
Optim Lett (2015) 9:57–74
DOI 10.1007/s11590-014-0757-3

ORIGINAL PAPER

Solving �0-penalized problems with simple constraints
via the Frank–Wolfe reduced dimension method

Giampaolo Liuzzi · Francesco Rinaldi

Received: 18 April 2013 / Accepted: 19 May 2014 / Published online: 6 June 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract �0-penalized problems arise in a number of applications in engineering,
machine learning and statistics, and, in the last decades, the design of algorithms for
these problems has attracted the interest of many researchers. In this paper, we are
concerned with the definition of a first-order method for the solution of �0-penalized
problems with simple constraints. We use a reduced dimension Frank–Wolfe algorithm
Rinaldi (Optim Methods Softw, 26, 2011) and show that the subproblem related to
the computation of the Frank–Wolfe direction can be solved analytically at least for
some sets of simple constraints. This gives us a very easy to implement and quite
general tool for dealing with �0-penalized problems. The proposed method is then
applied to the numerical solution of two practical optimization problems, namely,
the Sparse Principal Component Analysis and the Sparse Reconstruction of Noisy
Signals. In both cases, the reported numerical performances and comparisons with
state-of-the-art solvers show the efficiency of the proposed method.

Keywords Sparse problems · Frank–Wolfe method · SPCA · Noisy signals

G. Liuzzi
Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, Consiglio Nazionale delle Ricerche,
Viale Manzoni 30, 00185 Rome, Italy
e-mail: giampaolo.liuzzi@iasi.cnr.it

F. Rinaldi (B)
Dipartimento di Matematica, Università degli Studi di Padova,
Via Trieste 63, 35121 Padua, Italy
e-mail: rinaldi@math.unipd.it

123

58 G. Liuzzi, F. Rinaldi

1 Introduction

In this paper we consider the following class of problems

min
x∈Rn

g(x) + λ‖x‖0

s.t. x ∈ C,
(1)

where λ is a positive parameter, g(x) is a continuously differentiable function, C is a
compact convex set and ‖x‖0 is the zero-norm of x , that is,

‖x‖0 = card({i : xi �= 0}).

In what follows, we require the set C to satisfy the assumption below.

Assumption 1 Set C is described by “simple” constraints. In particular:

(a) a spherical constraint, i.e. C = {x ∈ R
n : ‖x‖2 ≤ 1};

(b) bound constaints on the variables, i.e. C = {x ∈ R
n : −Me ≤ x ≤ Me},

where e ∈ R
n is the vector of all ones, M is a sufficiently large positive value and

the vector inequalities −Me ≤ x ≤ Me are intended component-wise (namely,
−M ≤ xi ≤ M , for all i = 1, . . . , n).

As shown in [4,24,25], because of the discontinuity and nonconvexity of the zero-
norm function, finding a solution of Problem (1) can be a very difficult task.

Despite our assumption on set C , Problem (1) is still sufficiently general to encom-
pass different practical optimization problems such as

– the Sparse Principal Component Analysis (SPCA) [12,19,33] and
– the Sparse Reconstruction of Noisy Signals (SRNS) [1,2,13,15].

In the paper, following the ideas proposed in [22,26,31], we choose to deal with
Problem (1) by replacing the zero-norm ‖x‖0 with a suitable smooth concave approx-
imating function h(y) : R

n → R, thus obtaining the following problem.

min
x,y∈Rn

f (x) = g(x) + λh(y)

s.t. x ∈ C,

− y ≤ x ≤ y.

(2)

As proposed in [22,26,31], possible expressions for h(y) are the following:

h(y) =
n∑

i=1

(1 − e−αyi), α > 0; (3)

h(y) =
n∑

i=1

ln(ε + yi), ε > 0; (4)

h(y) =
n∑

i=1

(yi + ε)p, ε > 0, 0 < p < 1; (5)

123

Solving �0-penalized problems 59

h(y) =
n∑

i=1

−(yi + ε)−p, ε > 0, p ≥ 1. (6)

We then solve Problem (7) employing the Frank–Wolfe (FW) algorithm proposed in
[25]. To this aim, under Assumption 1, we show that the FW direction can be computed
analytically thus making the algorithms very efficient and competitive.

Hence, the aim of the paper is to adapt the method proposed in [25] for solving
two well-known and widely studied �0-penalized problems with simple constraints,
namely SPCA and SRNS. As we will see later, the resulting algorithm shows good
performance when compared to special-purpose codes for the considered problems.
Furthermore it is very easy to implement (just a few lines of Matlab code).

The paper is organized as follows. In Sect. 2 we present the general Frank–Wolfe
method that we use to solve the approximating problem (2). In Sect. 3, we show
how to analytically compute the FW direction for problems satisfying Assumption 1.
In Sect. 4 we briefly present the SPCA problem. Section 5 is devoted to the SRNS
problem. In Sects. 6 and 7 we report some numerical results of the proposed method
and comparison with some other well-known codes for SPCA (namely GPower [19]
and SpaSM [17]) and SRNS (namely FPC-AS [15], SALSA [1,2] and SpaRSA [13]),
respectively, which show the viability and efficiency of the proposed approach. Finally,
in Sect. 8 we draw some conclusions.

2 The Frank–Wolfe reduced dimension algorithm

The Frank–Wolfe algorithm is a well-known and widely-used method in operations
research. It was originally proposed by Marguerite Frank and Phil Wolfe in 1956 as a
procedure for solving quadratic programming problems with linear constraints [14]. At
each step of the algorithm the objective function is linearized and a step is taken along a
feasible descent direction. Recently, the approach has been successfully used for find-
ing sparse solutions to problems with convex constraints (see e.g. [21,22,25,26,31]).

