∈ Ic,

max
{

1, min{2, |(x0)
i |}

}
, i ∈ Iz .

As concerns the penalty parameter, in the implementation of Algorithm DFL, we use
a vector of penalty parameters ε ∈ R

m and choose

(ε0)
j :=

{
10−3, if g j (x0)

+ < 1,

10−1, otherwise.
j = 1, . . . , m. (44)

In order to preserve all the theoretical results, the test at step 14 of Algorithm DFL
and at step 26 of Algorithm EDFL maxi=1,...,n{α̃i

k, α
i
k} ≤ ε

p
k has been substituted by

max
i=1,...,n

{α̃i
k, α

i
k} ≤ max

i=1,...,m
{(εk)

i }p.

The parameters defining Algorithm EDFL have been set to the same values used in
DFL except for the new parameter ν of the Local search procedure which is set equal
to 1.

5.1 Results on Test Problems

We selected a set of 50 test problems from the well-known collections [27,28] which
have been suitably modified by letting some variables assume only a finite number of
values. In particular, for every even index i , variable xi ∈ X i with

X i :=
{

li + h
(ui − li )

20

}
for h = 0, . . . , 20.

In Table 1, we report the details of the selected test problems. Namely, for each
problem, we indicate by n, the number of variables, and by m, the number of nonlinear
plus general linear constraints; f0 denotes the value of the objective function on the
initial point, that is, f0 = f (x0); finally, viol0 is a measure of the infeasibility on the
initial point, that is, viol0 = ∑m

j=1 max{0, g j (x0)}. In the table, we evidenced (by a ‘∗’
symbol after the name) the problems whose initial points are infeasible with respect
to the bound constraints. In those cases, we obtained an initial point by projecting the
provided point onto the set defined by the bound constraints.

As concerns NOMAD, we first run the package by using default values for all of
the parameters. Then, we run a modified version of NOMAD, namely NOMAD∗,
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Table 1 Test problems
characteristics

Problem n m f0 Viol0

HS 14 2 3 1.00E+00 3.000E+00

HS 15 2 2 1.61E+03 3.000E+00

HS 16 2 2 5.85E+01 0.000E+00

HS 18 2 2 6.25E+02 0.000E+00

HS 19 2 2 2.80E+04 2.141E+03

HS 20 2 3 8.50E+00 1.250E+00

HS 21 2 1 −1.00E+02 0.000E+00

HS 22 2 2 1.00E+00 4.000E+00

HS 23 2 5 9.00E+00 3.000E+00

HS 30 3 1 2.00E+00 0.000E+00

HS 31 3 1 4.82E+01 0.000E+00

HS 39 4 4 −2.00E+00 1.600E+01

HS 40 4 6 −0.00E+00 1.288E+00

HS 42 4 4 2.40E+01 2.000E+00

HS 43 4 3 0.00E+00 0.000E+00

HS 60 3 2 2.10E+01 9.757E+00

HS 64 3 1 7.20E+09 3.200E+06

HS 65 3 1 6.74E+01 0.000E+00

HS 72 4 2 2.00E+05 5.750E+00

HS 74 4 8 1.34E+03 1.400E+03

HS 75 4 8 1.34E+03 1.400E+03

HS 78 5 6 0.00E+00 8.000E+00

HS 79 5 6 4.10E+01 1.059E+01

HS 80 5 6 1.00E+00 8.000E+00

HS 83 5 6 −3.22E+04 2.773E+00

HS 95 6 4 1.09E+00 9.495E+01

HS 96 6 4 1.09E+00 1.749E+02

HS 97 6 4 1.09E+00 9.495E+01

HS 98 6 4 1.09E+00 2.849E+02

HS 100 7 4 1.16E+03 0.000E+00

HS 101 7 6 2.21E+03 3.703E+02

HS 102 7 6 2.21E+03 3.703E+02

HS 103 7 6 2.21E+03 3.703E+02

HS 104 8 6 6.79E−01 5.187E+00

HS 106 8 6 1.55E+04 1.346E+06

HS 107 9 6 2.91E+03 1.349E+00

HS 108 9 13 −0.00E+00 3.000E+00

HS 113 10 8 1.32E+03 9.300E+01

HS 114 10 14 2.19E+03 1.178E+03

HS 116 13 15 2.25E+02 7.902E+02
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Table 1 continued
Problem n m f0 Viol0

