
A DIRECT-type approach for derivative-free constrained global

optimization∗

G. Di Pillo‡ G. Liuzzi† S. Lucidi‡ V. Piccialli§ F. Rinaldi¶

July 4, 2014

Abstract

In the field of global optimization, many efforts have been devoted to globally solving bound constrained
optimization problems without using derivatives. In this paper we consider global optimization problems
where both bound and general nonlinear constraints are present. To solve this problem we propose the
combined use of a DIRECT-type algorithm with a derivative-free local minimization of a nonsmooth exact
penalty function. In particular, we define a new DIRECT-type strategy to explore the search space by
explicitly taking into account the two-fold nature of the optimization problems, i.e. the global optimiza-
tion of both the objective function and of a feasibility measure. We report an extensive experimentation
on hard test problems to show viability of the approach.

Keywords. Global Optimization, Derivative-Free Optimization, Nonlinear Optimization, DIRECT-
type Algorithm

∗This work has been partially funded by the UE (ENIAC Joint Undertaking) in the MODERN project (ENIAC-
120003).

†Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, Consiglio Nazionale delle Ricerche, Via dei Taurini
19 - 00185 Rome, Italy. e-mail: giampaolo.liuzzi@iasi.cnr.it

‡Department of Computer, Control and Management Engineering, “Sapienza” University of Rome, via Ariosto
25 - 00185 Rome, Italy. e-mails: dipillo@dis.uniroma1.it, lucidi@dis.uniroma1.it

§Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università degli Studi di Roma “Tor Vergata”,
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1 Introduction

In this paper we are interested in the global solution of the general nonlinear programming
problem:

min f(x)

g(x) ≤ 0 (1)

h(x) = 0

l ≤ x ≤ u

where f : Rn → R, g : Rn → R
p, h : Rn → R

m, l, u ∈ R
n both finite, and we assume that f , g and

h are continuous functions. At first, we assume that no global information (convexity, Lipschitz
constants, . . . ) on the problem is available. Later, we will assume that only over-estimates of
the Lipshitz constants are available.
Our aim is that of finding a global minimum point x∗ of problem (1). The latter task is very
challenging since it involves a twofold difficulty. Indeed, we want to globally minimize the
objective function while guaranteeing feasibility of the ultimate solution. The literature on the
subject is rather vast but this is not the case if we confine ourselves to methods which can be
proved to converge to a global minimum point. This requirement is obviously not met by all
heuristic methods.

When derivatives of the problem functions are available, the adoption of a merit function to
manage general constraints can be envisaged. In particular, in [16] a theoretical analysis has
been carried out in the framework of augmented Lagrangian methods. The use of an augmented
Lagrangian merit function has been also exploited in [1] to define an efficient solution algorithm.

When derivatives of the problem functions are unavailable, or impractical to obtain (e.g., when
problem functions are expensive to evaluate or somewhat noisy), the problem is even more diffi-
cult and challenging. Recently some attempts to solve the problem without using any derivative
information have been made. In particular, we refer the interested reader to [15] for the defini-
tion of the well-known Branch-and-Reduce Optimization Navigator (BARON) which combines
constraint propagation, convexification, interval analysis, and duality with advanced branch-and-
bound optimization concepts. More recently, in [3] a DIvide RECTangles (DIRECT) algorithm
based on exact penalty functions has been proposed.

In this paper, our aim is to combine

(i) an efficient derivative-free global optimization algorithm for problems with simple bounds,

(ii) an efficient derivative-free local optimization algorithm for problems with general con-
straints,

in order to develop a derivative-free algorithm for the global solution of optimization problems
with general constraints.

In particular, we will make use of the well-know DIRECT algorithm [6, 8, 7] for solving global
optimization problems with simple bounds, i.e. point (i) above. Further, as concerns point (ii),
we shall use the recently published algorithm DFNcon [5], which is a derivative-free algorithm
for non smooth constrained local optimization.

The paper is organized as follows. In Section 2, we recall the basic DIRECT algorithm and
report a first and quite preliminary theoretical property. In Section 3, we present a DIRECT-
type algorithm for bound constrained problems and show convergence properties both when an
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overestimate of the local Lipschitz constant of the objective function is not known and when it
is known. In Section 4, we define a DIRECT-type bilevel approach for problems with general
nonlinear constraints, along with an analysis of its convergence properties. By this approach,
at the lower level we deal with the feasibility problem by minimizing a penalty function, and
at the upper level we deal with objective function optimality by evaluating f(x) at points
promising to be feasible. In Section 5, we discuss how an efficient local optimization algorithm
can be embedded into a DIRECT-type algorithm. In Section 6, we report the results of a
numerical experimentation of the overall algorithm on a set of constrained global optimization
problems from the GLOBALLib collection of COCONUT [14]. Finally, in Section 7 we draw
some conclusions and discuss possible lines of future investigation.

To conclude this section, we introduce some notation used throughout the paper. We denote by
D the hyperinterval

D = {x ∈ R
n : l ≤ x ≤ u} (2)

and by F the feasible set of Problem (1), namely

F = {x ∈ D : g(x) ≤ 0, h(x) = 0}.

We assume that F 6= ∅, that is problem (1) is feasible and admits a global solution. Then, we
denote by X∗ ⊆ F the set of global solutions of Problem (1), that is

X∗ = {x∗ ∈ F : f(x∗) ≤ f(x), ∀x ∈ F}.

We note that, by assumption, X∗ 6= ∅. Finally, we let f∗ be the global minimum value of
problem (1), i.e.

f∗ = f(x), with x ∈ X∗.

2 DIRECT-type approach

The DIRECT algorithm has been originally proposed to solve bound constrained global op-
timization problems, i.e. min f(x), x ∈ D by producing finer and finer partitions of the set
D.

At each iteration k, the k-th partition is described by:

{Di : i ∈ Ik}

where Ik is the set of indices of the hyperintervals and all the hyperintervals are given by

Di = {x ∈ Rn : li ≤ x ≤ ui}

and satisfy the conditions

D = ∪i∈IkD
i, Int(Di) ∩ Int(Dj) = ∅, ∀ i, j ∈ Ik, i 6= j.

By xi we denote the centroid of hyperinterval Di, for all i ∈ Ik.

