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Abstract In this paper, we consider stochastic weakly convex optimization
problems, however without the existence of a stochastic subgradient oracle.
We present a derivative free algorithm that uses a two point approximation for
computing a gradient estimate of the smoothed function. We prove convergence
at a similar rate as state of the art methods, however with a larger constant,
and report some numerical results showing the effectiveness of the approach.
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1 Introduction

In this paper, we study the following class of problems:

min ¢(x) := f(x) 4+ r(z), (1)
rER™
with f(-) : R™ — R a stochastic, weakly convex, and potentially nonsmooth
(i.e., not necessarily continuously differentiable) function, and r(-) : R* — R
(i.e., it is extended real valued) is convex but not necessarily even continuous,
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however r(x) satisfies some additional conditions detailed below. Furthermore,
we consider the derivative free or zeroth order context, wherein the subgra-
dients Jf, or unbiased estimates thereof, are not available, but only unbiased
estimates of function evaluations f(x) are available. We thus write

f(2) = Ee[F(x;£)] = / F(x,)dP(€),

with {F(-,§), £ € Z'} a collection of real valued functions and P a probability
distribution over the set = to be precise.

We define two quantitative assumptions regarding f(-) and r(-) below.
First, we define the notion of a proximal map, in particular with any constant
a and any convex function h we can write prox,, to indicate the following
function:

. 1
proxy (z) = argmin, {h(y) + o~y — =[*}.
The associated optimality condition is
Y = prox,,(x) <= v —y € adh(y)

We shall make use of the nonexpansiveness property of the proximal mapping
in the sequel,

l[prox, () — prox,, ()|l < llz —yl|.

We now state our standing assumption on the properties of (1):

Assumption 1 1. f(-) is p-weakly conver, i.e., f(x) + pllx||? is convex for
some p > 0, directionally differentiable, bounded below by f. and locally
Lipschitz with constant Lyg.

2. r(-) is convex (but not necessarily continuously differentiable). Further-
more, r(x) is bounded below by r,.

We shall denote the lower bound of ¢ by ¢, = fi + 7.

We further assume that the proximal map of r(z) can be evaluated at low
computational complexity cost. We note that the p-weak convexity property
for a given function f is equivalent to hypomonotonicity of its subdifferential
map, that is

(v —w,z—y) > —plz - y| (2)

for v € Of(x) and w € Af(y) (see, e.g., [19, Example 12.28, page 549]).

The class of weakly convex functions is a special yet very common case
of nonconvex functions, which contains all convex (possibly nonsmooth) func-
tions and Lipschitz smooth functions. One standard subset of weakly convex
functions is given by the composite function f(x) = h(c(x)) where h is nons-
mooth and convex and c¢(z) is continuously differentiable but non-convex (see,
e.g., [9] and references therein). The additive composite class is another widely
used class of weakly convex functions [10], formed from all sums g(z) + I(x)
with [ closed and convex and g continuously differentiable.
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One method for solving a weakly convex stochastic optimization problem
is given as repeated iterations of,

. 1
Tp41 € argmin, {fzk(y; Sk)+r(y) + EH?J - $k||2} (3)

where o > 0 is a stepsize sequence, typically taken to satisfy ap — 0, and
fur (y; Sk) is approximating f at xj using a noisy estimate Sy of the data. A
basic stochastic subgradient method will use the linear model

for (3 Sk) = fax) + ¢ (y — 1)

where ¢ ~ ¢ € 0f(zx). When using this approach, it is common to consider
the existence of some oracle of an unbiased estimate of an element of the sub-
gradient that enables one to build up the approximation f,, with favorable
properties (see,e.g., [9] or [12]). In our case we assume such an oracle is not
available, and we only get access, at a point x, to a noisy function value obser-
vation F'(z,£). Stochastic problems with only functional information available
often arise in optimization, machine learning and statistics. A classic example
is simulation based optimization (see,e.g., [2,15] and references therein), where
function evaluations usually represent the experimentally obtained behavior of
a system and in practice are given by means of specific simulation tools, hence
no internal or analytical knowledge for the functions is provided. Furthermore,
evaluating the function at a given point is in many cases a computationally
expensive task, and only a limited budget of evaluations is available in the end.
Recently, suitable derivative free/zeroth order optimization methods have been
proposed for handling stochastic functions (see,e.g., [6,7,11,14]). For a com-
plete overview of stochastic derivative free/zeroth order methods, we refer the
interested reader to the recent review [15].