HS 223 2 2 −1.00E−01 0.000E+00

HS 225 2 5 9.00E+00 3.000E+00

HS 228 2 2 0.00E+00 0.000E+00

HS 230 2 2 0.00E+00 1.000E+00

HS 263 4 6 −1.00E+01 2.200E+03

HS 315 2 3 −0.00E+00 0.000E+00

HS 323 2 2 4.00E+00 1.000E+00

HS 343 3 2 −1.94E+01 5.686E+02

HS 365∗ 7 5 6.00E+00 7.341E+00

HS 369∗ 8 6 6.60E+03 5.449E+01

HS 372∗ 9 12 3.59E+05 5.610E+02

HS 373 9 12 3.82E+05 1.014E+03

HS 374 10 35 0.00E+00 9.612E+00

in which we set the MODEL_SEARCH parameter to NO, thus disabling the NOMAD
search strategy using quadratic models.

We give all the solvers a maximum of 1300 function evaluations (i.e., the equivalent
of 100 simplex gradient evaluations for a problem with n = 13 variables, like our
biggest test problem).

In Fig. 2, we report the comparison between NOMAD, NOMAD∗, DFL, and EDFL
in terms of performance and data profiles.

In order to adapt the procedure for constructing performance and data profiles, as
proposed in [29], to the nonlinearly constrained case, we considered the convergence
test

f̃0 − f (x) ≥ (1 − τ)( f̃0 − fL),

where f̃0 is the objective function value of the worst feasible point determined by
all the solvers, τ > 0 is a tolerance, and fL is computed for each problem as the
smallest value of f (at a feasible point) obtained by any solver within the allowed
1300 function evaluations. We note that, when a point is not feasible (i.e., viol(x) =∑m

j=1 max{0, g j (x)} > 10−6), we set f (x) = +∞.
The results reported in Fig. 2 show that NOMAD and EDFL are slightly the best

solvers for τ = 10−3, whereas for τ = 10−1, DFL outperforms NOMAD. We believe
that the performances of both DFL and EDFL could be further improved by introducing
in the latter algorithms the use of quadratic models to (possibly) improve the current
iterate.

5.2 Results on an Optimal Design Problem

In this section, we report the results obtained by the three codes (DFL, EDFL, and
NOMAD) on a real optimal design problem. In DFL and EDFL, we use as stopping
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Table 2 Lower and upper
bounds of continuous design
variables

Meaning l.b. u.b.

Continuous variables

x3 Inner stator diameter (mm) 72 80

x4 Stator tooth width (mm) 2.5 3.5

x5 Stator yoke thickness (mm) 4.0 8.0

x6 Slot opening width (mm) 1.2 1.6

x7 Slot opening depth (mm) 1.0 2.0

x8 Bottom loop radius (mm) 0.3 0.8

x9 Upper loop radius (mm) 0.3 0.8

x10 PM thickness (mm) 2.0 4.0

x11 Ratio of PM width to barrier width 0.80 0.95

x12 Magnet position (mm) 4.0 8.0

x13 Rotor tooth width (mm) 4.0 6.0

condition maxi∈Ic {α̃i
k, α

i
k} ≤ 10−6. We note that, as a consequence of this stopping

condition and of the initialization (44), the final values of the penalty parameters are
greater than 10−6. As for NOMAD, we set the parameter MIN_MESH_SIZE= 10−6.

We consider the optimal design of Interior Permanent Magnet (IPM) synchronous
motors [30] which are built with magnets placed inside the rotor body and are attract-
ing great attention in several variable speed applications, such as electric vehicles,
industrial, and domestic appliances. The most challenging requirements are, among
others, high torque at base and maximum speed, limited gross weight, and extended
speed range.