The approach of the DIRECT algorithm can be described by the framework of a general
partition-based algorithm, where, given a partition {Di}, first an Identification Procedure is
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applied in order to choose a subset to be further partitioned, then a particular Partition Proce-
dure is applied to this subset.

Partition-Based Algorithm

Step 0: set D0 = D, I0 = ∅, k = 0;

Step 1: given the partition {Di : i ∈ Ik} of D

apply the Identification Procedure to choose a particular subset I∗k ⊆ Ik;

Step 2: set Ī0 = Ik, Î0 = I∗k and p = 0.

Step 3: choose an index h ∈ Îp and let Dh be the corresponding interval;

Step 4: apply the Partition Procedure to determine the partition {Dj : j ∈ Ih} of Dh;

Step 5: set:

Īp+1 = Īp ∪ Ih \
{

h
}

,

Îp+1 = Îp \
{

h
}

,

if Îp+1 6= ∅ set p = p+ 1 and go to Step 3;

Step 7: Set Ik+1 = Īp+1, k = k + 1 and go to Step 1.

An important distinguishing feature of the DIRECT Algorithm is its particular Partition Pro-
cedure which is described by the following scheme, where a given Selection Procedure selects the
coordinate axis along which the partition is performed.
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DIRECT-type Partition Procedure

Step 0: given the index h and the the corresponding hyperinterval Dh, determine:

δ = max
1≤j≤n

(uh − lh)j ,

J =
{

j ∈ {1, . . . , n} : (uh − lh)j = δ
}

,

m = |J |;

Step 1: set D̃1 = Dh, J̃1 = J , Ĩ1 = ∅, p = 0;

Step 2: apply the Selection Procedure to determine ℓ ∈ J̃p.

Step 3: determine the sets:

Dhℓ = D̃p ∩ {x ∈ Rn : (uh)ℓ −
δ

3
≤ xℓ ≤ (uh)ℓ},

Dhℓ+m = D̃p ∩ {x ∈ Rn : (lh)ℓ ≤ xℓ ≤ (lh)ℓ +
δ

3
},

and set:

D̃p+1 = D̃p ∩ {x ∈ Rn : (lh)ℓ +
δ

3
≤ xℓ ≤ (uh)ℓ −

δ

3
},

Ĩp+1 = Ĩp ∪
{

hℓ, hℓ+m

}

,

J̃p+1 = J̃p \
{

ℓ
}

;

Step 4: if J̃p+1 6= ∅, set p = p+ 1 and go to Step 2;

Step 5: set:

Dh0 = D̃p+1,

Ih = Ĩp+1 ∪
{

h0
}

;

and return.

The complete definition of a DIRECT-type algorithm requires the description of

- the Identification Procedure which determines the set I∗k of the indices of the hyperintervals
Di to be further partitioned;

- the Selection Procedure which appears in the Partition Procedure and selects the axis along
which to carry out the partition.

However, independently from the particular Identification and Selection Procedures, the previous
DIRECT-type Partition Procedure guarantees some good theoretical proprieties to a partition-
based algorithm.
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We recall that the theoretical properties of a partition-based algorithm can be referred to the
asymptotic behavior of the infinite sequence of partitions produced by the algorithm. This
infinite sequence of partitions consists of an infinite number of sequences of subsets {Dik}. Each
of these sequences {Dik} can be defined by identifying a predecessor Dik−1 , with ik−1 ∈ Ik−1 to
every subset Dik , with ik ∈ Ik, in the following way:

- if the set Dik has been produced at the k-th iteration, then Dik−1 is the set whose partion has
generated the subset Dik at the k-th iteration;

- if the set Dik has not been produced at the k-th iteration then Dik−1 = Dik .

By definition, the sequences {Dik} are nested sequences of subsets, namely sequences such that,
for all k,

Dik ⊆ Dik−1 .

Particular nested sequences are the so called strictly nested sequences of subsets which have the
property that for infinitely many times it results

Dik ⊂ Dik−1 .

Returning to the properties that can be ensured by the described DIRECT-type Partition Pro-
cedure, the results reported in [13, 10, 11] allow us to state the following result.

Proposition 1 A Partition-Based Algorithm using the DIRECT-type Partition Procedure pro-
duces at least a sequence of hyperintervals {Dik} that is strictly nested.
Furthermore, this sequence of hyperintervals is characterized by the following properties

∞
⋂

k=0

Dik = {x̄}, where x̄ ∈ D;

lim
k→∞

‖uik − lik‖ = 0.

In the sequel of the paper, we denote by DIRECT-type algorithm a partition-based algorithm
which uses the previous DIRECT-type Partition Procedure. Therefore, any DIRECT-type Al-
gorithm has the theoretical properties described by the previous proposition. We will show
that stronger theoretical properties relevant to constrained global optimization can be stated by
suitable choices of the identification procedure.

3 A DIRECT-type approach for box constrained global opti-

mization problems

In [7], the DIRECT algorithm was originally proposed to solve the following problem

min f(x) (3)

x ∈ D,

where D is given by (2). To be consistent with the notation, in this section F ≡ D and
X∗ = {x∗ ∈ D : f(x∗) ≤ f(x) ∀x ∈ D}.

The Identification Procedure of the DIRECT algorithm is based on the following definition.
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Definition 1 Given a partition {Di : i ∈ Ik} of D and a scalar ε > 0, an hyperinterval Dh is
potentially optimal with respect to the function f if a constant L̄h exists such that:

f(xh)−
L̄h

2
‖uh − lh‖ ≤ f(xi)−

L̄h

2
‖ui − li‖, ∀ i ∈ Ik

f(xh)−
L̄h

2
‖uh − lh‖ ≤ fmin − ǫ|fmin|

where
fmin = min

i∈Ik
f
(

xi
)

(4)

At each iteration, the algorithm selects the potentially optimal hyperintervals, and considers
these intervals promising and worthy of being further partitioned. This choice guarantees that
the algorithm tends to generate a dense set of point over the feasible set, namely it guarantees
that the algorithm has the so-called every-where dense convergence, which is a condition required
when no global information is available, see e.g. [7].

In the following we report a proposition (see [10, 11] for the proof) which describes the every-
where dense convergence of the DIRECT Algorithm by means of the sequences of hyperintervals
{Dik} generated by the algorithm.

