
Comput Optim Appl (2014) 59:565–589
DOI 10.1007/s10589-014-9653-0

A variable fixing version of the two-block nonlinear
constrained Gauss–Seidel algorithm for �1-regularized
least-squares

Margherita Porcelli · Francesco Rinaldi

Received: 27 May 2013 / Published online: 25 March 2014
© Springer Science+Business Media New York 2014

Abstract The problem of finding sparse solutions to underdetermined systems of
linear equations is very common in many fields as e.g. signal/image processing and
statistics. A standard tool for dealing with sparse recovery is the �1-regularized least-
squares approach that has recently attracted the attention of many researchers. In this
paper, we describe a new version of the two-block nonlinear constrained Gauss–Seidel
algorithm for solving �1-regularized least-squares that at each step of the iteration
process fixes some variables to zero according to a simple active-set strategy. We prove
the global convergence of the new algorithm and we show its efficiency reporting the
results of some preliminary numerical experiments.

Keywords Gauss–Seidel algorithm · Active-set · Sparse approximation ·
�1-Regularized least-squares

1 Introduction

We address the solution of the following �2 −�1 unconstrained optimization problem:

min
x∈Rn

1

2
‖Ax − b‖2

2 + λ‖x‖1, (1)
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566 M. Porcelli, F. Rinaldi

where A ∈ R
m×n , b ∈ R

m , x ∈ R
n (m < n), λ ∈ R

+, ‖ · ‖2 denotes the standard
Euclidean norm and ‖ · ‖1 stands for the �1 norm defined as ‖x‖1 = ∑n

i=1 |xi |.
Problem (1) is known in the literature as basis pursuit denoising (see e.g. [5,9]) and

is strictly related to the least absolute shrinkage and selection operator (LASSO), a
widely-studied problem in statistics, described for the first time by Tibshirani in [24]:

min
x∈Rn

‖Ax − b‖2
2

s.t. ‖x‖1 ≤ τ,
(2)

where τ is a nonnegative real parameter.
Since the presence of the �1 term can induce sparsity in the optimal solution of

the optimization problems (1) and (2) [2], these formulations can be used to identify
sparse approximate solutions to the large underdetermined linear system of equations

Ax = b.

In the last decades Problem (1) has become increasingly popular in statistics, sig-
nal/image analysis and optimization and various fast algorithms have been proposed
for solving it (see e.g. [2,4,14,19,22,25,28] and references therein). A further interest-
ing application of Problem (1) is Compressed Sensing. Compressed sensing basically
consists in encoding a large sparse signal using a relatively small number of linear
measurements, and minimizing the �1-norm in order to decode the signal (see e.g.
[6–8,12,16] and references therein).

The Basis Pursuit Denoising problem can be easily transformed into a convex
quadratic problem with linear inequality constraints, and then solved using a con-
strained optimization method as e.g. the Projected Conjugate Gradient method or the
Interior-Point method as proposed in [22]. These general purpose techniques represent
a good way to get a reliable solution with little programming efforts, but they might
become inefficient when applied to large-scale problems. This is the reason why many
special purpose class of methods have been proposed for solving Problem (1) as e.g.
the iterative shrinkage–thresholding (IST) algorithms [2,4,10,28], the Decomposition
methods [25] and the Augmented-Lagrangian methods [1,29].

Recently, active-set strategies have become a valid alternative approach for �1-
regularized minimization due to their robustness. In e.g. [26,27] a two-stage algorithm
(called FPC-AS) has been proposed for solving problems of the form (1). In the first
stage of FPC-AS, an estimation of the subset of components of x likely to be nonzero
in an optimal solution is made by using a first-order iterative “shrinkage” method.
Then, the �1-norm ‖x‖1 is reduced to a linear function of x by fixing the components
of x to the estimated “active-set” and fixing their signs at their current values. This
yields the second stage, when a subspace problem involving the minimization of a
smaller and smooth quadratic function is solved by means of a second-order method.

The aim of the present paper is to bring a further contribution to this research field by
proposing a fast and easy to implement first-order algorithm for solving Problem (1).
In particular, we first transform the original nondifferentiable unconstrained Problem
(1) into a differentiable problem with simple constraints and we use a classical vari-
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Two-block nonlinear constrained Gauss–Seidel algorithm 567

able splitting approach to construct an exact penalty function for Problem (1). Then,
we describe a two-block Nonlinear Constrained Gauss–Seidel (NLCGS) algorithm
(see e.g. [3,17,18]) for its solution that can be interpreted as an IST algorithm with
constant stepsize (see e.g. [2,4,10,28] and references therein). Finally, we propose
a variable fixing variant of the two-block NLCGS algorithm, called two-block VF-
NLCGS, that belongs to the class of active-set methods. The new algorithm preserves
the convergence properties of the original one but enhances its efficiency by solv-
ing reduced problems consisting in separable constrained optimization problems with
closed-form solution to be solved only for a small subset of variables. In fact, at each
iteration, the two-block VF-NLCGS algorithm selects a suitable subset of variables
according to a simple rule defining the current active-set, keeps those variables fixed
to zero and solves the resulting problem in the subspace of free (inactive) variables.

The paper is organized as follows. In Sect. 2, we analyze the theoretical properties
of Problem (1). Furthermore, we define an exact penalty function of the problem
which will be used for formally deriving the proposed algorithms and for establishing
convergence results. Then, in Sect. 3 we introduce the two-block NLCGS algorithm
and the variable fixing variant VF-NLCGS, and study their convergence properties.
In Sect. 4, we report a numerical experience showing that the approach is competitive
with other existing methods for �1-regularized minimization. Finally, in Sect. 5, we
draw some conclusions.

