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Abstract Many real-world applications can usually be modeled as convex
quadratic problems. In the present paper, we want to tackle a specific class
of quadratic programs having a dense Hessian matrix and significantly more
variables than constraints. We hence carefully analyze a simplicial decompo-
sition like algorithmic framework that handles those problems in an effective
way. We introduce a new master solver, called Adaptive Conjugate Direction
Method, and embed it in our framework. We also analyze the interaction of
some techniques for speeding up the solution of the pricing problem. We re-
port extensive numerical experiments based on a benchmark of almost 1400
instances from specific and generic quadratic problems. We show the efficiency
and robustness of the method when compared to a commercial solver (Cplex).
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1 Introduction

We consider the following problem:

min f(x) = x>Qx+ c>x
s. t. Ax ≥ b,

Cx = d,
l ≤ x ≤ u,

(1)

with Q ∈ IRn×n, c, l, u ∈ IRn, A ∈ IRm1×n, b ∈ IRm1 , C ∈ IRm2×n, d ∈ IRm2 ,
n,m1,m2 ∈ IN.

Moreover, we assume that the polyhedral set

X = {x ∈ IRn : Ax ≥ b, Cx = d, l ≤ x ≤ u}

is non-empty and bounded and that the Hessian matrix Q is positive semidef-
inite. Among all possible problems of type (1), we are particularly interested
in the ones with the following additional properties:

– The number of equality/inequality constraints is considerably smaller than
the number of variables in the problem, i.e. m = m1 +m2 � n (notice that
bounds are not considered in here);

– the Hessian matrix Q is dense.

A significant number of real-world problems arising in Computational Geom-
etry, Communications, Statistics, Economics, Control and Machine Learning
present a structure similar to the one described above (see, e.g., [5, 9, 52]).

Solution methods for this class of problems can be mainly categorized into
either interior point methods or active set methods [51]. In interior point
methods, a sequence of parameterized barrier functions is (approximately)
minimized using Newton’s method. The main computational burden is repre-
sented by the calculation of the Newton system solution (used to get the search
direction). Even if those methods are relatively recent (they started becoming
populare in the 1990s), a large number of papers and books exist related to
them (see, e.g., [27, 48,62–64]).

In active set methods, at each iteration, a working set that estimates the
set of active constraints at the solution is iteratively updated. This gives a
subset of constraints to watch while searching the solution (which obviously
reduces the complexity of our search in the end). Those methods, which have
been widely used since the 1970s, turn out to be effective when dealing with
small- and medium-sized problems. They usually guarantee efficient detection
of unboundedness and infeasibility (other than returning an accurate estimate
of the optimal active set). An advantage of active set methods over interior
points is that they are well-suited for warmstarts, where a good estimate of
the optimal active set or solution is used to initialize the algorithm. This turns
out to be extremely useful in applications where a sequence of QP problems
is solved, e.g., in a sequential quadratic programming method. A quite large
number of active set methods have been developed in recent years (see, e.g.,
[11–13,20,38]). A detailed overview of active set methods can be found in [51].



A simplicial decomposition framework for dense convex quadratic programs 3

In this paper, we develop a simplicial decomposition type approach (see,
e.g., [53, 60]) specifically tailored to tackle problems with the aforementioned
features. However, it is worth noting that the algorithm proposed can handle
any problem of type (1) and can also be easily modified in order to deal with
problems having a general convex objective function. We want to use simplicial
decomposition for two main reasons. First of all, simplicial decomposition like
methods are well suited to deal with (large-scale) structured problems and,
secondly, they can be used in applications where sequences of QPs need to be
solved (since they can take advantage of warmstarts). Those tools can thus
be fruitfully used in, e.g., Branch and Price like schemes for convex quadratic
discrete problems.

Simplicial decomposition is related to cutting plane/column generation ap-
proaches (see, e.g., [3,53] for further details). Those methods are well suited to
solve large scale structured convex programs, since they can efficiently exploit
the structure in the problem. Many different cutting plane approaches have
been proposed in the literature, including: center of gravity method [43, 49],
maximum volume ellipsoid cutting plane method [58], Chebyshev center cut-
ting plane method [19] and analytic center cutting plane method [25, 26]. In
the last two decades, some in depth computational studies related to the last
class of methods, which seems to give a good trade-off between simplicity and
practical performance, have been conducted (see, e.g., [24, 32, 33]). In some
recent papers, a good number of structured problems has been analyzed from
the column-generation (primal) perspective, and a Primal-Dual Column Gen-
eration Method (PDCGM) has been developed (see, e.g., [28–30]). PDCGM
has also been embedded into a Branch-Price-and-Cut algorithmic framework
for solving problems with integer variables (see, e.g., [47]).

Despite the vast literature in the context of cutting plane/column genera-
tion approaches, no in-depth computational and methodological analysis has
been conducted so far to investigate the behaviour of simplicial decomposi-
tion on a statistically significant set of instances. In this work, we hence show
how a well designed simplicial decomposition framework can efficiently handle
convex quadratic instances with a dense Hessian matrix and with significantly
more variables than constraints. To obtain good performances, two important
features are considered:

– a new ad-hoc method for solving the master problem, called Adaptive
Conjugate Direction Method;

– some pricing strategies that help speeding up the solution process.

In particular, the new master solver represents the first attempt to embed
and wisely reuse conjugate directions into a simplicial decomposition frame-
work. We will describe in depth the idea behind the algorithm and show how
it works in practice. We then analyze the connections between some pricing
strategies we introduce to improve the efficiency of our approach and classic
features/ideas in cutting plane approaches. We also show how those strate-
gies can be embedded into the algorithmic framework without affecting its
convergence in the end.
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The rest of the paper is organized as follows. In Section 2, we describe
the classic simplicial decomposition framework. In Section 3, we present some
strategies to improve the efficiency of the framework itself. In Section 4, we
report our numerical experience. Finally, in Section 5, we draw some conclu-
sions.

2 Simplicial Decomposition

Simplicial Decomposition (SD) represents a class of methods used for dealing
with convex problems. It was first introduced by Holloway in [40] and then
further studied in other papers like, e.g., [39, 59, 60]. A complete overview of
this kind of methods can be found in [53].

The method basically uses an iterative inner approximation of the feasible
set X. The method can be viewed as a special case of column generation
applied to a non linear problem (we refer the reader to [15] for an extensive
analysis of such a method). In practice, the feasible set X is approximated with
the convex hull of an ever expanding finite set Xk = {x̃1, x̃2, . . . , x̃k} where
x̃i, i = 1, . . . , k are extreme points of X. We denote this set with conv(Xk):

conv(Xk) = {x | x =

k∑
i=1

λix̃i,

m∑
i=1

λi = 1, λi ≥ 0} (2)

At each iteration, it is possible to add new extreme points to Xk in such a
way that a function reduction is guaranteed when minimizing the objective
function over the convex hull of the new (enlarged) set of extreme points. If
the algorithm does not find at least one new point, the solution is optimal and
the algorithm terminates.

The use of the proposed method is particularly indicated when the follow-
ing two conditions are satisfied:

1. Minimizing a linear function over X is much simpler than solving the orig-
inal nonlinear problem;

2. Minimizing the original objective function over the convex hull of a rela-
tively small set of extreme points is much simpler than solving the original
nonlinear problem (i.e. tailored algorithms can be used for tackling the
specific problem in our case).