Proposition 2 Consider a DIRECT-type algorithm with an Identification Procedure which se-
lects

I∗k =
{

h ∈ Ik : Dh is potentially optimal w.r.t. f
}

, (5)

then

i) all the sequences of sets {Dik} produced by the algorithm model are strictly nested,
namely for every {Dik} there exists a point x̃ ∈ D such that

∞
⋂

k=0

Dik = {x̃}.

ii) for every x̃ ∈ D, the algorithm produces a strictly nested sequence of sets {Dik} such that

∞
⋂

k=0

Dik = {x̃}.

The DIRECT Algorithm was proposed to solve global optimization problem without requiring
any information on the value of the Lipschitz constant of the objective function. However, if an
overestimate of the Lipschitz constant were available, a DIRECT-type Algorithm could exploit
such an information to improve its theoretical properties.

First of all, it is possible to introduce the following definition.

Definition 2 Given a partition {Di : i ∈ Ik} of D , a scalar ε > 0, a scalar η > 0 and a scalar
L̄ > 0 , an hyperinterval Dh, with i ∈ Ik is L̄-potentially optimal with respect to the function
f if one of the following conditions is satisfied:
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i) a constant L̃h ∈ (0, L̄) exists such that:

f(xh)−
L̃h

2
‖uh − lh‖ ≤ f(xi)−

L̃h

2
‖ui − li‖, ∀ i ∈ Ik, (6)

f(xh)−
L̃h

2
‖uh − lh‖ ≤ fmin − ǫmax{|fmin|, η}, (7)

where fmin is given by (4);

ii) the constant L̄ satisfies:

f(xh)−
L̄

2
‖uh − lh‖ ≤ f(xi)−

L̄

2
‖ui − li‖, ∀ i ∈ Ik. (8)

By using the previous definition and by assuming that the scalar L̄ is an overstimate of the local
Lipschitz constant of the objective function, it is possible to define a DIRECT-type algorithm
with strong convergence properties as shown in the following result.

Proposition 3 Consider a DIRECT-type algorithm with an Identification Procedure which se-
lects

I∗k =
{

h ∈ Ik : Dh is L̄-potentially optimal w.r.t. f
}

,

then

i) the algorithm produces at least a strictly nested sequence of sets {Dik};

ii) assume that a global minimum point x∗ and an index k̄ exist such that for all k ≥ k̄,

f(xjk)−
L̄

2
‖ujk − ljk‖ ≤ f∗,

where jk ∈ Ik is the index related to the hyperinterval Djk such that x∗ ∈ Djk . Then, every
strictly nested sequence of sets {Dik} produced by the algorithm satisfies:

∞
⋂

k=0

Dik ⊆ X∗;

iii) assume that for every global minimum point x∗ there exist a constant δ > 0 and an index
k̄ (both possibly depending on x∗) such that for all k ≥ k̄,

f(xjk)−
L̄

2
‖ujk − ljk‖ < f∗ − δ‖ujk − ljk‖,

where jk ∈ Ik is the index related to the hyperinterval Djk such that x∗ ∈ Djk. Then, for
every global minimum point x∗, the algorithm produces a strictly nested sequence of sets
{Dik} which satisfies

∞
⋂

k=0

Dik = {x∗}.
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Proof. Point i) follows from Proposition 1.

Point ii). Assume, by contradiction, that the algorithm produces a strictly nested sequence of
sets {Dik} such that

∞
⋂

k=0

Dik = {x̄},

with
f(x̄) > f∗. (9)

Let K ⊆ {1, 2, . . .} be the subset of iteration indices where the sets Dik are partitioned.
By the instructions of the algorithm, we have that, for all k ∈ K, the sets Dik satisfy Definition
2 and, hence, one of the two conditions of Definition 2 must hold.
If condition i) holds, a constant L̃ik ∈ (0, L̄) exists such that:

L̃ik ≥ 2

(

f(xik)− fmin + εmax{|fmin|, η}

‖uik − lik‖

)

. (10)

Since the sequence {Dik} is strictly nested, Proposition 1 guarantees

lim
k→∞

‖uik − lik‖ = 0. (11)

Relation (10) and limit (11) imply that,for sufficiently large values for k, we have:

L̃ik ≥ L̄.

Therefore an index k̃ exists such that for all k ∈ K and k ≥ k̃ condition ii) must hold. Hence,
for every k ∈ K and k ≥ k̃, we have:

f(xik)−
L̄

2
‖uik − lik‖ ≤ f(xjk)−

L̄

2
‖ujk − ljk‖,

which, by recalling the assumption made in point ii) of the Proposition, implies that, for all
k ∈ K and k ≥ max{k̄, k̃} we have:

f(xik)−
L̄

2
‖uik − lik‖ ≤ f∗. (12)

Since the sequence {Dik} is strictly nested, the limit (11) holds.
Now by taking the limits for k → ∞ in the two terms of (12) we obtain:

f(x̄) ≤ f∗,

which produces a contradiction with (9).

Point iii). Again we assume, by contradiction, that there exists a global minimum point x∗ ∈ X∗

for which the sequence {Djk}, verifying x∗ ∈ Djk , for all k, is not strictly nested.

In this case, Proposition 1 implies that a scalar ε > 0 and an index k̄ exist such that:

‖ujk − ljk‖ ≥ ε, (13)

for all k ≥ k̄.
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Let {Dik} be a strictly nested sequence produced by the algorithm satisfying

∞
⋂

k=0

Dik = {x̄},

with x̄ 6= x∗.

Let K ⊆ {1, 2, . . .} be the subset of iteration indices where the sets Dik are partitioned.

Therefore, ik ∈ I∗k , for all k ∈ K and, hence, for all k ∈ K, the sets Dik satisfy one of the two
conditions of Definition 2.

By repeating the same reasoning of the proof of point ii) of the Proposition we obtain that an
index k̃ exists such that for all k ∈ K and k ≥ k̃ the sets Dik satisfy condition ii) of Definition
2. Then, for all k ∈ K and k ≥ k̃, we have:

f(xik)−
L̄

2
‖uik − lik‖ ≤ f(xjk)−

L̄

2
‖ujk − ljk‖.

