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Abstract In this paper we study a class of derivative-free unconstrained minimization
algorithms employing nonmonotone inexact linesearch techniques along a set of suit-
able search directions. In particular, we define globally convergent nonmonotone ver-
sions of some well-known derivative-free methods and we propose a new linesearch-
based nonmonotone algorithm, where search directions are constructed by combining
coordinate rotations with simplex gradients. Through extensive numerical experimen-
tation, we show that the proposed algorithm is highly competitive in comparison with
some of the most efficient direct search methods and model based methods on a large
set of test problems.

Keywords Derivative-free optimization · Nonmonotone linesearch techniques ·
Coordinate rotation · Rosenbrock method · Hooke–Jeeves method · Simplex gradient

1 Introduction

We consider unconstrained minimization problems of the form minx∈Rn f (x), where
(in the theoretical analysis) the function f : Rn → R is assumed to be continuously
differentiable on Rn . However, we suppose that the derivatives of f are not available
and that cannot be easily approximated by finite difference methods. As remarked
in [4], this situation frequently arises when f must be evaluated through black-
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2 L. Grippo, F. Rinaldi

box simulation packages, typically proprietary, and each function evaluation may be
costly and noisy. Thus the development of derivative-free optimization techniques is
currently an area of increasing interest, both from a theoretical and a practical point
of view.

A recent comprehensive study on methods for derivative-free optimization is the
book cited above [4], where several approaches, such as pattern search methods, model-
based methods, linesearch methods employing approximate gradients are described
and analyzed. It would seem that there is still the need of improving the current
approaches and of developing new ideas, especially when the problem dimensions are
relatively large or the function f is noisy.

The objective of the present paper is actually that of contributing to this active field,
by proposing new efficient derivative-free algorithms based on nonmonotone inexact
linesearches along a set of search directions satisfying appropriate conditions. The
derivative-free inexact linesearches used here are based on the techniques introduced
in [7] and employed in e.g. [18,25,26], for defining globally convergent algorithms.

We note that the definition of appropriate ‘inexact’ algorithms can be important,
in the general case, even from a theoretical point of view. In fact, for a wide class
of derivative-free algorithms, ‘exact’ linesearches (at least in the sense that a station-
ary point along the search direction is approximated with good accuracy) may not
guarantee global convergence, unless rather restrictive assumptions are imposed on f.

We consider also modifications of these algorithms based on nonmonotone accep-
tance rules, which relax the descent requirements, while preserving the convergence
properties of the monotone methods. The modified algorithms used here can be viewed
as derivative-free extensions of nonmonotone linesearch algorithms employing first
order derivatives (see, e.g. [14,16,17]) and have been also considered in connec-
tion with Jacobian-free techniques for solving nonlinear equations [15]. Different
derivative-free inexact and nonmonotone linesearch algorithms have been proposed
in [22,24], in the context of methods for the solution of nonlinear equations and in
[8,10–12] with reference to optimization problems.

The introduction of nonmonotone acceptance rules can improve considerably
both robustness and efficiency, especially in the case of noisy problems and in the
case of objective function with contours exhibiting steep sided valleys or even non-
differentiable.

On the basis of the results mentioned above, in this paper we construct a class
of algorithms that combines different strategies for choosing the search directions
and for performing the line searches. The general algorithm scheme, illustrated in
the next section, allows us to unify the description and the convergence analysis of
various new linesearch-based algorithms. In particular, first we construct new non-
monotone globally convergent versions of known methods, such as the coordinate
method, the Hooke–Jeeves method [19] and the Rosenbrock method [33]. Then, in
the same framework, we define a new algorithm in which Rosenbrock rotation of the
coordinate axes is combined with an approximate gradient constructed using previous
information on function values. In particular, we use a form of (generalized) ‘simplex
gradient’ [3,5,6,20]. Approximations of the gradient of this form have been used in
various works, in order to improve the performance of derivative-free methods and
error bounds have been established. In our algorithm the acceleration step along the
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A class of derivative-free nonmonotone optimization algorithms 3

negative simplex gradient has also the effect of defining the subsequent rotation of the
coordinate axes.

The algorithms introduced here are compared on a large set of difficult test prob-
lems [13,27] with some of the best derivative-free methods currently available. The
numerical results, evaluated through the performance and data profiles introduced in
[28], show that the proposed technique is competitive with the other approaches.

The paper is organized as follows. In Sect. 2, we describe the general scheme of the
class of algorithms considered in the sequel. In Sect. 3, we recall the basic features and
the convergence properties of the linesearch algorithms, on the basis of the previous
papers mentioned above. In Sect. 4, we specialize and extend some of the conver-
gence results given for derivative-free methods [4,18,26]. In Sect. 5, we describe a
new globally convergent implementation of the Hooke–Jeeves method, employing
nonmonotone inexact linesearches. In Sect. 6, we describe a linesearch-based non-
monotone version of Rosenbrock’s method and we prove global convergence. In Sect.
7, we describe and analyze the new nonmonotone linesearch-based algorithm that
makes use of simplex gradients and of Rosenbrock rotations for defining the search
directions. In Sect. 8, we report and discuss the results of our computational experi-
mentation. Finally, Sect. 9 contains some concluding remarks and indications on future
work.

2 A conceptual scheme of the algorithms

In this section, we give an informal outline of the class of methods proposed in the
present paper; more precise descriptions of the specific methods will be reported in the
sequel. All the algorithms we will consider generate an infinite sequence of iterations
of the form

xk+1 = xk + αkdk, (1)

where dk ∈ Rn is a search direction, αk ∈ R is a stepsize and x0 ∈ Rn is a given point.
We denote by

L0 = {x ∈ Rn : f (x) ≤ f (x0)},

the level set of f corresponding to the initial value f (x0).
The algorithmic scheme we consider in the paper can be described as an infinite

sequence of major steps, indexed by � = 0, 1, . . .. Each major step � consists of a
finite number of iterations of the form (1), organized into three different phases, as
indicated below.

(a) Basic search Starting from the current point xk , indicated by y0, we consider a
finite set of r search directions

D = {di ∈ Rn, i = 1, . . . , r}, (2)
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4 L. Grippo, F. Rinaldi

where typically r ≥ n. For i = 1, . . . , r we use, in sequence, the search directions
dk = di in D and we compute αk by means of a derivative-free nonmonotone line
search. Then, for each i , we generate a new point using the iteration (1) and we
update k. During this phase, when needed, we can further store a set of tentative
points y j ∈ Rn computed along the directions di and the corresponding function
values f (y j ), for j = 0, 1, . . . , q. After r line searches, we obtain a new updated
point xk .

(b) Acceleration step Given the available information gathered during phase (a), that
is y j , f (y j ) for j = 0, 1, . . . , q, we determine a new search direction dk on the
basis of some local model of f . Using again a derivative-free nonmonotone line
search technique along dk we perform the iteration

xk+1 = xk + αkdk .

The attempt is that of improving substantially the results of phase (a) by com-
puting, for instance, an approximation to the steepest descent direction or by
determining a suitable pattern on the basis of the previous steps.

(c) Rotation of the search directions We perform a rotation (according to some given
criterion) of the directions in D, thus obtaining a new set

D̄ =
{

d̄ i ∈ Rn, i = 1, . . . , r
}
.