2 Problem formulation

Consider the �1-regularized least-squares problem (1). As a preliminary remark, note
that, since the objective function is coercive, all level sets are compact and therefore
the problem admits optimal solutions.

Introducing the variable w ∈ R
n , Problem (1) can be rewritten into the equivalent

linearly-constrained form

min
x∈Rn ,w∈Rn

1

2
‖Ax − b‖2

2 + λeT w

s.t. − w ≤ x ≤ w,

(3)

where e ∈ R
n is the vector with all entries 1, which corresponds to the following

Lagrangian function

L(x, w, u, v) = 1

2
‖Ax − b‖2

2 + λeT w + uT (−x − w) + vT (x − w), (4)

with u, v ∈ R
n vectors of Lagrangian multipliers. Let f denote the quadratic term in

the objective function of Problem (1), i.e.

f (x) = 1

2
‖Ax − b‖2

2,
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568 M. Porcelli, F. Rinaldi

and let g be the gradient of f , that is

g(x) = AT (Ax − b).

Using this notation we can formulate the Karush–Kuhn–Tucker (KKT) conditions for
Problem (3).

Proposition 1 The point (x�, w�) is a solution of Problem (3) if and only if there exist
KKT multipliers u� ∈ R

n and v� ∈ R
n satisfying the conditions:

∇x L ≡ g(x�) − u� + v� = 0

∇w L ≡ λe − u� − v� = 0

u�T
(x� + w�) = 0

v�T
(x� − w�) = 0

−w� ≤ x� ≤ w�

u�, v� ≥ 0, (5)

where ∇x L ,∇w L denote the partial gradients of L with respect to x and w.

By solving the KKT system (5) with respect to u�, v�, we obtain

u� = 1

2
[λe + g(x�)],

v� = 1

2
[λe − g(x�)], (6)

which allows to write the optimality conditions for Problem (3) as follows:

−λ ≤ gi (x�) ≤ λ
(
λ + gi (x�)

)
(x�

i + w�
i ) = 0

(
λ − gi (x�)

)
(x�

i − w�
i ) = 0

−w�
i ≤ x�

i ≤ w�
i , (7)

for i = 1, . . . , n, or equivalently

−λ ≤ gi (x�) ≤ λ

gi (x�)w�
i + λx�

i = 0

gi (x�)x�
i + λw�

i = 0

−w�
i ≤ x�

i ≤ w�
i , (8)

for i = 1, . . . , n. Conditions (7) and (8) are crucial to draw important information on
the optimal solution x� of Problem (1). Firstly, from (8) we have that

‖g(x�)‖∞ ≤ λ. (9)
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Two-block nonlinear constrained Gauss–Seidel algorithm 569

Secondly, again immediately from (8), we get that

x� = 0 if and only if ‖g(0)‖∞ = ‖AT b‖∞ ≤ λ. (10)

Thirdly, if ‖g(0)‖∞ > λ, so that x� 	= 0, from (7) we can easily see that there must
exist at least an index i� such that |gi� (x�)| = λ, and hence, by (9) we have:

if ‖g(0)‖∞ > λ, then ‖g(x�)‖∞ = λ. (11)

2.1 Construction of an exact penalty function

We now construct an exact penalty function for Problem (1) which will be adopted to
formally construct algorithmic schemes and to study their convergence properties.

To this purpose, we first use a variable splitting approach and we write Problem (1)
into the equivalent constrained form

min
x∈Rn ,z∈Rn

1

2
‖Ax − b‖2

2 + λ‖z‖1

s.t. x − z = 0,

(12)

obtained by adding the variable z ∈ R
n and the equality constraint x − z = 0. Then,

we construct an exact penalty function for Problem (12) by means of the Augmented
Lagrangian function of Hestenes–Powell (see e.g. [21,23])

L H P (x, z) = 1

2
‖Ax − b‖2

2 + λ‖z‖1 + μ(x)T (x − z) + c

2
‖x − z‖2

2, (13)

where the Lagrange multiplier is approximated as follows

μ(x) = −g(x),

and c ≥ 0 represents the so-called penalty parameter.
We notice that the function L H P can also be seen as the Fletcher’s Augmented

Lagrangian [15] applied to Problem (12) with z fixed. Using this penalty approach,
we obtain the unconstrained problem

min
x∈Rn ,z∈Rn

1

2
‖Ax − b‖2

2 + λ‖z‖1 − g(x)T (x − z) + c

2
‖x − z‖2

2. (14)

In this section we will prove that, for sufficiently large values of the penalty parameter
c, Problem (14) is equivalent to the original problem.

By proceeding as in the previous section, we can eliminate the nondifferentiable
term ‖z‖1 in the objective function of problem (14), by considering the equivalent
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problem in (x, z, w)

min
x∈Rn ,z∈Rn ,w∈Rn

�(x, z, w) = �(x, z) + λeT w

s.t. − w ≤ z ≤ w
(15)

where � denotes the quadratic function in x, z defined by

�(x, z) = 1

2
‖Ax − b‖2

2 − g(x)T (x − z) + c

2
‖x − z‖2

2. (16)

Trivially, the components of the gradient of � have the form

∇x�(x, z) = c(x − z) − AT A(x − z) (17)

∇z�(x, z) = AT (Ax − b) − c(x − z) (18)

and the Hessian matrix ∇2� is given by

∇2�(x, z) =
(

cI − AT A AT A − cI
AT A − cI cI

)

. (19)

First, we establish that the objective function � in (15) is convex for sufficiently large
values of the penalty parameter c.

