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Abstract Path loss prediction is a crucial task for the planning of networks in modern
mobile communication systems. Learning machine-based models seem to be a valid
alternative to empirical and deterministic methods for predicting the propagation path
loss. As learning machine performance depends on the number of input features, a good
way to get a more reliable model can be to use techniques for reducing the dimen-
sionality of the data. In this paper we propose a new approach combining learning
machines and dimensionality reduction techniques. We report results on a real dataset
showing the efficiency of the learning machine-based methodology and the usefulness
of dimensionality reduction techniques in improving the prediction accuracy.
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1 Introduction

The problem of predicting the propagation path loss frequently occurs in the design
and planning of networks for communication systems (e.g. mobile systems, wireless-
access systems). A prediction based on theoretical models is really important since
it allows the determination of optimum base locations without the need of any mea-
surement. Several propagation methods for the planning of cellular systems have been
developed during the last decades. Prediction models can be divided into three classes:
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Fig. 1 Path loss prediction as a regression problem

empirical, deterministic and semi-deterministic. Empirical models (Hata 1980;
Okumara et al. 1968) describe from a statistical point of view the relationship between
the path loss and the environment. Results are usually obtained by means of measure-
ment campaigns. In deterministic models (Ikegami and Yoshida 1980; Walfish and
Bertoni 1988) the field strength is calculated using the Geometrical Theory of Dif-
fraction (GTD). It is obtained as the superposition of direct, reflected and diffracted
rays at the point of interest. Semi-deterministic models are half-way between determin-
istic and empirical models (Chan 1991; Dersch and Braun 1991). Empirical models
are easier to implement and usually require less computational effort but are less sen-
sitive to the environment. Deterministic ones, on the other hand, are more accurate but
require detailed information about the environment and more computational effort.

The prediction of propagation path loss can be basically viewed as a regression
problem. In fact, information about transmitter, receiver, buildings, frequency, etc.
represents the inputs and the propagation loss represents the output to be calculated
(see Fig. 1). The goal is finding a suitable input vector x and an estimate f (x) that
best approximates the propagation loss.

Learning machines, which are useful tools for solving regression problems, can be
efficiently applied for obtaining a reliable prediction of wave propagation (Balandier
et al. 1995; Cardona and Fraile 1998; Chang and Yang 1997; Gschwendtner and
Landstorfer 1996; Popescu et al. 2002).
In regression, nothing is known about the function we want to represent. The only
information available is in the inputs or features of the vectors x . As relevant inputs
are unknown a priori, many candidate features are usually included in order to better
describe the domain. Unfortunately, many of these features are irrelevant or redundant
and their presence does not provide more discrimination ability. Furthermore, data sets
with a large number of inputs and a limited number of training examples lead to the
“curse of dimensionality”: the data are very sparse and provide a poor representation
of the mapping (Bishop 1995). Then the only way to construct a good estimator f is
to transform input data into a reduced representation set of features by using Dimen-
sionality reduction techniques (Bishop 1995; Liu and Motoda 1998). Dimensionality
reduction techniques are usually divided into two classes: linear methods (e.g. Inde-
pendent Component Analysis (ICA), Principal Component Analysis (PCA), Singular
Value Decomposition (SVD)) and nonlinear methods (e.g. Nonlinear PCA, Kernel
PCA).

In this work we propose a two-step approach, which combines learning machines
and dimensional reduction techniques, for predicting the propagation path loss in an
urban environment. Once the input vector is built, a dimension reduction strategy
is applied to obtain a new vector in a smaller space. Then a suitably trained learning
machine is fed with reduced data in order to obtain the path loss prediction (see Fig. 2).
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Fig. 2 A two-step strategy for path loss prediction
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Fig. 3 Neural network architecture

We briefly describe the contents of the paper. In Sects. 2 and 3 a brief overview
of Artificial Neural Networks and Support Vector Machines is given. In Sect. 4 we
describe two dimensionality reduction techniques, namely PCA and nonlinear PCA.
A new method for generating input data in path loss prediction is introduced in Sect. 5.
Finally, in Sect. 6 we report the numerical results on a real test problem showing the
usefulness of the new method in predicting wave propagation.

