
“Sapienza”, University of Rome

Mathematical Programming Methods

for Minimizing the Zero-norm

over Polyhedral Sets

Francesco Rinaldi

Dissertation for the Degree of
Philosophy Doctor

in
Operations Research

Tutor: Prof. Marco Sciandrone





Contents

Introduction 1

1 Methods for sparse approximation of signals 5
1.1 The Sparsest Exact Representation of a Signal . . . . . . . . 6

1.1.1 Formal Problem Statement . . . . . . . . . . . . . . . 6
1.1.2 Uniqueness of the Sparsest Representation . . . . . . . 7
1.1.3 �1 norm-based Relaxation Method . . . . . . . . . . . 9
1.1.4 A Basic Uncertainty Principle . . . . . . . . . . . . . . 11

1.2 Error-Constrained Approximation . . . . . . . . . . . . . . . 13
1.2.1 Sparse Representation in the Presence of Noise . . . . 14
1.2.2 Stability of Sparse Representations . . . . . . . . . . . 15
1.2.3 Convex Relaxation by the �1-norm . . . . . . . . . . . 16
1.2.4 �1-norm Algorithm: Stability and Support Properties 16
1.2.5 Interior point Approach . . . . . . . . . . . . . . . . . 17
1.2.6 LASSO Algorithm . . . . . . . . . . . . . . . . . . . . 18
1.2.7 Iterative Reweighted Least Squares . . . . . . . . . . . 20
1.2.8 Iterative Shrinkage/Thresholding Methods . . . . . . . 20
1.2.9 A Concave Approximation of the �0-norm . . . . . . . 21
1.2.10 Minimization of a Concave Function over a Closed

Convex Set . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.11 Existence of an Exact Vertex Solution . . . . . . . . . 23
1.2.12 The SLA Algorithm . . . . . . . . . . . . . . . . . . . 25

2 Methods for Feature Selection 29
2.1 Feature Selection in Classification . . . . . . . . . . . . . . . . 30

2.1.1 Supervised Learning and Classification . . . . . . . . . 30
2.1.2 Feature Selection Problem . . . . . . . . . . . . . . . . 32

i



CONTENTS CONTENTS

2.2 Machine Learning Approaches to Feature Selection . . . . . . 33
2.2.1 Filter Methods . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Wrapper Methods . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Search Strategies . . . . . . . . . . . . . . . . . . . . . 36
2.2.4 Embedded Methods . . . . . . . . . . . . . . . . . . . 37

2.3 Feature Selection as an Optimization Problem . . . . . . . . . 38
2.3.1 Feature Selection using Linear Models . . . . . . . . . 39
2.3.2 A Mathematical Programming Formulation of the Fea-

ture Selection Problem . . . . . . . . . . . . . . . . . . 40
2.3.3 Norms and their Duals . . . . . . . . . . . . . . . . . . 41
2.3.4 �1-norm based Approach . . . . . . . . . . . . . . . . . 44
2.3.5 Approximating the l0-norm by the Standard Sigmoid

Function . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.6 A Concave Exponential Approximation of the �0-norm 47
2.3.7 A Logarithmic Approximation of the �0-norm . . . . 49
2.3.8 Feature Selection as a Linear Program with Equilib-

rium Constraints . . . . . . . . . . . . . . . . . . . . . 50

3 Concave Programming for Minimizing the Zero-Norm over
Polyhedral Sets 55
3.1 The Zero-Norm Problem . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 General Formulation . . . . . . . . . . . . . . . . . . . 56
3.1.2 Concave Approximations of the Zero-Norm . . . . . . 56

3.2 Results on the Equivalence between Problems . . . . . . . . . 59
3.2.1 General Results . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Concave Formulations Equivalent to the Zero-Norm

Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 The Frank-Wolfe Algorithm . . . . . . . . . . . . . . . . . . . 68

3.3.1 A General Framework . . . . . . . . . . . . . . . . . . 69
3.3.2 Stepsize rules . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.3 Convergence Analysis . . . . . . . . . . . . . . . . . . 71
3.3.4 Convergence Results with Concave Differentiable Func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.5 The Case of a Concave Function over a Polyhedral

Convex Set . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.6 A New Version of the Frank-Wolfe Algorithm for Con-

cave Separable Functions . . . . . . . . . . . . . . . . 76
3.4 Computational experiments . . . . . . . . . . . . . . . . . . . 79

ii



Contents

3.4.1 Feature Selection Problems . . . . . . . . . . . . . . . 79
3.4.2 Test problems . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.3 Experiments and Implementation Details . . . . . . . 81
3.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Concave Programming Methods for Feature Selection and
Sparse Approximation of Signals 89
4.1 Feature Selection Combining Linear Support Vector Machines

and Concave Optimization . . . . . . . . . . . . . . . . . . . . 90
4.1.1 Feature Selection for Linear Classification Models . . . 90
4.1.2 A brief review of Linear Support Vector Machines . . 91
4.1.3 A new Algorithm for Feature Selection . . . . . . . . 92
4.1.4 Computational experiments . . . . . . . . . . . . . . . 96
4.1.5 Test problems . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Sparse Approximation of Signals . . . . . . . . . . . . . . . . 100
4.2.1 A Concave Approach for Sparse Approximation of Sig-

nals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.2 Experiments and Implementation Details . . . . . . . 101

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Exact Methods for Global Optimization of Separable Con-
cave Functions over Polyhedral Sets: Challenges and Future
Perspectives 111
5.1 Convex Envelopes . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1.1 Properties of Convex Envelopes . . . . . . . . . . . . . 112
5.1.2 Necessary and Sufficient Conditions of Poliedrality of

Convex Envelopes . . . . . . . . . . . . . . . . . . . . 117
5.1.3 Convex Envelopes of Concave Functions . . . . . . . . 122

5.2 Branch and Bound Methods . . . . . . . . . . . . . . . . . . . 124
5.2.1 Branch and Bound: A General Framework . . . . . . 124
5.2.2 Branch-and-Bound Algorithm for Separable Concave

Problems . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2.3 Acceleration Techniques . . . . . . . . . . . . . . . . . 131

5.3 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . 137

iii





Acknowledgements

F.R.