Proposition 2 Let c > ‖A‖2
2. Then the function �(x, z, w) in (15) is convex in

(x, z, w).

Proof Since the term in w is linear and λ > 0, we must prove that the quadratic
function � is convex in (x, z). As the assumption made implies that cI − AT A is
positive definite, using the Schur complement theory [20], we have that ∇2� is positive
semi-definite if and only if

cI − (AT A − cI )(cI − AT A)−1(AT A − cI ) = AT A,

is positive semi-definite, which is obviously true. 
�
From this result, it follows that the KKT conditions for problem (15) are both nec-

essary and sufficient conditions for optimality. Therefore, we can state the following
proposition.

Proposition 3 Let c > ‖A‖2
2. Then the point (x�, z�, w�) is an optimal solution of

Problem (15) if and only if we have x� = z� and (x�, w�) is an optimal solution of
Problem (3).

Proof Suppose that (x�, z�, w�) is an optimal solution of Problem (15). Then from
the KKT conditions for Problem (15), since the problem is unconstrained in x , from
(17) we get immediately

c(x� − z�) − AT A(x� − z�) = 0,
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Two-block nonlinear constrained Gauss–Seidel algorithm 571

which implies, as cI − AT A is non singular, that x� = z�. Under this assumption, it
is easy to verify that the KKT conditions Problem (15) imply the existence of KKT
multipliers u�, v� and of a vector w�, such that conditions (5) are satisfied, so that x�

is an optimal solution of Problem (3). Conversely, if x�, w� is an optimal solution of
Problem (3) then, letting z� = x� we have that the the KKT conditions for Problem
(15) are satisfied. 
�

3 The two-block Gauss–Seidel algorithms

In this section we first describe a general two-block Gauss–Seidel Algorithm for
solving Problem (3) by using the penalty function approach introduced in the previous
section and review its convergence properties. Secondly, we present the two-block
Gauss–Seidel Algorithm enriched by a new variable-fixing strategy and prove its
global convergence.

3.1 Basic scheme

The main effect of the transformation made in Sect. 2 is that Problem (15) can now
be (formally) solved by a two-block Nonlinear Constrained Gauss–Seidel (NLCGS)
algorithm [3]. A general block Nonlinear Gauss–Seidel algorithm is usually applied
for the solution of a problem of the form

min
x∈X

h(x)

where h : R
n → R is a continuously differentiable function and the feasible set

X is the Cartesian product of closed, nonempty and convex subsets Xi ⊆ R
ni for

i = 1, . . . , m, with
∑m

i=1 ni = n. If the vector x ∈ R
n is partitioned into m component

vectors xi ∈ R
ni , then a generic iteration of the method is defined as follows:

xk+1
i = arg min

yi ∈Xi
h(xk+1

1 , . . . , xk+1
i−1 , yi , xk

i+1, . . . , xk
m),

which updates in turns the components of x and, starting from a given starting point
x0 ∈ X , generates a sequence {xk} with xk = (xk

1 , . . . , xk
m). This method is globally

convergent for m = 2 and for m > 2 is proved to converge under suitable assumptions
on the objective function h, see [17,18].

In order to apply the method described above to Problem (15), we partition the
problem variables into the two blocks x and (z, w) and we define a conceptual iterative
scheme where � is given as in (16), see Algorithm 1.

We notice that Algorithm 1 is equivalent to the IST algorithm with constant stepsize,
see [2,4,10,28] and references therein. Moreover, as the subproblems (20) and (21) are
well defined and the objective function �(x, z, w) is convex in (x, z, w), it is known
that the sequence generated by Algorithm 1 converges to a solution (x�, z�, w�) of
Problem (15), see [17]. Therefore, recalling Proposition 3, we can state the following
result.
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572 M. Porcelli, F. Rinaldi

Algorithm 1 Two-block NLCGS

Require: A penalty parameter c > ‖A‖2
2, a point x0 = z0 ∈ R

n .

for k = 0, 1, . . . , until convergence do

Step 1. Fixed zk , compute xk+1 solving the problem

min
x∈Rn

�(x, zk ) (20)

Step 2. Fixed xk+1, compute zk+1 solving the problem

min
z∈Rn ,w∈Rn

�(xk+1, z, w) = �(xk+1, z) + λeT w (21)

s.t. − w ≤ z ≤ w

end for

Theorem 1 Let c > ‖A‖2
2. Then every limit point x� of the sequence {xk} generated

by Algorithm 1 is an optimal solution of Problem (3).

Now, we focus on the subproblems to be solved at each iteration of Algorithm 1. The
solution of the subproblem (20) at Step 1 consists in the computation of a stationary
point of � with respect to x (zk is fixed). Recalling Proposition 3 and its proof, we
simply get that

xk+1 = zk

solves problem (20). Therefore, the subproblem (21) at Step 2 takes the form

min
z∈Rn ,w∈Rn

− g(zk)T (zk − z) + c

2
‖z − zk‖2

2 + λeT w

s.t. − w ≤ z ≤ w,
(22)

which can be decomposed into the n independent problems

min
zi ∈R,wi ∈R

− gi (z
k)(zk

i − zi ) + c

2
‖zi − zk

i ‖2
2 + λwi

s.t. − wi ≤ zi ≤ wi ,
(23)

for i = 1, . . . , n. For each i ∈ {1, . . . , n}, the solution of problem (23) can be easily
calculated and has the following closed form:

zk+1
i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if
−λ+gi (zk)

c
≤ zk

i ≤ λ+gi (zk)

c

zk
i − λ+gi (zk)

c
if zk

i >
λ+gi (zk)

c

zk
i + λ−gi (zk)

c
if zk

i <
−λ+gi (zk)

c

, wk+1
i =|zk+1

i |. (24)
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Two-block nonlinear constrained Gauss–Seidel algorithm 573