2 Artificial neural networks

Artificial neural networks (ANNs) are adaptive statistical tools that model the way
biological nervous systems, such as the brain, process information. Similarly to people,
ANN can learn by example, namely they can learn how to represent a given process
just by using some examples related to it. As a result of their simplicity and flexibility,
they have been successfully applied to tough problems (e.g. regression, pattern rec-
ognition) in a variety of different fields, such as engineering, econometrics, statistics,
physics and medicine.

Generally, ANNs consist of several elementary processing units called neurons,
which are located in different layers and interconnected by set of weighted edges (see
Fig. 3). Each neuron transforms its input information into an output response by a
nonlinear function g, called transfer function. Two well-known transfer functions are
reported in Table 1. Overall, the inputs of the process are combined, propagated and
processed through all layers and so converted as the output of the process.

One of the most popular architectures in neural networks is the multi-layer per-
ceptron (see Bishop 1995; Haykin 1999). A multilayer network typically consists of
an input layer, which is basically a set of source nodes, one or more hidden layers,
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Table 1 Transfer functions
used in ANN

Type of transfer function g(t)

Logistic 1
1+e−ct

Hyperbolic tangent 1−e−t

1+e−t

composed by various computational nodes, and an output layer of computational
nodes. Once the architecture is chosen, the output of the network depends only on the
weight vector w.

We consider a certain phenomenon described by a nonlinear regressive model of
the following form:

ỹ = f (x) + ν

where f is an unknown function to be approximated and ν is an additive noise term
statistically independent of the vector x .

The problem we deal with is a supervised learning problem. Formally, given a
training set, namely a set of examples

TS = {(xi , yi ), xi ∈ Rn, yi ∈ Rk, i = 1, . . . , N },

we want to build an estimate of the dependence describing the phenomenon. This is
equivalent to solving the following optimization problem

min
w∈�m

E(w) =
N∑

i=1

Ei (w),

where each Ei measures the distance between the target output yi and the network
response for xi , that is y(w; xi ). A well-known function is the quadratic loss function,
that is

Ei (w) = 1

2
‖yi − y(w; xi )‖2,

although other types of structure for the error can be used.
We can construct (train) the desired network in a supervised manner by using a

popular algorithm known as the backpropagation algorithm (Rumelhart et al. 1986;
Haykin 1999). Methods for large unconstrained optimization, such as Quasi Newton,
Conjugate gradient and non monotone Barzilai–Borwein gradient methods (Bertsekas
1999; Grippo and Sciandrone 2002) represent another widely-used class of methods
for solving the problem described above.

The hope is that the neural network obtained after the training process will general-
ize. A neural network is said to generalize well when it is able to compute correctly the
input-output mapping for test data not included in the training set. The generalization
ability of a learning machine, in general, is strictly connected with its complexity. In
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fact, a complex network usually approximates the process poorly on points not in the
training set. Such a phenomenon is referred to as overfitting or overtraining. A model
which is too simple, however, is also not preferred as it gives too poor a fit to the
training data. In order to find the optimal complexity for our learning machine, we can
utilize the Occam’s Razor (Blumer et al. 1987). This model selection criteria favors
the simplest model possible that still grants good performance on the training data.
Finally, in order to evaluate the generalization ability of a learning machine, we can
use a cross-validation procedure (see Stone 1974 for further details).

3 Support vector machines for nonlinear regression: a brief review

Support vector machines (SVMs) were first introduced by Vapnik (1998). Like mul-
tilayer perceptrons and radial basis functions, SVMs represent an efficient tool for
pattern recognition and nonlinear regression.