Weakly convex functions show up in the modeling of many different statis-
tical learning applications like, e.g., (robust) phase retrieval, sparse dictionary
learning, conditional value at risk (see [9] for a complete description of those
problems). Other interesting applications include the training of neural net-
works with Exponentiated Linear Units (ELUs) activation functions [8] and
machine learning problems with L-smooth loss functions (see, e.g., [13] and
references therein).

In all these problems there might be cases where we only get access, at
a point z, to an unbiased estimate of the loss function F(z,&) and we thus
need to resort to a stochastic derivative free/zeroth order approach in order
to handle our problem. Recalling that a standard setting is wherein a function
evaluation is the noisy output of some complex simulation, such a problem can
appear either for an inverse problem where we are interested in using a robust
nonsmooth loss function to match parameters to a nonconvex simulation, i.e.,
F(z,8) =), ||G(z,&) — 0]|1 where {0;} is a the set of observations and {&;}
a set of samples of the simulation run, which is of the form of the composite
case h(c(x)) described above, or even a simulation function that is convex but
we are interested in, e.g., minimizing its conditional value at risk.
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At the time of writing, zeroth order, or derivative free optimization for
weakly convex problems has not been investigated. There are a number of
works for stochastic nonconvex zeroth order optimization (e.g., [5]) and nons-
mooth convex derivative free optimization (e.g., [11]).

In the case of stochastic weakly convex optimization but with access to a
noisy element of the subgradient, there are a few works that have appeared
fairly recently. Asymptotic convergence was shown in [12], which proves con-
vergence with probability one for the method given in (3). Non-asymptotic
convergence, as in convergence rates in expectation, is given in the two pa-
pers [9] and [16].

In this paper, we follow the approach proposed in [11] to handle nons-
moothness in our problem. We consider a smoothed version of the objective
function, and we then apply a two point strategy to estimate its gradient. This
tool is thus embedded in a proximal algorithm similar to the one described
in [9] and enables us to get convergence at a similar rate as the original method
(although with larger constants).

The rest of the paper is organized as follows. In Section 2 we describe the
algorithm and provide some preliminary lemmas needed for the subsequent
analysis. Section 3 contains the convergence proof. In Section 4 we show some
numerical results on two standard test cases. Finally we conclude in Section 5.

2 Two Point Estimate and Algorithmic Scheme

We use the two point estimate presented in [11] to generate an approximation
to an element of the subdifferential. In particular, consider the randomized
smoothing of the function f,

ful) =E[f(z +uz)] = /f(x + uz)dZ

where Z is the pdf of a standard normal variable, i.e., we take an expectation
for z ~ N(0, I,,).

The two point estimate we use is given by considering a second smoothing,
now of f,, , for a given u; ; indexed by iteration t, i.e.,

Furoin (&) = Bl fur (& + 2,2)] = / Fun (& + 112,42)dZ.

To derive the specific step computed, let us consider the derivative of this
function with respect to x. We first write,

fu1,tu2,t (Jf) = fful,t(x + U’Q,tz)dz = %ffult(x + U27t’U)6_ ”'U2” dv

_ly—=)2

o2
- "Ulg’t ffu1,t(y)6 2uy ¢ dy,

where

K= /efwdv = (2m)™/2
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and we used the change of variables y = = + ug ;v. Now we write,

ly—=1?
- 71,2
vaLt,,uZ,t(I’) = ﬁ foI,t,(y)e 2t (y - ‘T)dy
’ _lv)?
= nulz,t fful‘t (x + U‘Q,tv)e 2 vdv (4)
_ %f f’“l,t(x+52va)_f($)efwvdv
2,t
_ f f“l,t (z""’:@,tz)_f(z) ZdZ
2,t

Lo ]l

where the third equality comes from the fact that the function ve™ 2 is even
so integration over f(x) is zero.

Now let {uq¢}22,, {ug,}:2, be two nonincreasing sequences of positive pa-
rameters such that us ¢ < wy14/2, z; is the given point, & is a sample of the
stochastic oracle =, Z; ~ pu1 and Zs ~ u9 are two vectors independently sam-
pled from distributions 1 ~ N(0,I,,) and po ~ N(0, I,,). From the derivation
above, we can see that the quantity,

gt(ilf) = G(x7u17t7u2,t7 Zl,ta Z2,t7£t) =
- F(.’IJ + ’UthZLt + ’U/Q’tZQ’t; ft) — F("E + ’Ull’tzl’t; é-t) 22 (5)
= s
U2t

)

is an unbiased estimator of V fy, , u,,(x). Thus, effectively, the first random
variable u ;7 ; smooths out the nonsmooth function F' and the second us + 25 ;
obtains a zeroth order estimate, using noisy function computations, of its
derivative. We shall use g;(x) specifically in our algorithm at each iteration.
We highlight the importance of using an adequate random number generator
to compute Z; ¢, Z2+ and stochastic function realization &; at every iteration.
We hence have that the two samples used for & and Z;, are the same in
F(x 4+ w214 + u2Zs2;&) and F(x + u1,:Z1,4; &), making the two point
estimator essentially a common random number device.