In Tables 2 and 3, we report the meaning of the optimization variables along with
their upper (u.b.) and lower (l.b.) bounds. For discrete variables, in Table 3, we also
specify the allowed step. Figure 3 depicts a cross section of one pole of the considered
motor and the related design variables. Table 4 reports the nonlinear constraints con-
sidered during the optimization and their imposed bounds. Finally, we mention that
the objective function employed is given by the following expression:

f (x) = f1(x) − f2(x) − f3(x),

where f1(x) is the gross weight of the motor (to be minimized), f2(x) is the torque
at base speed (to be maximized), and f3(x) is the torque at maximum speed (to be
maximized).

We remark that all of the constraints and objective function nonlinearly depend on
the design variables. Furthermore, since their values are computed by means of a finite
element simulation program (which takes about three minutes for each evaluation),
they are black-box-type functions whose expressions and first-order derivatives are
not known.

We preliminary tried to solve the design problem by using a naive approach. More
in particular, we run our DF algorithm relaxing the integrality constraint on the design
variables. This produces solution x̄ with f (x̄) = −11.006, which is infeasible because
of the nonintegrality of variables x14 and x15. Then, we rounded x̄14 and x̄15 to the
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Table 3 Lower and upper
bounds of discrete design
variables

Meaning l.b. u.b. Step

Discrete variables

x1 Stack length (mm) 60 90 1

x2 Outer stator diameter (mm) 105 130 1

x14 Angle of flux barrier (◦) −10 10 1

x15 Angle of flux barrier (◦) −10 10 1

x16 Number of wires per slot 4 14 1

x17 Wire size (mm) 1.0 3.0 0.01

Fig. 3 Cross section of the considered IPM motor (one pole) and design variables, except for the wire size
(×17)

nearest integer, and thus obtaining a point x̃ which violates a nonlinear constraint,
namely g7(x). Hence, in order to recover feasibility, we run our method by holding
that fixed the discrete variables to their rounded values. This indeed allows to recover
feasibility and produces a point x∗ with f (x∗) = −11.2524.

In Tables 5 and 6, we summarize the results obtained in terms of black-box evalu-
ations (nf), objective functions values, and computed solution points.

As concerns the performance of the codes on this real problem, DFL requires 585
function evaluations to satisfy the stopping condition (i.e., maxi∈Ic {α̃i

k, α
i
k} ≤ 10−6).

The final point x�, obtained by DFL, has f (x�) = −12.1631 and is feasible. On the
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Table 4 Bounds on the
nonlinear constraints

Meaning Bound

Nonlinear constraints

g1 Stator slot fill factor (%) ≤ 40

g2 Max flux density in the stator tooth (T) ≤ 1.83

g3 Max flux density in the stator yoke (T) ≤ 1.80

g4 Linear current density (A/cm) ≤ 400

g5 Maximum speed (rpm) ≥ 40,000

g6 Back EMF at maximum speed [V] ≤ 210

g7 Phase resistance at 90◦ (�) ≤ 0.31

g8 Torque at base speed (Nm) ≥ 9.5

g9 Torque at maximum speed (Nm) ≥ 1.8

g10 Gross weight (kg) ≤ 7.5

Table 5 Summary of the results
obtained for the IPM motor
design

nf f1(x) f2(x) f3(x) f (x)

Naive 833 5.93 13.8175 3.3649 −11.2524

DFL 585 6.6713 15.0377 3.7967 −12.1631

EDFL 2483 6.9161 15.6321 3.7769 −12.4929

NOMAD 3267 7.0857 12.9526 2.9023 −8.7692

Table 6 Solution points
obtained by the naive approach,
DFL, EDFL, and NOMAD

Naive DFL EDFL NOMAD

x1 80 90 90 89

x2 110 110 112 114

x3 80 80 80 79.988

x4 2.0 2.0 2.016 2.0

x5 5.0 5.0 5.0 5.0

x6 1.6 1.6 1.6 1.256

x7 1.004 1.111 2.0 2.0

x8 0.8 0.8 0.8 0.3

x9 0.8 0.8 0.3 0.8

x10 2.712 2.611 2.643 3.5

x11 0.95 0.9 0.9 0.93

x12 4.25 4.02 4.414 4.004

x13 4.937 4.0 4.5 4.801

x14 −2 2 0 −4

x15 2 0 1 10

x16 10 10 10 8

x17 1.8 1.8 1.8 2.17
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other hand, EDFL requires 2483 function evaluations to satisfy the stopping condition.
It gives a final solution x� with f (x�) = −12.4929 which is feasible.