In this section, we describe an efficient version of the Frank–Wolfe algorithm for
solving problem (2) and recall some theoretical results about its global convergence
(see [25] for further details and proofs). The motivation for using this algorithm as a
local minimizer is twofold:

(1) The optimization problem to be solved at each step of the algorithm has a linear
objective function and a closed convex feasible set described by simple constraints
such that its solution can be computed analytically.

(2) It is possibile to reduce the problem dimension at each step of the algorithm, thus
obtaining significant savings in terms of computational time.

In order to ease the description of the algorithm we restate problem (2) as follows:

min
x∈Rn

f (x) = g(x) + λh(x) = g(x) + λ

n∑

i=1

hi (xi)

s.t. x ∈ C,

xi ≥ 0, i ∈ I ⊆ {1, . . . , n},
(7)

we denote by � the feasible set of the above problem.

123

60 G. Liuzzi, F. Rinaldi

Below we report the outline of the algorithm. As we can easily see, at each iteration
the problem (8) is equivalent to a problem of dimension n − |I k | and I k ⊆ I k+1,
then the problems to be solved are of nonincreasing dimensions. This yields obvious
advantages in terms of computational time. We state here the main result about the
global convergence of the FW-RD Algorithm to a stationary point [25].

Algorithm 1 Frank–Wolfe - Reduced Dimension (FW-RD) Algorithm

Require: x0 ∈ �.
for k = 0, 1, . . ., do

Set I xk = {i ∈ I : xk
i = 0} and �xk = {x ∈ � : xi = 0, ∀ i ∈ I xk }

Obtain solution xk by solving the following problem:

xk = arg min
x∈�xk

∇ f (xk)T (x − xk) (8)

if ∇ f (xk)T (xk − xk) = 0 then STOP
else define a feasible descent direction

dk = xk − xk

and generate a new feasible vector

xk+1 = xk + αkdk

with αk ∈ (0, 1] a suitably chosen stepsize.
end if

end for

Proposition 1 Let {xk} be a sequence generated by the FW-RD Algorithm

xk+1 = xk + αkdk .

Assume that

1. the method used for choosing stepsize αk satisfies the following conditions:
(i) f (xk+1) < f (xk), with ∇ f (xk) �= 0;

(ii) if ∇ f (xk) �= 0 ∀ k, then we have

lim
k→∞ ∇ f (xk)T dk = 0 ;

2. there exists a value S such that h
′
i (0) ≥ S, for all i ∈ I .

Then every limit point x̄ of {xk} is a stationary point. �
We notice that assumption 2 of Proposition 1 holds for suitable values of the para-

meters of the smooth concave approximating functions (3)–(6); so that Algorithm
FW-RD can be applied. In practice, the parameters usually need to guarantee that the
slope of the graph related to the function h gets reasonably large when we are close to 0.

We report some of the most popular rules for choosing the stepsize αk :

123

Solving �0-penalized problems 61

1. Minimization rule: Here αk is the value obtained by minimizing the function along
the direction dk ,

f (xk + αkdk) = min f (xk + αdk).

Minimization rule is typically implemented by means of line search algorithms.
In practice, the stepsize is not computed exactly, but it is replaced by a stepsize αk

satisfying some termination criteria.
2. Armijo rule: In this case, fixed scalars �k , δ and γ , with δ ∈ (0, 1) and

γ ∈ (0, 1/2), are chosen, and αk = δmk �k , where mk is the first nonnegative
integer m for which

f (xk + δm �k dk) ≤ f (xk) + γ δm �k ∇ f (xk)T dk .

The stepsizes δm�k , m = 1, 2, . . . , are tried successively until the above inequal-
ity is satisfied for m = mk .

3. Constant stepsize: According to this choice, a fixed stepsize

αk = 1, k = 0, 1, . . .

is used. This rule can be adopted when the objective function has some particular
properties (e.g. concavity). Anyway, if we rescale or redefine appropriately the
direction dk , we can always use a constant stepsize.

As a final remark to this section, we note that in the practical implementation of
method FW-RD a sufficiently small threshold ρ is needed for identifying (near) zero
components of the solution at iteration k. Hence, the actual definition of set I xk

is
I xk = {i ∈ I : |xk

i | ≤ ρ} for sufficiently small ρ > 0 (e.g. ρ = 10−4).

3 Analytical solution of the Frank–Wolfe subproblem

In this section, under Assumption 1, we show how to analytically compute the solution
of the Frank–Wolfe subproblem.

In the next proposition, we give the analytical solution for the FW subroblem when
C satisfies Assumption 1 (a).

Proposition 2 Let C = {x ∈ R
n : ‖x‖2 ≤ 1}. The problem

min c′
x x + c′

y y
s.t. x ′x ≤ 1,

−y ≤ x ≤ y.