We now report some results that provide theoretical guarantees on the
error in the estimate. These results appear in [18], however we include some
of their (short) proofs for completeness.

Lemma 1 [18, Lemma 1] It holds that,

; / JofPe="" dv < w22, (6)
with p € [0,2], and
w2 <o [elre o < (e, @
with p > 2.
Lemma 2 [18, Theorem 1] It holds that,
| fur, (2) = f(2)| < ureLov/n, (8)

with Ly Lipschitz constant for f.
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Proof Indeed,

IIvII

HUH

dv < ME0 [|o] e~ 75 dv

waﬂ—f@ﬂééfﬁm+uuw—fwﬂ
< uy,

where we have used the Lipschitz constant Lg for f as given in Assumption 1
and the last inequality follows from equation (6) in Lemma 1.

Lemma 3 [18, Lemma 2] The function f, , is Lipschitz continuously differ-

entiable with constant LOI‘F
Proof
Lol n
[V furi (@) = Viu, W < ot [ 1@+ uiw) = fy +urev)| e 2 ||v]|dv
_lwy?
< ecllz -yl f e |follde < Eeltjz — g

The condition proved in Lemma 3 is equivalent to the following inequality
(see, e.g., [18]):

Fure0) = Fun ()~ (Vfun (), (= )] < 22 g2 g9)

)

Lemma 4 [18, Lemma 3] It holds that

uzboV/nlnt 97 ey g
2uy Uyt

)

vaul,t-,u2,t (SIJ) - vful,t ("E)H <

1 = Lov/a(n+3)¥/?
with o = Of,

Proof First, note that

Ll

1
Vful,t(x) = E‘/<vfu11t(z)7v>6 2 pdv.
And so,

vaulmuz,t( vfult H

T4us v “ T w2
= %f(f“”( )LD (9, @),0)) Uef" : de
< s KUzt f‘fult .Q?—FUQ{U) fu1t( ) u2t<vfu1t
/
< S [ o~ dy < teebay O,

where the first inequality uses some basic property of the integrals, the second
inequality uses equation (9) coming from Lemma 3, and the last inequality
uses equation (7) in Lemma 1.

We further report one more useful preliminary result.
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Lemma 5 The following inequality holds:

(Vfu(®) = Vuly), o —y) > —pllz = y||* — 4Loullz — y].

Proof By using the definition of f,, ,(x), we have

(V ul@) = Viu(y),z —y) = (V ([ (f(z +uz) = fly +uz))dZ) .z —y)

After a proper rewriting, we use (2) to get a lower bound on the considered
term, for any given vector e, of n components and any one element equal to
one, we have,

[(f(apuzrten) = ortus) - f(yrtusttes) +f (rtus) dZ) T — y>

(hmtﬁo

> —pllz — yl*+
0 f(f(w+uz+tem)—f(w+tez)—f(w+uz)+f(w)t—f(y+uz+tem)+f(y+tem)+f(y+uz)—f(y))dZ) & — y>

+ < (limt_)

> —pllz —y||* — 4Loullz -y,

where the last inequality is obtained from the Lipschitz property of f (As-
sumption 1).

We make the following Assumption on f:

Assumption 2 [t holds that F(-,§) is L(§)-Lipschitz and L(P) := \/E[L(§)?]
is finite.

The following lemma uses previous results to characterizes an important
condition on the error of the estimate.

Lemma 6 Given a point x s.t. ||z|| < M, with M a finite positive value, then
1t holds that

E[]lg:(x)|’] < C. (11)
where C depends on M, L(P) and n but is independent of x.

Proof Define f(z) = f(x) + p|lz||? for ||| < M and a continuous linearly
growing extension otherwise (e.g., for any x take the greatest norm subgradient

g(x) at ﬁ and linearize, f(z) = f (m) +g(x)T (v — ﬁ)) Note that by this

[Ed
construction and the assumptions on f(z), it holds that f(z) is convex and
Lipschitz. Let g:(z) be the two point gradient approximation of f (z), defining
fu”(m) accordingly. Furthermore, let h(z) = f(z) — f(z), §i(z) its two point
gradient approximation, and h,, , () its smoothed function. We have,

lge (@)l = 11ge(x) — g7 (@) < llge (@)l + 1132 ()]

Since ful,t and h,, , are both Lipschitz and convex, we now directly apply [11,
Lemma 2] to both errors on the right hand side to obtain the final result.
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Note that the last lemma combined with the previous results implies a
tighter bound on ||V f,, , (x)]|?, specifically,

IV fur.. ()]

<3IVfur (@) = Viuy s, (@) + 3Bl g (%) = ViHuy s, (@) + 3E [ g ()]

< 3u3,0%/ui ; — OE (9¢(2), V fuy v uz.s (2)) + 3V fur s s, (2) 12 + 6E[ e (2) |2

< 3ud,0%/u}, +6C < C.