v



Introduction

The problem of finding sparse solutions to linear systems, i.e., solutions
having many zero components, has recently received a great deal of attention
in the research community. Such a phenomenon can be easily explained
with the fact that many challenging real problems consist in searching a
sparse solution to a linear system. In machine learning, for instance, the
extraction of relevant features from massive datasets (see, e.g., [40]) is often
modelled as a search for a sparse vector satisfying some linear inequality
constraints. Some relevant problems in signal/image processing such as
sparse approximation of signals, image denoising, image deblurring, can be
also viewed as finding sparse solutions to underdetermined systems of linear
equations (see, e.g., [26]).
In this work the general problem of finding a vector belonging to a polyhedral
set P and having the minimum number of nonzero components has been
considered. Formally, the problem is

min
x∈Rn

‖x‖0

x ∈ P

(1)

where ‖x‖0 is the zero-norm of x defined as ‖x‖0 = card{xi : xi �= 0},
P ⊂ Rn is a non empty polyhedral set. This combinatorial optimization
problem is NP-Hard as shown by Amaldi and Kann in [3].
In order to make the problem tractable, the simplest approach can be that
of replacing the zero-norm, which is a nonconvex discontinuous function,
by the �1 norm thus obtaining a linear programming problem which can
be efficiently solved even when the dimension is very large. Under suitable
assumptions on the polyhedral set P (defined by an underdetermined linear
system of equations) it is possible to prove that a solution of (3.1) can be
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Introduction

obtained by solving the �1-norm problem (see, e.g., [38]). However, these
assumptions may be not satisfied in many cases, and some experiments con-
cerning machine learning problems and reported in [10] show that a concave
optimization-based approach performs better than that based on the em-
ployment of the �1 norm.
The nonlinear approach experimented in [10] was originally proposed in [57],
and is based on the idea of replacing the zero-norm by a continuously differ-
entiable concave function. The replacement by the smooth concave problem
is well-motivated (see [57]) both from a theoretical and a computational
point of view:

- under suitable assumptions on the parameters of the concave function
it is possible to show that the approximating problem is equivalent to
the zero-norm problem;

- the Frank-Wolfe algorithm [34] with unitary stepsize is guaranteed
to converge to a vertex stationary point in a finite number of itera-
tions (this convergence result was proved for a general class of concave
programming problems); thus the algorithm requires the solution of a
finite sequence of linear programs for computing a sparse solution, and
this may be quite advantageous from a computational point of view.

A similar concave optimization-based approach has been proposed in [90],
where the idea is that of using the logarithm function instead of the step
function. This formulation is practically motivated by the fact that, due
to the form of the logarithm function, it is better to increase one variable
while setting to zero another one rather than doing some compromise be-
tween both, and this should facilitate the computation of a sparse solution.
The Frank-Wolfe algorithm with unitary stepsize has been applied to find
a solution to the concave approximation, and good computational results
have been obtained.
The main contributions of this work can be summarized as follows.

- New results on the equivalence between a specific optimization prob-
lem and a parameterized family of problems have been stated. By
means of this analysis it is possible to derive, within a general frame-
work, results about two previously known families of approximations
schemes for the zero-norm problem.
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- Two new families of approximation problems have been introduced.
Thanks to the general results, the equivalence of these new approxi-
mations to the zero norm-problem has been showed.

- Some new theoretical results, which have an important impact on the
computational efficiency of the Frank-Wolfe method when applied to
concave optimization over polyhedra, have been described. In partic-
ular it is possible to prove that once the algorithm sets a variable to
zero, it will not change this variable any more. This result suggests
the definition of a version of the method that eliminates the variables
set to zero, thus allowing for a dimensionality reduction which greatly
increments the speed of the procedure. The global convergence of this
modified version of the Frank-Wolfe method has been proved.

- Numerical experiments have been performed on test problems, and
for finding sparse approximations of noisy signals. The obtained re-
sults show both the usefulness of the new concave formulations and
the efficiency in terms of computational time of the new minimization
algorithm.

- Concerning feature selection problems, which are of great importance
in machine learning, a new algorithm has been developed. It com-
bines the concave optimization-based approach (to eliminate irrele-
vant features) with linear Support Vector Machines (to guarantee pre-
dictive capability). An extensive computational experience has been
performed on several datasets in order to show the efficiency of the
proposed feature selection technique.

The thesis is organized as follows. The first chapter is mainly focused on
analyzing known optimization methods for finding sparse approximations
of signals. In the second chapter, several feature selection methods of the
literature are presented and discussed. The third chapter is concerned with
the general problem of minimizing the zero-norm over a polyhedral set, and
presents the concave optimization-based contributions of the thesis. In the
forth chapter, new methods for feature selection and sparse approximation
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of signals are described. A feature selection technique combining concave
optimization and linear Support Vector Machines is defined, and compu-
tational results about sparse approximations of noisy signals by concave
programming are reported. The final chapter describes global optimization
approaches for the minimization of concave separable functions over poly-
hedral sets.

The present thesis has been supported by the Istituto di Analisi dei Sistemi
ed Informatica (IASI) “Antonio Ruberti”, of the Italian National Research
Council (CNR).

Notations and definitions

This short section is aimed to briefly introduce some useful notations and
definitions that will be used throughout the entire text. A superscript k
will generally be used to indicate the iteration number of an algorithm,
while the subscript i will generally denote either the i-th component of a
vector or the i-th row of a matrix. All vectors will be column vectors unless
transposed to a row vector by a superscript T . The identity matrix in a real
space of arbitrary dimension will be denoted by I, while a column vector
of arbitrary dimension of all ones will be denoted by e. A generic diagonal
matrixD ∈ IRn×n will be denoted byD = diag(x) where x ∈ Rn is the vector
of the diagonal entries. For a vector x ∈ Rn, x+ will denote the vector in Rn

with components (x+)i = max{xi, 0}, i = 1, . . . , n. Similarly, x∗ will denote
the vector in Rn with components (x∗)i = (xi)∗ i = 1, . . . , n, where (·)∗ is
the step function defined as one for positive xi and zero otherwise. The base
of the natural logarithm will be denoted by ε and for y ∈ Rn, εy will denote
a vector in Rn with components εyi , i = 1, . . . , n. For two vectors x and y,
x ⊥ y will denote xT y = 0. The norm ‖ · ‖p will denote the p-norm with
1 ≤ p ≤ ∞. For a vector x ∈ Rn, ‖x‖0 will denote the zero norm of x, which
is defined as follows: ‖x‖0 = card{xi : xi �= 0}. Despite its name, the zero
norm is not a true norm.
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Chapter 1