The first condition is needed due to the way a new extreme point is generated.
Indeed, this new point is the solution of the following linear programming
problem

min ∇f(xk)>(x− xk)
s.t. x ∈ X (3)

where a linear approximation calculated at the last iterate xk (i.e. the solu-
tion obtained by minimizing f over conv(Xk) ) is minimized over the original
feasible set X.
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Below, we report the detailed scheme related to the classical simplicial
decomposition algorithm [2,53,60] (see Algorithm 1). At a generic iteration k
of the simplicial decomposition algorithm, given the set of extreme points Xk,
we first minimize f over the set conv(Xk) (Step 1), thus obtaining the new
iterate xk then, at Step 2, we generate an extreme point x̃k by solving the
linear program (5). Finally, at Step 3, we update Xk.

Algorithm 1 Simplicial Decomposition Algorithm

Initialization: Choose a starting set of extreme points X0.

For k = 1, 2, . . .

Step 1) Generate iterate xk by solving the master problem

min f(x)
s.t. x ∈ conv(Xk)

(4)

Step 2) Generate an extreme point x̃k by solving the subproblem

min ∇f(xk)>(x− xk)
s.t. x ∈ X (5)

Step 3) If ∇f(xk)>(x̃− xk) ≥ 0, Stop. Otherwise Set Xk+1 = Xk ∪ {x̃k}
End For

Finite convergence of the method is stated in the following Proposition
(see, e.g., [2, 60]):

Proposition 1 Simplicial Decomposition algorithm obtains a solution of Prob-
lem (1) in a finite number of iterations.

As explained also in [60], a vertex dropping rule is also used to get rid of
those vertices in Xk whose weight is zero in the expression of the solution xk
(Step 1). This dropping phase does not change the theoretical properties of the
algorithm (finiteness still remains), but it can guarantee significant savings in
terms of CPU time since it keeps the dimensions of the master problem small.

3 Strategies to improve the efficiency of a simplicial decomposition
framework

In this section, we describe a few strategies that, once embedded in the sim-
plicial decomposition framework, can give a significant improvement of the
performances, especially when dealing with quadratic problems with a poly-
hedral feasible set described by a number of equations much smaller than the
number of variables.

We first present and discuss two tailored strategies that efficiently solve the
master problem by exploiting the special structure of the generated simplices.
Then, we analyze some techniques for speeding up the solution of the pricing
problem.
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3.1 Strategies for efficiently solving the master problem

Here, we describe two different ways for solving the master problem. The first
one is an ad-hoc method that tries to exploit the properties of the simplices
and the information gathered from previous iterations (i.e., to reuse conjugate
directions). To the best of our knowledge, this is the first time that such an
algorithm is introduced and analyzed. The second one is a method of the
projected gradient type that could eventually allow us to efficiently handle the
more general problem of minimizing a convex function over a simplex.

3.1.1 Restriction of the domain

First of all, we notice that a generic master problem has the following form:

min f(x) = x>Qx+ c>x

s.t. x =
∑k
i=1 λix̃i∑k

i=1 λi = 1
λi ≥ 0 ∀i = 1, . . . , k.

(6)

By using the matrix B := [x̃1 . . . x̃k] it is possible to rewrite the master in the
following reduced form:

min λ>Q̃λ+ c̃>λ

s.t.
∑k
i=1 λi = 1

λi ≥ 0 ∀i = 1, . . . , k,

(7)

where Q̃ := B>QB and c̃ := B>c. It is easy to notice that the above problem
uses only k � n variables. Thanks to the way matrix B is defined, we just need
to add one column for each new extreme point. This matrix update is much
cheaper than the one described in [60], where the matrix had to be completely
recalculated at each iteration.

3.1.2 An Adaptive Conjugate Direction Method for solving the master

In order to ease the description of the algorithm, in this first part of the section
we assume that the objective function in (6) is strictly convex. Before giving
the details of the Adaptive Conjugate Direction Method (ACDM), we prelimi-
narily report a result related to the conjugate direction method (see, e.g., [50])
that helps us to better understand the rationale behind our algorithm:

Proposition 2 Conjugate direction method converges to the minimum point
of a strictly convex quadratic function f(x) : IRn → IR in at most n steps.

The result reported in Proposition 2 relies on the fact that the objective func-
tion is successively minimized along the individual directions in a conjugate set.
This fact is heavily exploited when solving the master problem with ACDM.
First of all, we assume that
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– at each iteration the solution we get when solving the master is in the inte-
rior of the simplex approximating the feasible set (this is pretty reasonable
since we can just remove from master problem those components that have
zero weight in the solution);

– a suitable set of conjugate directions is available in the affine hull described
by those vertices.

Hence, if the master solution at iteration k is in the interior of the simplex,
ACDM easily calculates it by picking the master solution obtained at the pre-
vious iteration k − 1 and applying a minimization step along a new suitably
chosen conjugate direction (keep in mind that pricing phase only adds one
dimension at each iteration). In case the master solution is on the boundary
of the simplex, once the method applies the minimization along the new con-
jugate direction, it hits the boundary, reduces the variable space and needs
to get a new set of conjugate directions. Luckily, this case does not happen
so often in practice, thus making ACDM a viable option. In the rest of this
section, we formally describe all the steps we need to implement the method.

Let ∆k := conv(Xk) be the domain of the current master, ∆k−1 be the
domain of the previous master, xk−1 the optimum of the previous master and
x̃k /∈ ∆k−1 the new extreme point generated with the pricing. At any SD
iteration, the master problem we want to solve (Step 1 of Algorithm 1) has
the form in (7) and the following property holds:

Proposition 3 The master solution at iteration k − 1 lies in the relative in-
terior of a facet of the set ∆k.

As we already noticed, if the master solution we get at iteration k − 1 is on
the boundary of the simplex, we can restrict the master problem to a smaller
dimensional face (which is always a simplex) by means of the column dropping
rule. Furthermore, the simplex of the current master is obtained by adding up
the point provided by the pricing to the set of vertices describing that reduced
face.

We now consider the descent direction d̄k−1 := x̃k−1− xk−1. Furthermore,
we assume that a set of conjugate directions D = {d1, . . . , dk−2} is available
from previous iterations. We then use a Gram-Schmidt like procedure to turn
direction d̄k−1 into a new direction dk−1 conjugate with respect to the set D.
More specifically, we compute:

dk−1 = d̄k−1 −
k−2∑
h=1

δhk−1dh, where δhk−1 =
d̄>k−1Qdh

d>hQdh
. (8)

It is worth noticing that dk−1 is a descent direction too (since xk−1 is optimal,
∇f(xk−1)>dh = 0, ∀ h = 1, . . . , k − 2). We use the basis B = [x̃1, . . . , x̃k] to
express points xs = xk−1 and xt = xk−1 + dk−1 thus obtaining respectively
points λs and λt. We intersect the halfline emanating from xs (and passing by
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xt) with the boundary of ∆k by solving the following problem:

max α
s.t. (1− α)λs + αλt ≥ 0.

(9)

The solution of problem (9) can be directly written as

α∗ =

(
max
i

λsi − λti
λsi

)−1

.

We finally define point λp = (1−α∗)λs+α∗λt and solve the following problem

min
β∈[0,1]

f(B[(1− β)λs + βλp]).

If the optimal value β∗ < 1 we get, by Proposition 2, an optimal solution for
the master. Otherwise, β∗ = 1 and we are on the boundary of the simplex. In
this case, we just drop those vertices whose associated coordinates are equal
to zero, and get a new smaller basis B. If B is a singleton, we can stop our
procedure, otherwise we minimize f(x) in the new subspace defined by B. In
order to get a new set of conjugate directions in the considered subspace, we
use directions connecting point x∗ = Bλ∗ = Bλp with each vertex x̃j in B
(that is d̄j = x̃j − xp) and then use the same Gram-Schmidt like procedure
to make them conjugate (we want to remark that all directions d̄j need to
be expressed in terms of the new basis B). We report the algorithmic scheme
below (see Algorithm 2).