By using the assumption of the point iii) of the Proposition, (13), (11) and by taking the limits
for k → ∞ we get the following contradiction

f(x̄) ≤ f∗ − δε

which concludes the proof.

The next proposition shows that the knowledge of the overestimate of the local Lipschitz constant
of the objective function allows to define a stopping criterion for a DIRECT-type algorithm.

Proposition 4 Consider a DIRECT-type algorithm with an Identification Procedure which se-
lects

I∗k =
{

h ∈ Ik : Dh is L̄-potentially optimal w.r.t. f
}

.

Assume that a global minimum point x∗ ∈ X∗ and an index k̄ exist such that for all k ≥ k̄,

f(xjk)−
L̄

2
‖ujk − ljk‖ ≤ f∗,

where jk ∈ Ik is the index related to the hyperinterval Djk such that x∗ ∈ Djk .
Then, for all k ≥ k̄, the following inequality holds

f(xhk)− f∗ ≤
L̄

2
‖uhk − lhk‖,

where the index hk is given by:

f(xhk)−
L̄

2
‖uhk − lhk‖ = min

i∈Ik

{

f(xi)−
L̄

2
‖ui − li‖

}

.

Proof. The assumption made in the proposition and the definition of the index hk imply that,
for all k ≥ k̄,

f∗ ≥ f(xjk)−
L̄

2
‖ujk − ljk‖ ≥ f(xhk)−

L̄

2
‖uhk − lhk‖,

and hence the result follows.
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4 A DIRECT-type approach for general constrained global op-

timization problems

In this section, we describe some DIRECT-type algorithms for dealing with constrained problems
of the form (1). The main idea is that of solving these problems by means of a bilevel approach.

In order to do that, we first define the following penalty function

w(x) =

∥

∥

∥

∥

(

max{0, g(x)}
h(x)

)∥

∥

∥

∥

,

and the related feasibility problem
min w(x)

l ≤ x ≤ u.
(14)

More specifically, we want to solve the following optimality problem

min f(y)
y = argmin w(x)

l ≤ x ≤ u.
(15)

In theory, we should solve the feasibility problem at the lower level. Then, at the upper level, we
should try to identify the optimal solutions of the constrained problem among all the solutions
of the lower level problem.
Hence, a sketch of the bilevel approach is the following.

1) Solve Problem (14) to global optimality, i.e. identify set F ⊆ D

2) Find a global minimum point x∗ of f(x) on F , i.e. x∗ ∈ X∗

We will now describe some DIRECT-type algorithms inspired by this bilevel approach. What
we want is to perform a “two-level” Identification Procedure for selecting the indices of the
hyperintervals to be further partitioned. At the “lower level”, we identify the indices of the
hyperintevals which are more promising for the feasibility problem (14). Then, at the “upper
level”, we choose, among those indices selected at the lower level, those ones that are also
promising with respect to the objective function and, hence, promising for problem (15).

Taking into account the feasibility problem, we define an hyperinterval potentially optimal with
respect to the function w if it satisfies Definition 1 (by replacing the function f with the function
w).
The next proposition describes the theoretical properties of a DIRECT-type algorithm for con-
strained problems that considers promising all the hyperintervals which, first, are potentially
optimal with respect to the penalty function w and, then, are potentially optimal also with
respect to the objective function f .

Proposition 5 Consider a DIRECT-type algorithm with an Identification Procedure which se-
lects

I∗k =
{

h ∈ Iwk : Dh is potentially optimal w.r.t. f
}

, (16)
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where
Iwk =

{

h ∈ Ik : Dh is potentially optimal w.r.t. w
}

,

then

i) all the sequences of sets {Dik} produced by the algorithm are strictly nested,
namely for every {Dik} there exists a point x̃ ∈ D such that

∞
⋂

k=0

Dik = {x̃}.

ii) for every x̃ ∈ D, the algorithm produces a strictly nested sequence of sets {Dik} such that

∞
⋂

k=0

Dik = {x̃}.

Proof. For all Di, i ∈ Ik we denote the length of its diagonal by

di = ||ui − li||

and we define with
dmax
k = max

i∈Ik
di

the largest diagonal length in the partition, and denote by Imax
k the index subset of hyperintervals

with largest diagonal:
Imax
k = {i ∈ Ik : di = dmax

k }

The convergence properties of the algorithm follow from the results contained in [10, 11] by
showing (see Proposition 2 of [10]) that, for all k,

Imax
k ∩ I∗k 6= ∅.

Let us define the following index set:

Îmax
k =

{

h ∈ Imax
k : w(xh) = min

i∈Imax
k

w(xi)
}

.

For any choice of h ∈ Îmax
k it is sufficient to choose L̃h > 0 such that:

L̃h = 2max

{

w(xh)− wmin + ε|wmin|

dh
, max
j∈Ik\I

max
k

w(xh)− w(xj)

dh − dj

}

,

to obtain h ∈ Iwk , where Iwk is given by (16).

From the preceding relation and the definition of potentially optimal hyperinterval it follows
that:

Îmax
k = Iwk ∩ Imax

k .

Let ℓ ∈ Îmax
k be such that f(xℓ) ≤ f(xi) for all i ∈ Îmax

k . By choosing L̄ℓ > 0 such that:

L̄ℓ > 2max

{

f(xℓ)− fmin + ε|fmin|

dℓ
, max
j∈Iw

k
\Îmax

k

f(xℓ)− f(xj)

dℓ − dj

}

,
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we get ℓ ∈ I∗k , so that
I∗k ∩ Imax

k 6= ∅,

which concludes the proof.

The previous result shows that the described DIRECT-type algorithm for constrained optimiza-
tion problems has the every-where dense convergence property.

Similarly to the box constrained problems, in case estimates on Lipschitz constants of the prob-
lem functions are available, they can be exploited to define a DIRECT-type algorithm with
stronger theoretical properties.
To this aim, we introduce the definition of a L̄-potentially optimal hyperinterval with respect
to the function w. In this case, we exploit the knowledge of the optimal value w∗ = 0 of the
function w, being F 6= ∅ by assumption.