In the sequel, we will refer, in particular, to the Rosenbrock rotation [33] or to
suitable modifications of this technique. Once that D̄ has been determined, we set
D = D̄, we update k and a new major step can be started.

In our formulation the fundamental requirements for establishing global conver-
gence are the conditions to be imposed on the line searches and the assumptions on
the search directions in D. Thus, the basic search of step (a) is essential, while both
the acceleration step and the rotation of the directions in D can be omitted. Therefore
various algorithms can be derived from the scheme defined above. We mention here
some of the most significant choices that will be studied in the sequel in more detail.

The simplest choice can be a (nonmonotone) linesearch-based version of the coor-
dinate method. In this case the set D is defined by D = {e1, . . . , en}, where e j is
the j-th column of the identity n × n and the algorithm will consist only of the basic
search step (a).

A second scheme can be defined by combining step (a) with step (b). An example
could be a linesearch-based version of the Hooke–Jeeves method. In this case the set
D is again the set of coordinate directions, no coordinate rotation is introduced and D
remains constant during the iterations. The acceleration step (b) consists in defining
the search direction

dk = xk − y0

and in performing a (possibly nonmonotone) linesearch along dk . A second example
with a similar structure could be a nonmonotone extension of the algorithm defined in
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A class of derivative-free nonmonotone optimization algorithms 5

[26], where step (b) is defined by selecting a point and a search direction on the basis
of the points and the function values produced at step (a).

A different algorithm consists in executing only step (a) and (c), by performing a
coordinate rotation at step (c), starting from the vector

d̄1 = xk − y0

and employing Rosenbrock rotations. In this way we get a (nonmonotone) linesearch-
based version of the Rosenbrock method.

Finally, new algorithms can be constructed where the acceleration step (b) and the
Rosenbrock rotation at step (c) are combined. In the scheme proposed in this paper
each iteration starts with set D and the basic search (a) is executed as in the other cases.
The acceleration step (b) is defined by first computing the gradient approximation gk

at the last point xk of step (a) and then performing a (nonmonotone) derivative-free
line search along −gk . The gradient approximation is constructed by employing the
data collected during the linesearches of step (a). Once that the point xk+1 = xk −αk gk

has been obtained, the set D is updated by employing Rosenbrock rotation. However,
now the first element of D̄ is given by

d̄1 = xk+1 − y0

and hence the step along −gk has effect also on the rotation carried out within the
Rosenbrock technique.

In order to perform a convergence analysis of the algorithms outlined above, we
must first specify the line search algorithms employed, we must impose suitable con-
ditions on the search directions that belong to D and then we must define exactly the
different steps. This will be the object of the next sections.

3 Derivative-free line searches

We consider the derivative-free line search algorithms that will be used within the
minimization method described in the preceding section, where it is assumed that,
given xk , the next point xk+1 is obtained through the iteration

xk+1 = xk + αkdk,

where dk ∈ Rn is a search direction and αk ∈ R is a step size.
The algorithms defined in this section are essentially based on the techniques

described in [15] and can be viewed as nonmonotone versions of derivative-free line
search algorithms enforcing to zero the distance ‖xk+1 − xk‖. A sufficient reduction
of the objective function is imposed with respect to a reference value Wk that satisfies
the condition

f (xk) ≤ Wk ≤ max
0≤ j≤min(k,M)

[ f (xk− j )], (3)
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6 L. Grippo, F. Rinaldi

for a given integer M ≥ 0. In order to simplify notation, in the sequel we set fk = f (xk)

whenever convenient.
We consider two different types of line search, depending on the fact that the search

is bidirectional, that is αk can have any sign, or that only a nonnegative value for αk

is permitted.
The first scheme considered in the sequel is the bidirectional search. Starting from

an arbitrary given initial tentative value α = �k > 0, we search both along dk and −dk

and the stepsize α is computed in order to satisfy the condition of sufficient decrease
expressed by

f (xk + αkdk) ≤ Wk − γα2
k ‖dk‖2, γ > 0, (4)

with a ‘sufficiently large’ stepsize. We note that, in this phase, when the initial tentative
stepsize �k or −�k does not satisfy the condition (4), then at least three function values
are available, and hence a safeguarded quadratic interpolation can be employed. The
stepsize is reduced until either the condition of sufficient decrease is satisfied, and
hence the sign of αk is fixed, or the length of the tentative step α‖dk‖ becomes smaller
than an adjustable bound ρk .

In the latter case, the value αk determined by the algorithm is set equal to zero. This
failure of the search along dk may be due, in particular, to the fact that the directional
derivative of f along dk at xk is near zero.

When the initial tentative stepsize �k or −�k satisfies the condition of sufficient
decrease, then an expansion step is performed and |α| is increased, until suitable
conditions are satisfied. Several different acceptability conditions can be combined
for guaranteing that a sufficient displacement from xk has been effected. In particular,
an extension of Goldstein conditions can be based on the request that αk satisfies both
the condition of sufficient decrease and the condition

f (xk + αkdk) ≥ fk − γ1α
2
k ‖dk‖2,

where γ1 > γ .
Note that, in the nonmonotone case, an expansion step is not required if the initial

tentative stepsize α ∈ {−�k,�k} satisfies the condition of sufficient decrease, but
f (xk + αdk) > fk .

We remark that the expansion step is important both from a theoretical and from
a practical point of view. In fact, in order to establish convergence we must impose
that ‘sufficiently large’ stepsizes are employed and the expansion step allows us to
start from an arbitrarily small value of the initial stepsize �k . In the absence of the
expansion step, we must choose a sufficiently large value of �k , say, for instance,
�k ≥ c/‖dk‖ for some c > 0. On the other hand, as |αk |‖dk‖ is forced to zero, but
‖dk‖ can be constant in a derivative-free method (think, for instance, of the coordinate
axes), it could be convenient to choose diminishing values for �k , but then an a priori
choice would not guarantee that the stepsizes are ‘sufficiently large’.

A formal description of the algorithm outlined above is reported in the following
scheme.
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A class of derivative-free nonmonotone optimization algorithms 7

Nonmonotone Derivative Free Line Search Algorithm 1 (NDFLS1)

dk ∈ Rn, dk = 0, Wk satisfying (3) and parameters:

0 < θl < θu < 1, 1 < μl < μu, γ1 > γ > 0, ρk > 0, Δk > 0.

Step 1. Set α = Δk.

Step 2. While f(xk ± αdk) > Wk − γα2 dk
2 do:

If α dk < ρk then

set αk = 0 and terminate,
else

choose θ ∈ [θl, θu] and set α = θα.
End if

End while

Step 3. Let t ∈ {−1, 1} be such that f(xk + tαdk) ≤ Wk − γα2 dk
2

and set α = tα.
Step 4. If |α| < Δk, then set αk = α and terminate.

Step 5. Choose μ ∈ [μl, μu].
Step 6. While

f(xk + αdk) < fk − γ1α
2 dk

2

and

f(xk + μαdk) < min{f(xk + αdk), fk − γ (μα)2 dk
2}

set α = μα and choose μ ∈ [μl, μu].

End while

Step 7. Set αk = α and terminate.

In the sequel, whenever convenient, we will recall the preceding algorithm by indi-
cating some of the inputs; in this case we will use the notation NDFLS1(dk,�k, ρk).

The properties of Algorithm NDFLS1 are stated in the next proposition, whose
proof follows with minor modifications from the results given in Propositions 3 and 4
of [15].