3.2 A new variable-fixing strategy

Let zk be the solution of problem (21) at the k-th iteration of Algorithm 1. Consider
the index sets Ek

0 and Ek that represent the set of zero components at zk and the set of
zero components of zk that satisfy the KKT conditions for Problem (3), respectively:

Ek
0 = E0(z

k) = {i ∈ {1, . . . n} : zk
i = 0},

Ek = E(zk) = {i ∈ Ek
0 : |gi (z

k)| ≤ λ}.

Then, by using (24), we obtain the following relationship between the zero components
of the current zk and the new corresponding components of zk+1:

Ek ⊆ Ek+1
0 , (25)

i.e. if i ∈ Ek , then zk+1
i = 0. This result suggests the definition of a version of

Algorithm 1 that, at each step, fixes to zero a suitably chosen subset of variables, thus
allowing to solve subproblems of reduced dimension and, consequently, to signifi-
cantly improve the algorithmic performance.

Now, taking into account that for each i = 1, . . . , n,

|gi (z
k)| ≤ ‖(A)i‖2 · ‖Azk − b‖2,

where (A)i denotes the i th column of A, we define the sets I k
ξ k and I k

δk as follows

I k
ξ k = Iξ k (zk) =

{
i ∈ {1, . . . , n} : |zk

i | ≤ ξ k
}

, (26)

I k
δk = Iδk (zk) =

{
i ∈ I k

ξ k : ‖(A)i‖2 · ‖Azk − b‖2 ≤ λ + δk
}

, (27)

where ξ k, δk > 0. We further define the following two sets:

I k
δk ,1 =

{
i ∈ I k

ξ k : ‖(A)i‖2 · ‖Azk − b‖2 ≤ λ − δk
}

,

I k
δk ,2 =

{
i ∈ I k

ξ k : | ‖(A)i‖2 · ‖Azk − b‖2 − λ| ≤ δk
}

,

and it is easy to see that I k
δk = I k

δk ,1
∪ I k

δk ,2
.

Now, we prove two theoretical results that will be used to define the new variant
of Algorithm 1 and prove its convergence properties. In the first one, we prove that,
when k is sufficiently large, the set I k

ξ k contains the set

E�
0 = {i ∈ {1, . . . n} : z�

i = 0}. (28)

In the second one, we establish that for sufficiently large k, the set I k
δk ,2

identifies a
subset of the set variables that will be zero in the solution z�, i.e. of the set

E� = {i ∈ E�
0 : |gi (z

�)| ≤ λ}. (29)
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574 M. Porcelli, F. Rinaldi

To carry-out the convergence analysis, the use of an identification function in the
construction of the set I k

ξ k and I k
δk will be considered, see [13,27].

Definition 1 A function ρ(z) : R
n → R+ is an identification function for z� with

respect to {zk} if ρ(z�) = 0 and

lim
zk→z�,zk 	=z�

ρ(zk)

‖zk − z�‖2
= +∞.

From the definition, it follows that, given an identification function ρ for z� with
respect to {zk}, we have that for k sufficiently large

‖zk − z�‖2 ≤ ρ(zk). (30)

Proposition 4 Let {zk} be a sequence such that limk→∞ ‖zk − z�‖2 = 0. Moreover,
let ξ k = δk = ρ(zk) in (26) and (27), where ρ(z) is an identification function for z�

with respect to {zk}. Then

I k
ξ k ≡ E�

0 (31)

for k sufficiently large.

Proof We first prove that I k
ξ k ⊆ E�

0. Let ν = min{|z�
i |, i s.t |z�

i | > 0} and let i ∈ I k
ξ k .

Since limk→∞ ρ(zk) = 0, for k sufficiently large ρ(zk) ≤ ν/4 and then

|zk
i | ≤ ρ(zk) ≤ ν/4.

Since limk→∞ ‖zk − z�‖ = 0, for k sufficiently large

|zk
i − z�

i | ≤ ‖zk − z�‖2 ≤ ν/4,

and therefore we have

|z�
i | ≤ |zk

i − z�
i | + |zk

i | ≤ ν/2,

and finally, from the definition of ν, we get |z�
i | = 0.

Now we prove that E�
0 ⊆ I k

ξ k . From (30), for all i ∈ {1, . . . , n}, for k sufficiently
large

|zk
i − z�

i | ≤ ‖zk − z�‖2 ≤ ρ(zk).

Let i ∈ E�
0, then i ∈ I k

ξ k since

|zk
i | = |zk

i − z�
i | ≤ ‖zk − z�‖2 ≤ ρ(zk) = ξ k .


�
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Proposition 5 Let {zk} be a sequence such that limk→∞ ‖zk − z�‖2 = 0. Moreover,
let ξ k = δk = ρ(zk) in (26) and (27), where ρ(z) is an identification function for z�

with respect to {zk}. Then

I k
δk ,2 = Ẽ� ⊆ E�

for k sufficiently large, with Ẽ� = {i ∈ {1, . . . n} : z�
i = 0, ‖(A)i‖2 ·‖Az�−b‖2 = λ}.