(9)

admits the following solution:

x
 =
{

0 i f ∀ i |(cx)i | ≤ (cy)i
x̃

‖x̃‖ otherwise
y
 = |x
|

123

62 G. Liuzzi, F. Rinaldi

where

x̃i =
{

0 |(cx)i | ≤ (cy)i

sgn[(cx)i](cy)i − (cx)i |(cx)i | > (cy)i
i = 1, . . . , n. (10)

Proof The KKT conditions for Problem (9) are the following:

cx + 2μx + σ − ρ = 0, (11a)

cy − σ − ρ = 0, (11b)

μ(‖x‖2 − 1) = 0, μ ≥ 0, (11c)

σ ′(x − y) = 0, σ ≥ 0, (11d)

ρ′(x + y) = 0, ρ ≥ 0, (11e)

‖x‖2 ≤ 1, (11f)

x − y ≤ 0, (11g)

− x − y ≤ 0. (11h)

We say that (x̄, ȳ) ∈ R
2n is a KKT pair for problem (9) when multipliers μ̄ ∈ R,

σ̄ ∈ R
n and ρ̄ ∈ R

n exist such that (x̄, ȳ, μ̄, σ̄ , ρ̄) satisfy (11a). Let us consider the
two cases:

1. |(cx)i | ≤ (cy)i for all i = 1, . . . , n. It is easy to see that the tuple
(x
, y
, μ
, σ
, ρ
) where

x
 = 0, y
 = 0, μ
 = 0,

ρ

i = (cy)i + (cx)i

2
, for alli = 1, . . . , n,

σ

i = (cy)i − (cx)i

2
, for alli = 1, . . . , n,

satisfy the KKT conditions.
2. |(cx)i | > (cy)i , for at least an index i ∈ {1, . . . , n}. In this case, it can be seen that

the tuple (x
, y
, μ
, σ
, ρ
) where

x
 = x̃

‖x̃‖ , y
 = |x
|, μ
 = ‖x̃‖
2

,

with x̃ is given by (10), and

σ

i =

⎧
⎨

⎩

(cy)i if (cx)i < −(cy)i < 0
if (cx)i > (cy)i > 0

(cy)i −(cx)i
2 |(cx)i | ≤ (cy)i ,

ρ

i =

⎧
⎨

⎩

0 if (cx)i < −(cy)i < 0
(cy)i if (cx)i > (cy)i > 0
(cy)i +(cx)i

2 |(cx)i | ≤ (cy)i ,

satisfy the KKT conditions.

123

Solving �0-penalized problems 63

The proof follows by considering that the gradients of the active constraints at
(x
, y
) are linearly independent. �

Now, we report an analogous result for the problem with bound constraints.

Proposition 3 Let C = {x ∈ R
n : −Me ≤ x ≤ Me}. The problem

min c′
x x + c′

y y
s.t. −y ≤ x ≤ y,

−Me ≤ x ≤ Me,
(12)

admits (x
, y
) as a solution, where

x

i =

{
0 i f |(cx)i | ≤ (cy)i

−Msgn[(cx)i] otherwise
y

i = |x

i |,

for i = 1, . . . , n.

Proof The KKT conditions for Problem (23) are the following:

cx + σ − ρ + r − s = 0, (13a)

cy − σ − ρ = 0, (13b)

σ ′(x − y) = 0, σ ≥ 0, (13c)

ρ′(x + y) = 0, ρ ≥ 0, (13d)

r ′(x − Me) = 0, r ≥ 0, (13e)

s′(−x − Me) = 0, s ≥ 0, (13f)

x − y ≤ 0, (13g)

− x − y ≤ 0. (13h)

We say that (x̄, ȳ) ∈ R
2n is a KKT pair for problem (23) when multipliers σ̄ ∈ R

n ,
ρ̄ ∈ R

n , r̄ ∈ R
n and s̄ ∈ R

n exist such that (x̄, ȳ, σ̄ , ρ̄, r̄ , s̄) satisfy (13a). Let us
consider the two cases:

1. |(cx)i | ≤ (cy)i for all i = 1, . . . , n. It is easy to see that the tuple
(x
, y
, σ
, ρ
, r
, s
) where

x
 = 0, y
 = 0, r
 = 0, s
 = 0,

ρ

i = (cy)i + (cx)i

2
, for all i = 1, . . . , n,

σ

i = (cy)i − (cx)i

2
, for all i = 1, . . . , n,

satisfy the KKT conditions.
2. If |(cx) j | > (cy) j , for at least an index j ∈ {1, . . . , n}, then, for i = 1, . . . , n, we

consider the following cases:

123

64 G. Liuzzi, F. Rinaldi

– (cx)i < −(cy)i < 0. In this case, it can be seen that

σ

i = (cy)i , ρ

i = 0, s

i = 0,

r

i = −((cx)i + (cy)i), x

i = M, y

i = M;

– (cx)i > (cy)i > 0. In this case, it can be seen that

σ

i = 0, ρ

i = (cy)i , s

i = (cx)i − (cy)i ,

r

i = 0, x

i = −M, y

i = M;

– |(cx)i | ≤ (cy)i . In this case, it can be seen that

σ

i = (cy)i − (cx)i

2
, ρ

i = (cy)i + (cx)i

2
,

s

i = 0, r

i = 0, x

i = 0, y

i = 0.

The proof follows by considering that the gradients of the active constraints at (x
, y
)

are linearly independent. �

We would like to remark that using the KKT conditions of the problems in the
proof of the propositions stated above, although quite standard in this context, is not
the only way to prove those results (e.g. in Proposition 3 we could use the fact that
the problem is separable and calculate the solution of each one-dimensional problem
to get the final solution).

4 Sparse PCA

In this section we consider the SPCA problem and its solution via the proposed FW-RD
Algorithm. First we shall briefly recall PCA. PCA is a well-established tool for data
processing and analysis which allows to reduce high dimensional data to a smaller
dimension. Given a real matrix A ∈ R

p×n which encodes p samples of n variables or
features, PCA aims at finding a few linear combinations of the variables, the principal
components, which are orthogonal to each other and explain as much of the variance
in the data as possible. If the rows of matrix A are of zero mean, then the classical PCA
problem can be formulated by using the scaled covariance matrix Q = A′ A as follows

x∗ = arg maxx x ′Qx
s.t. x ′x ≤ 1.