Proposition 1 Let f : Rn → R be continuously differentiable and assume that the
level set L0 is compact.

(i) Algorithm NDFLS1 determines, in a finite number of steps, a scalar αk such that

f (xk + αkdk) ≤ Wk − γα2
k ‖dk‖2. (5)

(ii) Let {xk} be a the sequence of points in Rn and let K be an infinite index set such
that

xk+1 = xk + αkdk, for all k ∈ K
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8 L. Grippo, F. Rinaldi

where dk ∈ Rn, dk �= 0 and αk ∈ R is determined by means of Algorithm
NDFLS1. Assume that { f (xk)} converges and that ρk → 0 for every infinite
subsequence of {xk}K such that αk = 0. Then, we have:

lim
k→∞,k∈K

∇ f (xk)
T dk

‖dk‖ = 0.


�
Now we can define the linesearch algorithm where the searches are performed

only for positive values of α, which can easily obtained from the scheme of NDFLS1
algorithm by simple modifications.

Nonmonotone Derivative Free Line Search Algorithm 2 (NDFLS2)

Data. dk ∈ Rn, dk = 0, Wk satisfying (3) and parameters:

0 < θl < θu < 1, 1 < μl < μu, γ1 > γ > 0, ρk > 0, Δk > 0.

Step 1. Set α = Δk.

Step 2. While f(xk + αdk) > Wk − γα2 dk
2 do:

If α dk < ρk then
set αk = 0 and terminate,

else
choose θ ∈ [θl, θu] and set α = θα.

End if

End while

Step 3. If α < Δk, then set αk = α and terminate.

Step 4. Choose μ ∈ [μl, μu].

Step 5. While

f(xk + αdk) < fk − γ1α
2 dk

2

and

f(xk + μαdk) < min{f(xk + αdk), fk − γ (μα)2 dk
2}

set α = μα and choose μ ∈ [μl, μu].

End while

Step 6. Set αk = α and terminate.

The next proposition gives the convergence properties of the algorithm, that we may
recall as NDFLS2(dk,�k, ρk). The proof can be established along the lines followed
for proving Proposition 1.
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A class of derivative-free nonmonotone optimization algorithms 9

Proposition 2 Let f : Rn → R be continuously differentiable and assume that the
level set L0 is compact.

(i) Algorithm NDFLS2 determines, in a finite number of steps, a scalar αk ≥ 0 such
that

f (xk + αkdk) ≤ Wk − γα2
k ‖dk‖2. (6)

(ii) Let {xk} be a the sequence of points in Rn and let K be an infinite index set such
that

xk+1 = xk + αkdk, for all k ∈ K

where dk ∈ Rn, dk �= 0 and αk ∈ R is determined by means of Algorithm
NDFLS2. Assume that { f (xk)} converges and that ρk → 0 for every infinite
subsequence of {xk}K such that αk = 0. Then, we have:

lim
k→∞,k∈K

∇ f (xk)
T dk

‖dk‖ ≥ 0.


�

4 Global convergence conditions

In this section we state convergence conditions that impose restrictions on the direc-
tions employed during the basic search defined at phase (a) of the scheme of Sect.
2. More specifically, we extend to nonmonotone methods some of the global con-
vergence conditions already established for derivative-free line search-based methods
[4,18,26]. In particular, we state conditions under which every limit point of the
sequence generated by an algorithm of the form

xk+1 = xk + αkdk,

where dk ∈ Rn is a search direction and αk ∈ R is a stepsize, is a stationary point of f .
These conditions will be specialized in the sequel to the model algorithm introduced
in Sect. 2 for proving global convergence.

The convergence results established in this section depend to a great extent on the
lemma reported below, proved in [14], which follows essentially from the results
established in [16,17]. This lemma plays a major role in the convergence analy-
sis of nonmonotone methods, since it yields a sufficient condition for establishing
the convergence of a nonmonotone sequence of function values and for proving that
‖xk+1 − xk‖ → 0.

Before stating this result we recall from [29] that a function σ : R+ → R+
is called a forcing function if, for every sequence of numbers tk ∈ R+ such that
limk→∞ σ(tk) = 0,we have that

lim
k→∞ tk = 0.

Then we can state the following lemma.
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Lemma 3 Let {xk} be a sequence of points such that

f (xk+1) ≤ Wk − σ(‖xk+1 − xk‖), (7)

where σ : R+ → R+ is a forcing function and Wk is a reference value that satisfies (3)
for a given integer M ≥ 0. Suppose that f is bounded below, and that it is Lipschitz
continuous on L0, that is, that there exists a constant L such that

| f (x) − f (y)| ≤ L‖x − y‖, for all x, y ∈ L0.

Then:

(i) xk ∈ L0 for all k;
(ii) the sequence { f (xk)} is convergent;

(iii) limk→∞ ‖xk+1 − xk‖ = 0. 
�
Suppose first that the sequence of search directions {dk} satisfies the following

assumption, which requires, in essence, that ultimately a set of n uniformly linearly
independent search directions is employed cyclically.

Assumption 4 There exist an integer N > 0 and n integer sequences { j i
k}, (i =

1, . . . , n) such that:

a) k ≤ j1
k ≤ j2

k ≤ . . . ≤ jn
k ≤ k + N for each k ≥ 0;

b) Every limit point of the sequence of n × n matrices

Pk =
(

d j1
k

‖d j1
k
‖

d j2
k

‖d j2
k
‖ . . .

d jn
k

‖d jn
k
‖

)
(k = 0, 1, . . .),

where ‖d ji
k
‖ > 0 for all k ≥ 0 and i = 1, . . . , n, is a non singular matrix in Rn×n .


�
It is easily seen that the assumption given above, for a sufficiently large N , is

satisfied in a scheme where the coordinate directions are employed cyclically. Other
examples will be considered later.

We can now establish the following result.

Proposition 5 Let f : Rn → R be a continuously differentiable function and assume
that the level set L0 is compact. Let {xk} be the sequence of points produced by an
algorithm of the form xk+1 = xk + αkdk , where dk �= 0 for all k and αk ∈ R.

Suppose that:

(a) For every k we have

f (xk+1) ≤ Wk − σ(‖xk+1 − xk‖), (8)

where σ : R+ → R+ is a forcing function and Wk is a reference value that
satisfies (3) for a given integer M ≥ 0;
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A class of derivative-free nonmonotone optimization algorithms 11

(b) the sequence of search directions {dk} satisfies Assumption 4;
(c) in correspondence to the sequences { j i

k}, (i = 1, . . . , n) in Assumption 4, the
stepsize α j i

k
is computed using Algorithm NDFLS1 for each k and i and ρ j i

k
→ 0

for every infinite subsequence such that α j i
k

= 0.

Then the algorithm produces an infinite sequence that admits limit points and every
limit point x̄ of {xk} is in L0 and satisfies ∇ f (x̄) = 0.

Proof Taking into account the assumptions on f and L0 and assumption (a), prelim-
inarily we observe that all the hypotheses of Lemma 3 are satisfied and hence the
assertions of Lemma 3 must hold. It follows, in particular, that { f (xk)} converges, that
xk ∈ L0 for all k, that {xk} has limit points and that every limit point of the sequence
is in L0. We must show that every limit point of {xk} is also a stationary point of f .