Methods for sparse
approximation of signals

This chapter is mainly focused on methods for finding sparse approximations
of a signal. Sparse approximation problems arise in various fields, such
as electrical engineering, applied mathematics and statistics. The goal in
sparse approximation is that of approximating a given input signal by means
of a linear combination of elementary signals. These elementary signals
do usually belong to a large, linearly dependent collection. A preference
for linear combinations involving only a few elementary signals is obtained
by penalizing nonzero coefficients. A well-known penalty function is the
number of elementary signals used in the approximation. Obviously the
choice we make about the specified collection, the linear model and the
sparsity criterion must be justified by the domain of the problem we deal
with.
The first section of this chapter presents the problem of seeking the sparsest
representation of a target signal. Some important theoretical results about
the uniqueness of the sparsest representation are given, and some technique
for finding sparse representations are described.
In the second section a noise-aware version of the problem is taken into
account. Due to the presence of the noise, the signal cannot be recovered
exactly. Hence the goal is seeking the sparsest representation that achieves
a prescribed approximation error. This tough task can be tackled by using
various methods. We give a wide overview of these methods throughout the
section.
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Chapter 1 The Sparsest Exact Representation of a Signal

1.1 The Sparsest Exact Representation of a Signal

This section describes the problem of recovering the sparsest exact repre-
sentation of a signal. Even if in the vast majority of situations it is not
possible to construct a signal without error, finding an exact representation
is very interesting from a theoretical point of view. In fact, all results re-
garding general sparse approximation problems somehow derive from results
obtained analyzing this problem.
At the beginning of the section we formally describe the problem and give
a fundamental result about its complexity. Then we give some conditions
that can guarantee the uniqueness of the sparsest representation. Finally we
describe convex relaxation methods for recovering a sparse representation of
the input signal.

1.1.1 Formal Problem Statement

Consider a real-valued, finite-length, one-dimensional, discrete-time input
signal b, which we view as an m× 1 column vector in Rm with elements bi
i = 1, . . . ,m, and a dictionary

D = {aj ∈ Rm : j = 1, . . . , n}

of elementary discrete-time signals, usually called atoms, having the prop-
erty that ‖aj‖2 = 1 for j = 1, . . . , n. We want to represent our signal as a
linear combination of the atoms in this dictionary:

b =
n∑

j=1

xjaj .

In many applications the dictionary we deal with is overcomplete, which
means m < n. In this case, the atoms form a linear dependent set and there
exists an infinite number of approximations for a given input signal. We are
basically interested in representations having as few nonzero coefficients xj

as possible. Then a function P (x) measuring the sparsity of a solution x is
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The Sparsest Exact Representation of a Signal Chapter 1

needed. The optimization problem we want to solve is

min
x∈Rn

P (x)

Ax = b

(1.1)

with A an Rm×n matrix having as columns aj the elementary signals of the
dictionary D. A good measure of sparsity is the number of nonzero elements
of the vector x. Hence, we can use the �0 quasi-norm and consider the new
problem obtained from (1.1) by setting P (x) = ‖x‖0; thus we have:

min
x∈Rn

‖x‖0

Ax = b .

(1.2)

This is a classical NP-Hard problem and was referred to as minimum weight
solution to linear equations in [36]. Moreover, Amaldi and Kann [3] estab-
lished that under a likely assumption, the problem is hard to approximate:

Theorem 1.1.1. Let DTIME(npolylog n) be the class of problems whose
instances of size s can be solved in deterministic time O(spolylog s), with
polylog s any polynomial in log s.
Assuming NP � DTIME(npolylog n) , problem (1.2) is not approximable
within a factor of 2log1−εn for any ε > 0, where n is the number of variables.

Equivalently, we can say that there is no polynomial time algorithm that
computes a solution having a support at most 2log1−εn times larger than the
support of an optimal solution, for any ε > 0. NP � DTIME(npolylog n) is
stronger than P �= NP , but it is a reasonable assumption anyway; it means
that not all problems in NP can be solved in polynomial time.

1.1.2 Uniqueness of the Sparsest Representation

There exist conditions under which it is possible to guarantee the uniqueness
of the optimal solution for problem (1.2). A fundamental concept for the
study of uniqueness is the spark, a term originally introduced in [25]. It is
defined as follows:

Definition 1.1.1. The spark of a dictionary A is the smallest number of
columns that form a linearly dependent set.

7



Chapter 1 The Sparsest Exact Representation of a Signal

By using the spark, we can give the first simple criterion for ensuring that
the sparsest representation of a given input signal is unique:

Theorem 1.1.2. [25] Let us consider an input signal b ∈ Rm and a dictio-
nary A ∈ Rm×n. If there exists a solution x̃ of problem (1.2) such that

‖x̃‖0 < spark(A)/2 , (1.3)

then x̃ is the unique sparsest representation of b.

Proof. Consider a different representation x̂ satisfying the system

Ax̂ = b .

We have that A(x̃ − x̂) = 0 and the vector x̃ − x̂ is in the null-space of A.
By using definition of spark:

‖x̃‖0 + ‖x̂‖0 ≥ ‖x̃− x̂‖0 ≥ spark(A) .

From condition (1.3) we have that an alternative representation must satisfy
the following inequality:

‖x̂‖0 > spark(A)/2 .

Hence, we conclude that solution x̃ is necessarily the unique global optima
of problem (1.2). �

Here, we find that global optimality can be checked simply by comparing the
solution sparsity and the spark of matrix A. Clearly, calculating spark(A)
is a very tough task as a combinatorial search over all possible subsets of
columns from A is required. Thus we need a simpler criterion to ensure
uniqueness. The concept of mutual coherence, introduced in [56, 24, 25],
can be used to obtain a new condition:

Definition 1.1.2. The mutual coherence of a dictionary A, denoted by
µ(A), is defined as the maximal absolute scalar product between two dif-
ferent atoms of A.