(14)

The solution vector x∗ is said the loading vector or the (first) Principal Component
(PC) of the data, that is the component that explains the maximum amount of variance
in the data. x∗ is the eigenvector of Q corresponding to the maximum eigenvalue.
Hence, computing all of the PC’s of Q amounts to computing the Singular Value
Decomposition (SVD) of Q. Usually, the PC’s of Q, including x∗, will have many
non-zero components.

123

Solving �0-penalized problems 65

Sparse PCA aims at finding the PC’s of the covariance matrix by minimizing, at
the same time, the number of their non-zero components. In [11] a term penalizing the
zero-norm of x is introduced in Problem (14) thus obtaining the following formulation
of the SPCA problem:

x∗ = arg maxx x ′Qx − λ‖x‖0
s.t. x ′x ≤ 1,

(15)

which is then approximated by using the �1-norm. While PCA is numerically easy,
Sparse PCA is a hard combinatorial problem. In fact, in [23] it is shown that the
subset selection problem for ordinary least squares, which is NP-hard [24], can be
reduced to a sparse generalized eigenvalue problem, of which sparse PCA is a particular
intance. Hence, researchers are studying ways to make Problem (15) computationally
tractable.

A simple approach to Problem (15) consists in solving PCA by neglecting the zero-
norm term and then to threshold the loadings with small absolute value to zero [6].
More systematic approaches to the problem appeared in recent years, with various
researchers proposing the use of nonconvex algorithms (e.g., GPower in [19], SpaSM
in [17], SCoTLASS in [18], SLRA in [32] or D.C. based methods [29]) which find
modified principal components with zero loadings. The SPCA algorithm in [33] is
based on the representation of PCA as a regression-type optimization problem thus
allowing for the application of the LASSO [30]. All the mentioned approaches and
algorithms require solving non convex problems. Recently in [12] an �1-based semi-
definite relaxation for the sparse PCA problem has been proposed.

In this section we propose solving Problem (15) via the FW-RD method. To this
purpose, following [25] and by adding some auxiliary variables, we substitute the
zero-norm of vector x in the definition of Problem (15) with a concave separable
function thus obtaining the problem

(x∗, y∗) = arg maxx,y x ′Qx − λ

n∑

i=1

log(ε + yi)

s.t. x ′x ≤ 1,

− y ≤ x ≤ y,

(16)

where, in particular, we add variables yi for each i ∈ {1, . . . , n}. We note that the
above problem (16) has the form of Problem (7).

At every iteration of the FW-RD method, we have to solve the following subprob-
lem:

(x∗, y∗) = arg minx,y −2(Qxk)′x + λ

n∑

i=1

yi

ε + yk
i

= c′
x x + c′

y y

s.t. x ′x ≤ 1,

− y ≤ x ≤ y,

(17)

where xk is the current iterate. In order to ease the understanding of the algorithm, we do
not take into account the fact that at iteration k some of the variables can be fixed to zero.

123

66 G. Liuzzi, F. Rinaldi

With reference to Problem (17), we know that (cy)i = λ

ε+yk
i

> 0, for all

i = 1, . . . , n. Then, the FW-RD algorithm described in Sect. 2 can be specialized
by considering that:

– solution of the Frank–Wolfe subproblem is computed as described in Proposition 2;
– since the problem (16) is a concave programming problem, the stepsize αk is fixed

to 1.

5 Sparse reconstruction of noisy signals

Many problems in signal/image processing and statistics can be formulated as that
of finding a sparse approximate solution to a large scale underdetermined linear sys-
tem. A widely-studied problem in this context is the sparse representation of signals
(see, e.g., [5,10]). Various media types (i.e. imagery, video and audio) can be sparsely
represented using transform-domain methods, and in fact various relevant problems
dealing with these media can be easily viewed as the problem of finding sparse solu-
tions to a linear undertermined or ill-conditioned system. In practice, given a dictionary
A ∈ R

m×n of elementary signals and a real noisy signal b, the goal is finding a sparse
representation x of signal b in terms of the dictionary A. A quite standard approach
consists in solving an �1 regularized least-squares problem having the following form:

min
x∈Rn

1

2
‖Ax − b‖2 + λ‖x‖1 (18)

The �1-norm term promotes sparse solutions by forcing small components of the solu-
tion vector x to be zero. Problem (18) is strictly related to the Least Absolute Shrinkage
and Selection Operator, a widely-studied problem in statistics, described for the first
time by Tibshirani in [30]:

min
x∈Rn

‖Ax − b‖2
2

s.t. ‖x‖1 ≤ τ,
(19)

where τ is a nonnegative real parameter regulating the sparsity of the solution. The
Basis Pursuit [10] problem:

min
x∈Rn

‖x‖1

s.t. Ax = b,
(20)

is also related to Problem (18). Another interesting application of Problem (18) is
Compressed Sensing [7–9]. The idea behind Compressed Sensing is that of encoding
a large sparse signal using a relatively small number of linear measurements, and
minimizing the �1-norm in order to decode the signal. In the last decades, Problem
(18) has become increasingly popular and various algorithms have been proposed for
efficiently solving it (see e.g. [1–3,13,15,20]). An alternative way to formulate the
problem of reconstructing a noisy signal by elementary signals is the following:

123

Solving �0-penalized problems 67

x
 = arg min
x

1

2
‖Ax − b‖2 + λ‖x‖0 (21)

In this section we propose solving Problem (21) via the FW-RD method. To this
purpose, following [25] and by adding some auxiliary variables, we substitute the
zero-norm of vector x in the definition of Problem (15) with a concave separable
function thus obtaining the problem

(x∗, y∗) = arg minx,y
1
2‖Ax − b‖2 + λ

n∑

i=1

(1 − e−αyi)

s.t. − y ≤ x ≤ y,

(22)

where, in particular, we add variables yi for each i ∈ {1, . . . , n}. We note that the
above Problem (22) has the form of Problem (7).