Algorithm 2 Adaptive Conjugate Direction Method (ACDM)

Data: Basis B, conjugate directions D, and point xk−1

Step 1) Set xs = xk−1 and Ds = {d̄k−1}
Step 2) Select a d̄ ∈ Ds and set Ds = Ds \ {d̄}
Step 3) Use a Gram-Schmidt like procedure to turn d̄ into a conjugate direction ds with

respect to D

Step 4) Express points xs and xt = xs+ds in terms of B (that is xs = Bλs and xt = Bλt)

Step 5) Set

α
∗

=

(
max
i

λsi − λ
t
i

λsi

)−1

Step 6) Calculate point λp = (1− α∗)λs + α∗λt and find solution β∗ of the problem

min
β∈[0,1]

f(B[(1− β)λ
s

+ βλ
p
])

Step 7) If β∗ < 1 then set x∗ = B[(1− β∗)λs + β∗λp] and D = D ∪ {ds} go to Step 9

Else drop vertices with λ∗ = 0 from B

Step 8) If B is a singleton then STOP

Else set D = ∅ and for each x̃j ∈ B set d̄j = x̃j − x∗ (direction represented using

coordinates in B) to get a set of directions Ds and go to Step 2

Step 9) If Ds = ∅ then STOP

Else go to Step 2
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Finite convergence of an SD scheme that embeds Algorithm 2 for solving
the master can be obtained by using same arguments as in [60]. The proof
is based on the fact that our polyhedral feasible set contains a finite number
of simplices (whose vertices are extreme points of the feasible set). Since the
interior of each simplex has at most one relative minimum and the objective
function strictly decreases between two consecutive points xk and xk+1 (keep
in mind that ∇f(xk)>(x̃k − xk) < 0), no simplex can recur. Now, observing
that at each iteration we get a new simplex, we have that the number of
iterations must be finite.

We notice that the result given in Proposition 2 also holds when dealing
with quadratic convex functions (see, e.g., [54]). Hence it is easy to see that our
method still works if the matrix Q is positive semidefinite. Indeed, let dk be
the first conjugate direction which is in the null space of Q; then d1, . . . , dk−1

generate a space whereQ is positive definite. We have that the function is linear
along the line described by that descent direction, hence we have β∗ = 1 and
the search for the optimum is restricted to a face of the simplex that intersects
this line. Since the line is not parallel to the face, Q is positive definite on
the affine hull described by the vertices of that face and the algorithm can
proceed.

3.1.3 A fast gradient projection method for solving the master

The second approach is a Fast Gradient Projection Method (FGPM) and
belongs to the family of gradient projection approaches (see, e.g., [4] for an
overview of gradient projection approaches). The detailed scheme is reported
below (See Algorithm 3). At each iteration of the method, the new point we
generate is

λk+1 = λk + βk(p[λk − sk∇f(λk)]∆ − λk),

where βk ∈ (0, ρk], ρk, sk > 0 and p[λk − sk∇f(λk)]∆ is the projection over
∆k of the point λk − sk∇f(λk), chosen along the antigradient. When p[λk −
sk∇f(λk)]∆ 6= λk, it is easy to see that the direction we get is a feasible descent
direction.
The method can be used in two different ways:

a) we fix sk to a constant value and use a line search technique to get βk;
b) we fix βk and make a search changing sk (thus getting a curvilinear path

in the feasible set).

In our algorithm we consider case a) where sk = s > 0.
At each iteration, projecting the point yk = λk−s∇f(λk) over the simplex

corresponds to solve the following problem:

min
x∈∆
‖x− y‖2.

A fast projection over the simplex is used to generate the search direction
[10]. This particular way of projecting a point over the simplex is basically a
Gauss-Seidel-like variant of Michelot’s variable fixing algorithm [46]; that is,
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Algorithm 3 Fast Gradient Projection Method (FGPM)

Data: Set point λ0 ∈ IRk−1, ρ0 ∈ [ρmin, ρmax] and a scalar value s > 0.

For k = 0, 1, . . .

Step 1) Generate point

λ̂k = p[λk − s∇f(λk)]∆

Step 2) If λ̂k = λk STOP; otherwise set dk = λ̂k − λk

Step 3) Choose a stepsize βk ∈ (0, ρk] along dk and maximum stepsize ρk+1 by means
of a line search

Step 4) Set λk+1 = λk + βkdk

End For

the threshold used to fix the variables is updated after each element is read,
instead of waiting for a full reading pass over the list of non-fixed elements
(See [10] for further details).

A nonmonotone line search [35–37] combined with a spectral steplength
choice is then used at Step 3 (see [4] for further details) to speed up con-
vergence. In Algorithm 4 we report the detailed scheme of the line search.
Convergence of the FPGM algorithm to a minimum follows from the theo-
retical results in [4]. Therefore, the convergence of an SD method that uses
FPGM to solve the master problem directly follows from the results in the
previous sections.

Algorithm 4 Non-monotone Armijo line-search (with spectral steplength
choice)

0 Set δ ∈ (0, 1), γ1 ∈ (0, 1
2 ), M > 0

1 Update
f̄k = max

0≤i≤min{M,k}
f(λk−i)

2 Set starting stepsize α = ρk and set j = 0
3 While f(λk + αdk) > f̄k + γ1 α∇f(λk)>dk
4 set j = j + 1 and α = δjα.
5 End While
6 Set yk = ∇f(λk + αdk)−∇f(λk) and bk = αd>k yk
7 If bk ≤ 0 set ρk+1 = ρmax else set ak = α2‖dk‖2 and

ρk+1 = min{ρmax,max{ρmin, ak/bk}}

In the FGPM Algorithm too, we exploit the particular structure of the
feasible set in the master, thus getting a very fast algorithm in the end. We
will see later on that the FGPM based SD framework is even competitive with
the ACDM based one, when dealing with some specific quadratic instances.
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3.2 Strategies for efficiently solving the pricing problem

Now we describe two different strategies for speeding up the solution of the
pricing problem (also called subproblem). The first one is an early stopping
strategy that allows us to approximately solve the subproblem while guar-
anteeing finite convergence. The second one is the use of suitably generated
inequalities (the so called shrinking cuts) that both cut away a part of the
feasible set and enable us to improve the quality of extreme points picked in
the pricing phase.

3.2.1 Early stopping strategy for the pricing

When we want to solve problem (1) using simplicial decomposition, efficiently
handling the subproblem is, in some cases, crucial. Indeed, the total number
of extreme points needed to build up the final solution can be small for some
real-world problem, hence the total time spent to solve the master problems is
negligible when compared to the total time needed to solve subproblems. This
is the reason why we may want to approximately solve subproblem (5) in such
a way that finite convergence is guaranteed (a similar idea was also suggested
in [2]). In order to do that, we simply need to generate an extreme point x̃k
satisfying the following condition:

∇f(xk)>(x̃k − xk) ≤ −ε < 0, (10)

with ε > 0. Roughly speaking, we want to be sure that, at each iteration k,
dk = x̃k − xk is a descent direction. Below, we report the detailed scheme
related to the simplicial decomposition algorithm with early stopping (see
Algorithm 5).

Algorithm 5 Simplicial Decomposition with Early Stopping Strategy for the
Subproblem

Initialization: Choose a starting set of extreme points X0

For k = 0, 1, . . .