µ(A) = max
1≤j,k≤n, j �=k

|aT
j ak| . (1.4)
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The mutual coherence of a dictionary measures the similarity between the
dictionarys atoms. For an orthogonal matrix A, µ(A) = 0. For an over-
complete matrix (m < n) we necessarily have µ(A) > 0. If µ(A) = 1, it
implies the existence of two parallel atoms, and this causes confusion in the
construction of sparse atom compositions.

Lemma 1.1.1. [25] Given a dictionary A ∈ Rm×n, the following relation-
ship holds:

spark(A) ≥ 1 + µ(A)−1 .

By using mutual coherence we attain the following theorem:

Theorem 1.1.3. [25] Let us consider an input signal b ∈ Rm and a dictio-
nary A ∈ Rm×n. If there exists a solution x̃ of problem (1.2) such that

‖x̃‖0 < (1 + µ(A)−1)/2 , (1.5)

then x̃ is the unique sparsest representation of b.

We notice that Theorem 1.1.3 is less powerful than Theorem 1.1.2 as it uses
the mutual coherence, which represents a lower bound of spark.

1.1.3 �1 norm-based Relaxation Method

A good approach to solve the combinatorial problem we deal with is that of
replacing it with a relaxed version that can be solved more efficiently. The
�1 norm represents, in some sense, the best convex approximant of the �0
norm. Then using the �1 norm in place of the �0 norm is a natural strategy
to obtain a convex problem we can easily handle. This is the well-known
Basis Pursuit Method proprosed by Chen, Donoho and Saunders in [17].
The new convexified problem is:

min
x∈Rn

‖x‖1

Ax = b .

(1.6)

It can be expressed as a linear programming problem and solved by means
of modern interior-point methods or simplex methods.
Under some conditions it is possible to show the equivalence between the
original problem (1.2) and the convexified problem (1.6) [25]:
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Theorem 1.1.4. Let us consider an input signal b ∈ Rm and a dictionary
A ∈ Rm×n. If there exists a solution x̃ of problem (1.2) such that

‖x̃‖0 < (1 + µ(A)−1)/2 , (1.7)

then x̃ is both the unique solution of (1.2) and the unique solution of (1.6).

Proof. We define the following set of alternative approximations having
larger support and an �1 norm value as good as the optimal solution:

S = { x̂ : x̂ �= x̃, ‖x̂‖1 ≤ ‖x̃‖1, ‖x̂‖0 > ‖x̃‖0 and Ax̂ = b } .

By Theorem 1.1.3, we know that x̃ is the unique sparsest solution, then
alternative solutions have more nonzero components. Thus, we can omit
the expression ‖x̂‖0 > ‖x̃‖0 from definition of C and, by using the new
variable d = x̂− x̃, we rewrite S as follows:

SC = { d : d �= 0, ‖d+ x̃‖1 − ‖x̃‖1 ≤ 0, and Ad = 0 } .

We assume, without loss of generality, that the first k0 components are
nonzero. Then we can rewrite the expression ‖d+ x̃‖1−‖x̃‖1 ≤ 0 as follows:

‖d+ x̃‖1 − ‖x̃‖1 =
k0∑

j=1

(|dj + xj | − |xj |) +
n∑

j=k0+1

|dj | ≤ 0 .

Using the inequality |a+ b| − |b| ≥ −|a|, we can relax our condition:

−
k0∑

j=1

|dj | +
n∑

j=k0+1

|dj | ≤
k0∑

j=1

(|dj + xj | − |xj |) +
n∑

j=k0+1

|dj | ≤ 0 .

By adding and subtracting the term
∑k0

j=1 |dj |, we have:

SC ⊆ { d : d �= 0, ‖d‖1 − 2
k0∑

j=1

|dj | ≤ 0, and Ad = 0 } = S1
C .

Let us now consider the system Ad = 0 and rewrite it as follows:

−d = ATAd− d .
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Taking the entry-wise absolute value, we can consider the following relax-
ation:

|d| = |(ATA− I)d| ≤ |ATA− I| · |d| ≤ µ(A)(1 − I) · |d|

with 1 a rank-1 matrix having all components equal to 1. We can write the
following relaxed set:

S1
C ⊆ { d : d �= 0, ‖d‖1 − 2

k0∑
j=1

|dj | ≤ 0, and |d| ≤ µ(A)
1 + µ(A)

1 · |d| } = S2
C .

We can now restrict our quest for normalized vectors ‖d‖1 = 1 and consider
the following set:

S3
C = { d : d �= 0, 1 − 2

k0∑
j=1

|dj | ≤ 0, and |d| ≤ µ(A)
1 + µ(A)

e }

with eT = (1, . . . , 1). A vector d belongs to S3
C if the following relations are

satisfied:

1 − 2k0
µ(A)

1 + µ(A)
≤ 1 − 2

k0∑
j=1

|dj | ≤ 0 .

This means that if k0 < (1 + µ(A)−1)/2 the set will be necessarily empty
and the unique solution of (1.2) is also the unique solution of (1.6). �

To summarize, if we solve problem (1.6) and find out that it has a sufficiently
sparse solution, we know we have obtained the solution to problem (1.2) as
well. Equivalently, if the input signal has a sparse enough representation,
we can find it by solving problem (1.6).

1.1.4 A Basic Uncertainty Principle

The general results showed in the previous sections were first described for
the special case when matrix A is the concatenation of two different orthog-
onal matrices (i.e. the identity matrix I and the Fourier matrix F ). We
have that

A = [I F ]
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and the fact that the system Ax = b is underdetermineded simply means that
there are different ways of representing the input signal b as a combination
of columns from the identity matrix and of columns from the Fourier matrix.
The first result obtained for this kind of matrices is similar to the one given
in the previous section and was interpreted as a basic uncertainty principle.
In fact, if we think of A as a time-frequency system, by the uniqueness of
sparse representation, we have that a signal cannot be sparsely represented
both in time and frequency.
A basic uncertainty principle concerning pairs of representations of a given
vector b by means of two orthonormal bases Φ and Ψ , see [23, 24, 27], can
be stated as follows:

Theorem 1.1.5. Given a vector b ∈ Rm and two orthonormal bases Φ and
Ψ, b may be represented as

b = Φx = Ψy .