Definition 3 Given a partition {Di : i ∈ Ik} of D , a scalar ε > 0, a scalar η > 0 and a scalar
L̄ > 0 , an hyperinterval Dh, with i ∈ Ik is L̄-potentially optimal with respect to the function
w if one of the following conditions is satisfied:

i) a constant L̃h ∈ (0, L̄) exists such that:

w(xh)−
L̃h

2
‖uh − lh‖ ≤ w(xi)−

L̃h

2
‖ui − li‖, ∀ i ∈ Ik, (17)

w(xh)−
L̃h

2
‖uh − lh‖ ≤ wmin − ǫmax{|wmin|, η},

where wmin is given by (4) (by replacing f with w);

ii) the constant L̄ satisfies:

w(xh)−
L̄

2
‖uh − lh‖ ≤ max

{

0, w(xi)−
L̄

2
‖ui − li‖

}

, ∀ i ∈ Ik.

The next proposition describes the properties of an algorithm using overestimates of Lipschitz
constants of both the penalty function w and the objective function f .

Proposition 6 Consider a DIRECT-type algorithm with an Identification Procedure which
chooses

I∗k =
{

h ∈ Īwk : Dh is L̄-potentially optimal w.r.t. f
}

, (18)

where
Īwk =

{

h ∈ Ik : Dh is L̄-potentially optimal w.r.t. w
}

, (19)

then

i) the algorithm produces at least a strictly nested sequence of sets {Dik};

ii) assume that a global minimum point x∗ ∈ X∗ and an index k̄ exist such that for all k ≥ k̄,

w(xjk)−
L̄

2
‖ujk − ljk‖ ≤ 0, (20)

f(xjk)−
L̄

2
‖ujk − ljk‖ ≤ f∗, (21)

13



where Djk , with jk ∈ Ik is the hyperinterval such that x∗ ∈ Djk. Then, every strictly
nested sequence of sets {Dik} produced by the algorithm satisfies:

∞
⋂

k=0

Dik ⊆ X∗;

iii) assume that for every global minimum point x∗ ∈ X∗ there exist a constant δf ≥ 0 and an
index k̄ such that for all k ≥ k̄,

w(xjk)−
L̄

2
‖ujk − ljk‖ ≤ 0, (22)

f(xjk)−
L̄

2
‖ujk − ljk‖ < f∗ − δf‖u

jk − ljk‖, (23)

where Djk, with jk ∈ Ik is the hyperinterval such that x∗ ∈ Djk. Then, for every global
minimum point x∗ ∈ X∗, the algorithm produces a strictly nested sequence of sets {Dik}
which satisfies

∞
⋂

k=0

Dik = {x∗}.

Proof. The proof of the Proposition uses the same arguments given in the proof of Proposition
3.

Again, Proposition 1 guarantees Point (i).

Point ii). First of all we note that (20) guarantees that for all k ≥ k̄ we have

jk ∈ Īwk (24)

where x∗ ∈ Djk .

Then, by contradiction, we assume that that the algorithm produces a strictly nested sequence
of sets {Dik} such that

∞
⋂

k=0

Dik = {x̄},

with
x̄ /∈ F or f(x̄) > f∗. (25)

Let K ⊆ {1, 2, . . .} be the subset of iteration indices where the sets Dik are partitioned.

By repeating the same steps of Proposition 3 we obtain that an index k̃ exists such that condition
ii) of Definition 3 must hold for all k ∈ K and k ≥ k̃. Hence, for every k ∈ K and k ≥ max{k̄, k̃},
we have that (24) holds and

w(xik)−
L̄

2
‖uik − lik‖ ≤ w(xjk)−

L̄

2
‖ujk − ljk‖,

f(xik)−
L̄

2
‖uik − lik‖ ≤ f(xjk)−

L̄

2
‖ujk − ljk‖,
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which, by recalling the assumption made in point ii) of the proposition, implies that:

w(xik)−
L̄

2
‖uik − lik‖ ≤ 0,

f(xik)−
L̄

2
‖uik − lik‖ ≤ f∗,

for all k ∈ K and k ≥ max{k̄, k̃}.

Since the sequence {Dik} is strictly nested, the limit (11) holds.
Now by taking the limits for k → ∞ in the previous inequalities we obtain:

x̄ ∈ F and f(x̄) ≤ f∗,

which produces a contradiction with (25).

Point iii). The assumption of point iii) and (22) ensure that for all global minimum point
x∗ ∈ X∗ there exists an index such that for all k ≥ k̄ we have

jk ∈ Īwk ,

where x∗ ∈ Djk .

Then, the proof of this point follows by using exactly the same arguments the proof of point iii)
of Proposition 3.

The next result analyzes the case where only information related to the Lipschitz constants of
the penalty function w is available.

Proposition 7 Consider a DIRECT-type algorithm with an Identification Procedure which
chooses

I∗k =
{

h ∈ Īwk : Dh is potentially optimal w.r.t. f
}

,

where
Īwk =

{

h ∈ Ik : Dh is L̄-potentially optimal w.r.t. w
}

,

then

i) the algorithm produces at least a strictly nested sequence of sets {Dik};

ii) assume that a feasible point x̃ ∈ F and an index k̄ exist such that for all k ≥ k̄,

w(xjk)−
L̄

2
‖ujk − ljk‖ ≤ 0,

where Djk, with jk ∈ Ik is the hyperinterval such that x̃ ∈ Djk . Then, every strictly nested
sequence of sets {Dik} produced by the algorithm satisfies:

∞
⋂

k=0

Dik ⊆ F ;

15



iii) assume that for every feasible point x̃ ∈ F there exists an index k̄ such that for all k ≥ k̄,

w(xjk)−
L̄

2
‖ujk − ljk‖ ≤ 0,

where Djk, with jk ∈ Ik is the hyperinterval such that x̃ ∈ Djk. Then, for every feasible
point x̃ ∈ F , the algorithm produces a strictly nested sequence of sets {Dik} which satisfies

∞
⋂

k=0

Dik = {x̃}.

Proof. Point i) derives from Proposition 1. Point ii) follows from the same arguments used
for the prof of point ii) of Proposition 3 by taking into account that the set of global minimum
points of the penalty function w is the set F and that the assumption implies that, for k ≥ k̄
we have jk ∈ Īwk where x̃ ∈ Djk .

Point iii). In order to prove this point, first we show that:

lim
k→∞

d̃max
k = 0 (26)

where

d̃max
k = max

i∈Īw
k

di, and di = ||ui − li||.