Proof Let k be a sufficiently large value, so that Proposition 4 holds. We first prove
that Ẽ� ⊆ I k

δk ,2
. Let i ∈ Ẽ�, then we have:

|‖(A)i‖2 · ‖Azk − b‖2 − λ| = |‖(A)i‖2 · ‖Azk − b‖2 − ‖(A)i‖2 · ‖Az� − b‖2|
= ‖(A)i‖2|‖Azk − b‖2 − ‖Az� − b‖2|.

By (30) we get that for k sufficiently large

|‖(A)i‖2 · ‖Azk − b‖2 − λ| ≤ ‖(A)i‖2‖A‖2‖zk − z�‖ ≤ ρ(zk) = δk,

and then by (31) we have that i ∈ I k
δk ,2

.

We now prove that I k
δk ,2

⊆ Ẽ� for k sufficiently large. Let i ∈ I k
δk ,2

. By Proposition
4, we have |z�

i | = 0. Then, we assume, by contradiction, that ‖(A)i‖2 ·‖Az�−b‖2 	= λ.
Since ‖Azk − b‖2 → ‖Az� − b‖2, for k sufficiently large ‖(A)i‖2 · ‖Azk − b‖2 	= λ.
Hence we have i /∈ I k

δk ,2
. 
�

As a consequence of Proposition 5, we can define a modified version of the Algo-
rithm 1 where, at each iteration, we fix to zero the variables corresponding to the
indices in I k

δk . We report in Algorithm 2 the variable fixing version of Algorithm 1.
We would like to highlight that

– the definition of the active-set I k
δk at Step 2 does not require the computation of the

gradient g(x) = AT (Ax − b);
– the solution of the subproblem at Step 4 only involves the computation of the com-

ponents of g corresponding to indices in the set {1, . . . , n}\I k
δk

(which is expected
to be very small for k sufficiently large).

Further, we notice that problem (33) is very similar to the one to be solved at Step
2 of Algorithm 1 (namely, problem (21)) , except that some of the variables are fixed
to zero. Thus, we can still get a closed-form solution to problem (33), similar to the
one we described in (24) for problem (21), where the variables with indices in I k

δk
are

set equal to zero.
Now, we state some theoretical results that will be useful to prove the convergence

of the sequence generated by Algorithm 2.

Proposition 6 Let c > ‖A‖2
2. Then the function �(x, z, w) defined in (15) is coercive

in the feasible set

P = {(x, z, w) ∈ R
3n : −w ≤ z ≤ w}.
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576 M. Porcelli, F. Rinaldi

Algorithm 2 Two-block VF-NLCGS

Require: A penalty parameter c > ‖A‖2
2, parameters ξ0, δ0 > 0, a point x0 = z0 ∈ R

n .

for k = 0, 1, . . . , until convergence do

Step 1. Fixed zk , compute xk+1 solving the problem

min
x∈Rn

�(x, zk ) (32)

Step 2. Compute I k
δk by (27).

Step 3. Set Pk = {(z, w) ∈ R
n × R

n : −w ≤ z ≤ w, wi = 0 with i ∈ I k
δk }.

Step 4. Fixed xk+1, compute zk+1 solving the problem

min
z∈Rn ,w∈Rn

�(xk+1, z, w) = �(xk+1, z) + λeT w (33)

s.t. (z, w) ∈ Pk ,

Step 5. Suitably reduce δk and ξk .

end for

Proof Recalling that �(x, z, w) has the form

�(x, z, w) = 1

2
‖Ax − b‖2

2 − g(x)T (x − z) + c

2
‖x − z‖2

2 + λeT w,

it is easy to see that when ‖x‖2 → ∞ or ‖z‖2 → ∞, then �(x, z, w) → ∞. Consider
now the case when both ‖x‖2 and ‖z‖2 → ∞. We set, just for our convenience,

u = Ax − b, v = x − z,

and, as g(x) = AT (Ax − b), we can write

�(x, z, w) = 1

2
‖Ax − b‖2 − g(x)T (x − z) + c

2
‖x − z‖2

2 + λeT w

≥ 1

2
‖Ax − b‖2

2 − ‖A‖2‖Ax − b‖2‖x − z‖2 + c

2
‖x − z‖2

2 + λeT w

= 1

2
‖u‖2

2 − ‖A‖2‖u‖2‖v‖2 + c

2
‖v‖2

2 + λeT w.

We have three different cases:

(a) ‖u‖2 ≤ M and ‖v‖2 ≤ M for some M > 0. As ‖z‖2 → ∞ and −w ≤ z ≤ w, it
is easy to see that ‖w‖2 → ∞. Then, we have �(x, z, w) → ∞.

(b) ‖u‖2 → ∞ (or ‖v‖2 → ∞). It is easy to see that �(x, z, w) → ∞.
(c) ‖u‖2 → ∞ and ‖v‖2 → ∞. By assumption, c > ‖A‖2

2, then we have
(

1 −‖A‖2
−‖A‖2 c

)

is positive definite and �(x, z, w) → ∞.

We can conclude that �(x, z, w) is coercive in P . 
�
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Proposition 7 Let c > ‖A‖2
2. Then the sequence {(xk, zk, wk)} generated by Algo-

rithm 2 admits a limit point and

lim
k→∞‖zk+1 − zk‖2 = 0.