For this pair of representations we have the inequality:

‖x‖0 + ‖y‖0 ≥ 2
µ(A)

. (1.8)

When mutual coherence of the bases Φ and Ψ is small, representations x and
y cannot be both very sparse. As a consequence of the theorem stated above,
if there exists a sparse representation in terms of a dictionary A = [Φ Ψ], it
must be necessarily unique. So the uncertainty principle provide us a bound
on sparsity which ensures the uniqueness of such representation:

Theorem 1.1.6. Given a vector b ∈ Rm and a dictionary A = [Φ Ψ],
if b is to be represented by using A, for any two feasible representations
x1, x2 ∈ R2m, we have

‖x1‖0 + ‖x2‖0 ≥ 2
µ(A)

. (1.9)

Then for any given representation x̄ the uniqueness is ensured by

‖x̄‖0 <
1

µ(A)
.

12
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We notice that, due to the special structure of A, a stronger uniqueness
result than the one in Theorem 1.1.3 has been obtained.
Donoho and Huo proved in [24] that for a dictionary A = [Φ Ψ] under the
stronger sparsity condition

‖x‖0 < (1 + µ(A)−1)/2

solving problem (1.6) is equivalent to solve problem (1.2). This is the same
result obtained in Theorem 1.1.4 when the matrix A is a general dictionary.
In [27] Elad and Bruckstein improved the bound necessary for equivalence
between problem (1.6) and (1.2):

Theorem 1.1.7. Given a vector b ∈ Rm and a dictionary A = [Φ Ψ], if
there exists a sparse representation b = Ax̃ such that

‖x̃‖0 <

√
2 − 0.5
µ(A)

, (1.10)

Then solution of problem (1.2) coincides with solution of problem (1.6).

Let us consider the case µ(A) = 1/
√
m. As m goes to infinity the ratio

between the two bounds becomes:

(
√

2 − 0.5) · µ(A)−1

0.5 (1 + µ(A)−1)
=

(
√

2 − 0.5) · √m
0.5 (1 +

√
m)

→ 2
√

2 − 1 = 1.8284 .

Then the result obtained in Theorem 1.1.7 is better than the general result
in Theorem 1.1.4 by a factor of almost 2.

1.2 Error-Constrained Approximation

In most practical situations it is not sensible to assume that the target signal
can be exactly reconstructed by using the collection of elementary signals.
Then a noise-aware variant of the problem described in the previous section
must be considered. The goal is finding the sparsest representation that
achieves a prescribed error.
At the beginning of the section we introduce the problem and show its
NP-hardness. Then we give some bounds ensuring stability of the sparse

13
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representation (stability replaces uniqueness in the noisy case).
In the third part we present the convex relaxation methods and analyze
various computational approaches to attain a solution. Finally we describe
other methods for seeking a sparse solution in the presence of noise, mainly
focusing on the concave programming approach.

1.2.1 Sparse Representation in the Presence of Noise

We can now consider a generalized version of problem (1.2). Instead of
finding the sparsest exact representation of a signal, we want to find the
sparsest representation having a prescribed approximation error. This type
of challenge is very common in numerical analysis, where a typical problem
is that of approximating a complicated function by means of a short linear
combination of more elementary functions, with an error committed which
must be lower than a fixed bound. The exact constraint Ax=b is relaxed
with an approximate equality measured using the quadratic penalty function

P (x) = ‖Ax− b‖2. (1.11)

To state the problem formally, we consider an input signal b ∈ Rm and fix
an error tolerance δ. The problem to be solved is the following:

min
x∈Rn

‖x‖0

‖Ax− b‖2 ≤ δ .

(1.12)

The �2 norm used for evaluating the error Ax− b can be replaced by other
options, such as:

• the �1 norm;

• the �∞ norm;

• a weighted version of the �2 norm.

It is easy to see that problem (1.12) must have solutions at least as sparse
as those obtained by solving (1.2).
Problem (1.12) can be viewed as a noise-aware version of problem (1.2).
Consider a sparse vector x0 and assume that

b = Ax0 + z ,

14
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where z is a noise term which is either stochastic or deterministic, such that
‖z‖2 ≤ ε. Finding x0 is the aim of (1.12), which is the same as (1.2) when
dealing with noiseless data Ax0 = b.
Since problem (1.12) contains (1.2) as a special case, it is Np-Hard as well.
Natarajan [65] presents an NP-Hardness proof for δ > 0. The proof is by
reduction from the Np-Hard problem of exact cover by 3 sets. Problem
(1.12) is also hard to approximate as shown by Amaldi in [4].

1.2.2 Stability of Sparse Representations

Results obtained in the noisy case are similar to those obtained in the noise-
less one, although uniqueness and equivalence no longer apply and are re-
placed by the notion of stability. An algorithm is said to be globally stable
if it recovers the ideal noiseless reconstruction with an error at worst pro-
portional to noise level even under the addition of arbitrary noise. Some
rigorous bounds ensuring stability can be derived when dictionary A has a
property of mutual incoherence and when it gives a sparse representation for
the ideal noiseless signal. In practice, even if the problem of recovering the
underlying representation is ill-posed in general, when the representation is
sparse and the dictionary is incoherent, the ill-posedness can disappear.
Consider noisy observations b = Ax0 + z with ‖b − Ax0‖2 ≤ ε. Obtain a
sparse approximation xδ

0 by solving (1.12) with δ ≥ ε. The following stability
estimate, see [26], can be derived:

Theorem 1.2.1. Consider the problem (1.12). Suppose that a sparse vector
x0 ∈ Rn such that ‖b−Ax0‖2 ≤ ε satisfies

‖x0‖0 < (1 + µ(A)−1)/2 . (1.13)

Then

a) x0 is the unique sparsest representation;

b) the deviation of xδ
0 from x0 is bounded by

‖xδ
0 − x0‖2

2 ≤ (ε+ δ)2

1 − µ(A)(2‖x0‖0 − 1)
∀ δ ≥ ε > 0 . (1.14)

Equivalently, if there exists a sparse representation and the noise level is
known, by solving problem (1.12) we get an approximation to the ideal
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sparse decomposition of the noiseless signal in which the error is at worst
proportional to the input noise level.

1.2.3 Convex Relaxation by the �1-norm

As finding a solution to problem (1.12) is a tough task, a pursuit algorithm
similar to the one we considered in the noiseless case can be used in order
to solve it. The noise-aware variant of the �1-norm problem is

min
x∈Rn

‖x‖1

‖Ax− b‖2 ≤ δ .