Step 1) Generate iterate xk by solving the master problem

min f(x)
s.t. x ∈ conv(Xk)

Step 2) Generate an extreme point x̃k ∈ X such that

∇f(xk)
>

(x̃k − xk) ≤ −ε < 0.

In case this is not possible, pick x̃k as the optimal solution of (5)

Step 3) If ∇f(xk)>(x̃− xk) ≥ 0, Stop. Otherwise set Xk+1 = Xk ∪ {x̃k}
End For
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At a generic iteration k we generate an extreme point x̃k by approximately
solving the linear program (5). This is done in practice by stopping the algo-
rithm used to solve problem (5) as soon as a solution satisfying constraint (10)
is found. In case no solution satisfies the constraint, we simply pick the op-
timal solution of (5) as the new vertex to be included in the simplex at the
next iteration. We would like to notice that the choice of the parameter ε is
crucial, since it gives a tradeoff between solving the pricing problem quickly
and obtaining a good descent direction. The details related to the parameter
setting are given in the Appendix A.2.3.

Finite convergence of the method can be proved in this case as well:

Proposition 4 Simplicial decomposition with early stopping strategy for the
subproblem obtains a solution of Problem (1) in a finite number of iterations.

The proof of Proposition 4 is provided in Appendix A.1.
We would like to highlight that the early stopping strategy is somehow re-

lated to the use of ε-subgradients in nonsmooth optimization (see [42] and
references therein for further details). When using decomposition schemes
like, e.g., cutting plane schemes, it is indeed possible to weaken the opti-
mality requirements in subproblems and get ε-subgradients, obtaining usually
an improvement in terms of the overall computing time of the algorithm (see,
e.g., [31, 34]). Anyway, if a shallow cut (i.e., a cut that does not exclude the
current query point) is generated, the convergence of a cutting plane approach
might fail. Hence, a check is needed in order to ensure that the cut is deep
enough (i.e., shallow cut is discarded, ε is suitably reduced and a new hopefully
better cut is generated). In practice, as the cutting plane algorithm approaches
the solution, the accuracy level with which the subproblem is solved should
increase. In our simplicial decomposition framework, generating a good col-
umn (by approximately solving the pricing) while guaranteeing convergence
is in general an easier task. Indeed, by taking a look at the proof of Propo-
sition 4, we can notice that, in order to guarantee convergence, we only need
the new column x̃k to be an extreme point of X (actually might be enough
getting a point x̃k from a finite subset X̃ ⊂ X s.t. conv(X̃) = X) and to
satisfy ∇f(xk)>(x̃k − xk) < 0. Thus, we can generate new columns for the
master problem in a simple and natural way, without the need to check if
those columns are nearly optimal (we only need to guarantee that the objec-
tive function can improve with respect to f(xk) in the new extended master).

3.2.2 Shrinking cuts

It is worth noticing that, at each iteration k, the objective function values of
the subsequent iterates xk+1, xk+2, . . . , generated by the method will be not
greater than the objective function value obtained in xk, hence the following
condition will be satisfied:

∇f(xk)>(x− xk) ≤ 0. (11)
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This can be easily seen by taking into account convexity of f . Indeed, choosing
two points x, y ∈ IRn, we have:

f(y) ≥ f(x) +∇f(x)>(y − x).

Thus, if ∇f(x)>(y − x) > 0, we get f(y) > f(x). Hence, f(y) ≤ f(x) implies
∇f(x)>(y − x) ≤ 0.

We remark that all those vertices x̃i ∈ Xk not satisfying condition (11)
have the related coefficient λi = 0 in the convex combination (2) giving the
master solution xk at iteration k. Indeed, if we assume that a vertex x̃i is such
that ∇f(xk)>(x̃−xk) > 0 and the related λi 6= 0, then we can build a feasible
descent direction in xk thus contradicting its optimality.

We can take advantage of this property, as also briefly discussed in [2], by
adding the cuts described above. The basic idea is the following: let xk be the
optimal point generated by the master at a generic iteration k, we can hence
add the following shrinking cut ck to the next pricing problems:

(ck) ∇f(xk)>(x− xk) ≤ 0.

More precisely, let {x1, . . . , xk} be the set of optimal points generated by the
master problems up to iteration k; then, for k > 0, we identify as Ck the
polyhedron defined by all the associated shrinking cuts as follows:

Ck = {x ∈ IRn : ∇f(xi)
>(x− xi) ≤ 0, i = 0, . . . , k − 1}.

(We are assuming x0 := x̃0). Therefore, at Step 2, we generate an extreme
point x̃k by minimizing the linear function ∇f(xk)>(x − xk) over the poly-
hedral set X ∩ Ck. Finally, at Step 3, if ∇f(xk)>(x̃− xk) ≥ 0, the algorithm
stops, otherwise we update Xk by adding the point x̃k and Ck by adding the
cut ∇f(xk)>(x − xk) ≤ 0. After a considerably large number of iterations k̄,
no more shrinking cuts are added to the pricing. This is done to ensure the
convergence of the Algorithm.

Below, we report the detailed scheme related to the simplicial decomposi-
tion algorithm with shrinking cuts (see Algorithm 6).

In practice, we implemented the algorithm with the following variant: at
the end of Step 2, after the solution of the pricing problem, we remove all
shrinking cuts that are not active. In this way we are sure to have a pricing
problem that is computationally tractable by keeping its size under control.

Finite convergence of the method is stated in the following Proposition:

Proposition 5 Simplicial decomposition algorithm with shrinking cuts ob-
tains a solution of Problem (1) in a finite number of iterations.

The proof of Proposition 5 is provided in Appendix A.1.
Shrinking cuts are connected to cutting plane approaches as well. In fact,

those constraints are somehow related to classic objective cuts (see, e.g., [42]).
The main difference in this case is that the cuts are not added directly to the
original problem in order to cut away a part of the feasible set, but instead
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Algorithm 6 Simplicial Decomposition with Shrinking Cuts

Initialization: Choose a starting set of extreme points X0

For k = 0, 1, . . . , k̄

Step 1) Generate iterate xk by solving the master problem

min f(x)
s.t. x ∈ conv(Xk)

Step 2) Generate an extreme point x̃k by solving the subproblem

min ∇f(xk)>(x− xk)
s.t. x ∈ X ∩ Ck

(12)

Step 3) If ∇f(xk)>(x̃− xk) ≥ 0, Stop. Otherwise set Xk+1 = Xk ∪ {x̃k} and

set Ck+1 = {x ∈ IRn : ∇f(xi)
>(x− xi) ≤ 0, i = 0, . . . , k}

End For

they are used in the pricing problem in order to shrink the original feasible
set and hopefully generate better columns. An additional interesting feature
of shrinking cuts is that, when solving the pricing problem, we always have a
feasible point to warmstart the solver we use. It is indeed easy to notice that
the master solution xk both satisfies the original constraints and the shrinking
cuts in Ck. This comes from the fact that the objective function value f(xk) is
lower or equal than the objective functions of the master solutions generated at
previous iterations. On the other hand, guaranteeing feasibility while including
objective cuts might be an issue in some cutting plane strategies.

As a final remark, we would like to notice that combining the shrinking
cuts with the early stopping strategy is possible (this is a part of what we
actually do in practice) and finite convergence still holds for the simplicial
decomposition framework.