As done in Sect. 4, at every iteration of the FW-RD method, we have to solve the
following linear subproblem:

(x∗, y∗) = arg minx,y (Axk − b)′ Ax + λ

n∑

i=1

αe−αyk
i yi = c′

x x + c′
y y

s.t. − y ≤ x ≤ y,

− Me ≤ x ≤ Me,

(23)

where xk is the current iterate. The last set of constraints (−M ≤ x ≤ M), when
M > 0, makes the feasible region of Problem (23) compact. With reference to Prob-
lem (23), we know that (cy)i = λαe−αyk

i > 0, for all i = 1, . . . , n.
Then, the FW-RD algorithm described in Sect. 2 can be specialized by considering

that:

– solution of the Frank–Wolfe subproblem is computed as described in Proposition 3;
– Stepsize αk is chosen by means of an Armijo rule.

6 Numerical results on sparse PCA

In this section we report the results obtained by testing our method on two different
classes of sparse PCA problems. More precisely as in [19], first we experiment on
random data (with an underlying sparse PCA model). Then we consider some real
datasets related to the analysis of gene expressions [31]. Further, we compare our
method with the methods for sparse PCA proposed in [19], namely GPower�0 , and in
[17], namely SpaSM.

All the numerical experiments have been conducted using Matlab 7.12 (R2011b)
on an Intel core i7 with 8GB RAM and running Linux version 2.6.38.

6.1 Random data drawn from a sparse PCA model

In order to generate random data with a covariance matrix having sparse eigenvectors,
we follow the procedure proposed in [28]. Let = V DV ′ be a covariance matrix,

123

68 G. Liuzzi, F. Rinaldi

where the first m columns of V ∈ R
n×n are pre-specified sparse orthonormal vectors.

Then, a data matrix A ∈ R
p×n is generated by using a zero-mean normal distribution

with covariance matrix , that is, A ∼ N (0,).
We consider different pairs (p, n) and for each of them we generate 100 data

matrices following [19]. We then use Algorithms FW-RD, GPower�0 and SpaSM to
compute two unit-norm sparse PC’s of Q. This can be done by using a standard so-
called deflation scheme like that used in [12]. In particular, let z1 be the computed
solution of Problem (15), then z2 can be obtained by solving again Problem (15)
with

Q = (A − Az1z′
1)

′(A − Az1z′
1).

In Table 1, we report the obtained results.
For every pair (p, n) we provide the average of the scalar products and computing

times. Furthermore, in the column labelled “succ.” we report the percentage of prob-
lems where the two pre-specified eigenvectors are successfully identified, that is when
|z′

1v1| and |z′
2v2| are both greater than 0.99. As we can see from the table, the FW-RD

Algorithm is competitive with GPower �0 and SpaSM in terms of CPU time and it is
slightly better in terms of success rate.

6.2 Analysis of gene expressions data

DNA microarrays allow to provide the expression level of tens of thousands of genes
across several hundreds of experiments thus constituting the source of a huge quantity
of data. The interpretation of all these data is a challenging topic and calls for the use
of advanced analytical tools. For more details and insights on microarrays and gene
expression data, we refer to [27] and the references therein. Below we report results
on two particular datasets [31] and precisely (a) colon cancer, (b) brown yeast and (c)
lymphoma.

In the colon cancer dataset we have the expression of 2000 genes in 62 (22 normal
and 40 colon cancer) tissue samples. The goal is that of determining the relevant genes
to discriminate between cancerous and normal tissues. In Fig. 1, we report the propor-
tion of adjusted variance versus the cardinality of the extracted set of discriminating
genes (the so-called trade-off curve) for FW-RD, GPower�0 and SpaSM. As it can
be seen, for this example our method is comparable with GPower�0 and better than
SpaSM.

In the brown yeast dataset we have a total of 208 genes that have to be discriminated
based on 79 gene expression data corresponding to different experimental settings. In
Fig. 2 we report the trade-off curves of the three methods (SpaSM, GPower�0 and
FW-RD), from which we can see that FW-RD outperforms GPower�0 (for small car-
dinalities) and SpaSM.

In the lymphoma problem the gene expression of 96 samples is measured with
microarrays to give 4,026 features, 61 of the samples are in classes DLCL, FL or
CLL (malignant) and 35 are labelled normal. As in the case of colon cancer data, the
goal here is that of determining the relevant genes in discrimination. In Fig. 3, we