Assume, by contradiction that (26) does not hold. Since, by definition, the sequence {d̃max
k } is

not increasing and bounded from below, we have that

lim
k→∞

d̃max
k = δ̄ > 0.

Therefore, we have that
d̃max
k ≥ δ̄ > 0 for all k, (27)

which implies that the following set of indices

Ĩk(δ̄) = {i ∈ Īwk : ‖ui − li‖ ≥ δ̄},

is not empty for every k. Then we have

{i ∈ Īwk : di = d̃max
k } ⊆ Ĩk(δ̄).

Let ℓk ∈ {i ∈ Īwk : di = d̃max
k } be such that

f(xℓk) ≤ f(xj) for all j ∈ {i ∈ Īwk : di = d̃max
k }.

By choosing L̄ℓk > 0 such that:

L̄ℓk > 2max

{

f(xℓk)− fmin + ε|fmin|

dℓk
, max
j∈{i∈Īw

k
:di 6=d̃max

k
}

f(xℓ)− f(xj)

dℓ − dj

}

,

we get ℓk ∈ I∗k .

16



Hence, for all k there exists an index ℓk ∈ Ĩk(δ̄) ∩ I∗k such that the corresponding hyperinterval
Dℓk is partitioned by the algorithm. The DIRECT-type Partition Procedure produces subsets
Dhj , j = 1, . . . ,m, that, recalling Proposition 2.2 of [11], satisfy:

‖uhj − lhj‖ ≤ ε‖uℓk − lℓk‖ = ε d̃max
k , j = 1, . . . ,m,

with ε ∈ (0, 1).

The compactness of the set D ensures that there exists a scalar N such that

|Ĩk(δ̄)| ≤ N, for every k.

Hence after N iterations we have that:

d̃max
k+N ≤ ε d̃max

k .

By repeating the same arguments, after pN iterations , we obtain:

d̃max
k+pN ≤ εp d̃max

k , for p = 1, 2, . . . .

which, for sufficiently large values of p, contradicts (27). This proves that limit (26) holds.

Now, we assume, by contradiction, that there exists a feasible point x̃ ∈ F for which the sequence
{Djk}, verifying x̃ ∈ Djk , for all k, is not strictly nested. Then, by Proposition 1, we have that
there exist a scalar ε > 0 and an index k̂ such that:

‖ujk − ljk‖ ≥ ε, (28)

for all k ≥ k̂.

On the other hand, the assumption of point iii) implies that for all k ≥ k̄

jk ∈ Īwk ,

which produces a contradiction between (26) and (28) and this proves the result.

We finally report below the scheme of the k-th iteration of the DIRECT algorithm for general
constrained problems.

k-th iteration of the DIRECT algorithm for general constrained problems

Input: Current partition {Di, i ∈ Ik}

Step 1: Determine Iwk ⊆ Ik related to Potentially Optimal Hyperintervals for w

Step 2: Determine Ifk ⊆ Iwk related to Potentially Optimal Hyperintervals for f

Step 3: Execute the Partition Procedure on {Di, i ∈ Ifk }

17



5 A DIRECT-type approach with local searches

The numerical experience obtained by using DIRECT-type algorithms for solving real or test
problems in the field of box constrained optimization has pointed out that this class of algo-
rithms is relatively efficient in locating good approximations of the global minimum points.
Unfortunately, this efficiency decreases heavily as the dimensions of the problems and the ill-
conditionings of the objective functions increase. This behavior is common to most global opti-
mization methods and a possible tool to overcome it is to combine the given global method with
an efficient local algorithm. Some recent examples of such mixed strategies for DIRECT-type
algorithm are described in [9, 12] for box constrained problems, and in [4] for general constrained
problems. In the first paper, it is shown that the DIRECT approach can be significantly im-
proved, in term of efficiency and robustness, by combining it with a local truncated Newton
method. In the other two papers, it is shown that similar improvements can be guaranteed also
by using derivative-free local minimization algorithms within a DIRECT-type approach.

In this section, we thus try to improve the efficiency of the DIRECT-type approaches described
in the previous section for general constraints by making use of a suitable derivative-free local
algorithm.

As in the case of box constrained optimization, the idea draws inspiration from the classical
multi-start approach used in global optimization where multiple local minimizations are per-
formed starting from points generated according to some suitable distribution over the feasible
set. The main drawback of multi-start approaches is that they usually generate new starting
points without taking into account the information generated in the previous iterations, thus
wasting a large number of local minimizations. Then the idea that we pursue is that of re-
placing the random generation in a multistart approach with deterministic partitioning of a
DIRECT-type strategy as proposed in [2, 12].

In practice, it is possible to use the most promising points generated by DIRECT as starting
points for the local algorithm by performing a derivative-free local minimization from each
centroid of the potentially optimal intervals or L̄-potentially optimal intervals for the function
f . This strategy allows to exploit the ability of the DIRECT algorithm of producing partitions
which eventually locate points in promising regions (i.e. points in an attraction region of a global
solution). Indeed, it is possible to state the following result.

Proposition 8 Let {Di, i ∈ Ik} be sequence of partitions produced by one of the DIRECT-type
algorithms described in the previous section. For every global minimum point x∗ of f(x) on F
and for every neighborhood B(x∗, ǫ), with ǫ > 0, there exists an iteration k and an index h ∈ Ik
such that xh ∈ B(x∗, ǫ).

The property described by the previous proposition can be fully exploited by combining a DI-
RECT strategy with a local minimization technique satisfying the following assumption.

Assumption 1 For any starting point x0 ∈ D the local minimization algorithm produces a
bounded sequence of points {xk} which satisfies the following conditions:

- every accumulation point x̄ of the sequence {xk} is a stationary point of the original prob-
lem;

- for every global solution x∗ ∈ X∗, an open set L exists such that if x0 ∈ L then

lim
k→∞

xk = x∗.
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In this way, we can take advantage of the available efficient local minimization algorithms.
These results can be used also in the field of constrained optimization whenever the original
constrained problem is transformed in an unconstrained problem by means of an exact penalty
function.