(12)

In order to get the first inequality, we used some basic properties of the ex-
pectation and the inequality (a + b + ¢)? < 3a? + 3b> + 3c?. Then we used
Lemma 4 to upper bound the first term in the summation and suitably rewrote
the second one thus getting the RHS of the second inequality. The third
one was finally obtained by taking into account unbiasedness of g;(x) (i.e.,
Elg:(2)] = V fu, 4us, (7)) and Lemma 6.

The algorithmic scheme used in the paper is reported in Algorithm 1. At
each iteration ¢t we simply build a two point estimate g; of the gradient related
to the smoothed function and then apply a proximal map to the point z; —az gy,
with a; > 0 a suitably chosen stepsize.

We let a; be a diminishing step-size and set

upy =a? and ugy = al. (13)

Algorithm 1 Proximal Stochastic Derivative Free Algorithm

Input: 29 € R", sequence {at}¢>0, and iteration count T

Fort=0,1,...,T
Step 1) Sample ft ~ P, VAR M1 and o ~ 2.
Step 2) Set uy ¢ = a? and ug ¢ = a?.
Step 3) Build the two point estimate g = G(z¢,u1,t, u2,t, Z1,t, Z2,¢,Et)-
Step 4) Set xt11 = prox,,,.(z¢t — gt).
End For

Sample t* € {0,...,T} according to P(t* =1t) = o/ Z;TF:O ;.

Return zj.

We thus have in our scheme a derivative free version of Algorithm 3.1
reported in [9].

3 Convergence of the Derivative Free Algorithm

We now analyze the convergence properties of Algorithm 1. We follow [9,
Section 3.2] in the proof of our results. We consider a value p > p, and assume

oy < min u} for all ¢.

1
P2
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We first define the function

¢"H(2) = fu, ,(x) +7(2),

and introduce the Moreau envelope function
u,t . u,t A 2
¢y (@) =ming**(y) + Sy — =,
Yy 2
with the proximal map

. A
PrOXgu.i 3 (¢) = argmin, {6 (y) + S lly — 2[*}.

We use the corresponding definition of ¢, /() as well in the convergence
theory,

A A
d1/3(x) = min g(y) + 5y - x| = min f(y) +r(y) + 5lly - ||

To begin with let
Ty = prox¢u,t/ﬁ(xt).

Some of the steps follow along the same lines given in [9, Lemma 3.5], owing
to the smoothness of f,, ().

We derive the following recursion lemma, which establishes an important
descent property for the iterates. We denote by [E; the conditional expectation
with respect to the o-algebra of random events up to iteration ¢, i.e., all of Z s,
Zy,s and & are given for s < t, and for s > ¢ are random variables. In order
to derive this lemma, we require an additional assumption that is reasonable
in this setting.

Assumption 3 The sequence {x;} generated by the algorithm is bounded (i.e.,
there exists an M > 0 s.t., ||z¢]| < M for all t).

J
Note that this assumption can be satisfied if, for instance, r(-) = Y 7;(-) and

Jj=1
for at least one j € {1,...J}, r;(-) is an indicator for a compact set X (i.e.,
r(z) =0if x € X and r(z) = oo otherwise).

Lemma 7 Let oy satisfy,

p—p
< . 14
M= T+ 52— 2p + 480Lo) 1)

where 6o = 1 — agp.
Then it holds that there exists a B independent of t such that

Eillzesr — &l < llze — 2)” + o7 B — cu(p — p) ||z — &)
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Proof First we see that &; can be obtained as a proximal point of r:
Ty = proxd)u,t/ﬁ(xt) =
plry — &y) € Or(2y) + V fu,, (T4) =
ap(re — &4) € uOr(Ze) + oV fu, (21) =
aipry — iV fu, (L) + (1 — cup)dy € &y + 0O ()

— jt = pI'OXat,r (O[t/jl’t - atVful,t (QA?t) + (1 - Cltﬁ)ft) .