4 Computational results

In this section, we give a detailed description of the computational results ob-
tained with the SD based algorithmic framework we analyzed in the previous
sections. In order to test our software, we need instances with the suitable fea-
tures (i.e., a dense Hessian matrix Q and a number of constraints considerably
smaller than the number of variables). To the best of our knowledge, it is not
possible to find in the literature a significant number of instances satisfying
such requirements. Indeed, instances in standard QP libraries (like, e.g., Maros
and Mészáros library [45] or QPLIB [21]) do not have both a large number
of variables and a sufficiently dense Hessian matrix. For this reason, we intro-
duce a benchmark that includes both generic and real quadratic programming
problems. We use instances with a moderately large number of variables (up
to 10000). This choice aims at making the problems hard enough, without
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anyway requiring specific techniques for storing the Hessian matrix related to
the objective function.

Due to the specific features of the given problems, we use Cplex version
12.6.3 (see [41] for further details) as the baseline software in our tests. This
tool includes several solvers for quadratic programming: primal simplex, dual
simplex, network simplex, barrier, sifting and concurrent. They perform differ-
ently and some of them can efficiently handle the specific classes of problems
we consider in the paper.

We point out that cutting plane based algorithms might not be the best
choice in this case, since no structure can be exploited when solving the sub-
problem.

As we will see later on, one among sifting, network and the default opti-
mizer from Cplex is used as solver for linear subproblems in our experiments.
Furthermore, we decided to use a tolerance of 10E − 6 for FGPM. We refer to
Appendix A.2 for more details about the choice of these preliminary settings.

4.1 Instance description

In our tests we use three different sets of instances as test-bed: generic quadratic
instances, portfolio instances and continuous relaxations of combinatorial in-
stances. In the following subsections we describe their mathematical formula-
tion, while we refer the reader to Appendix A.3 for a detailed description on
how such instances are created.

4.1.1 Generic quadratic problems

The first set of instances is of the form:

min f(x) = x>Qx+ c>x (13)

s. t. Ax ≥ b,
l ≤x ≤ u.

with Q ∈ IRn×n, c ∈ IRn, A ∈ IRm×n, b ∈ IRm , l, u ∈ IRn and both finite.
The benchmark of Generic instances is split into two sets: the first one

consists of 450 instances with Small number of constraints (GS) and the second
one of 750 instances with Large number of constraints (GL).

4.1.2 Portfolio optimization problems

We consider the formulation for portfolio optimization problems (POP) pro-
posed by Markowitz in [44]. These instances have a quadratic objective func-
tion (the risk, i.e. the portfolio return variance) and only two constraints: one
giving a lower bound µ on the expected return and one representing the so
call “budget” constraint. The problem we want to solve is then described as
follows
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min
x∈IRn

f(x) = x>Σx (14)

s.t. r>x ≥ µ,
e>x = 1,

x ≥ 0,

where Σ ∈ IRn×n is the covariance matrix, r is the vector of the expected
returns, and e is the n-dimensional vector of all ones. The complete portfolio
benchmark consists of 40 instances.

4.1.3 Continuous relaxations of combinatorial instances

Continuous problems can obviously be viewed as a way to obtain valid dual
bounds for combinatorial problems (to be used in a Branch-and-Bound frame-
work). For this reason, it is interesting to analyze how SD performs when
solving models related to the continuous relaxation of some combinatorial
problems with a quadratic objective function.

In our tests, we used continuous relaxations of quadratic multidimensional
knapsack problems (see, e.g., [16,23,57]) and quadratic shortest path problems
(see, e.g., [6, 55,56]).

Quadratic multidimensional knapsack problem (QMKP). The instances be-
longing to this class of problems take the following form:

max f(x) = x>Qx+ c>x (15)

s. t. Ax ≤ b,
0 ≤x ≤ 1.

where Q ∈ IRn×n is negative definite, c ∈ IRn, A ∈ IR+
m×n and b ∈ IRm

+ .
The set of quadratic multidimensional knapsack problems consists of 54

instances.

Quadratic shortest path problems (QSPP). The instances belonging to this
class of problems take the following form:

min f(x) = x>Qx+ c>x (16)

s. t.
∑

e∈δ+(s)

xs = 1,

∑
e∈δ+(v)

xv −
∑

e∈δ−(v)

xv = 0, ∀v 6= s, t

∑
e∈δ−(t)

xt = 1

0 ≤ x ≤ 1.
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with c ∈ IRn and Q ∈ IRn×n. s, t are the source and termination nodes,
respectively; δ+(v) are the outgoing arcs and δ−(v) are the incoming arcs in
the node v.

The benchmark consists of 30 instances based on grid graphs (QGSPP)
and 72 instances based on random graphs (QRSPP).

4.2 Numerical results related to the complete testbed

In this section, we report the numerical results of our SD framework.
In the first part of the analysis, we investigate how the use of different

options for solving the master problem influences the overall performances of
the algorithm. We show the results concerning the following three different
settings for the master problem:

• ACDM: the new conjugate direction method, presented in Section 3.1.2.
• FGPM: the gradient projection method explained in Section 3.1.3.
• Cplex: the continuous optimizer of Cplex, default settings.

In the second part, we test the impact of the following pricing options:

• Default: the pricing problem is solved with the Linear Programming opti-
mizers of Cplex, default settings.

• Cuts: we add to the Default option the Shrinking cuts, described in Sec-
tion 3.2.2.

• Early stopping: we add to the Default option the Early stopping technique
described in Section 3.2.1 .

• Cuts + Early stopping: both techniques are added to the Default option.

We further compare the default option of Cplex with more specific op-
tions like the Sifting optimizer and the Network optimizer. In our analysis,
we produced the performance profiles according to [17] and using the software
Mathematica version 11.3 (see [61] for further details).

4.2.1 Master solvers

Now, we focus on the computational analysis of the different methods used for
solving the master problem in the SD framework. Figure 1 provides the results
concerning all the classes of problems previously introduced. We indicate with
SD-Cplex, SD-ACDM and SD-FGPM the results concerning SD using respec-
tively Cplex, ACDM and FGPM for solving the master problem. For the sake
of comparison, we also include the performances of Cplex.

These plots show that the SD framework significantly outperforms Cplex

in the vast majority of the cases. We can further see that SD-ACDM is the
most efficient and robust for almost all the classes of problems considered
(more precisely, GS, POP, QMKP, QGSPP and QRSPP). As regards the GL
instances, we notice that SD-FGPM has better performances than both SD-
ACDM and SD-Cplex and that the Cplex solver is competitive with it.
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Fig. 1: Performance analysis of the different methods used for solving the
master problem in the SD framework.

4.2.2 Pricing Options

Here, we analyze the impact of the different pricing options in the SD frame-
work. For each class of problems, we use as master solver the most effective
method, according to the results of the previous section. Hence, ACDM is
used for the GS, POP, QMKP, QGSPP and QRSPP instances and FGPM is
used for the GL instances. Figure 2 shows the results concerning all the classes
of problems considered. We indicate with Default the results concerning SD
using Cplex with default settings to solve the pricing problem. Furthermore,
we use Default+Cuts, Default+Early Stopping and Default + Early Stopping
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+ Cuts to indicate the results obtained when respectively adding to Default
the shrinking cuts, the early stopping procedure and both at the same time.
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Fig. 2: Performance analysis of the different options used for solving the pricing
problem in the SD framework.

We notice that the option Default + Early Stopping shows the best per-
formances (both in terms of efficiency and robustness) for the GL, GP, POP
and QRSPP instances. With respect to QGSPP, Default + Early Stopping
is still the most efficient, but the Default version is slightly better in terms
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of robustness. We further notice that the option Default + Early Stopping
+ Cuts is competitive with the option Default + Early Stopping on the GL
instances, and it is as robust as the option Default + Early Stopping on the
POP instances. Finally, if we consider the QMKP instances, the option De-
fault is the most efficient, while the option Default + Early Stopping + Cuts
is the most robust.
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Fig. 3: Additional performance analysis of the different options used for solving
the pricing problem in the SD framework.