(1.15)

A solution to this convex quadratic problem can be easily calculated by using
various standard approaches such as interior point methods [17] or active
set methods. It is also close to the well-known LASSO technique employed
in statistic regression [84]. All this methods replace problem (1.15) with the
corresponding convex unconstrained version in the standard Lagrange form:

min
x∈Rn

1
2
‖Ax− b‖2

2 + λ‖x‖1 . (1.16)

For an appropriate multiplier λ problem (1.15) and (1.16) have the same
solution. This result can be proved using [73] Theorem 27.4.

1.2.4 �1-norm Algorithm: Stability and Support Properties

An input signal b = Ax0 + z with ‖b−Ax0‖2 ≤ ε is given. We solve (1.15)
with δ ≥ ε and obtain a solution xδ

1. The stability result obtained for the
�1-norm is weaker than the one obtained for problem (1.12). We have that
the optimal solution x0 must be sparser and the tolerated error level larger:

Theorem 1.2.2. [26] Consider the problem (1.12). Suppose that a sparse
vector x0 ∈ Rn such that ‖b−Ax0‖2 ≤ ε satisfies

‖x0‖0 < (1 + µ(A)−1)/4 . (1.17)

Then the deviation of xδ
1 from x0 is bounded by

‖xδ
1 − x0‖2

2 ≤ (ε+ δ)2

1 − µ(A)(4‖x0‖0 − 1)
∀ δ ≥ ε > 0 . (1.18)
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We can equivalently say that the solution of the �1-norm problem has an
error at worst proportional to the noise. The optimal solution x0 for the
�1-norm must be twice sparser than the one for the �0-norm.
Under some appropriate conditions, the �1-norm has the ability of recovering
the correct sparsity pattern. Then the solution of (1.15) is not only as sparse
as the ideal representation, but it only contains atoms belonging to the ideal
sparse representation:

Theorem 1.2.3. [26] Consider a sparse vector x0 ≤ N such that

‖b−Ax0‖2 ≤ ε and β = µ(A) ·N < 1/2 .

Define

γ =

√
(1 − β) + (1 − β)/

√
N

1 − 2β
. (1.19)

Solve the problem (1.12) with δ > γ · √N · ε. Then supp(xδ
1) ⊂ supp(x0).

1.2.5 Interior point Approach

Basis Pursuit in highly overcomplete dictionary leads to large-scale opti-
mization problems. Interior point methods can be used to solve this kind
of problems efficiently. An approach combining a primal-dual logarithmic
barrier method, with a conjugate gradient solver was proposed by Chen,
Donoho and Saunders in [17]. Problem (1.16) is rewritten as follows:

min cT y + 1
2‖p‖2

2 ,

Hy + p = b , y ≥ 0 .
(1.20)

with H = [A − A], cT = λ(eT eT ) and yT = (uT vT ). In place of (1.20),
the following perturbed linear program is solved by using a primal-dual log-
barrier algorithm:

min cT y + 1
2‖p‖2

2 + 1
2‖γy‖2

2 ,

Hy + p = b , y ≥ 0 .
(1.21)

The algorithm starts from a feasible (or nearly feasible) solution located
near the ”center” of the feasible region and improves the current solution

17
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until the desired accuracy is achieved. The number of iterations required
is small (usually a few dozen) and at each iteration a system of equations
must be solved. Solving a system of equations is not an easy task in general:
it takes order O(n3) time. In order to overcome this problem, dictionaries
having fast implicit algorithms are considered. For this kind of algorithms
special properties of the matrix accelerate the computation (i.e. Ax can be
calculated without storing matrix A). When dealing with dictionary having
fast implicit algorithms, a natural way to solve equations is by conjugate-
gradient methods.

1.2.6 LASSO Algorithm

LASSO (Least Absolute Shrinkage and Selection Operator) is a widely used
method for shrinkage and variable selection in linear models [84]. It achieves
good prediction accuracy and, at the same time, gives a sparse solution.
The main idea of LASSO is that of using the �1-norm constraint in the
regularization step. In other words, the estimator is obtained by minimizing
the empirical risk with the �1-norm of the regression coefficients bounded by
a given positive number. Consider observations (xi, yi) with i = 1, . . . ,m.
A standard multiple linear regression is given by:

yi = α+ β1xi1 + · · · + βnxin + εi

with εi zero-mean random quantities. The LASSO estimate (α̂, β̂) is defined
by

(α̂, β̂) = arg min
α, β

m∑
i=1

(yi − α−
n∑

j=1

βjxij)2 s.t. ‖β‖1 ≤ τ . (1.22)

The parameter τ controls the amount of shrinkage that is applied to the
model. Once parameter τ is fixed, problem (1.22) can be expressed as
a constrained least squares problem with 2n inequality constraints, corre-
sponding to the 2n possible signs of parameters βj . Consider the set vectors
δi with i = 1, . . . , 2n having components δij ∈ {−1, 1} j = 1, . . . , n. Then
constraint ‖β‖1 ≤ τ can be equivalently rewritten as

δT
i x ≤ τ i = 1, . . . , 2n .

Hence problem (1.22) can be solved by introducing constraints δT
i x ≤ τ one

at time. Here is the outline of the algorithm:
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LASSO Algorithm

Initialization. Set E = {i0}, where δi0 = sign(β̂0), (α̂0, β̂0) being the
overall least square estimate, and k = 1.

1. Find the solution

(α̂k, β̂k) = arg min
α, β

m∑
i=1

(yi − α−
n∑

j=1

βjxij)2

s.t. δT
i β ≤ τ i ∈ E .

(1.23)

2. If (‖β̂k‖1 ≤ τ) then STOP.

3. Add ik to the set E where δik = sign(β̂k).

4. Set k = k + 1 and go to step 1.

As one element is added at each step, and the total number of elements is
2n, the procedure converges in a finite number of steps. A different approach
is that of writing each βj as follows

βj = β+
j − β−j ,

with β+
j and β−j non-negative variables.

Then the problem to be solved becomes

min
α, β

m∑
i=1

(yi − α−
n∑

j=1

(β+
j − β−j ) xij)2

s.t.
n∑

j=1

β+
j + β−j ≤ τ

β+
j ≥ 0 β−j ≥ 0 .