Proof As the function � is coercive in P , it has compact level sets. Furthermore, the
sequence {(xk, zk, wk)} generated by Algorithm 2 is such that

�(xk+1, zk+1, wk+1) ≤ �(xk+1, zk, wk) ≤ �(xk, zk, wk). (34)

Then the sequence {(xk, zk, wk)} admits a limit point and there exists a subsequence
of indices K ⊆ {0, 1, . . .} such that the sequence {(xk, zk, wk)}K converges to a
point (x�, w�, z�). The convergence of {(xk, zk, wk)}K and the continuity of � imply
that the sequence {�(xk, zk, wk)} has a subsequence converging to �(x�, w�, z�).
As {�(xk, zk, wk)} is nonincreasing, we have that {�(xk, zk, wk)} is bounded from
below and converges to �(x�, w�, z�). Furthermore, by (34) we have that the sequence
{�(xk+1, zk, wk)} converges to �(x�, w�, z�). Now, we define the following function:

�(x, w, z) = 1

2
‖Ax − b‖2

2 − g(x)T (x − z) + ‖A‖2
2 + d

2
‖x − z‖2

2 + λeT w,

with d = c − ‖A‖2
2

2
. It is easy to see that zk = argminx∈Rn �(x, zk, wk).

Furthermore, by the instructions of Algorithm 2, xk+1 = zk . Therefore, we get

�(xk+1, zk, wk) − �(xk, zk, wk) ≤ 0. (35)

Once again, since xk+1 = zk , by (34) we have

�(xk+1, zk+1, wk+1) − �(xk+1, zk, wk) ≤ −d

2
‖zk+1 − zk‖2

2. (36)

Hence, proceeding as in the case of �, we obtain

lim
k→∞�(xk+1, zk+1, wk+1) − �(xk, zk, wk) = 0,

and, taking the limit in (36) for k → ∞, we have

lim
k→∞‖zk+1 − zk‖2 = 0.


�
Theorem 2 Let c > ‖A‖2

2, let {xk} be the sequence generated by Algorithm 2, and
let ξ k = δk = ρ(xk) in I k

ξ k and I k
δk , with ρ(x) satisfying Definition 1. Then every limit

point x� of the sequence {xk} is an optimal solution of Problem (3).

Proof First, we assume that there exists an index k̄ such that I k
δk = ∅ for all k ≥

k̄. In this case, Algorithm 2 is equivalent to Algorithm 1 and convergence follows
from Theorem 1. Let us now assume that there exists a subsequence of indices K ⊆
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{0, 1, . . .} such that the sequence {(xk, zk, wk)}K converges to a point (x�, w�, z�) and
I k
δk 	= ∅ for all k ∈ K . By Proposition 7, we have

lim
k→∞‖zk+1 − zk‖2 = 0,

which implies

lim
k→∞(xk, wk, zk) = (x�, w�, z�),

lim
k→∞(xk+1, wk, zk) = (x�, w�, z�),

x� = z� and w� = |z�| .We can have three different cases:

1. i ∈ I k
δk ,2

for k sufficiently large. By Proposition 5, we have

I k
δk ,2 = Ẽ� ⊆ E�

and the corresponding variable zk
i will stay fixed to zero until convergence. Thus

we have

|gi (z
�)| ≤ ‖(A)i‖2 · ‖Az� − b‖2 = λ. (37)

2. There exists a subsequence H ⊆ K such that i ∈ I k
δk ,1

for all k ∈ H . By the

definition of I k
δk ,1

, we have that

|gi (z
k)| ≤ ‖(A)i‖2 · ‖Azk − b‖2 ≤ λ − δk (38)

for each k ∈ H . Taking the limit for k → ∞, we have

|gi (z
�)| ≤ ‖(A)i‖2 · ‖Az� − b‖2 ≤ λ. (39)

Furthermore, by Proposition 4, we have z�
i = 0 and i ∈ E�.

3. There exists an index k̄ such that for all k ≥ k̄ i /∈ I k
δk . Then we explicitly solve the

problem (23) with respect to zi .

Thus, it is easy to see that KKT conditions of Problem (15) are satisfied and point x�

is a solution of Problem (3). 
�
We conclude this section remarking that the proposed variable-fixing strategy can be

employed to define variants of other existing methods for �1-regularized least-squares,
e.g. FISTA [2], TwiST [4].

4 Numerical results

In this section, we report the preliminary numerical results related to the two-block
VF-NLCGS algorithm described in the previous section. Our aim is to analyze the
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effects of the variable fixing strategy in the considered decomposition framework. To
this purpose, firstly we performed a brief analysis to tune the parameters involved
in Algorithms 2, secondly we assess the performance of the proposed algorithm in
comparison with the standard two-block NLCGS approach on one side, and with two
state-of-the-art algorithms for �1-regularized least-squares problems, namely FPC-AS
[26] and SpaRSA [28], on the other side. The comparison of the overall computational
effort is carried-out by using the performance profiles proposed by Dolan and Moré
in [11] plotting graphs in a logarithmic (base 2) scale.

4.1 The testing set

In the experiments, we considered a set of testing problems of the form (1) that com-
prises 5 random problems (denoted as R1–R5) widely used for software benchmarking
[26].

In particular, we generated artificial signals of dimensions n ∈ {211, 212, 213} and
with a number of observations m = n/2 and we set the number of nonzeros T =
round(ρm) with ρ ∈ {0.6 %, 1.25 %, 2.5 %, 5 %, 10 %}. This procedure resulted in a
total of 75 different random problems where the matrix A was generated as follows. Let
Ā be the Gaussian matrix whose elements are generated independent and identically
distributed from the normal distribution N (0, 1), then A is obtained by extracting m
random rows from these matrices:

(R1) The matrix given by the Ā row orthogonalization by singular value decompo-
sition;
(R2) The matrix given by the Ā row orthogonalization by QR decomposition;
(R3) The Bernoulli matrix with ±1 elements with equal probability;
(R4) The Hadamard matrix whose entries are ±1 and whose rows are mutually
orthogonal;
(R5) The discrete cosine transform (DCT) matrix.