Figure 3 finally shows the effects of replacing the Default Cplex solver
for the pricing problem with the Sifting/Network optimizer. We only focus
on two specific classes of problems where it makes sense to use such taylored
approaches. More specifically, we considered generic quadratic instances to test
the Sifting and quadratic shortest path problems to test the Network solver.
We compare the best pricing option obtained from the analysis carried out in
Figure 2 with the different sifting variants. We would like to highlight that,
when using those taylored solvers in the pricing, early stopping can only be
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implemented by means of callback functions. Since this would surely worsen
the performances of the framework, we decided not to include the option in
the analysis. As we can easily see by taking a look at the plots, the option
Sifting+Cuts is the best one when dealing with GS and GL instances. In
particular, for the GL instances the SD framework significantly outperforms
also the baseline Cplex solver and finds a solution for all the instances within
the time limit. The Network option, on the other hand, guarantees good results
on both QGSPP and QRSPP instances.

4.2.3 Average computational time

In our experiments, we fixed a time limit of 900 seconds for all the algorithms.
For each class of problems, we report in Table 1 the number of available
instances (N inst), the number of instances solved within the time limit and
the average computational time in seconds spent by Cplex (NS Cplex and T
Cplex ) and by SD (NS SD and T SD). We consider the best master/pricing
options for SD in the analysis. The average is done by taking into account only
the instances solved by both the algorithms. Furthermore, we add the average
number of SD iterations (N it) needed to solve the problems.

Class N inst NS Cplex T Cplex NS SD T SD N it

GS 450 450 11.7 450 2.4 171.4
GL 750 666 63.8 750 16.7 90.7

POP 40 40 9.6 40 0.7 116.6
QMKP 54 54 36.5 54 11.7 31.7
QGSPP 30 30 77.6 30 15.0 290.4
QRSPP 72 72 2.2 72 0.1 19.7

Table 1: Solved instances and average CPU time.

In particular, we see that in GL problems, 84 instances out of 750 are not
solved by Cplex within the time limit, while SD with the improving tools for
both master and pricing solves all of them. We finally highlight that the most
time consuming part in each SD cycle is the solution of the pricing problem
(detailed results on the CPU time distribution are included in Appendix A.4).

5 Conclusions

We presented an SD framework to solve continuous convex quadratic problems.
In particular, we focused on solving instances with significantly more variables
than constraints and with an objective function having a dense Hessian.

We introduced a new adaptive conjugate direction method (ACDM) that
is specifically designed to repeatedly solve the master problem of a SD algo-
rithm; we also used a method that conveniently adapts the projected gradient
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approach to this framework. Furthermore, two different strategies to speed up
the pricing were included: an early stopping technique and a method to shrink
the feasible region based on ad-hoc cuts. Finally, specific options for solving
the pricing problem were tested, namely the sifting and the network optimizer.

We carefully analyzed the impact of the different master and pricing set-
tings and we showed that our algorithm is significantly better than Cplex.
In particular, ACDM proved to be a key ingredient to obtain an effective SD
framework. Finally, the pricing options allowed to further enhance the perfor-
mances of our method.
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A Appendices

A.1 Proofs of the propositions in Section 3

A.1.1 Proof of Proposition 4

Proof. Extreme point x̃k, obtained approximately solving subproblem (5), can only satisfy
one of the following conditions
1. ∇f(xk)>(x̃k − xk) ≥ 0, and subproblem (5) is solved to optimality. Hence we get

min
x∈X

∇f(xk)>(x− xk) = ∇f(xk)>(x̃k − xk) ≥ 0,

that is necessary and sufficient optimality conditions are satisfied and xk minimizes f
over the feasible set X;

2. ∇f(xk)>(x̃k−xk) < 0, whether the pricing problem is solved to optimality or not, that
is direction dk = x̃k − xk is descent direction and

x̃k /∈ conv(Xk). (17)

Indeed, since xk minimizes f over conv(Xk) it satisfies necessary and sufficient optimal-
ity conditions, that is ∇f(xk)>(x− xk) ≥ 0 for all x ∈ conv(Xk).

From (17) we thus have x̃k /∈ Xk. Since our feasible set X has a finite number of extreme
points, case 2) occurs only a finite number of times, and case 1) will eventually occur. 2

A.1.2 Proof of Proposition 5

Proof. We first show that at each iteration the method gets a reduction of f when suitable
conditions are satisfied. Since at Step 2 we get an extreme point x̃k by solving subproblem
(12), if ∇f(xk)>(x̃k − xk) < 0, we have that dk = x̃k − xk is a descent direction and there
exists an αk ∈ (0, 1] such that f(xk +αkdk) < f(xk). Since at iteration k+ 1, when solving
the master problem, we minimize f over the set conv(Xk+1) (including both xk and x̃k),
then the minimizer xk+1 must be such that

f(xk+1) ≤ f(xk + αkdk) < f(xk).

Extreme point x̃k, obtained solving subproblem (12), can only satisfy one of the following
conditions
1. ∇f(xk)>(x̃k − xk) ≥ 0. Hence we get

min
x∈X∩Ck

∇f(xk)>(x− xk) = ∇f(xk)>(x̃k − xk) ≥ 0,

that is necessary and sufficient optimality conditions are satisfied and xk minimizes f
over the feasible set X ∩Ck. Furthermore, if x ∈ X \Ck, we get that there exists a cut
ci with i ∈ {0, . . . , k − 1} such that

∇f(xi)
>(x− xi) > 0.

Then, by convexity of f , we get

f(x) ≥ f(xi) +∇f(xi)
>(x− xi) > f(xi) > f(xk)

so xk minimizes f over X.
2. ∇f(xk)>(x̃k − xk) < 0, that is direction dk = x̃k − xk is descent direction and

x̃k /∈ conv(Xk). (18)

Indeed, since xk minimizes f over conv(Xk) it satisfies necessary and sufficient optimal-
ity conditions, that is we have ∇f(xk)>(x− xk) ≥ 0 for all x ∈ conv(Xk).

Since from a certain iteration k̄ on we do not add any further cut (notice that we can actually
reduce cuts by removing the non-active ones), then case 2) occurs only a finite number of
times. Thus case 1) will eventually occur. 2
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A.2 Preliminary tests

In this section, we describe the way we chose the Cplex optimizer for solving our convex
quadratic instances. Then, we explain how we set the parameters in the different algorithms
used to solve the master problem in the SD framework.

A.2.1 Choice of the Cplex optimizer

As already mentioned, we decided to benchmark our algorithm against Cplex. The aim of
our first test was to identify, among the seven different options for the LP solver, the most
efficient in solving instances with a dense Q and n� m.