We notice that the last equivalence follows from the optimality conditions
related to the proximal subproblem. Letting §; = 1 — oy p, we get,

Eil|wip1 — &¢|? = E¢|lprox,, (2 — awge) — PI“OXatr(gétﬁxt — oV fuy, () + 60|
< B ||me — avgr — (oepry — oV fu,, (2¢) + 6124) |

)

where the inequality is obtained by considering the non-expansiveness property
of the proximal map prox,,,.(r). We thus can write the following chain of
equalities:

E; ||z — avgre — (oupry — eV fu1(81) + 013) |2 =
= B |[6: (s — #4) — as(ge — Vur, (@)||° =
= Eo (o0 = ) = (¥ fun o (@1) = Y fura (@) = ai(ge = V oy, (@)||* =
= Bt |[8e(x — 24) — e(V furo (1) = V fur, ()]
20y [<5t (ry — &) — Oét(vful (@) = Vfu (8)), 90 — vful,t(xt)>:|
+aiE, Hgt V fu,, t(xt)

with the first equality obtained by rearranging the terms inside the norm, the
second one by simply adding and subtracting o;V f,, , (;) to those terms, and
the third one by taking into account the definition of Euclidean norm and the
basic properties of the expectation. Now, we get the following

E; H(St(xt - 561&) - Oét(vful,t(wt) - Vful,t(fct))w

20y [(64 (20 — 1) — CVQt(Vful,t(xt) =V fur, (@), 9t = Vfur, (20))]
+aiE, Hgt - Vful,t(ﬂ?t)H

= |60zt — &) — AtV fun, (2) = V fu , (20))[|”
=20 [(0¢ (w1 — 4) — (Y fuy (26) = V fuy , (20)), Blge] = Vfuy , (21)))]
+oZE ||ge — Vful,t($t)||2

= (|60 — @) = €4V fu, (21) = V fuy , (@0)|
=20 [(6(ze — 24) — e (V fur, (#0) = Vfur o (80)), V fus sus (26) = YV fur, (24)))]
+a?E, ||gt — Vful’t(wt)||2 .

The first equality, in this case, was obtained by explicitly taking expectation
wrt to &, while we used the unbiasedness of g; (i.e., E[g:] = V fu, us,(2¢)) to
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get the second one. We now upper bound the terms in the summation:

8¢ (e — &) — (Y fuy o (20) = V fuy, (30))]°
=2 [(8e(x — 24) = e (Vfuy (@) = Vi ur o (80)), V fur gz (€0) = V fuy  (20)))]
+03Ey g0 = V. (20)|*
< ||5t(37t — &) — i (V fu, (21) — Vful,t(i‘t))HQ
—20y [<5t($t —¢) — ay(V fu, f(xt) Vi ur, (86)),V fur yus, (%) — vful,t(xt))>:|
+202E, |9 = V Fur g @)+ 202E, |V Far e (20) = Y fur (20) ||
< [|u(s — &0) = at(V fu, (1) = Vful,xxt))w
+2 (Oét H(St ZCt —Ty) — at(vful ) — Vful (&) H) vaul tua, () — vfm,t(a”t)H
+202E, llgell> — 407 (ge(%¢), V fur s s a:t )) + 203 HVfu1 Lus, r(a:t)||2
F207E ||V sy s (@) = V fuy, (4 ||
Hét (¢ — 2¢) — ae(V fuy , (26) = V fu,  (84) H
+Ozt H(St xt—xt)—at(vful (1) — vfult 'Tt H —|—O¢t0
+202C — 207 |V fuy o us (2)]1? + 20752
< H5t zp — &) — a(Vfuy, (@) = Vfuy, (21)) H
a3 |00 #0) = (Y fuy (@) = Vur (@) + 03 (1 + 208)5% + 202C

We first split the last term from the previous displayed equation using
(a+b)? < 2a? + 2b* and some basic properties of the expectation. The first
inequality was obtained by using Cauchy-Schwarz and by suitably rewriting
the third term in the summation. We then used the inequality 2a-b < a? + b?
combined with Lemma 4 (or equation (10)) to bound the resulting second
term in the summation, that is ||V fu, ,us, (21) — V fus , (2¢) ||2, inputting equa-
tion (13) to obtain the explicit constant and relation with respect to oy, and
Lemma 6 to upper bound the third term, and finally applying the unbiased
estimate property of g;,thus getting the next inequality. Hence we write

H(St(mt —2¢) — as(Vfu,  (x1) = V fu, , (24) H +

+a? ||5t(xt — &) — ozt(Vful)t(xt) V fur  (Zt) || +a?(1+2a2)5?% + 20[%0

=1+ 04?)53”% — &) = 201+ af)drcu (s — &4, V fuy  (20) = V fuy , (20))