The true signal x� was built as a vector with T randomly placed ±1 spikes, with zero
in the other components.

Moreover, in order to have matrices A with 2-norm equal to 1, we scaled the matrices
in R1, R3, R4 by the largest eigenvalue of AT A as in [26]. Finally, for all problems,
the vector of observations b was chosen as b = Ax� + η, where η is a Gaussian white
vector with variance 10−4 and we set λ = 0.1‖AT b‖∞ as in [14,28].

4.2 Implementation details

We implemented Algorithms 1 and 2 in Matlab codes denoted NLCGS and VF-
NLCGS respectively, and we used the Matlab implementations of FPC-AS and
SpaRSA available at the authors web sites. All the tests were performed on an Intel
Core i5 M520 2.4 GHz, 4 GB RAM using Matlab 7.14 (R2012a) and machine preci-
sion εm ≈ 2 × 10−16.
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In the experiments, convergence was declared when the following condition [28]
on the relative size of the step just taken was met

‖xk − xk−1‖2 ≤ 10−4‖xk‖2, (40)

and any run performing more than 1,000 iterations is considered a failure.
Moreover, to verify that the comparison among the solvers was independent on the

stopping rule used for each approach, we further ran SpaRSA with its default stopping
rule to obtain a target objective function value, then ran the other algorithms until
each of them reached the given target. We do not report the results obtained with this
strategy since they were comparable to those obtained with the stopping criterion (40)
described above.

The null vector is used as starting guess in all the compared codes and all matrices
were stored explicitly. All other parameters in SpaRSA and FPC-AS were set at their
default values. Finally, in all the experiments, we performed 10 runs for each problem
for a total of 750 runs.

4.3 Experiments on parameter updating strategies

The implementation of Algorithms 2 depends on the choice of three parameters: the
penalty parameter c in (14) and the parameters ξ k ad δk included in (26) and (27)
which are responsible for the active-set strategy.

Following the theoretical analysis performed in the previous section, a possible
choice for defining ξ k ad δk is considering the following identification function

ρ(xk, ξ k) =
√

‖(|g(xk)| − λ)A
ξk ‖∞ + ‖xk � (|g(xk)| − λ)‖2 (41)

where

Aξ k = {i : |xk
i | > ξ k} ∪ {i : |xk

i | ≤ ξ k and |gi (xk)| ≥ λ}
and � denotes the componentwise product. This function was proposed in [13] for
nonlinear programming and has also been used in [26]. The definition of ρ is based
on the amount that the current iterate xk violates the optimality conditions for (1).

Taking into account (41), we set the following values for the sequences ξ k and δk

ξ0 = 10−3, δ0 = 10 and ξ k+1 = δk+1 = ρ(xk, ξ k) k = 0, . . . (42)

and we experimentally verified on our testing set that the sequence ξ k, δk rapidly
decrease to zero and that our algorithm converges to a solution of (1). We observed
that the computation of ρ(xk, ξ k) involves the evaluation of all the components of the
current gradient g(xk) and in particular of components in the set Iδk which are not
required in Algorithm 2. Clearly, this reduces the algorithm performance in terms of
CPU-time per iteration. Therefore, we propose to use a simpler and cheaper heuristic
updating rule for the parameters ξ k ad δk consisting in starting from a given value and
then slowly decreasing the parameters by products with a fixed factor in (0, 1). The
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aim of this strategy is to generate sequences ξ k ad δk that hopefully decrease slower
than ρ(xk, ξ k) so that condition (30) is guaranteed.

We found out that the following updating rule

ξ0 = 10−3, ξ k+1 = 0.99 ξ k and δ0 = 10, δk+1 = 0.99 δk, k = 0, . . . (43)

works well in practice.
Concerning the choice of the penalty parameter c in (14), in principle one should

choose a value such that the equivalence between the penalty and the original problem
is guaranteed (see Proposition 3). This value obviously depends on the maximum
eigenvalue of AT A, which is not always known or computable. Furthermore, if the
chosen value c is too large, the performance of the algorithm are somehow reduced
due to the fact that the penalty function obtained is difficult to be minimized.

Then, a good strategy is starting with a small value of the penalty parameter and
updating it when some specific condition is met. This is very common when dealing
with an exact penalty approach and is closely related, in our case, to IST methods with
backtracking (see e.g. [2]). In our experiments, we started from a value c0 < ‖A‖2

2
and we set

ck+1 = 1.001ck, (44)

every time conditions (35) and (36) were not satisfied.
In order to analyze in depth the effects of our heuristic updating strategy (44),

we tested the performance of VF-NLCGS with the updating strategy (44) against
VF-NLCGS with constant penalty parameter taking into account that for all our test
problems ‖A‖2 = 1. We report in Fig. 1 two CPU performance profiles:

• The one on the left is related to the comparison of different versions of VF-NLCGS
where we keep the penalty parameter fixed (namely, c = cconst and cconst =
1.1, 1.5, 2, 2.5);

• The one on the right shows the comparison between VF-NLCGS with our adaptive
updating strategy starting from c0 = 0.5 and the best version of VF-NLCGS with
fixed penalty parameter, i.e. with cconst = 1.1.