Let x̄ ∈ L0 be a limit point of {xk} and let {xk}K be a subsequence converging to
x̄ . Consider the search directions d ji

k
, for i = 1, . . . n, introduced in Assumption 4

and let pi
k = d ji

k
/‖d ji

k
‖, for i = 1, . . . , n be the columns of the matrix Pk defined

there. As all the sequences {pi
k} are bounded there exists a subsequence {xk}K1 , with

K1 ⊆ K such that

lim
k∈K1,k→∞ pi

k = p̄i , i = 1, . . . , n. (9)

By Assumption 4, we have that the vectors p̄i , i = 1, . . . , n are linearly independent.
By Lemma 3(iii), we have that

lim
k→∞ ‖xk+1 − xk‖ = 0

and hence, as j i
k ≤ k + N , it can be easily established, by induction, that all the points

x ji
k

converge to x̄ for k ∈ K1, k → ∞ and for all i = 1, . . . , n.
As αk is computed through Algorithm NDFLS1 and the assumptions of Proposi-

tion 1 are satisfied, it follows from assertion (ii) of this proposition that:

lim
k∈K1, k→∞

∇ f (x ji
k
)T d ji

k

‖d ji
k
‖ = ∇ f (x̄)T p̄i = 0, i = 1, . . . , n. (10)

Since vectors p̄i are linearly independent, we obtain ∇ f (x̄) = 0. 
�
Remark 6 If we suppose that for each k, in the iteration xk+1 = xk +αkdk, the stepsize
αk is computed through Algorithm NDFLS1, then both assumption (a) and (c) in
Proposition 5 are automatically satisfied and hence the statement can be simplified.
However, the assumptions stated above are less restrictive, in the sense that some
subsequence of iterations can be carried out without performing a line search, provided
that a sufficient (non monotone) reduction is guaranteed at every step. This could
be useful for introducing further relaxations of monotonicity, through, for instance,
nonmonotone watchdog rules as in [15]. 
�
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12 L. Grippo, F. Rinaldi

The convergence results given above can be easily extended to algorithms employ-
ing other types of search directions. To illustrate one of the most significant extensions,
first we recall from [21] that the positive span of a set of vectors {v1, . . . , vr } is the
cone

{
y ∈ Rn : y =

r∑
i=1

ζivi , ζi ≥ 0, i = 1, . . . , r

}
.

A positive spanning set in Rn is a set of vectors whose positive span is Rn . The
set {v1, . . . , vr } is said to be positively dependent if one of its vectors is a positive
combination of the others; otherwise, the set is positively independent. A positive
basis in Rn is a positively independent set whose positive span is Rn . Two examples
of positive basis for Rn are:

– The coordinate directions and their negative counterparts, that is

{s1, . . . , s2n} = {e1, . . . , en,−e1, . . . ,−en};

– The coordinate directions and the negative of their sum, that is

{s1, . . . , sn+1} =
{

e1, . . . , en,−
n∑

i=1

ei

}
.

Now, let {xk} be a sequence of points produced through the iteration xk+1 = xk +αkdk,

where dk �= 0 for all k and αk ≥ 0. We suppose that the sequence {dk} satisfies the
following assumption, which can be related to the definition of ‘class (a) of search
directions’ introduced in [26].

Assumption 7 There exist integers N > 0 and r > 0 and r integer sequences { j i
k},

(i = 1, . . . , r), such that

a) k ≤ j1
k ≤ j2

k ≤ . . . ≤ jr
k ≤ k + N for each k ≥ 0;

b) Every limit point of the sequence of n × r matrices

Qk =
(

d j1
k

‖d j1
k
‖

d j2
k

‖d j2
k
‖ . . .

d jr
k

‖d jr
k
‖

)
(k = 0, 1, . . .),

where ‖d ji
k
‖ > 0 for all k ≥ 0 and i = 1, . . . , r , is a matrix in Rn×r whose

columns positively span Rn . 
�
In this case, we suppose that the line search is carried out only for α ≥ 0 along

each direction, and hence we refer to the line search algorithm NDFLS2. Then we can
state a convergence result similar to that given in Proposition 5.

Proposition 8 Let f : Rn → R be a continuously differentiable function and assume
that the level set L0 is compact. Let {xk} be the sequence of points produced by an
algorithm of the form xk+1 = xk +αkdk, where dk �= 0 for all k and αk ∈ R. Suppose
that:
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A class of derivative-free nonmonotone optimization algorithms 13

(a) For every k we have

f (xk+1) ≤ Wk − σ(‖xk+1 − xk‖), (11)

where σ : R+ → R+ is a forcing function and Wk is a reference value that
satisfies (3) for a given integer M ≥ 0.

(b) The sequence of search directions {dk} satisfies Assumption 7;
(c) In correspondence to the sequences { j i

k}, (i = 1, . . . , r) in Assumption 7, the
stepsize α j i

k
is computed using Algorithm NDFLS2 for each k and i and ρ j i

k
→ 0

for every infinite subsequence such that α j i
k

= 0.

Then the algorithm produces an infinite sequence that admits limit points and every
limit point x̄ of {xk} is in L0 and satisfies ∇ f (x̄) = 0.

Proof Reasoning as in the proof of Proposition 5, we can establish that Lemma 3
holds. Let x̄ be a limit point of {xk} and let {xk}K be a subsequence converging to
x̄ ∈ L0. Consider the search directions

d ji
k
, j i

k ∈ {k, k + 1, . . . , k + N }, i = 1, . . . r,

introduced in Assumption 7 and let qi
k be the columns of the n × r matrix Qk defined

there. As all the sequences {qi
k} are bounded there exists a subsequence {xk}K1 , with

K1 ⊆ K such that

lim
k∈K1,k→∞ qi

k = q̄i , i = 1, . . . , r. (12)

By Assumption 7, we have that q̄i , i = 1, . . . , r represent a positive basis in Rn . Using
Lemma 3(iii), we have that points x ji

k
converge to x̄ for k ∈ K1, k → ∞ and for all

i = 1, . . . , r . As αk is computed through Algorithm NDFLS2 and all the assumptions
of Proposition 2 hold, it follows from (ii) of this proposition that:

lim
k∈K1, k→∞

∇ f (x ji
k
)T d ji

k

‖d ji
k
‖ = ∇ f (x̄)T q̄i ≥ 0, i = 1, . . . , r. (13)

Since vectors q̄i represent a positive basis in Rn , we can write

−∇ f (x̄) =
r∑

i=1

ζi q̄
i , ζi ≥ 0,

so that, by (13), we have

−‖∇ f (x̄)‖2 =
r∑

i=1

ζi∇ f (x̄)T q̄i ≥ 0.
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14 L. Grippo, F. Rinaldi

Thus, we obtain

∇ f (x̄) = 0.


�

5 Hooke–Jeeves method with nonmonotone line searches

With reference to the scheme of Sect. 2 we consider here the case where the set D is
not changed during the iterations and consists in the set defined by

D = {e1, . . . , en},

where e j ∈ Rn is the j-th column of the identity n × n.
We can describe, by means of a single scheme, the nonmonotone versions of the

coordinate method and of the Hooke–Jeeves method; in particular in the following
scheme the coordinate method can be obtained by terminating each major iteration at
the end of Step 1.

NonMonotone Hooke-Jeeves (NMHJ) Algorithm

Data. Starting point x0 ∈ Rn, θ ∈ (0, 1), ρ0 > 0, D = {e1, e2, . . . , en}.