+(1+ af)af ||V fu, t(xt) me L(@)]? + a2(1 4 203)52 + 202C

<(1+ Oét)52||95t — &y||? + 21 + o) Groupllze — 24|12 + 8(1 + 02)de Loa e — 4|
H(L+ )} (IV fure @)1? = 2(V fur  (@0), V fur  (@0)) + [V fur (@0)]7)
+a2(1 4 2a2)52 4 2a2C

< (L4 af)o7 |z — @l + 2(1 + of )draupllae — 2o]|* + 8(1 + af)dp Lo |xe — |
+(1 +af)af (||Vfu1 @)+ 20V fuy @)Y fur o (@) + IV fu  (E0)]12)
+a?(1 + 202)5% 4 202C

<1+ 04?)5?”9% = &¢|)* + 2(1 + f )oraupllwe — 2l|* + 8(1 + af)de Loa? [z — 24|
+4(1 4+ a2)a2C + a? (1 + 2a2)52% + 2a2C,

where the equality is given by rearranging the terms in the summation and
taking into account the definition of Euclidean norm. The inequality is ob-
tained by upper bounding the scalar product by means of Lemma 5 and the
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third term in the summation by combining the triangle inequality, the Cauchy-
Schwartz inequality and (12). Continuing:

(L 4+ af)of [z — &e||* + 2(1 + af)draupllae — &e||* + 8(1 + af)d Loai lwe — @]

+4(1 + a2)a2C + 2(1 + 202)5° + 2a2C

= (1+a7)0f[lwe — @] + 2(1 + af)dpaupllae — 24|
+8(1+ 7)o Lo (aF) (aullwe — 24])
+4(1 + a2)a2C + 2(1 + 202)52 + 2a2C

< (L+af)df[lwe — &]|* + 2(1 + af)draupllze — 2] + 4(1 + af)d¢ Loarf
+4(1 + a2)8, Loo? ||z — &¢)|2 + 4(1 + 02)02C + a2(1 + 2a2)52 + 202C

= (1 +a7)0f|lwe — 2|1 + 2(1 + af)deouepl|ze — 24|
+4(1 + a2)6; Loa? ||zy — 24¢||* + 4(1 + a2)d; Lot + 4(1 + a?)aiC
+a2(1 + 202)5% 4 202C.

The first and last equality are simply obtained by rearranging the terms in the
summation. The inequality is obtained by upper bounding the third term in
the summation using inequality 2a-b < a2+ b2. Finally, recalling the definition
of §; =1 — ayp, we have

(1 + af)df [z — 2el|* + 2(1 + af)draepllze — 2> + 4(1 + af)de Loai |ve — @[

+4(1 4+ a)é;Loaf + 4(1 4+ a?)a?C + a2 (1 + 2a3)52 + 2a2C

= [1—-2p+aip® +of — 2085+ i p” + 20up — 207 pp + 20} p — 20{p
+45tL0at2 + 45tL00421] ||£Ct - :f?t”Q
+ [4(1 +02)6,Loa? + 4(1 + a2)C + (1 + 202)52 + 20} a2

= [1-2a4(p— p) + aZ(1 +p* — 2pp + 46, Lo) — 20} (5 — p)] [lze — 24|
+ai(p? = 2pp +40¢Lo)|lve — 24|
+ {4(1 +a?)6Loa? + 4(1 4+ a2)C + (1 + 2a2)52 + 2@} a?

< [1=2a(p—p) + atgﬁ —p) =22} (p — p)] |z — &7
+a (5 — p)llze — 24|
+ [4(1 +a?)6Loa? +4(1 4+ a2)C + (1 + 2a2)52 + 20} a?

<[ —a(p—p)llze — 2|

+ {4(1 +a?)0;Loa? + 4(1 + af)C + (1 +2a2)52 + QC} o?
= [1—au(p—p)] || — @] + Bag,

where the second to last inequality is obtained by simply considering the ex-
pression of «; in equation (14). We combine the sequence of inequalities shown
in the lemma to obtain the result.

After proving Lemma 7, we can now state the main convergence result for
Algorithm 1.