123

Solving �0-penalized problems 69

Table 1 Performance of SpaSM, GPower �0 and FW-RD algorithm on random data

p n |z′
1z2| |z′

1v1| |z′
2v2| Succ. (%) Time

SpaSM

10 100 1.28821e−03 7.50127e−01 7.35455e−01 40 5.50e−03

11 110 1.17833e−03 7.86666e−01 7.73023e−01 46 4.90e−03

12 120 1.19361e−03 7.41820e−01 7.27445e−01 42 4.40e−03

13 130 9.98098e−04 7.34747e−01 7.22297e−01 34 4.60e−03

14 140 7.67568e−04 7.43930e−01 7.32842e−01 34 4.80e−03

15 150 7.88741e−04 7.32755e−01 7.21531e−01 37 4.90e−03

16 160 6.17893e−04 7.52929e−01 7.45178e−01 40 5.30e−03

17 170 7.01328e−04 7.66798e−01 7.56287e−01 42 5.40e−03

18 180 6.05952e−04 7.84068e−01 7.75757e−01 43 6.40e−03

19 190 6.10760e−04 7.42425e−01 7.32904e−01 41 6.50e−03

20 200 5.62438e−04 7.34579e−01 7.27073e−01 42 7.80e−03

GPower �0

10 100 2.02805e−03 7.48834e−01 7.33297e−01 40 4.00e−03

11 110 1.77439e−03 7.87859e−01 7.73650e−01 46 2.60e−03

12 120 1.87252e−03 7.40300e−01 7.24934e−01 42 2.60e−03

13 130 2.16435e−03 7.35524e−01 7.22492e−01 34 4.10e−03

14 140 2.29243e−03 7.43116e−01 7.31384e−01 35 3.10e−03

15 150 2.22725e−03 7.32765e−01 7.21021e−01 37 3.10e−03

16 160 2.69145e−03 7.52751e−01 7.44534e−01 41 3.30e−03

17 170 2.40034e−03 7.65433e−01 7.54503e−01 40 4.40e−03

18 180 2.86726e−03 7.84959e−01 7.76516e−01 43 3.40e−03

19 190 2.42358e−03 7.40279e−01 7.29977e−01 41 4.60e−03

20 200 2.60244e−03 7.32709e−01 7.24655e−01 43 3.20e−03

FW-RD

10 100 3.52555e−03 7.49811e−01 7.38203e−01 41 4.10e−03

11 110 2.73873e−03 7.85200e−01 7.75009e−01 47 4.70e−03

12 120 2.86564e−03 7.45124e−01 7.28538e−01 42 3.40e−03

13 130 4.69557e−03 7.33128e−01 7.22478e−01 37 3.50e−03

14 140 1.98481e−03 7.40394e−01 7.31557e−01 35 4.00e−03

15 150 2.38888e−03 7.31121e−01 7.16115e−01 37 3.60e−03

16 160 9.15834e−04 7.43788e−01 7.32712e−01 38 4.90e−03

17 170 2.70908e−03 7.64909e−01 7.48966e−01 41 3.70e−03

18 180 1.70771e−03 7.73286e−01 7.61102e−01 44 4.60e−03

19 190 1.05600e−03 7.42655e−01 7.35217e−01 43 5.50e−03

20 200 3.22545e−03 7.27411e−01 7.13584e−01 39 5.00e−03

report the trade-off curves of the three methods (SpaSM, GPower�0 and FW-RD). We
can see once again that FW-RD outperforms GPower�0 (for small cardinalities) and
SpaSM.

123

70 G. Liuzzi, F. Rinaldi

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

CARDINALITY

E
X

P
LA

IN
E

D
 V

A
R

IA
N

C
E

SpaSM
GPower
FW−RD

Fig. 1 Trade-off curves for gene expressions in colon cancer dataset

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

CARDINALITY

E
X

P
LA

IN
E

D
 V

A
R

IA
N

C
E

SpaSM
GPower
FW−RD

Fig. 2 Trade-off curves for gene expressions in yeast dataset

123

Solving �0-penalized problems 71

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

90

100

CARDINALITY

E
X

P
LA

IN
E

D
 V

A
R

IA
N

C
E

SpaSM
GPower
FW−RD

Fig. 3 Trade-off curves for gene expressions in lymphoma dataset

7 Numerical results on sparse representation of noisy signals

We compare FW-RD algorithm on a set of sparse signal reconstruction problems with
the codes SALSA [1,2], FPC-AS [15] and SpaRSA [13]. We generated matrix A and
vector b according to five different basic compressed sensing scenarios, like those
described in [15,16]. In practice, we first randomly generate matrix A (according to
one of the given scenarios), then we choose b = Ax
 +ν, where ν is a Gaussian white
vector with variance 10−4 and x
 is a vector with T randomly placed ±1 spikes and
zeroes in the other components.

In Table 2, we report the experimentation and comparison of the proposed algorithm
FW-RD with SALSA, FPC-AS and SpaRSA, where parameter λ is chosen as proposed
in [13]. n, m and T denote, respectively, the number of columns, rows of the matrix
A and the number of spikes of the sparse solution x
. Prob denotes the compressed
sensing scenario used, namely, partial discrete cosine transform (Prob = 0), ran-
dom ±1 Bernoulli (Prob = 1), partial Hadamard (Prob = 2), normally distributed
random (Prob = 3) and scaled normally distributed random (Prob = 4) matrix. In
the columns labelled time and MSE we report, respectively, the CPU computing time
and the mean squared error of the reconstructions with respect to x
. Every table row
reports the avarage results over 10 runs of the algorithms. All the numerical experi-
ments have been conducted using Matlab 7.12 (R2011b) on an Intel core i7 with 8GB
RAM and running Linux version 2.6.38.

As we can easily see by taking a look at the table, FW-RD is very competitive with
SALSA, FPC-AS and SpaRSA both in terms of CPU time and MSE in all scenarios.

123

72 G. Liuzzi, F. Rinaldi

Ta
bl

e
2

Pe
rf

or
m

an
ce

of
SA

L
SA

,F
PC

-A
S,

Sp
ar

SA
an

d
FW

-R
D

A
lg

or
ith

m
on

ra
nd

om
ly

ge
ne

ra
te

d
SR

N
S

pr
ob

le
m

s

P
ro

b
FP

C
-A

S
Sp

aR
SA

SA
L

SA
FW

-R
D

T
im

e
M

SE
T

im
e

M
SE

T
im

e
M

SE
T

im
e

M
SE

n
=

2,
04

8;
T

=
25

;m
=

51
2;

0
5.

32
4e

+0
0

5.
16

7e
+0

2
8.

66
0e

−0
1

9.
34

2e
−0

2
3.