Set k = 0.

For = 0, 1, . . .

Set y0 = xk.

Step 1. Coordinate search

For i = 1, . . . , n

set dk = ei;

choose an initial stepsize Δk > 0 and calculate step αk along dk

using Algorithm NDFLS1(dk, Δk, ρk);

set xk+1 = xk + αkdk;

if αk = 0, set ρk+1 = θρk, otherwise set ρk+1 = ρk

set k = k + 1.

End For

Step 2. Pattern search

Set dk = xk − y0.

Choose an initial stepsize Δk > 0 and calculate step αk along dk

using Algorithm NDFLS1(dk, Δk, ρk);

set xk+1 = xk + αkdk;

if αk = 0 set ρk+1 = θρk, otherwise set ρk+1 = ρk;

set k = k + 1.

End For
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A class of derivative-free nonmonotone optimization algorithms 15

The convergence of the algorithm is established in the next proposition.

Proposition 9 Let f : Rn → R be a continuously differentiable function and
assume that the level set L0 is compact. Let {xk} be the sequence of points pro-
duced by Algorithm NMHJ. Then the algorithm produces an infinite sequence of
points in L0, such that there exist limit points and every limit point x̄ of {xk} satisfies
∇ f (x̄) = 0.

Proof In order to prove the assertion, we need to show that the sequence generated
by the algorithm satisfies conditions (a), (b) and (c) of Proposition 5. As for every
k the condition of sufficient reduction used in Algorithm NDFLS1 must be met, in
correspondence to the forcing function σ(t) = γ t2, assumption (a) of Proposition 5
is satisfied. Now, let xk be one of the points generated at the major step �. Then, it
is easily seen that, after at most n searches, at Step 1 of the next major step � + 1,
we assume as search directions the coordinate directions and hence the sequence {dk}
satisfies Assumption 4 with Pk defined as the identity matrix n × n for all k. Thus
also condition (b) of Proposition 5 holds. Finally, the instructions of the algorithm
guarantee that condition (c) of Proposition 5 holds. 
�

6 Rosenbrock method with nonmonotone line searches

We introduce, in this section, a linesearch-based version of the Rosenbrock method.
First we illustrate the procedure used for constructing periodically a basic set of search
directions. Then we describe two different algorithms:

1) A nonmonotone linesearch-based Rosenbrock method employing bidirectional
searches along n directions;

2) A nonmonotone linesearch-based Rosenbrock method employing non negative
searches along n + 1 directions.

In the Rosenbrock approach, a set of orthogonal directions is rotated at each major
step, so that at least one of the new directions is more closely conformed to the local
behavior of the function. We consider:

– An orthonormal set of vectors D = {di , i = 1, . . . , n} given initially or determined
during a cycle of previous iterations;

– A set of values σ i ∈ R, i = 1, . . . , n representing the movements performed along
the vectors di in a cycle of previous iterations.

The new set of directions

D̄ = {d̄i , i = 1, . . . , n}
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16 L. Grippo, F. Rinaldi

is obtained by using the following scheme:

Search Directions Generation(SDG)

For i = 1, . . . , n

Step 1. Set

ai =

⎧
⎪⎨

⎪⎩

di if σi = 0
n

j=i

σjdj if σi = 0

Step 2. Set

bi =

⎧
⎪⎨

⎪⎩

ai if i = 1

ai −
i−1

j=1

((ai)Td̄j)d̄j if i ≥ 2

with d̄i =
bi

bi

End For

At Step 1, if σ i �= 0, a vector ai is calculated which represents the sum of all the
movements made in the directions d j for j = i, . . . , n. In particular, for σ1 �= 0 the
vector d̄1 connects the point x from which we start our search and the point obtained
at the end of the search, that is:

x̄ = x +
n∑

j=1

σ j d j .

At Step 2, the new orthogonal vector d̄i is obtained by a Gram–Schmidt orthogonal-
ization procedure. In other words, when σ1 �= 0 the vector d̄1 represents the direction
of farthest advance, d̄2 is the best direction which can be found normal to d̄1, and so
on.

When σ i = 0, we simply set ai = di and it can be shown that d̄i = di . It has been
proved (see [2]) that the new directions generated by the SDG Algorithm are linearly
independent and orthogonal. More precisely, the following result can be established.

Proposition 10 Let us assume that di , i = 1, . . . , n are linearly independent and
mutually orthogonal. Then the directions d̄i , i = 1, . . . , n generated by the SDG
Algorithm are also linearly independent and mutually orthogonal for any set σ i , i =
1, . . . , n. Furthermore, if σ i = 0, then d̄i = di . �

Let us denote by σ = (σ 1, σ 2, . . . , σ n)T the n-vector of the movements along the
directions di , for i = 1, . . . , n, starting from x . Then, the computation performed with
the preceding scheme will be indicated by

D̄ = SDG(D, σ ).
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A class of derivative-free nonmonotone optimization algorithms 17

At each step, the method of Rosenbrock originally proposed in [33] takes discrete
steps along the search directions. In [2], a version of the method that utilizes exact
line searches is presented and convergence results are reported, under rather restrictive
assumptions on the objective functions.

Now we describe the two new versions of the Rosenbrock method, based on the
use of nonmonotone, inexact derivative-free line search techniques, and we prove
convergence towards stationary points under usual assumptions. We first consider
the version which uses n bidirectional searches carried out by means of Algorithm
NDFLS1. We report here the algorithm scheme.

NonMonotone LineSearch-based Rosenbrock (NMLSR1) Algorithm 1

Data. Starting point x0 ∈ Rn, θ ∈ (0, 1), ρ0 > 0, D = {d1, d2, . . . , dn}, where
di = ei, i = 1, . . . , n, k = 0.

For = 0, 1, . . .

Step 1. Coordinate search

For i = 1, . . . , n

set dk = di;

choose an initial stepsize Δk > 0 and calculate step αk along dk

using Algorithm NDFLS1(dk, Δk, ρk).

set xk+1 = xk + αkdk, σi = αk; if αk = 0 set ρk+1 = θρk,
otherwise set ρk+1 = ρk;

set k = k + 1.

End For

Step 2. Coordinate rotation

Compute the new set of search directions through Rosenbrock rotation,
that is D̄ = SDG(D, σ);

set D = D̄.

End For

In the following proposition, we report the main result about the convergence of
the algorithm.

Proposition 11 Let f : Rn → R be a continuously differentiable function and assume
that the level set L0 is compact. Let {xk} be the sequence of points produced by
Algorithm NMLSR1. Then the algorithm produces an infinite sequence of points in
L0, such that there exist limit points and every limit point x̄ of {xk} satisfies ∇ f (x̄) = 0.

Proof In order to prove the assertion, we need to show that the sequence generated by
the algorithm satisfies assumptions (a), (b) and (c) of Proposition 5. First of all, since
at every iteration the acceptability condition of sufficient reduction used in Algorithm
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18 L. Grippo, F. Rinaldi

NDFLS1 must hold, assumption (a) of Proposition 5 is satisfied in correspondence to
the forcing function σ(t) = γ t2.