Theorem 1 The sequence generated by Algorithm 1 satisfies,

El¢1/5(xe1)] < Elén ()] + 2Lov/n + B2)a? — SR [| Vo1 (a0)]|2]
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and thus,
B[V (@e)]2] = IV (o)l
) m/p(:co) 6o+ (2LoviH5E) 3 o (15)
< 22 =0
p—p = u,
t=0
In particular, if we define oy to be
J 1 p—p  [P1/5(x0) — P 1
oy =min§ —, , — 16
' {p 2 2Lov/n+ 82 | VT +1 (16)

then,

45 [($y5(w0) — ¢4)(2Lovn + B2)
[||V¢>1/p( z-)||?] < p_Pp\/ /5(Zo 0

T+1 ' (17)

Proof We have,

Ei[f1/5(zes1)] < By [0(&:) + 520 — 2147
< (&) + § (lloe — &4l + Bai — ay(p— p)llze — &4]|?)
< ¢ (&y) + urLovn+ 5§ ([|loe — 24)|* + Bai — ou(p — p)llae — 24|?)

where the first inequality comes from the definition of the proximal map,
the second by considering the result proved in Lemma 7, and the third by
Lemma 2. Continuing,

¢t (&) + ur e Loy/n + 5§ (|la — :Et||2 + Bai — au(p — p)l|lze — &4?)
= 61 (we) + i Lov/n + BPaf — 231 (p— p)|lwe — 242
< 61/p(e) + 2ur e Loy/n + Bﬁat ”“’ (P — )l — &>
< uplee) + 203 Loy + Bla? — 2225 - p)llzi — &l
— buplan) + 202 Loy + B2 of - W 2|V ()|,

with the first inequality obtained by Lemma 2. Indeed, let us now call Z;
the minimizer of ¢(x;) + p||a: — x4]|? and recall that &; is the minimizer of
¢t (xy) + £l|z — 2¢]|%. We have

O1p(w) = 6" (@) + Gllee = aol” < 6% (@) + SlE — ol
< ¢(ar) +uraLovn + £z — o
= ¢1/5(we) + ur e Lov/n.

The second inequality is obtained by using definition of u; ¢ in (13). The last
equality is due basic properties of the Moreau envelope and to the definition of
%4 (see the beginning of Lemma 7). Now, we take full expectations and obtain:
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E[¢1/5(x141)] < Elr/p(2e)] + 207 Loy/n
+Bp 2 at(gp_p)]E[Hvd)l/p(‘Tt)”2]'

The rest of the proof is as in [9, Theorem 3.4]. In particular, summing the
recursion, we get,

El¢1/5(27+1)] < Eld1/5(z0)] + (2Lov/n + 5F) té af

T
() 3 B[V} () ).
Now, noting that

p1ya(z) = miny f(y) +7(y) + 5y — z[* > ¢,

where we used the lower boundedness of f+ r in Assumption 1, we can finally
state that

ST Z  adE[[[Vey5 ()] <

_ T
_ ¢1/p(0)—du+(2Lovn+ER) 3 of
< =2 =0 __
= p—p

M=

Qg

t=0

2], we get the in-

Since the left-hand side is by definition ]E[Hngl/p (xe+)

equality (15). Furthermore, by plugging the expression of a; given in (16) into
(15), we get the final inequality (17).

Theorem 1 gives an overall bound on the weighted expected norm of the
proximal map as the statistical measure of distance to convergence with respect
to the number of iterations. The worst case bound is weighted by the possible
range of the function the algorithm must traverse, i.e., from the starting value
to the global minimum, as well as the error in the iterates in traversing this
range due to the inaccuracy in the zeroth order function and noisy subgra-
dient approximations. The order of the convergence is the same as the one
reported in [9], however, the constant is larger, given the additional error in
the quality of the steps. Note that as the convergence result is stated in a
similar formalism, using the gradient of the Moreau envelope, we can inter-
pret this approximate stationarity concept as given in [9, pages 3-4], namely
that a small value of | V¢ (x)| implies that = is near some point Z (specifi-
cally ||z — Z|| = M|V (2)]]) satisfying a bound to the distance to stationarity,
dist(0, 9¢p(2)) < ||V ()] In this case an additional level of approximation to
stationarity is added as we are taking the gradient of the smoothed proximal
function, which is itself a perturbation of the original function.
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4 Numerical Results

In this section, we investigate the numerical performance of Algorithm 1 on a
set of standard weakly convex optimization problems defined in [9]. In partic-
ular, we consider phase retrieval, which seeks to minimize the function,

min —Z‘ Gi, )" — 7,‘ (18)

z€RI M

and blind deconvolution, which seeks to minimize

A o) = w

Both of these applications are ones in which Common Random Numbers
(CRNs) are a reasonable assumption, making two-point gradient estimates
relevant. In particular, in (18), the pairs (a;, b;) can be held constant between
two function evaluations, and in (19), triplets (u;,v;, b;) can be fixed as well.

4.1 Comparison with methods using a stochastic subgradient oracle

We first compare Algorithm 1 with the stochastic subgradient method and
the stochastic proximal method in [9]. The goal in this set of experiments
is understanding if our approach is competitive with those ones that use a
stochastic subgradient oracle and how the practical behavior of the method
fits with the theoretical analysis.