95
8e

+0
0

1.
16

4e
−0

2
3.

58
0e

−0
1

4.
34

7e
−0

2

1
4.

73
8e

+0
0

2.
34

7e
−0

4
1.

56
8e

+0
0

2.
34

7e
−0

2
6.

75
5e

+0
0

7.
50

7e
−0

1
5.

22
0e

−0
1

3.
31

1e
−0

5

2
4.

91
7e

+0
0

2.
14

9e
−0

4
4.

35
0e

−0
1

2.
14

9e
−0

2
6.

92
9e

+0
0

7.
58

5e
−0

1
6.

62
0e

−0
1

3.
02

2e
−0

5

3
4.

92
5e

+0
0

2.
18

8e
−0

4
1.

65
8e

+0
0

2.
18

8e
−0

2
6.

70
4e

+0
0

7.
52

1e
−0

1
5.

82
0e

−0
1

3.
07

9e
−0

5

4
4.

80
5e

+0
0

2.
50

0e
−0

4
9.

30
0e

−0
2

2.
50

1e
−0

2
6.

51
7e

+0
0

2.
63

2e
−0

4
1.

39
0e

−0
1

4.
29

7e
−0

3

n
=

4,
09

6;
T

=
50

;m
=

1,
02

4;
0

1.
84

8e
+0

1
2.

31
9e

+0
2

5.
13

9e
+0

0
7.

81
7e

−0
2

1.
54

5e
+0

1
5.

24
3e

−0
2

1.
21

3e
+0

0
6.

24
6e

−0
2

1
1.

87
7e

+0
1

2.
65

7e
−0

4
1.

27
1e

+0
1

2.
65

7e
−0

2
2.

34
8e

+0
1

7.
49

2e
−0

1
1.

97
1e

+0
0

3.
76

0e
−0

5

2
1.

86
1e

+0
1

2.
44

5e
−0

4
1.

53
2e

+0
0

2.
44

5e
−0

2
2.

38
4e

+0
1

7.
47

8e
−0

1
1.

73
3e

+0
0

3.
45

2e
−0

5

3
1.

87
8e

+0
1

2.
54

8e
−0

4
1.

23
4e

+0
1

2.
54

8e
−0

2
2.

47
5e

+0
1

7.
48

1e
−0

1
2.

00
8e

+0
0

3.
60

4e
−0

5

4
1.

86
8e

+0
1

2.
70

5e
−0

4
2.

99
0e

−0
1

2.
70

5e
−0

2
2.

40
6e

+0
1

2.
85

0e
−0

4
5.

71
0e

−0
1

2.
17

6e
−0

3

n
=

8,
19

2;
T

=
10

0;
m

=
2,

04
8

0
6.

00
2e

+0
1

1.
51

6e
+0

2
4.

28
1e

+0
1

1.
60

6e
−0

1
6.

12
0e

+0
1

7.
07

5e
−0

2
4.

79
1e

+0
0

1.
19

1e
−0

1

1
5.

89
0e

+0
1

3.
00

5e
−0

4
5.

35
1e

+0
1

7.
78

4e
−0

2
9.

15
8e

+0
1

7.
48

6e
−0

1
6.

40
4e

+0
0

1.
09

5e
−0

3

2
6.

01
8e

+0
1

2.
29

9e
−0

4
7.

53
2e

+0
0

2.
29

9e
−0

2
9.

20
4e

+0
1

7.
50

4e
−0

1
6.

55
7e

+0
0

3.
23

8e
−0

5

3
6.

11
1e

+0
1

2.
93

6e
−0

4
5.

41
8e

+0
1

7.
19

1e
−0

2
9.

26
4e

+0
1

7.
49

9e
−0

1
6.

19
0e

+0
0

2.
14

5e
−0

3

4
6.

08
4e

+0
1

2.
79

7e
−0

4
1.

05
4e

+0
0

2.
79

6e
−0

2
9.

25
0e

+0
1

2.
95

0e
−0

4
2.

55
6e

+0
0

4.
85

0e
−0

5

123

Solving �0-penalized problems 73

We finally want to notice that the cost in terms of CPU time for the FW-RD algorithm
does not strongly depend on the scenario chosen and it does not grow that much even
when the size of matrix A is quite large.

8 Conclusions

In this paper we considered a class of �0-penalized problems with simple constraints
and adapted the first-order method proposed in [25] for their solution. Despite the
assumption made on the feasible set C , the considered class of problems is still suf-
ficiently general to encompass many significant applicative problems. We proposed a
Frank–Wolfe method for the solution of the problem and showed that the FW subprob-
lem can be solved analytically which is beneficial to the overall algorithm efficiency.

To show the effectiveness and efficiency of the proposed approach, we presented
numerical results and comparison with other well-know software packages. In partic-
ular, we consider two numerical problems: (a) sparse PCA problems, for which we
report comparison with the GPower method and SpaSM (b) sparse reconstruction of
noisy signals problems, for which we report comparison with SALSA, FPC-AS and
SpaRSA. For the former class of problem we tested our code on both random gener-
ated problems and biological problems. Our method performs well and compare quite
favorably with GPower on random generated problems and is slightly superior on bio-
logical data. For the latter class of problems (reconstruction of noisy signals), we run
our experimentation on five different signal scenarios. The results show that FW-RD
is quite efficient and robust and often gives better results than SALSA, FPC-AS and
SpaRSA both in terms of CPU time and reconstruction error.

To conclude, the results confirm viability of the proposed method and its efficiency
when compared with state-of-the-art software packages for the solution of special
classes of sparse problems. In this regard, we point out that our method is more
general than the other algorithms, namely SpaSM, GPower, SALSA, FPC-AS and
SpaRSA, since it allows to solve a more general class of sparse problems than those
addressed by the competing solvers. Furthermore, we would like to remark that the
method is very easy to implement (just a few lines of Matlab code).