From the plots it is clear that the performance of VF-NLCGS with constant penalty
parameter deteriorates as cconst increases, and that VF-NLCGS with an adaptive c
outperforms the best version of VF-NLCGS with constant c as the former is the most
efficient for the 85 % of runs.

The numerical experiments presented in the next section are all obtained using the
adaptive updating rule (44) for the penalty parameter c and the updating (43) for ξ k

ad δk .

4.4 Numerical comparison

In this section, we firstly show the beneficial effect of employing our variable fixing
strategy in the two-block NLCGS method and, secondly, we show that the proposed
approach, despite its simplicity, is competitive also in comparison with other available
procedures.
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Fig. 1 The CPU time performance profile of VF-NLCGS varying the penalty parameter updating rule
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Fig. 2 The CPU time performance profile: NLCGS and VF-NLCGS

In Fig. 2, we report the CPU time performance profiles of NLCGS and VF-NLCGS.
From both plots, it is clear that the use of the variable fixing strategy considerably
enhances the performance of the standard NLCGS. Indeed, VF-NLCGS guarantees
better results both in terms of efficiency and robustness. In particular, it is the best in the
85.3 % of the runs on the considered testing set. Moreover, as expected, the ratio of the
time performed by NLCGS over the time performed by VF-NLCGS to solve a problem
increases as the sparsity of the original signal increases. In fact, in this case, the active-
set procedure is fully exploited since subproblems of small dimensions are solved.

The CPU performance profile of Fig. 3 summarizes the comparison among SpaRSA,
VF-NLCGS and FPC-AS. As we can see, VF-NLCGS is competitive with both
SpaRSA and FPC-AS. In particular, VF-NLCGS results the most efficient for around
the 74.9 % of the runs and PC-AS is within a factor 2 in the 92.6 % of the runs. All
the three algorithms are successful in all runs and we encountered problems of “false
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Fig. 3 The CPU time performance profile: SpaRSA, VF-NLCGS and FPC-AS

termination” with the criterion (40) only in 3 over 750 runs of FPC-AS (we did not
take into account these rare occurrences in the profiles).

The better performance of VF-NLCGS with respect to FPC-AS might be in some
extent due to the different active-set strategies used in the two algorithms. On the
one side, in FPC-AS firstly a shrinkage phase on the original problem is performed
yielding an estimate of the active-set in the optimal solution, and secondly a subspace
optimization phase is considered in case the active-set estimation is sufficiently accu-
rate. On the other side, in VF-NLCGS, the set of active variables I k

δk is first defined
(Step 2) and then (Step 4) a shrinkage phase is performed on the subset of the non-
active variables. So, the main difference with respect to FPC-AS is that, in the early
iterations, VF-NLCGS tries fixing to zero as many variables as possible (by setting
δk sufficiently large), thus strongly reducing the complexity of the shrinkage phase.
Accuracy is then recovered (by suitably reducing δk) as the algorithm goes on.

Tables 1, 2 and 3 in the Appendix collect the detailed results of the experiments
referred to the performance profiles in Figs. 2 and 3.

We conclude this section by showing in Fig. 4 the typical trend of the curve related
to the size of the estimated active-set as the iterations progress. The figure refers to
problem R5 with n = 4,096 and T = 102 and represents the most common situation:
the size of the inactive set (blue line) decreases quickly in the first iterations and the
inactive set at the solution is detected (red line).

5 Conclusions

In this paper, we presented a simple active-set strategy to enhance the practical perfor-
mance of a first-order method for �1-regularized least-squares belonging to the class
of IST algorithms.

123



584 M. Porcelli, F. Rinaldi

2 4 6 8 10 12 14 16 18 20

0

500

1000

1500

2000

2500

3000

3500

4000

Problem R5

k

 

Problem dimension (n = 4096)

Inactive set at the original signal (T=102)

Inactive set size n−|Ik
δ

k

|

Fig. 4 Plot of the size of the inactive set during the iterations

In this context, we provided both theoretical and practical results. In particular, we
first analyzed the �1-regularized least-squares problem from a different perspective, by
combining a classical variable splitting approach with a suitable exact penalty function.
Then, starting from the penalized problem, we described a two-block NLCGS algo-
rithm for its solution. Finally, we introduced a suitable rule for fixing at each step a sub-
set of variables to zero, thus obtaining a variable fixing variant of the original algorithm.

Furthermore, we performed preliminary numerical experiments to assess the reli-
ability and efficiency of the variable fixing strategy. The reported results seem to
indicate that the proposed approach can substantially improve the performance of the
two-block NLCGS algorithm, making this simple algorithm competitive with other
state-of-the-art techniques.

As a final remark, we highlight that the proposed variable fixing strategy is a general
paradigm that could be employed to improve the performance of other existing methods
for �1-regularized least-squares.

Acknowledgments The authors thank anonymous referees for useful comments that helped to improve
the manuscript. The second author would also like to thank Professor Luigi Grippo for kindly sharing with
him many ideas and insights that led to this paper. The work of the first author was supported by “National
Group of Computing Science (GNCS-INDAM)”.

Appendix

In Tables 1, 2 and 3, we report the average CPU time (Av-CPU), the average relative
error (Av-rel.err.) and the average number on nonzero components of the computed
solution (Av-nnz), corresponding to runs summarized in the performance profiles in
Figs. 2 and 3. Problems where the false termination of FPC-AS with the criterion (40)
occurs 1 over 10 runs is denoted with the symbol ‘*’ and the average values reported
in the tables do not take into account these cases.
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