In this paper, we propose to use, as local search engine, the derivative-free method for constrained
optimization problems described in [5], based on a box-constrained minimization of a nonsmooth
exact penalty function, i.e. the algorithm named DFNcon. Under suitable assumptions, Theorem
4.1 of [4] guarantees that this particular derivative-free local algorithm satisfies Assumption 1.

In conclusion, the combination of one of the DIRECT-type algorithms described in the previ-
ous section (for which Proposition 8 holds) with the derivative-free algorithm of [5] (for which
Assumption 1 holds) produces a global constrained minimization method which, after a finite
number of iterations, locates a global minimum point of the original problem.

Below we report the scheme of the k-th iteration of the DIRECT algorithm with local searches,
where A(x) denotes the execution of a local search starting from point x.

k-th iteration of the DIRECT algorithm with local searches for general

constrained problems

Input: Current partition {Di, i ∈ Ik}

Step 1: Determine Iwk ⊆ Ik related to Potentially Optimal Hyperintervals for w

Step 2: Determine Ifk ⊆ Iwk related to Potentially Optimal Hyperintervals for f

Step 3: Execute A(x̄i) ∀ i ∈ Ifk and possibly improve fmin

Step 3: Execute the Partition Procedure on {Di, i ∈ Ifk }

6 Numerical results

In this section we report the results obtained using algorithm DIRECT+DFNcon, which im-
plements the DIRECT-type approach for general constrained problem described in Section 4
enriched, as in Section 5, with the Local Search algorithm DFNcon [5].
The numerical experimentation has been performed on a set of 84 problems from the GLOB-
ALLib collection of COCONUT [14] with number of variables n ≤ 10. All test problems are of
the kind

min f(x)
g(x) ≤ 0
h(x) = 0
l ≤ x ≤ u.

For the test problems in this collection, no global information was available, therefore L̄-
potentially optimal intervals could not be used.

In DIRECT, we set ǫ = 10−4 and the maximum number of hyperintervals equal to 500 ∗ n ∗
(mi +me), where n is the number of variables, mi is the number of inequality constraints and
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me is the number of equality costraints. This maximum number of hyperintervals gives also the
stopping condition for the algorithm.
Furthermore, we choose, in the Selection Procedure, the index ℓ ∈ J̃p according to the following
rule:

wℓ = min
j∈J̃p

wj ,

with wj = min{w(xh + δ
3
ej), w(x

h − δ
3
ej)}.

The numerical experimentation was carried out on an Intel Core 2 Duo 3.16 GHz processor
with 3.25 GB RAM. DIRECT and DFNcon Algorithms were implemented in Fortran 90 (double
precision).

The results for the problem set are collected in Tables 1 and 2, where we report the name of the
problem, the number n of variables, the numberme andmi of equality and inequality constraints
(excluding simple bounds), the CPU time required to attain the stop condition, the optimal
function value f(x⋆), the constraints violation viol, namely cv(x⋆) = max{ ‖g+(x⋆)‖∞, ‖h(x⋆)‖∞ }.
In order to synthesize the results we make reference to Figures 1 and 2, where we make also
a comparison with the results obtained by using the derivative-free algorithm for constrained
global optimization DF-EPGO+DFNcon (see [4], for further details). The plot in Figure 1 gives
on the y-axis the number of obtained solutions whose constraints violation is smaller or equal
than the value given in the x-axis. The plot in Figure 2 gives on the y-axis the number of
obtained feasible solutions (namely those solutions x⋆ where cv(x⋆) ≤ 10−4) whose relative gap,
given by

|f(x⋆)− f⋆|

max{1, |f⋆|}
,

with f⋆ the best known value reported in [14], is smaller or equal than the value given in the
x-axis. From these Figures, we note that our algorithm guarantees quite good performances
in terms of both feasibility and optimality, and, in general, outperforms DF-EPGO+DFNcon.
More specifically, by taking a look at Figure 1 we can see that almost 95% of the solutions have
a constraint violation w lower than 10−4. Furthermore, as we can see from Figure 2, around
70% of the problems have a gap lower than 0.1. We would also like to notice that the algorithm
gives these good solutions in a reasonable time. Indeed the average CPU time for the considered
problems is 10.37 seconds.

7 Conclusions

In the paper we presented a two-level derivative-free DIRECT-type algorithm for the global
solution of optimization problems with general nonlinear constraints. We carried out a complete
convergence analysis of the algorithm either when no information on the local Lipschitz constants
of the objective function f or of the penalty function w is available or when an overestimate
of one of them is known. Further, in order to improve the numerical efficiency of the overall
algorithm we embed within the two-level DIRECT-type algorithm a derivative-free local search
method. The reported numerical results show the efficiency of the approach.
As concerns possible aspects for future investigation and work, some lines can be envisaged.
First of all, the development of more efficient versions of the DIRECT algorithm is of sure
interest. This, in our opinion, can be done in at least two ways. On the one hand, by devising
partition schemes less prone to dimensionality. This would allow to considerably increase the
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PROBLEM n me mi time val funct viol f⋆