(1.24)

The number of variables of this problem is twice as large as the number of
variables of the original problem, but the number of constraints remains the
same. The new problem (1.24) gives the same solution as the original one

19



Chapter 1 Error-Constrained Approximation

and can be solved by standard quadratic techniques, with the convergence
assured in 2n+ 1 steps.

1.2.7 Iterative Reweighted Least Squares

An Iteratively Reweighted Least Squares approach can be used to tackle
problem (1.12) as shown in [47, 71]. Setting X = diag(|x|), we have

‖x‖1 = xTX−1x.

Thus, we can define an adaptively-weighted version of the squared �2-norm.
Given the current solution xk set Xk = diag(|xk |), we solve the following
quadratic problem:

min
x

1
2
‖Ax− b‖2

2 + λxTX−1x

Once we obtain a new solution xk+1, the matrix Xk+1 is built and a new
iteration begins.

1.2.8 Iterative Shrinkage/Thresholding Methods

This class of methods has recently received considerable attention (See [32,
19, 21, 85]). The problem we want to solve, which generalizes problem
(1.16), is as follows:

min
x
φ(x) = f(x) + τg(x) (1.25)

where f : Rn → R is smooth and convex and g : Rn → R, usually called
regularization term, is finite for all x ∈ Rn, but not necessarily smooth nor
convex. It is usually assumed that g is separable:

g(x) =
n∑

i=1

g(xi).

The approach generates a sequence of iterates xk by solving separable sub-
problems of the following form:

xk+1 ∈ arg min
z

(z − xk)T∇f(xk) +
αk

2
‖z − xk‖2

2 + τg(z). (1.26)

Different variants of the approach are distinguished by the choice of αk or
by the way the subproblems are solved.
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1.2.9 A Concave Approximation of the �0-norm

A different way to find a sparse representation in the presence of noise is
described by Bradley, Mangasarian and Rosen in [11]. This method is mainly
based on the minimization of a concave function on a polyhedral set. The
problem can be formally described as follows

min
x∈Rn

(1 − λ)‖Ax− b‖1 + λ‖x‖0 λ ∈ [0, 1) . (1.27)

As the number of nonzero components of the vector x and the error ‖Ax−b‖1

have to be minimized, the problem (1.27) can be considered as a multi-
objective optimization problem. It can be easily noticed that when λ = 0
the problem is the classical �1-norm approximation problem. The case λ = 1
is of no interest as it leads to the trivial solution x = 0. When λ ranges in
the interval [0, 1) the number of nonzero components can vary from n to 0,
while the error ‖Ax − b‖1 is monotonically nondecreasing. Problem (1.27)
can be equivalently rewritten as

min
(x,y)∈S

(1 − λ)eT y + λ‖x‖0 λ ∈ [0, 1) , (1.28)

with the set S defined as

S = {(x, y) | x ∈ Rn, y ∈ Rm, −y ≤ Ax− b ≤ y} . (1.29)

In order to illustrate the idea underlying the concave approach, we observe
that the �0-norm can be written as follows

‖x‖0 =
n∑

j=1

s(|xi|)

where s : R → R+ is the step function such that s(t) = 1 for t > 0 and
s(t) = 0 for t ≤ 0. Then the discontinuous step function is replaced by a
continuously differentiable concave function v(t) = 1 − ε−αt, with α > 0.
Thus we have the smooth function

c(x) =
n∑

j=1

(1 − ε−α|xj |) = eT (e− ε−α|x|) , (1.30)

satisfying the following relation

‖x‖0 ≥ c(x) ∀ x ∈ Rn (1.31)
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and such that
lim

α→∞c(x) = ‖x‖0 . (1.32)

Hence a smooth approximation of (1.28) is obtained:

min
(x,y,z)∈T

(1 − λ)eT y + λ
n∑

j=1

(1 − ε−αzj ) λ ∈ [0, 1) , (1.33)

with the set T defined as

T = {(x, y, z) | x, z ∈ Rn, y ∈ Rm, −y ≤ Ax−b ≤ y, −z ≤ x ≤ z} . (1.34)

1.2.10 Minimization of a Concave Function over a Closed
Convex Set

We report here some important results about the minimization of a concave
function over a closed convex set (See [73] for further details):

Proposition 1.2.1. Let f be a concave function, and let C be a closed
convex set contained in dom f . Suppose there are no half-lines in C on
which f is unbounded below. Then:

inf {f(x) | x ∈ C} = inf {f(x) | x ∈ E}, (1.35)

where E is the subset of C consisting of the extreme points of C ∩L⊥, being
L the lineality space of C and L⊥ the orthogonal complement of L. The
infimum relative to C is attained only when the infimum relative to E is
attained.

The following results are an immediate consequence of Proposition 1.2.1:

Corollary 1.2.1. Let f be a concave function, and let C be a closed convex
set contained in dom f . Suppose that C contains no lines. Then, if the
infimum of f relative to C is attained at all, it is attained at some extreme
points of C.

Corollary 1.2.2. Let f be a concave function, and let C be a nonempty
polyhedral convex set contained in dom f . Suppose there are no half-lines in
C on which f is unbounded below. Then the infimum of f relative to C is
attained.
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Combining corollary (1.2.1) and (1.2.2) we can show that the problem (1.36)
has a solution and this solution is a vertex:

Corollary 1.2.3. Let f be a concave function, and let C be a nonempty
polyhedral convex set contained in dom f . Suppose that C contains no lines,
and that f is bounded below on C. Then the infimum of f relative to C is
attained at one of the (finitely many) extreme points of C.