Then, we ran NOMAD on the optimal design problem by using the same para-
meter settings as those used for test problems experimentation. NOMAD stopped
after 3267 black-box function evaluations reporting a best feasible point x� with
f (x�) = −8.7692.

Finally, it is worth noting that the three competing algorithms require a different
effort, in term of function evaluations, to find a first feasible solution. In particular,
DFL, EDFL, and NOMAD require 297, 1071, and 1216, respectively.

6 Conclusions

In this paper, we have addressed MINLP problems. First, we have introduced the def-
inition of stationary and extended stationary points, and then we have proposed two
algorithms and proved their global convergence. The first algorithm, namely DFL,
converges toward stationary points whereas the second algorithm, EDFL, converges
toward extended stationary points. The proposed algorithms are of the linesearch type,
in the sense that, along the continuous variables, we adopt a well-studied linesearch
with sufficient decrease strategy. The two algorithms differ in the way the discrete vari-
ables are updated. DFL manages the discrete variables by means of a Discrete search
procedure whereas EDFL performs a deeper investigation of the discrete neighborhood
by using a Local Search procedure, which is a Discrete search enriched by a so-called
Grid search phase. All the methods proposed use a sequential penalty approach to
tackle general nonlinear constraints, and thus forcing feasibility of the iterates in the
limit as the penalty parameter goes to zero.

The two algorithms have been tested both on a modified set of known test problems
and on a real optimal design problem, and their performances have been compared
with those of the well-known derivative-free optimization package NOMAD. The
numerical experimentation proves the efficiency of the proposed methods and shows
that EDFL is able to find better solutions than DFL at the cost of a higher number of
function evaluations.
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Appendix: Technical Result

In this section, we report a technical result which is needed to prove convergence of
DFL and EDFL. It is a slight modification of an analogous result reported in [20],
which takes into account the presence of discrete variables.

Proposition 7.1 Let {εk} be a bounded sequence of positive penalty parameters. Let
{xk} be a sequence of points such that xk ∈ X ∩ Z for all k, and let x̄ ∈ X ∩ Z be a
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limit point of a subsequence {xk}K for some infinite set K ⊆ {0, 1, . . .}. Suppose that
for each k ∈ K sufficiently large,

(i) for all di ∈ Dc ∩ D(x̄), there exist vectors yi
k and scalars ηi

k > 0 such that

yi
k + ηi

kdi ∈ X ∩ Z,

P(yi
k + ηi

kdi ; εk) ≥ P(yi
k; εk) − o(ηi

k),

lim
k→∞,k∈K

maxdi ∈Dc∩D(x̄){ηi
k, ‖xk − yi

k‖}
εk

= 0;

(ii)

lim
k→∞,k∈K

εk‖g+(xk)‖ = 0;

(iii)

(yi
k)z = (xk)z, for all i ∈ Ic.

Then, x̄ is a stationary point for Problem (1) with respect to the continuous variables,
that is, x̄ satisfies (2) and (4) with λ̄ ∈ R

m given by

lim
k→∞,k∈K

λ j (xk; εk) = lim
k→∞,k∈K

λ j (yi
k; εk) = λ̄ j , ∀ i ∈ Ic and j = 1, . . . , m,

where λ j (x; ε), j = 1, . . . , m, are defined in (8).

Proof Considering point (iii), namely that the discrete variables are held fixed in the
considered subsequence, the proof is the same as that of Proposition 3.1 in [20]. ��
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