In Table 2, we present the results concerning instances with 42 constraints and three
different dimensions n: 2000, 4000 and 6000. We chose problems with a small number of
constraints in order to be sure to pick the best Cplex optimizer for those problems where
the SD framework is supposed to give very good performances. For a fixed n, three different
instances were solved of all six problem types. So, each entry of Table 2 represents the
averages computing times over 18 instances. A time limit of 1000 seconds was imposed and
in parenthesis we report (if any) the number of instances that reached the time limit.

n Default Primal Dual Network Barrier Sifting Concurrent

2000 72.2 1.6 1.6 1.6 84.2 2.0 89.0
4000 641.8 (2) 12.7 13.9 13.9 618.0 (2) 11.5 689.4 (2)
6000 1000.0 (18) 31.5 30.7 30.5 1000.0 (18) 26.3 1000.0 (18)

Table 2: Comparison among the different Cplex optimizers

The table clearly shows that the default optimizer, the barrier and the concurrent meth-
ods give poor performances when dealing with the quadratic programs we previously de-
scribed. On the other side, the simplex type algorithms and the sifting algorithm seem to
be very fast for those instances. In particular, sifting gives the overall best performance.
Taking into account these results, we decided to use the Cplex sifting optimizer as the base-
line method in our experiments. It is worth noting that the sifting algorithm is specifically
conceived by Cplex to deal with problems with n� m, representing an additional reason for
comparing our algorithmic framework against this specific Cplex optimizer. When dealing
with Quadratic Shortest Path problems, we used the quadratic Network optimizer, more
suited for this type of problems.

A.2.2 Tolerance setting when solving the master problem

We have three options available for solving the master problem in the SD framework: ACDM,
FGPM and Cplex. In order to identify the best choice, we need to properly set tolerances for
those methods. When using Cplex as the master solver, we decided to keep the tolerance to
its default value (that is 1E10−6). The peculiar aspect of ACDM is that no tolerance needs
to be fixed a priori. On the other hand, with FGPM, the tolerance setting phase is very
importance since, as we will see, it can significantly affect the performance of the algorithm
in the end.

In Table 3, we compare the different behaviours of our SD framework for the three differ-
ent choices of master solver. Each line of the table represents the average values concerning
the 54 instances used in the previous experiment. Column “T” represents the time (in sec-
onds) spent by the algorithms. “Er” and “Max Er” represent the average and maximum
relative errors with respect to the value found by Cplex (using sifting optimizer). “Ei” and
“Max Ei” represent the average and maximum distance (calculated using `∞ norm) from
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the solution found by Cplex. In the last column, “Dim” represents the dimension of the final
master program.

Solver Tol T (s) Er Max Er Ei Max Ei Dim

SD FGPM

1E-02 0.25 8.64E-02 2.67E-01 2.24E-02 5.04E-02 9.9
1E-04 1.15 2.21E-04 6.79E-04 7.80E-04 1.44E-03 55.6
1E-06 2.46 5.65E-07 2.63E-06 5.72E-05 1.86E-04 102.2
1E-08 6.09 5.98E-09 1.15E-07 4.61E-06 1.88E-05 114.0
1E-10 9.81 2.35E-09 4.59E-08 3.48E-06 2.16E-05 113.4

SD Cplex 1E-06 4.66 8.86E-09 4.26E-08 5.50E-06 2.46E-05 156.0
SD ACDM None 3.63 1.53E-09 1.97E-08 2.65E-06 1.99E-05 113.1

Cplex 4.29

Table 3: Comparison for the three different choices of master solver (Cplex
indicates the results obtained with sifting optimizer).

From this table, one can observe that the ACDM based SD framework gets the best
results in terms of errors with respect to Cplex. One can also see that the performance
of the FGPM based one really changes depending on the tolerance chosen. If we want to
get for FGPM the same errors as ACDM, we need to set the tolerance to very low values,
thus considerably slowing down the algorithm. In the end, we decided to use a tolerance of
10E− 6 for FGPM, which gives a good trade-off between computational time and accuracy.
This means anyway that we need to give up precision to keep FGPM competitive in terms
of time with respect to ACDM.

A.2.3 Choice of the ε parameter for the early stopping pricing option

In this section we discuss how to fix the threshold ε used in equation (10) for the Early Stop-
ping option. We decided to fix the value of ε as a fraction ε0 of the quantity |∇f(xk)>xk|:

ε = −ε0|∇f(xk)>xk|. (19)

The value of ε0 has been chosen after testing three different values on a subset of instances.
We chose the subset of the randomly generated instances with random dense constraints and
budget constraint, where SD has the worst behavior with respect to Cplex. The results are
presented in Table 4, where we compare the average computational time T and the number
of SD iterations N its. The table presents the results on the 67 instances solved by all the
algorithms.

Solver ε0 T (s) N its

SD

0.0 77.4 165.0
0.5 80.3 188.2
1.0 70.7 165.0
1.5 73.0 165.0

Cplex 9.4

Table 4: Test on the ε0 parameter for the Early Stopping technique.

One can see that, with ε0 = 0.5 , the time and number of iterations are larger. On
the other hand, if ε0 = 1.5, the threshold is too weak and the early stopping is never used.
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Hence, we chose the value of ε0 = 1.0, which improves the computational time while keeping
the number of iterations unchanged.

A.3 Instances details

A.3.1 Generic quadratic instances

These are randomly generated quadratic programming instances. In particular, Q was built
starting from its singular value decomposition using the following procedure:

– the n eigenvalues were chosen in such a way that they are all positive and equally
distributed in the interval [10−4, 3];

– the n×n diagonal matrix S, containing these eigenvalues in its diagonal, was constructed;

– an orthogonal, n × n matrix U was supplied by the QR factorization of a randomly
generated n× n square matrix;

– finally, the desired matrix Q was given by Q = USU>, so that it is symmetric and its
eigenvalues are exactly the ones we chose.

The coefficients of the linear part of the objective function were randomly obtained in the
interval [0.05, 0.4], in accordance with the quadratic terms and in order to make the solution
of the problem quite sparse.

The m constraints (with m� n) were generated in two different ways: step-wise sparse
constraints (S) or random dense ones (R). In the first case, for each constraint, the coefficients
associated to short overlapping sequences of consecutive variables were set equal to 1 and
the rest equal to 0. More specifically, if m is the number of constraints and n is the number of
columns, we defined s = 2∗n/(m+1) and all the coefficients of each i-th constraint are zero
except for a sequence of s consecutive ones, starting at the position 1+ (s/2)∗ (i−1). In the
second case, each coefficient of the constraint matrix takes a uniformly generated random
value in the interval [0, 1]. The right-hand side was generated in such a way to make all the
problems feasible: for the step-wise constraints, the right hand side was set equal to f ∗ s/n,
with 0.4 ≤ f ≤ 1 and for a given random constraint, the corresponding right-hand side b
was a convex combination of the minimum amin and the maximum amax of the coefficients
related to the constraint itself, that is b = 0.75 ∗ amin + 0.25 ∗ amax.

Each class of constraints was then possibly combined with two additional type of con-
straints: a budget type constraint (b) e>x = 1, and a ”relaxed” budget type constraints
(rb) slb ≤ e>x ≤ sub. Summarizing, we obtained six different classes of instances:

– S, instances with step-wise constraints only;

– S-b, instances with both step-wise constraints and budget constraint;

– S-rb, instances with both step-wise and relaxed budget constraints;

– R, instances with dense random constraints only;

– R-b, instances with both dense random constraints and budget constraint;

– R-rb, instances with both dense random and relaxed budget constraints.

For each class, we fixed n = 2000, 3000, . . . , 10000, while the number of both step-wise and
dense random constraints m was chosen in two different ways:

1) m = 2, 22, 42 for each value of n;

2) m = n/32, n/16, n/8, n/4, n/2 for each value of n.

In the first case, we then have problems with a small number of constraints, while, in the
second case, we have problems with a large number of constraints. Finally, for each class
and combination of n and m we randomly generated five instances. Hence, the total number
of instances with a small number of constraints was 450 and the total number of instances
with a large number of constraints was 750.
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A.3.2 Portfolio instances

We used data based on time series provided in [1] and [7]. Those data are related to sets of
assets of dimension n = 226, 457, 476, 2196. The expected return and the covariance matrix
are calculated by the related estimators on the time series related to the values of the assets.