Now, by Proposition 10, we have that, every time Step 2 is performed in the algo-
rithm, a new orthonormal set of n search directions is generated. Therefore, for each
k it is possible to find an index k̄ ≥ k, with k̄ ≤ k + n − 1, where Step 2 is performed,
and a finite positive value N ≤ 2n − 1 such that the n indices

k ≤ j1
k ≤ j2

k ≤ · · · ≤ jn
k ≤ k + N

are related to the orthonormal set of directions d ji
k
, i = 1, . . . , n previously generated

at Step 2. As the columns of the matrix Pk appearing in Assumption 4 are defined
by pi

k = d ji
k
/‖d ji

k
‖ for i = 1, . . . , n, we have that also the vectors pi

k, i = 1, . . . , n
constitute an orthonormal set. Then we have, by continuity, that every limit point
( p̄1, p̄2, . . . p̄n) of {(p1

k , p2
k , . . . pn

k )} yields n orthonormal vectors p̄i ∈ Rn, i =
1, . . . , n. Thus, assumption (b) of Proposition 5 is satisfied. Finally, the instructions
at Step 1 of the algorithm guarantee that the assumptions on ρk are satisfied and also
(c) of Proposition 5 holds. 
�

As we have already said at the beginning of the section, we can consider, in alter-
native to Algorithm 1, a version of the Rosenbrock algorithm with (nonmonotone)
derivative-free line searches and n + 1 search directions. In Sect. 4, we have seen that
a positive basis can be obtained by the coordinate directions and the negative of their
sums. In general, if we have a set of linearly independent mutually orthogonal vectors
Da = {d1, . . . , dn}, we can always build a positive basis by adding to the set Da the
negative of their sums, possibly scaled with an arbitrary positive constant ξ > 0, that
is

D =
⎧⎨
⎩d1, . . . , dn,−ξ

n∑
j=1

d j

⎫⎬
⎭.

Now we define a modified version of the Rosenbrock algorithm that uses n + 1 line
searches for non negative values of the stepsize and hence makes use of Algorithm
NDFLS2.
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A class of derivative-free nonmonotone optimization algorithms 19

NonMonotone LineSearch-based Rosenbrock (NMLSR2) Algorithm 2

Data. Starting point x0 ∈ Rn, θ ∈ (0, 1), ρ0 > 0, = 0, k = 0,
Da = {d1, d2, . . . , dn}, D = Da ∪ {dn+1}, where di = ei, i = 1, . . . , n,
dn+1 = − n

i=1 di.

For = 0, 1, . . .

Step 1. Set y0 = xk;

Step 2. Search on a positive basis

For i = 1, . . . , n + 1

set dk = di;

choose an initial stepsize Δk > 0 and calculate step αk ≥ 0 along dk using
Algorithm NDFLS2(dk, Δk, ρk);

set xk+1 = xk + αkdk; if αk = 0 set ρk+1 = θρk, otherwise set ρk+1 = ρk;

set k = k + 1.

End For

Step 3. Set σi = (xk − y0)T di, i = 1, . . . , n.

Step 4. Coordinate rotation

Compute a new set of search directions by first employing Rosenbrock
rotation of Da, that is

D̄a = SDG(Da, σ),

and then setting

d̄n+1 = −
n

i=1

d̄i; D̄ = D̄a ∪ {d̄n+1};

set D = D̄.

End For

In the following proposition, we establish the convergence of the algorithm.

Proposition 12 Let f : Rn → R be a continuously differentiable function and assume
that the level set L0 is compact. Let {xk} be the sequence of points produced by
Algorithm NMLSR2 and assume that dk �= 0 for all k. Then the algorithm produces
an infinite sequence such that every limit point x̄ of {xk} satisfies ∇ f (x̄) = 0.

Proof We show that the sequence generated by our algorithm satisfies assumptions
(a), (b) and (c) of Proposition 8. By the instructions at Step 2 of the algorithm, the
stepsize αk along dk is calculated using Algorithm NDFLS2 for every k and hence (a)
is satisfied.

By Proposition 10, every time Step 4 is performed in the algorithm, a new positive
basis in Rn is obtained by adding the negative sum to the set of linearly independent
and mutually orthogonal directions generated by means of Algorithm SDG. As Step
4 is performed after all n + 1 directions have been explored, for each k it is possible
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20 L. Grippo, F. Rinaldi

to find an iteration index k̄, k ≤ k̄ ≤ k + n, where Step 4 is carried out, and a finite
positive value N ≤ 2(n + 1) such that the n + 1 indices k ≤ j1

k ≤ j2
k ≤ · · · ≤

jn+1
k ≤ k + N are related to the vectors d ji

k
, i = 1, . . . , n + 1 previously generated at

Step 4.
By construction, we have that {d j1

k
, . . . , d jn

k
} is an orthonormal set and that

d jn+1
k

= −
n∑

i=1

d ji
k
,

where ‖d jn+1
k

‖ > 0, because of the linear independence of {d j1
k
, . . . , d jn

k
}. As the

columns {qi
k}, i = 1, . . . , n + 1, of the matrix Qk appearing in Assumption 7 are

defined by

qi
k = d ji

k
/‖d ji

k
‖, (i = 1, . . . , n + 1),

we have that {q1
k , q2

k , . . . , qn
k } is an orthonormal set. Therefore at every limit point

(q̄1, q̄2, . . . , q̄n+1) of the sequence {(q1
k , q2

k , . . . , qn+1
k )} we have, by continuity, that

{q̄1, q̄2, . . . , q̄n} is an orthonormal set too, and that

q̄n+1 = − 1

‖∑n
i=1 q̄i‖

n∑
i=1

q̄i ,

where ‖∑n
i=1 q̄i‖ > 0, bacause of the linear independence of {q̄1, q̄2, . . . q̄n}. Then it

can be easily verified, as already observed, that the vectors q̄1, q̄2, . . . q̄n+1 constitute
a positive basis of Rn and hence assumption (b) is satisfied. Finally, as ρk+1 = θρk if
αk = 0 also assumptions (c) is satisfied. 
�

7 Linesearch-based algorithms employing gradient approximations
and Rosenbrock rotations

In this section, we describe a new class of derivative-free algorithms, structured as
indicated in the general scheme of Sect. 2, which makes use of simplex gradients
and of Rosenbrock rotations for defining the search directions. Along these direc-
tions the stepsize are computed through nonmonotone, inexact, derivative-free line
searches.

In the scheme of Sect. 2, after a cycle of line searches at Step (a) is carried out along
a set of given directions di , for i = 1, . . . , n, we introduce at Step (b) the computation
of a simplex gradient g (in an extended sense). During the searches at Step (a) we
further store (al least) n + 1 points yi ∈ Rn and the corresponding function values
f (yi ), for i = 0, 1, . . . , n and we compute the simplex gradient g using these data.
Then, given the set of points {y0, . . . , yn}, we can define (see, e.g. [5]) the gradient
approximation at xk ≡ yn as the solution of the least squares problem
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A class of derivative-free nonmonotone optimization algorithms 21

min
g

∥∥∥ST g − δ( f )

∥∥∥
2
,

where:

S =
[

y0 − yn, . . . , yn−1 − yn
]

and

δ( f ) =
[

f (y0) − f (yn), . . . , f (yn−1) − f (yn)
]T

.

In principle, if we assume that S is square and nonsingular, we could solve the system

ST g = δ( f ).

However, even in this case, it could be more convenient to give an approximate solution
of the system through the approximate minimization of an error function. The solution
of a least squares problem is obviously required when S singular or nonsquare, for
instance because of the fact that we make use of other past data gathered during
previous linesearches.