ex542 8 6 0 9.4086 8870.5123 0.00000E+000 7512.2259

ex6212 4 0 2 0.4040 0.2927 1.00000E-007 0.2892

chance 4 2 1 0.6080 29.8950 0.00000E+000 29.8944

circle 3 10 0 4.8643 4.5868 0.00000E+000 4.5742

dispatch 4 1 1 0.5080 3155.3752 1.48367E-010 3155.2879

ex1411 3 4 0 11.5527 0.0022 0.00000E+000 0

ex1412 6 8 1 95.3060 0.4988 2.49999E-009 0

ex1413 3 4 0 8.9726 0.0010 0.00000E+000 0

ex1414 3 4 0 9.5046 0.0004 0.00000E+000 0

ex1415 6 2 4 24.2895 0.0034 8.88178E-016 0

ex1416 9 14 1 145.7211 0.0344 7.99179E-011 0

ex1417 10 16 1 73.7966 1.7815 0.00000E+000 0

ex1418 3 4 0 10.2606 0.0048 0.00000E+000 0

ex1419 2 2 0 2.9002 0.0004 0.00000E+000 0

ex1421 5 6 1 12.6608 0.0237 1.38950E-009 0

ex1422 4 4 1 2.9882 0.0636 1.38950E-009 0

ex1423 6 8 1 24.3215 0.0590 4.12566E-010 0

ex1424 5 6 1 22.7894 0.0760 1.38950E-009 0

ex1425 4 4 1 3.5442 0.0895 1.38950E-009 0

ex1426 5 6 1 26.0456 0.0243 1.38950E-009 0

ex1427 6 8 1 42.0666 0.1538 4.12566E-010 0

ex1428 4 4 1 6.0204 0.0651 1.38950E-009 0

ex1429 4 4 1 7.1084 0.0635 1.38950E-009 0

ex211 5 1 0 0.1080 -17.0000 0.00000E+000 -17

ex212 6 2 0 0.3400 -24.3116 0.00000E+000 -213

ex214 6 4 0 1.0041 -10.9937 0.00000E+000 -11

ex215 10 11 0 10.0526 -267.5463 0.00000E+000 -268.0146

ex216 10 5 0 2.6082 -39.0000 0.00000E+000 -39

ex219 10 0 1 0.3320 -0.2727 2.21033E-005 -0.375

ex311 8 6 0 5.6324 8173.7786 0.00000E+000 7049.2083

ex312 5 6 0 2.7442 -30665.5761 4.43936E-005 -30665.54

ex313 6 6 0 2.1001 -9488.6046 0.00000E+000 -310

ex314 3 3 0 0.3280 -4.0000 0.00000E+000 -4

ex418 2 0 1 0.0600 -16.7386 1.06558E-004 -16.7389

ex419 2 2 0 0.1840 -5.4961 0.00000E+000 -5.508

ex522case1 9 2 4 6.4484 -136.6245 0.00000E+000 -400

ex522case2 9 2 4 7.6885 -301.4679 0.00000E+000 -600

ex522case3 9 2 4 6.4564 -554.9412 0.00000E+000 -750

ex524 7 5 1 3.2562 -360.5533 0.00000E+000 -450

ex611 8 0 6 3.8442 -0.0202 6.91414E-008 -0.0202

ex612 4 0 3 0.5720 -0.0293 1.00000E-006 -0.0325

Table 1: Performance of the Algorithm on the GLOBALLib test set (Part I).
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PROBLEM n me mi time val funct viol f⋆

ex614 6 0 4 1.3881 -0.2918 3.69329E-007 -0.2945

ex6210 6 0 3 1.1361 -3.0507 1.00000E-007 -3.052

ex6211 3 0 1 0.1640 0.0000 2.48323E-007 0

ex6213 6 0 3 1.1721 -0.2186 1.00000E-007 -0.2162

ex6214 4 0 2 0.4480 -0.6954 1.00000E-007 -0.6954

ex625 9 0 3 10.0686 -70.3860 2.00000E-007 -70.7521

ex626 3 0 1 0.1880 0.0000 4.94405E-008 0

ex627 9 0 3 9.5206 -0.1449 3.00000E-007 -0.1608

ex628 3 0 1 0.1880 -0.0270 7.97572E-007 -0.027

ex629 4 0 2 0.4640 -0.0278 1.00000E-007 -0.0341

ex721 7 14 0 35.4782 1272.7361 0.00000E+000 1227.1896

ex722 6 1 4 1.9561 -0.3887 3.52918E-010 -0.3888

ex723 8 6 0 24.6815 7242.7603 0.00000E+000 7049.2181

ex724 8 4 0 2.7322 3.9584 0.00000E+000 3.918

ex725 5 6 0 2.9962 10694.8585 0.00000E+000 10122.4828

ex726 3 1 0 0.1480 -75.6879 0.00000E+000 -83.2499

ex727 4 2 0 0.4840 -5.7397 0.00000E+000 -5.7399

ex728 8 4 0 3.5322 -6.0645 0.00000E+000 -6.082

ex729 10 6 0 6.6044 1.9376 0.00000E+000 1.1436

ex731 4 7 0 1.3681 2.0000 0.00000E+000 0.3417

ex732 4 7 0 10.7167 1.0902 0.00000E+000 1.0899

ex733 5 6 2 3.5322 1.0599 4.40382E-008 0.8175

ex736 1 0 2 0.0240 0.0000 7.40842E-006 0

ex817 5 4 1 2.0641 0.0700 5.19382E-007 0.0293

ex818 6 1 4 1.9641 -0.3887 3.52918E-010 -0.3888

ex912 10 0 9 6.5924 -16.0001 4.06901E-005 -16

ex914 10 0 9 7.8285 -37.0011 7.18335E-005 -37

ex921 10 0 9 31.3060 16.9992 9.15527E-005 17

ex922 10 1 8 17.8211 100.0000 0.00000E+000 99.9995

ex924 8 0 7 4.1003 2.5000 4.59772E-009 0.5

ex925 8 0 7 6.7484 5.0018 3.71094E-005 5

ex927 10 0 9 12.0688 16.9980 0.00000E+000 17

ex928 3 0 2 0.2000 1.5000 1.52588E-005 1.5

himmel11 9 0 3 3.5962 -30665.7678 2.83252E-004 -30665.54

house 8 4 4 30.2219 -3620.6989 3.67897E-007 -4500

least 3 0 0 < 10−3 752888.0000 0.00000E+000 14085.1398

meanvar 7 0 2 0.8120 5.5642 1.20637E-005 5.2434

mhw4d 5 0 3 0.6800 0.0352 1.75659E-006 0.0293

process 8 0 6 13.0688 0.0000 1.33000E+002 -1161.3366

rbrock 2 0 0 < 10−3 3918.5000 0.00000E+000 0

sample 4 2 0 0.5480 67033.3333 0.00000E+000 726.6367

wall 6 0 6 2.1761 -1.0004 2.41675E-004 -1

Table 2: Performance of the Algorithm on the GLOBALLib test set (Part II).
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Figure 1: Performance Comparison between the DIRECT+DFNcon Algorithm (continuous line)
DF-EPGO+DFNcon Algorithm (dashed line) on the GLOBALLib test set: number of feasible
solutions.
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Figure 2: Performance Comparison between the DIRECT+DFNcon Algorithm (continuous line)
DF-EPGO+DFNcon Algorithm (dashed line) on the GLOBALLib test set: number of best
feasible solutions.
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dimensions of problems that can be solved with our approach. On the other hand, by devising
clever ways to take into account estimates of global information on the problem.
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