References

1. Afonso, M., Bioucas-Dias, J., Figueiredo, M.: Fast image recovery using variable splitting and
constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

2. Afonso, M., Bioucas-Dias, J., Figueiredo, M.: An augmented lagrangian based method for the con-
strained formulation of imaging inverse problems. IEEE Trans. Image Process. 20(3), 681–695 (2011)

3. Beck, A., Teboulle, M.: A fast iterative shrinkage-threshold algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(2), 183–202 (2009)

4. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems.
Math. Progr. 74, 121–140 (1996)

5. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse
modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

6. Cadima, J., Jolliffe, I.: Loadings and correlations in the interpretation of principal components. J.
Appl. Stat. 22, 203–214 (1995)

123

74 G. Liuzzi, F. Rinaldi

7. Candès, E., Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decomposi-
tions. Found. Comput. Math. 6(2), 227–254 (2006)

8. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

9. Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements.
Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

10. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition basis pursuit. SIAM Rev. 43,
129–159 (2001)

11. D’Aspremont, A., Bach, F.R., El Ghaoui, L.: Optimal solutions for sparse principal component
analysis. J. Mach. Learn. Res. 9, 1269–1294 (2008)

12. D’Aspremont, A., El Ghaoui, L., Jordan, N.I., Lanckriet, G.R.G.: A direct formulation for sparce pca
using semidefinite programming. SIAM Rev. 49(3), 434–448 (2007)

13. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Sparse reconstruction by separable approximation.
IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

14. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Logist. Q. 3, 95–110 (1956)
15. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for l1-minimization: methodology and

convergence. SIAM J. Optim. 19(3), 1107–1130 (2008)
16. Hale, E.T., Yin, W., Zhang, Y.: http://www.caam.rice.edu/~optimization/l1/fpc/, (2012)
17. Hein, M., Bühler, T.: An inverse power method for nonlinear eigenproblems with applications in

1-spectral clustering and sparse pca. In: Advances in Neural Information Processing Systems, pp.
847–855 (2010)

18. Jolliffe, I.T., Trendafilov, N.T., Uddin, M.: A modified principal component technique based on the
lasso. J. Comput. Graph. Stat. 12, 531–547 (2003)

19. Journeé, M., Nesterov, Y., Richtárik, P., Sepulchre, R.: Generalized power method for sparse principal
component analysis. J. Mach. Learn. Res. 11, 517–553 (2010)

20. Kim, S.-J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale
l1-regularized least squares. IEEE J. Select. Topics Signal Process. 1(4), 606–617 (2007)

21. Luss, R., Teboulle, M.: Conditional gradient algorithms for rank-one matrix approximations with a
sparsity constraint. SIAM Rev. 55(1), 65–98 (2013)

22. Mangasarian, O.L.: Machine learning via polyhedral concave minimization. In: Fischer, H., Ried-
mueller, B., Schaeffler, S. (eds.) Applied Mathematics and Parallel Computing Festschrift for Klaus
Ritter, pp. 175–188. Physica-Verlag, Germany (1996)

23. Moghaddam, B., Weiss, Y., Avidan, S.: Generalized spectral bounds for sparse lda. In: ICML ’06
Proceedings of the 23rd International Conference on Machine Learning, pp. 641–648 (2006)

24. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234
(1995)

25. Rinaldi, F.: Concave programming for finding sparse solutions to problems with convex constraints.
Optim. Methods Softw. 26(6), 971–992 (2011)

26. Rinaldi, F., Schoen, F., Sciandrone, M.: Concave programming for minimizing the zero-norm over
polyhedral sets. Comput. Optim. Appl. 46(3), 467–486 (2010)

27. Riva, A., Carpentier, A.-S., Torrésani, B., Hénaut, A.: Comments on selected fundamental aspects of
microarray analysis. Comput. Biol. Chem. 29(5), 319–336 (2005)

28. Shen, H., Huang, J.Z.: Sparse principal component analysis via regularized low rank matrix
approximation. J. Multivar. Anal. 99(6), 1015–1034 (2008)

29. Sriperumbudur, B.K., Torres, D.A., Lanckriet, G.R.G.: Sparse eigen methods by dc programming. In:
Proceedings of the 24th International Conference on Machine Learning, pp. 831–838 (2007)

30. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288
(1996)

31. Weston, J., Elisseef, A., Schölkopf, B.: Use of the zero norm with linear models and kernel methods.
J. Mach. Learn. Res. 3, 1439–1461 (2003)

32. Zhang, Z., Zha, H., Simon, H.: Low rank approximations with sparse factors i: basic algorithms and
error analysis. SIAM J. Matrix Anal. Appl. 23(3), 706–727 (2002)

33. Zou, H., Hastie, T., Tibshirani, R.: Sparse principal component analysis. J. Comput. Graph. Stat.
15(2), 265–286 (2006)

123

http://www.caam.rice.edu/~optimization/l1/fpc/

	Solving ell0-penalized problems with simple constraints via the Frank--Wolfe reduced dimension method
	Abstract
	1 Introduction
	2 The Frank--Wolfe reduced dimension algorithm
	3 Analytical solution of the Frank--Wolfe subproblem
	4 Sparse PCA
	5 Sparse reconstruction of noisy signals
	6 Numerical results on sparse PCA
	6.1 Random data drawn from a sparse PCA model
	6.2 Analysis of gene expressions data

	7 Numerical results on sparse representation of noisy signals
	8 Conclusions
	References