The illustration of a major step of our algorithm is given in Fig. 1, where we have
assumed, for simplicity, that all stepsizes are positive.

We now formally state the algorithm where we combine simplex gradients with
Rosenbrock rotations.

Fig. 1 Illustration of a major step of Algorithm NMDFU
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22 L. Grippo, F. Rinaldi

NonMonotone Derivative-Free Unconstrained (NMDFU) Algorithm

Data. Starting point x0 ∈ Rn, θ ∈ (0, 1), ρ0 > 0, k = 0 and
D = {d1, d2, . . . , dn}, where di = ei, i = 1, . . . , n.

For = 0, 1, . . .

Set y0 = xk.

Step 1. Coordinate search

For i = 1, . . . , n

set dk = di, choose an initial stepsize Δk > 0 and calculate step αk along dk

using Algorithm NDFLS1(dk, Δk, ρk);

if αk = 0 set yi = xk + Δkdi else set yi = xk + αkdi;

set xk+1 = xk + αkdk, σi = αk; if αk = 0 set ρk+1 = θρk,
otherwise set ρk+1 = ρk;

set k = k + 1.

End For

Step 2. Gradient approximation calculation

Set S = [y0 − yn, . . . , yn−1 − yn], δ(f) = [f(y0) − f(yn), . . . , f(yn−1) − f(yn)]T;

calculate the gradient approximation g by solving the least squares problem

min
g

ST g − δ(f) 2,

and set dk = −g.

Step 3. Line search along the gradient approximation

Choose an initial stepsize Δk > 0, calculate step αk ≥ 0 along dk = −g using
Algorithm NDFLS2(dk, Δk, ρk);

set xk+1 = xk + αkdk; if αk = 0 set ρk+1 = θρk, otherwise set ρk+1 = ρk;

if αk = 0 set σi = (xk+1 − y0)T di, with i = 1, . . . , n;

set k = k + 1.

Step 4. Coordinate rotation

Compute the new set of search directions through Rosenbrock rotation, that is

D̄ = SDG(D, σ).

Step 5. Set D = D̄.

End For

The convergence of the algorithm is established in the next proposition.

Proposition 13 Let f : Rn → R be a continuously differentiable function and assume
that the level set L0 is compact. Let {xk} be the sequence of points produced by
Algorithm NMDFU. Then the algorithm produces an infinite sequence of points in L0,
such that there exist limit points and every limit point x̄ of {xk} satisfies ∇ f (x̄) = 0.
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Proof In order to prove the assertion, we need to show that the sequence generated by
the algorithm satisfies assumptions (a), (b) and (c) of Proposition 5.

Since at every iteration either the acceptability condition of sufficient reduction
used in Algorithm NDFLS1 or in Algorithm NDFLS2 must hold, also assumption (a)
of Proposition 5 is satisfied in correspondence to the forcing function σ(t) = γ t2.

It is easily seen that we can follow essentially the same arguments used in the proof
of Proposition 11. In fact, every time Step 4 is performed in the algorithm, a new
orthonormal set of n search directions is generated and used within N ≤ 2n iterations
and assumption (b) of Proposition 5 can be established. Finally, the instructions at
Step 1 guarantee that also condition (c) of Proposition 5 is satisfied. 
�

8 Numerical results

In this section we analyze the effects of using coordinate rotations and gradient approx-
imations in a derivative-free context. Our numerical experience can be divided into
three parts:

1. In the first part, we compare algorithms NMDFU and NMLSR (Algorithm 1) with
a nonmonotone version of the Coordinate Search algorithm (NMCS). The aim of
this experiment is analyzing the effects of using coordinate rotations and gradient
approximations;

2. In the second part, in order to analyze the impact of nonmonotone linesearches
in the proposed framework, we compare two different version of the NMDFU
algorithm where we respectively use a nonmonotone and a monotone linesearch;

3. In the third part, we compare the NMDFU Algorithm with NEWUOA [31] and
NOMAD [23] two well-known and widely used codes for derivative-free uncon-
strained optimization. The aim of this experiment is evaluating the efficiency of
our approach when compared with other derivative-free solvers.

Consequently, we adopt the same procedure as that used in [28] to evaluate the
behavior of the different solvers. We use the following convergence condition:

f (x0) − f (xk) ≥ (1 − τ)( f (x0) − fL) (14)

where 0 ≤ τ ≤ 1 is a suitably chosen tolerance and fL is the smallest function value
obtained by any solver within the same maximum computational budget. We consider
a set A of na algorithms, a set P of |P| problems and a performance measure m p,a

(e.g. in our case, number of function evaluations). We compare the performance on
problem p by algorithm a with the best performance by any algorithm on this problem
using the following performance ratio

rp,a = m p,a

min{m p,a : a ∈ A} .

Then, we obtain a first overall assessment of the performance of the algorithm a by
defining the performance profile:
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ρa(α) = 1

|P| size{p ∈ P : rp,a ≤ α},

which approximates the probability for algorithm a ∈ A that the performance ratio
rp,a is within a factor α ∈ R of the best possible ratio. The function ρa approximates
the distribution function for the performance ratio. Thus ρa(1) gives the fraction of
problems for which the algorithm a was the most effective, ρa(2) gives the fraction
of problems for which the algorithm a is within a factor of 2 of the best algorithm,
and so on. The convention rp,a = ∞ is used when algorithm a fails to satisfy the
convergence test (14) for problem p.

We further measure performances of the different solvers by the percentage of
problems that can be solved (for a given tolerance τ ) within a certain number of
function evaluations. We define tp,a the number of function evaluations needed for
algorithm a to satisfy (14) for a given tolerance τ , and we obtain the percentage of
problems solved with ν function evaluations by means of the so called data profile:

da(ν) = 1

|P| size

{
p ∈ P : tp,a

n p + 1
≤ ν

}
,

where n p is the number of variables in p ∈ P . If the convergence test (14) cannot be
satisfied within the assigned computational budget, we set tp,a = ∞.

The test set P we consider in the experiments consists of 38 smooth problems
(2 fixed dimension problems with n = 6, and 18 variable dimension problems with
n ∈ {10, 20}) from the CUTEr collection [13] gathered from papers on derivative-
free optimization (see, e.g. [1,5]), and 49 nonsmooth problems from the collection of
Lukšan and Vlček [27,32]. Since the problems in P have at most 50 variables, in our
numerical experience we set the maximum computational budget to be 5000 and we
investigate the behavior of the solvers within this computational budget. We use both
performance and data profile with the test (14) where τ = 10−l with l ∈ {3, 6}.

In NMDFU, NMLSR Algorithm 1 and NMCS we used the following reference
value:

Wk = max
0≤ j≤min(k,M)

[ f (xk− j )],

with M = 3.
In Fig. 2, we report performance and data profiles related to the first experiment. As

we can see, looking at the performance profiles, NMDFU is the fastest solver in at least
55 % of the problems, while NMLSR and NMCS are the fastest solvers respectively
in less than 40 and 20 % of the problems at most.