In the SVMs case, the estimate usually assumes the following form:

ỹ =
m∑

j=1

w jφ j (x)

where {φ j (x)}m
j=1 is a set of nonlinear basis functions. The loss function (Haykin

1999; Vapnik 1998) used for determining the estimate is

Lε(ỹ, y) =
{ |ỹ − y| − ε |ỹ − y| > ε

0 otherwise
(1)

with ε a small value. The problem can be formally stated as follows:

min
1

N

N∑

i=1

Lε(ỹi , yi )

s.t. ‖w‖ ≤ α

(2)

where w ∈ Rm , and α ∈ R+ is an arbitrarily chosen constant. It is possible, by
introducing some slack variables, to reformulate problem (2) as follows:

min
ξ i ,ξ̄ i ,w

C
N∑

i=1

{ξ i + ξ̄ i } + 1

2
‖w‖2

s.t. yi − wT φ(xi ) ≤ ε + ξ i i = 1, . . . , N
wT φ(xi ) − yi ≤ ε + ξ̄ i i = 1, . . . , N
ξ i , ξ̄ i ≥ 0 i = 1, . . . , N

(3)

123



M. Piacentini, F. Rinaldi

Table 2 Kernels used in SVM

Sigmoid function does not
satisfy Mercer’s condition on all
β and γ

Type of SVM K (x, xi ) Parameters

Polynomial (xT xi + 1)p p

Radial basis exp(− 1
2σ2 ‖x − xi ‖2) σ

Two layer perceptron tanh(βxT xi + γ ) β, γ

Then we consider the dual problem of (3):

max
αi ,ᾱi

Q(αi , ᾱi ) =
N∑

i=1

yi (αi − ᾱi ) − ε

N∑

i=1

(αi + ᾱi )

−1

2

N∑

i=1

N∑

j=1

(αi − ᾱi )(α j − ᾱ j )K (xi , x j )

s.t.
N∑

i=1

yi (αi − ᾱi ) = 0

0 ≤ αi ≤ C i = 1, . . . , N
0 ≤ ᾱi ≤ C i = 1, . . . , N

(4)

where ε and C are arbitrarily chosen constants, and K (xi , x j ) is the inner-product
kernel

K (xi , x j ) = φ(xi )T φ(x j )

defined in accordance with the Mercer’s condition (Vapnik 1998). In Table 2 we report
three widely-used types of kernel functions. Once we solve problem (4), we use opti-
mal values αi , ᾱi to determine the approximating function:

f (x, w) =
N∑

i=1

(αi − ᾱi )K (x, xi ).

We define support vectors as those data points for which we have αi −ᾱi �= 0. Parame-
ters ε and C control in some way the machine complexity. Anyway, complexity control
in nonlinear regression is a very tough task and still represents an open research area.

4 Dimensionality reduction techniques

Learning machine performance can be highly improved if some kind of preprocessing
is applied to the raw data. In fact, a reduction in the input dimensionality can offset
the effects of the curse of dimensionality: a learning machine with fewer inputs has
fewer weight parameters to be estimated and owns better generalization properties.

Dimensionality reduction is justified from the fact that the actual dimension may
be larger than the intrinsic dimension (i.e. the minimum dimension that explains more
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the non-random variation in the population data). Then, the goal of Dimensionality
reduction is to transform input data into a reduced representation set of features, while
keeping as much relevant information as possible.

In this section, we describe two different dimensionality reduction techniques:
principal component analysis and nonlinear principal component analysis.

4.1 Principal component analysis

The principal component analysis, also known as Karhunen Loève Transformation,
is a dimensionality reduction technique, which acts as a linear transformation of the
original space into a new space of smaller dimension, while accounting for as much
of the variability in the data as possible.

Principal component analysis in practice makes a projection along the directions
where the data varies the most. These directions are determined by the eigenvectors
of the covariance matrix corresponding to largest eigenvalues (see e.g.Bishop 1995).
Moreover, eigenvalues are important because their magnitude can be used to estimate
the intrinsic dimension of the data. Indeed, if r eigenvalues have a magnitude much
larger than the remaining ones, it can be assumed r as the true dimension of the data.

Obviously, a linear technique is only able to catch linear correlations between
variables. This is the reason why, when complex relations arise, this method usually
overestimates the intrinsic dimension and fails to provide a compact representation of
the data.

4.2 Nonlinear principal component analysis using autoassociative neural networks

When the phenomenon to be represented is highly complex, a general nonlinear map-
ping between the original variables and the new ones is considered, and nonlinear
principal component analysis (Kramer 1991) is used.

NPCA can be implemented using a cascade of two artificial neural networks: the
first one to approximate a function G(x), which maps the original space in the reduced
space, and the second one to approximate its inverse mapping F(y).