We generate random Gaussian measurements in N (0, I;x4) and a target
signal Z uniformly on the random sphere to compute b; with dimensions
(d,m) = (10,30),(20,60), (40,120). We use fixed stepsizes «; in the range
[1076,107!]. We generate ten runs of each algorithm for every dimension and
stepsize, and pick the best one according to the final objective value. The total
number of iterations used in all cases is 100000.

We show the gap of the different methods when varying the stepsize for
both phase retrieval (Figure 1) and blind deconvolution (Figure 2).

It is interesting that the zeroth order algorithm performs on par with the
ones that use the stochastic subgradient oracle. In particular, our method
is more robust to the choice of the stepsize than the stochastic subgradient
method and it is competitive with the proximal method. In Figure 3 and 4,
we report the path of the objective values obtained with the stepsize equal to
10~* for the instances (d,m) = (10,30). These are nice examples of how good
the zeroth order algorithm works when the stepsize is properly chosen.
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Fig. 3: Convergence of the func-
tion values - phase retrieval
(d,m)=(10,30).

Fig. 4: Convergence of the func-
tion values - blind deconvolu-
tion (d,m)=(10,30).

4.2 Comparison with a naive stochastic variant of NOMAD

Now, in order to understand if Algorithm 1 is somehow competitive with
other (stochastic) non-smooth methods from the DFO literature, we report
here a preliminary comparison with a naive stochastic variant of NOMAD [1,3].
More specifically, we consider a mesh adaptive direct-search (MADS) that
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uses a unit-size sample for each evaluation of the zeroth order oracle’. We use
100 randomly generated instances in our tests for both phase retrieval and
blind deconvolution problems. We generate random Gaussian measurements
in N(0, I4xq) and a target signal Z uniformly on the random sphere to compute
b; with dimensions (d, m) = (4, 10). The choice of restricting the analysis to
small dimensional instances is mainly due to the fact that this naive version
of NOMAD gives very poor performances on larger dimensional instances. We
use fixed stepsizes a; € {1073,1072} in our algorithm. We generate ten runs
of each algorithm for every problem and pick the best one according to the
final objective value. The total number of function values used in all cases is
10000. We considered data and performance profiles [17] when comparing the
methods. Specifically, let S be a set of algorithms and P a set of problems. For
each s € S and p € P, let ¢, ; be the number of function evaluations required
by algorithm s on problem p to satisfy the condition

flzr) < fo+7(f(x0) — fr) (20)

where 0 < 7 < 1 and f, is the best objective function value achieved by any
solver on problem p. Then, performance and data profiles of solver s are the
following functions

1 t
= — P: L <
ps(@) P Hp S Min{tyy 5 €8] = 0‘} ’
1
ds(k) = Pl H{p € P:tys < r(ny+ 1)}

where n,, is the dimension of problem p.

We report, in Figure 5 and Figure 6, the data and performance profiles for the
experiments on phase retrieval and blind deconvolution problems, respectively.
From the plots it can be seen that our algorithm (with suitable choices of the
stepsize) outperforms the naive version of NOMAD for all precisions. We notice
that, when 7 = 1073, NOMAD does not appear in the plots, hence it never
satisfies the condition (20) for this precision. We further report, in Figure 7
and Figure 8, the box plots related to the function gaps obtained with the
algorithms over the 100 instances considered in the tests. Those plots show
that our algorithm gets very close to the optimal value for suitable choices of
the stepsize.

1 'We would like to notice that the MADS algorithm was originally developed for deter-
ministic blackbox optimization. Recently a stochastic variant of this approach was proposed
in [4].
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5 Conclusion

In this paper we studied, for the first time, minimization of a stochastic weakly
convex function without the presence of an oracle of a noisy estimate of the
subgradient of the function, i.e., in the context of derivative-free or zeroth order
optimization. We were able to derive theoretical convergence rate results on
par with the standard methods for stochastic weakly convex optimization,
and demonstrated the algorithm’s efficacy on a couple of standard test cases.
In expanding the scope of zeroth order optimization, we hope that this work
highlights the potential of derivative free methods in general, and the two point



A Zeroth Order Method for Stochastic Weakly Convex Optimization 19

0.5

0.4 +

0.3

04 0.2
0.2 + 0.1 +
+

of L R S
Fig. 7: Box plots function gap - Fig. 8: Box plots function gap -
phase retrieval. blind deconvolution.

smoothed function approximation technique in particular, to an increasingly
wider class of problems.
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