Furthermore, NMDFU guarantees better results than NMLSR and NMCS in terms
of robustness and the performance difference between NMLSR and the other two
solvers increases as the tolerance decreases. The data profiles show that NMDFU is
slightly better than NMLSR as it solves a higher percentage of problems when the
number of simplex gradients is sufficiently large. We can also notice that both the
algorithms are better than NMCS as they solve a larger percentage of problems for all
sizes of computational budget and levels of accuracy τ .
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Fig. 2 Performance and data profiles of NMDFU, NMLSR (Algorithm 1) and NMCS

What we can conclude from this first experiment is that, in a derivative-free context,
using coordinate rotations and gradient approximations can be beneficial.

According to some preliminary tests (not reported here), NMLSR Algorithm 1
outperforms NMLSR Algorithm 2. This is the reason why we decided not to include
Algorithm 2 in our analysis. Anyway, a more careful choice of the n + 1-th search
direction (i.e. a choice that somehow takes into account the information gathered so
far) might help improving the performance of Algorithm 2. This is beyond the scope
of the present paper, and could be the subject of future research.

As the goal of the second experiment was analyzing the impact of nonmonotone
linesearches in the proposed framework, in Fig. 3 we show the performances of two
different version of the NMDFU algorithm that respectively use a nonmonotone and
a monotone linesearch. In the reference value which defines the sufficient decrease,
we set M = 3 for the nonmonotone linesearch and M = 0 for the monotone one.

By looking at the performance profiles, we can easily see that nonmonotone line-
searches guarantee better results both in terms of efficiency and robustness for any
value of the tolerance τ . The good behavior of the nonmonotone version of the code
is confirmed by the data profiles as they basically say that the nonmonotone version
solves a larger percentage of problems for all sizes of computational budget and levels
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Fig. 3 Monotone versus nonmonotone—performance and data profiles

of accuracy τ . Furthermore, the performance difference between the two tends to be
significantly large when the computational budget is large enough.

The results of the third experiment are reported in Figs. 4–7. In order to provide
enough information on the progress of all the codes, we set standard convergence
tests very tight (e.g. RHOEND=10−20 in NEWUOA). All the other parameters of the
algorithms tested were set to their standard values.

The performance profiles (Fig. 4) show that NMDFU is competitive with NEWUOA
and that they are both better than NOMAD. Furthermore, NMDFU guarantees quite
better results than both NEWUOA and NOMAD in terms of robustness.

More specifically, both for τ = 10−3 and for τ = 10−6 NEWUOA and NMDFU
show a similar behavior, in terms of efficiency, as they are the fastest in about 40 %
of the problems, while NOMAD is the fastest in about 20 % of the problems. When
the performance ratio is larger than 1.5 for τ = 10−3 or larger than 2 for τ = 10−6,
NMDFU guarantees better results than both NEWUOA and NOMAD. We further
have that, for any value of τ , the performance differences between NMDFU and the
other two codes becomes significantly large as the ratio increases.

From the data profiles (Fig. 5), we can see that, when the computational bud-
get is small, (say less than 70 simplex gradient evaluations for τ = 10−3 or
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Fig. 4 Performance profiles of NMDFU, NEWUOA and NOMAD

200 for τ = 10−6) NEWUOA guarantees better results than NMDFU, and that
these two algorithms are both much better than NOMAD. As the computational
budget increases NMDFU solves a larger number of problems than the other
solvers and the difference is significantly large as the number of simplex gradients
increases.

We can note, in particular, that, from a certain point onward ( that is when the number
of simplex gradients is larger than 100 for τ = 10−3 or than 200 for τ = 10−6)
NMDFU outperforms both NOMAD and NEWUOA. Once the number of simplex
gradient evaluations becomes larger than 350, the performance difference between
NMDFU and NEWUOA is about 20 % and the difference between NMDFU and
NOMAD is about 15–20 %.
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Fig. 5 Data profiles of NMDFU, NEWUOA and NOMAD

In order to better understand the behavior of the codes in difficult cases, we also
separately report, in Figs. 6 and 7, performance and data profiles related to the 49
nonsmooth problems taken from [27], extracted from our test set.

As we can easily see by looking at the performance profiles, the NMDFU algorithm
guarantees better results both in terms of efficiency and robustness for any value of the
tolerance τ . The good behavior of our code is confirmed by the data profiles, as they
basically say that NMDFU solves a larger percentage of problems for a computational
budget respectively larger than 30 when τ = 10−3 and larger than 100 when τ = 10−6.
Furthermore, the performance differences between NMDFU and the other two codes
becomes significantly large as the ratio increases.

Finally, we analyze the performances of the NMDFU algorithm when the num-
ber of variables of the problem to be solved is (relatively) large. In order to do that,
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Fig. 6 Performance profiles of NMDFU, NEWUOA and NOMAD (nonsmooth problems)

we compare NMDFU with NEWUOA, which is suitably developed for solving large
dimensional problems. We consider all the 18 smooth problems with variable dimen-
sion included in P , where we set n = 100, and all the 15 nonsmooth and nonconvex
problems with 50 ≤ n ≤ 200 used in [32], thus obtaining a set of 33 problems. In
Fig. 8, we show performance and data profiles related to the comparison of NMDFU
and NEWUOA on the 33 large dimensional problems. In this case, we set the compu-
tational budget to 20000.

By considering the performance profiles, we can see that NMDFU guarantees better
results both in terms of efficiency and robustness for any value of the tolerance τ . The
good results are confirmed once again by the data profiles, as we have that our code
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Fig. 7 Data profiles of NMDFU, NEWUOA and NOMAD (nonsmooth problems)

solves a larger percentage of problems, for almost all sizes of computational budget
at any levels of accuracy τ .

9 Concluding remarks and future work

The results presented in this paper show that the linesearch-based nonmonotone
method proposed here, employing simplex gradients and coordinate rotations appear
quite competitive and often superior to some of the best derivative-free techniques
presently available. More specifically, on the basis of our preliminary computational
experience, it would seem that in most of cases the proposed technique can be much
more efficient than mesh adaptive direct search methods (such as NOMAD). In com-
parison with good model-based methods (such as NEWUOA) the advantages of our

123



A class of derivative-free nonmonotone optimization algorithms 31

0 100 200 300 400
0

0.5

1

Number of simplex gradients ν

Data Profile τ=10−3

NEWUOA
NMDFU

0 100 200 300 400
0

0.5

1

Number of simplex gradients ν

Data Profile τ=10−6

10
0

10
1

0

0.5

1

Performance Ratio α

Perf Profile τ=10−3

10
0

10
1

0

0.5

1

Performance Ratio α

Perf Profile τ=10−6

Fig. 8 Comparison of NMDFU and NEWUOA on large dimensional problems

algorithm can be significant in difficult (possibly nonsmooth) problems and in (rela-
tively) large dimensional problems. For small dimensional, well conditioned smooth
problems it would appear that NEWUOA performs better in most of cases. Hence, a
possible way to further improve the performance of NMDFU could be that of including
techniques developed in NEWUOA to generate search directions in the Acceleration
step.

Additional work may be needed for improving our code, for evaluating the effect of
some parameters and for experimenting other possible choices in the general frame-
work considered here. Future research will include:

– The study of algorithms for large dimensional systems employing decomposition
techniques and parallel searches;

– The definition of enhanced nonmonotone acceptance rules, such as, for instance, the
combination of nonmonotone linesearches with nonmonotone watchdog techniques
(see, e.g. [15] in the case of nonlinear equations);

– The definition of more efficient algorithms employing simplex gradients, such as,
for instance, spectral gradients or reduced memory quasi-Newton methods;

– The study of extensions to constrained problems.
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