As G(x) and F(y) are unknown, the outputs of the training set for the first network
are not available as well as the inputs for the second network. Then, a supervised
learning of such networks is not possible. The idea is to use the outputs of the first
net as the inputs for the second one. So, we obtain a new net given by the concatena-
tion of the two networks. This network is usually called autoassociative network (see
Fig. 4). Once the autoassociative network is trained, we use the first subnet to project
the original space into a smaller space.

However, NPCA presents some drawbacks. First of all, autoassociative network
has at least 4 layers, so that the learning phase becomes very difficult as the dimen-
sion of the space gets large. Secondly, despite an efficient trial and error, there is no
way to decide the number of principal components. Moreover, the method does not
explicitly provide a parameter (like eigenvalues in conventional PCA) to measure the
contribution of each principal component to the data representation.
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Fig. 4 Autoassociative neural network

5 A new model for path loss prediction

Learning machines, which represent a very powerful tool for solving regression prob-
lems, can be efficiently applied for obtaining a reliable prediction of wave propagation.
As highlighted in Balandier et al. (1995), the key aspect when dealing with learning
machines is the choice of the inputs.

In macrocellular models (Ikegami and Yoshida 1980; Walfish and Bertoni 1988),
propagation loss is calculated as the sum of the free space path loss (L0) and an
attenuation term (αbuildings) which takes into account the effect of the buildings:

L(db) = L0 + αbuildings = 32.4 + 20 · log(d) + 20 · log( f ) + αbuildings, (5)

where d is the radio-path length (in km) and f is the radio frequency (in MHz). The
attenuation term depends on several parameters, such as height of base station and
receiver, distance between consecutive buildings, height of buildings, etc.

When designing our model, we need to use these parameters as inputs of our learn-
ing machine.

In our approach the path from transmitter to receiver is divided into i intervals (i is
set by the user). For each interval the highest building is selected as the main obstacle
and its features are included into the input vector (see Fig. 5). In this way, we give
an approximate representation of the obstacles on the path profile. The larger is the
number of intervals i , the closer is the representation to the original path profile. Inputs
are divided into two groups:

1. Global inputs: inputs related to the global path (i.e. distance between transmitter
and receiver TrxRx, portion through the buildings ptb);

2. Interval inputs: inputs related to each interval j of the path (i.e. height h j , thickness
l j , distance from transmitter d j ).

Then the total number of inputs used (n) is directly related to the number i of intervals:

n = 2 + 3 · i.
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Fig. 6 Global inputs. TrxRx Distance Trx-Rx; ptb portion through the buildings

The portion through the buildings is defined as the portion of the straight line drawn
between transmitter and receiver extending through the buildings (see Fig. 6).

However, when calculating the propagation loss, we do not consider the absolute
height of the buildings, but their height relative to transmitter and receiver. Hence,
the heights relative to the straight line linking transmitter and receiver are selected as
inputs. In other words, if there is no building exceeding this straight line, then there
will be no obstacle to take into account.

After the input vector is generated, a dimensionality reduction technique (i.e. PCA,
nonlinear PCA) is used for extracting a new vector of smaller dimension (that carries
as much as the information possible). The new vector is given to a suitably trained
learning machine (i.e ANN, SVM) that determines the propagation path loss.

6 Computational experiments

In order to test the performance of our model, we used measurements from a campaign
carried out in Munich (Germany). All measurements correspond to a frequency of
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Table 3 Results obtained for
SVM and ANN using no
dimensionality reduction

i n SVM ANN

5 17 60.36 60.25

10 32 63.04 62.16

20 62 69.92 66.81

Table 4 Results obtained over 5
intervals for SVM and ANN
using dimensionality reduction
techniques

Values in bold represent the best
results obtained for each column

5 Int SVM ANN

n PCA NPCA PCA NPCA

5 58.11 71.33 52.66 79.7

10 57.62 67.36 61.15 54.34

15 61.03 64.29 62.30 65.14

Table 5 Results obtained over
10 intervals for SVM and ANN
using dimensionality reduction
techniques