In order to analyze the behaviour of the algorithm on larger dimensional problems, we
created additional instances using data series obtained by modifying the existing ones. More
precisely, we considered the set of data with n = 2196, and we generated bigger series by
adding additional values to the original ones: in order not to have a negligible correlation,
we assumed that the additional data have random values close to those of the other assets.
For each asset and for each time, we generate from 1 to 4 new values, thus obtaining 4 new
instances whose dimensions are multiples of 2196 (that is 4392, 6588, 8784, 10980).

For each of these 8 instances, we chose 5 different thresholds for the expected return:
0.006, 0.007, 0.008, 0.009, 0.01, we thus obtained 40 portfolio optimization instances.

A.3.3 Quadratic multidimensional knapsack instances

The instances we used for the quadratic multidimensional knapsack problem are provided
by J. Drake in [18]. This benchmark collects various instances, including the ORLib dataset
proposed by Chu and Beasley in [8] and the GK dataset proposed by Glover and Kochen-
berger, mentioned in [22]. In particular, we considered only problems with n greater than
1000. Hence, we kept instances gk09, gk10 and gk11 of Glover and Kochenberger from [18],
and we generated other instances using the same criteria described in [8], but using larger
values of n, that is 5000, 7500 and 10000. We kept m = 100 in this last case and we con-
sidered two different options to obtain the right hand side. So we generated 6 instances.
As regards the objective function, the coefficients of the linear part were already included
in the instances and we changed their signs in order to obtain minimization problems; for
the quadratic part we used again matrices generated same way as for the general problems
described before. In order to get meaningful results in the end, we suitably scaled the two
terms in the objective function with a parameter ρ. We used two different seeds to generate
the matrix and three different values for ρ. So, we have 6 combinations for the objective
function for each of the 9 linear problems (the instances gk09, gk10 and gk11 from the
literature and the 6 problems generated by us) so we have 54 instances globally.

A.3.4 Quadratic shortest path instances

The directed graphs used in the experiments are related to two different kind of problems:

1. Grid shortest path problem, that is graphs represented by a squared grid;
2. Random shortest path problem, that is randomly generated graphs (obtained by the

generator ch9-1-1 used in the 9th DIMACS implementation challenge [14]).

For grid shortest path instances, we considered square grids of 5 different sizes k, that
is k = 30, 40, 50, 60, 70. We fixed the source and the sink respectively as the top-left and the
bottom-right node. The number of variables n, same as the number of arcs, is 2 ∗k ∗ (k− 1).
Hence we get, respectively: n = 1740, 3120, 4900, 7080 and 9660. The number of constraints
is the same as the number of vertices of the graph, that is k2.

When generating random shortest path instances, we fixed three values of n: 1000, 3000
and 5000; the number of constraints m was chosen in order to get similar densities in the
graphs: we respectively chose m = 100 and 150 for n = 1000, m = 150 and 250 for n = 3000
and m = 200 and 300 for n = 5000. In this way we obtained graphs with densities (number
of arcs over number of arcs of a complete graph with the same number of nodes) that vary
between 10% and 25%.

For both classes, we built up the objective function in this way: we defined the quadratic
part with matrices generated same way as for the general problems described before; then we
added linear coefficients for the linear part, generated in three different intervals: [0.05, 0.4],
[0.5, 1.0] and [2.0, 3.0]. We used two different seeds for generating the quadratic part and for
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the linear part we considered three different choices, so we have 6 problems for each value
of n and m. In this way we obtained 30 different problems for the Grid shortest path, where
m is fixed depending on n, while we got 72 instances of Random shortest path, because for
each n we got 2 different values for m and for each of them we used two different seeds for
generating the graph.

A.4 CPU time usage in the SD framework

Now we analyze the way CPU time is used in the SD framework, that is we show the
average CPU time needed for preprocessing data, solving the master problems and solving
the pricing problems with the best master and pricing settings. In Figures 4 and 5, we
report the aggregated results over the first three classes of instances and on the continuous
relaxations of combinatorial instances, respectively. In each figure, we report the time spent
by SD in the preprocessing phase of the algorithm (preprocessing) and in the solution of the
master and pricing problem. The solving time of both the pricing and master problem is split
in the time needed to update the data structures (updating) and the time needed to solve
the problem (solvers). Figures 4 clearly suggests that for generic instances the percentage of
computing time of the pricing problem increases with the increase of the size of the instances.
On the other hand, the subdivision of CPU times differs significantly for the three continuous
relaxations of combinatorial instances considered (QGSPP, QRSPP, QMKP). First of all, we
observe that for quadratic shortest path instances the percentage of computing time for the
pricing is lower than the one for the quadratic multidimensional knapsack instances. This
is due to the fact that the pricing problem for a quadratic shortest path instance reduces to
a simple shortest path problem and thus it can be handled efficiently by the LP Network
solver of Cplex. Finally, we notice that the percentage for the preprocessing time in random
shortest path is high. This happens because the overall computing time is significantly small,
hence the total time needed to prepare the initial data structures is not negligible.

(a) GS (b) GL (c) POP (d) Legend

Fig. 4: CPU time pie charts for Portfolio and General Problems.

A.5 In-depth analysis

In order to better analyze the behavior of the SD framework, we show now how the objective
function value changes with respect to the elapsed time. Since we want to get meaningful
results, we only consider generic instances solved in more than 10 seconds (but always
within the time limit of 900 seconds). In particular, we consider instances with random
dense constraints and we take a set of 25 instances for each of the three types of additional
constraints (see Appendix A.3.1). Hence, we plot
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(a) QMKP (b) QGSPP (c) QRSPP (d) Legend

Fig. 5: CPU time pie charts (continuous relaxations of combinatorial in-
stances).

– on the x-axis the CPU time ratio, that is the CPU time elapsed divided by the overall
time needed by Cplex to get a solution on the same instance.

– on the y-axis the objective function ratio, that is the objective function value divided
by the optimal value obtained by Cplex on the same instance.

All the results are averaged over the whole set of instances. For the SD framework, we plot
the results up to twice the time needed by Cplex to get a solution. In the analysis, we always
consider the setting that includes all the pricing options (and gives same performance as
the best one). Figures 6a and 6b show the overall results for the 75 instances considered:
the first figure shows the comparison between Cplex and SD FGPM, while the second one
shows the comparison of the three different SD framework versions. From the comparison of
Cplex and SD FGPM, it is easy to notice that SD gets a good objective function value very
soon. Indeed, at a CPU time ratio 0.6 (i.e., 60% of the overall Cplex CPU time) corresponds
an objective function ratio slightly bigger than 1 for SD FGPM, while at the same CPU
time ratio Cplex still needs to find a feasible solution. Cplex gets a first feasible solution for
a CPU time ratio equal to 0.7 (in this case the objective function ratio is bigger than 2.5),
and it obtains an objective function ratio close to 1 only for a CPU time ratio bigger than
0.8. By taking a look at the comparison of the three different versions of our SD framework,
we notice that SD FGPM actually takes longer than the others to get an objective function
ratio close to 1. The better results obtained for SD FGPM hence depend, as we already
noticed, on the way we choose the tolerance in the master solvers.
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(a) SD FGPM vs Cplex.
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(b) SD solvers comparison.

Fig. 6: Objective function decay - Objective function ratio (y-axis) and CPU
time ratio (x-axis).