Values in bold represent the best
results obtained for each column

10 Int SVM ANN

n PCA NPCA PCA NPCA

5 65.26 109.95 61.70 103.77

10 56.88 56.88 59.98 53.25

20 60.80 63.68 54.34 68.99

30 62.13 62.18 77.84 78.15

Table 6 Results obtained over
20 intervals for SVM and ANN
using dimensionality reduction
techniques

Values in bold represent the best
results obtained for each column

20 Int SVM ANN

n PCA NPCA PCA NPCA

5 77.55 97.42 77.77 93.67

10 73.95 86.34 64.99 74.20

20 71.81 70.87 64.95 62.38

30 65.47 71.21 58.80 58.40

40 62.50 74.79 65.66 58.26

50 65.15 72.20 51.15 67.46

60 66.45 66.95 64.93 76.19

947 MHz. The transmitter ground altitude is 515 m, the transmitter and receiver heights
above ground are respectively 13 m and 1.5 m (see COST231 for further details).

The dataset, composed of 2,356 points, was split into two parts. As much as 2,000
points were used for training the selected learning machine; the remaining 356 points
were used to evaluate the model.

6.1 Implementation details

1. Algorithms for dimensionality reduction techniques were implemented using
Fortran 90;

2. SVMs were trained using LIBSVM A Library for Support Vector Machines, devel-
oped by the Machine Learning Group at National Taiwan University (see Fan et al.
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Fig. 7 Comparison between SVM and ANN (no dimensionality reduction)
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Fig. 8 Comparison between SVM and ANN (5 intervals)

(2005) for the details). The kernel selected for training SVMs was the radial basis
one. The parameters C and σ have been determined by a standard cross-validation
procedure;

3. A multilayer perceptron with 2 layers (a hidden layer with hyperbolic tangent
transfer functions and a linear output layer) was chosen as architecture of the
network for predicting the path loss. A standard cross-validation procedure was
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Fig. 9 Comparison between SVM and ANN (10 intervals)

used for determining the architecture of the network (i.e. number of neurons in the
hidden layer). A Fortran 90 implementation of L-BFGS, a Quasi-Newton method
with limited memory (Byrd et al. 1995; Zhu et al. 1997), was used for training the
networks.

All the experiments were carried out on Intel Pentium 4 3.2 GHz 512 MB RAM.

6.2 Results

In Table 3 we report the results obtained for both SVM and ANN, in terms of the
Mean Squared Error (MSE), using no dimensionality reduction. We indicate with i
the number of intervals chosen for the model, and with n the number of related inputs.
These preliminary results show the effectiveness of the learning-based approach. Fur-
thermore, as we can easily notice analyzing the table, ANNs has slightly better per-
formance than SVMs.

In Tables 4–6 we report the results obtained for both SVM and ANN, in terms of the
MSE, using PCA and nonlinear PCA over 5, 10 and 20 intervals dataset respectively.
We indicate with n the number of features extracted from the original input vector.
Figures 7–10 plot the MSE’s of the different regressors.

The results highlight the ability of the model that combines dimensionality reduc-
tion techniques and learning machines in reducing the original mean squared error.
Moreover, learning machines trained over PCA-compressed data generally grant better
performance than those ones trained over NPCA-compressed data. The best result is
obtained with ANNs trained using 20 intervals PCA-compressed data with 50 extracted
features (see Fig. 11).
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Fig. 10 Comparison between SVM and ANN (20 intervals)
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Fig. 11 Comparison between measurements and prediction for the best case

7 Conclusions

In this work we have developed a new approach for the prediction of the path loss
in an urban environment based on dimensionality reduction techniques and learning
machines. Tests were designed in order to evaluate the effectiveness of dimension-
ality reduction in improving the path loss prediction accuracy as well as to compare
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performances of SVMs and ANNs on the regression problem. The ANN regressors
yielded slightly better results than the SVM classifiers. Furthermore, using dimen-
sionality reduction before the prediction step led to a significant improvement of
the learning machine accuracy. PCA-based prediction models generally granted bet-
ter performance than NPCA-based ones. Therefore, the results of the computational
experiments do not seem to motivate, in the considered application, the employment
of NPCA-based models.
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