1.2.11 Existence of an Exact Vertex Solution

In order to show some theoretical results, a general minimization problem
is now considered:

min
s∈S

f(s) + µ‖s‖0, (1.36)

where f is a concave function on Rp bounded below on S, µ is a nonnegative
real number and S is a polyhedral set in Rk containing no lines that go to
infinity in both directions. The smooth concave approximation obtained
using (1.30) is as follows

min
s∈S

f(s) + µeT (e− ε−α|s|) . (1.37)

By taking into account (1.31), we notice that the minimum of the smooth
problem (1.37) provides an underestimate to the minimum of (1.36). In
order to prove the next theorem, a result about extreme points of a closed
convex set is given:

Lemma 1.2.1. Let T ∈ Rp1 × Rp2 be a convex closed set. Let (x̂ ŷ) be an
extreme point of T. Then the vector x̂ is an extreme point of the convex set

T (ŷ) = {x | (x ŷ) ∈ T} . (1.38)

Proof. A vector (x̂ ŷ) ∈ T is an extreme point of T if and only if there is
no way to express it as a convex combination of two different points in T :

(x̂ ŷ) =
(
(1 − λ)x1 + λx2 (1 − λ)y1 + λy2

)
, (1.39)

with (x1 y1), (x2 y2) ∈ T and 0 < λ < 1, implies

(x1 y1) = (x2 y2) = (x̂ ŷ) .
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By choosing ŷ = y1 = y2 in (1.39), it is easy to see that x̂ is an extreme
point of T (ŷ). �

The following theorem, proved by Bradley, Mangasarian and Rosen in their
paper, shows that there exists a finite value of the smoothing parameter α
such that the vertex solution of problem (1.36) is also a solution of problem
(1.37):

Theorem 1.2.4. Let f be a concave function bounded below on the polyhe-
dral set S that contains no lines going to infinity in both directions. There
exists a value α(µ) > 0 such that for all α ≥ α0(µ) > 0 the smooth problem
(1.37) has a vertex solution that is also a solution of the original problem
(1.36).

Proof. It is easy to notice that the problem (1.37) is equivalent to the
following concave minimization problem

min
(s z)∈T

f(s) + µeT (e− ε−αz) (1.40)

with
T = {(s z)| s ∈ S, −z ≤ s ≤ z} .

The objective function of this problem is concave and bounded below on
T . It follows by Corollary 1.2.3 that problem (1.40) has a vertex solution
(s(α) z(α)) for each α > 0. Since T has a finite number of vertices, there
exists a vertex (ŝ ẑ) that is solution of (1.40) for some sequence of positive
numbers {αi}∞i=0. From (1.31), the following inequality holds:

min
s∈S

f(s) + µeT (e− ε−α|s|) ≤ inf
s∈S

f(s) + µ‖s‖0 .

Hence for αi ≥ α0 = α0(µ):

f(ŝ) + µeT (e− ε−αiẑ) = f(s(αi)) + µeT (e− ε−αiz(αi))

= min
(s z)∈T

f(s) + µeT (e− ε−αiz)

= min
s∈S

f(s) + µeT (e− ε−αi|s|)

≤ inf
s∈S

f(s) + µ‖s‖0 .

(1.41)
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When i→ ∞, we have that

f(ŝ) + µ‖ŝ‖0 = lim
i→∞

f(ŝ) + µeT (e− ε−αiẑ) ≤ inf
s∈S

f(s) + µ‖s‖0 .

Since (ŝ ẑ) is a vertex of T , by Lemma 1.40 it follows that ŝ is a vertex of
S and a vertex solution of (1.36). �

A computational approach for solving problem (1.28) can be immediately
described. In fact, it is easy to see that (1.28) is a special case of (1.37).
Then by Theorem 1.2.4 it follows that by solving the smooth approximation
(1.33) for a sufficiently large value of α, we obtain a solution of the original
non-smooth problem.

1.2.12 The SLA Algorithm

A good method for minimizing a concave function on a polyhedral set is
the Successive Linear Approximation (SLA) method , which is a finitely
terminating stepless Frank-Wolfe algorithm. In [57] Mangasarian established
the finite termination of the SLA for a differentiable concave function, and
in [58] for a non-differentiable concave function using its subgradient. Here
is given a general version of the SLA algorithm for minimizing a concave
function f on a polyhedral set X ⊂ Rn, with f bounded below on X:

General SLA Algorithm

Initialization. x0 ∈ Rn randomly chosen.

1. Having xk determine

xk+1 ∈ arg min
x∈X

∇f(xk)T (x− xk) (1.42)

2. If xk ∈ X and
∇f(xk)T (xk+1 − xk) = 0

then STOP.

3. Go to step 1.
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The next theorem shows that this algorithm generates a strictly decreasing
finite sequence {f(xk)}k̄

k=0 which terminates at a stationary point that may
also be a global minimum solution.

Theorem 1.2.5. Let f be a concave function bounded below on a polyhedral
set X. The SLA converges at a vertex stationary point in a finite number of
iterations.

Proof. At each iteration k, the following linear programming problem

min
x∈X

∇f(xk)T (x− xk) (1.43)

must be solved at Step 2 of the algorithm. As f is bounded below on X and
is a concave continuously differentiable function, for all x ∈ X we can write

−∞ < inf
x∈X

f(x) − f(xk) ≤ f(x) − f(xk) ≤ ∇f(xk)T (x− xk) . (1.44)

Hence we have that problem (1.43) admits a vertex solution xk+1 for any
xk ∈ Rn. If xk+1 = xk then xk is a stationary point (provided xk ∈ X) since

0 = ∇f(xk)T (xk+1 − xk) ≤ ∇f(xk)T (x− xk) ∀x ∈ X.

If xk+1 �= xk then, using the assumptions on f , we have

f(xk+1) ≤ f(xk) + ∇f(xk)T (xk+1 − xk) < f(xk), (1.45)

where xk+1 is a vertex of X. Since the number of vertices is finite and the
sequence generated is strictly decreasing, it follows that the algorithm ter-
minates in a finite number of iterations with a vertex stationary point. �

It is possible now to state the SLA algorithm for problem (1.33):
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SLA Algorithm for finding a sparse representation in the presence
of noise

Initialization. x0 ∈ Rn randomly chosen. Set y0 = |Ax0 + b|, z0 = |x0|.
1. Having (xk yk zk) determine

(xk+1 yk+1 zk+1) ∈ arg min
(x y z)∈T

(1 − λ)eT y + λα(ε−αzk
)T z (1.46)

2. If (xk yk zk) ∈ T and

(1 − λ)eT yk + λα(ε−αzk
)T zk = (1 − λ)eT yk+1 + λα(ε−αzk

)T zk+1

then STOP.

3. Go to step 1.

By Theorem 1.2.5 we have the following finite termination result for this
version of the SLA algorithm:

Corollary 1.2.4. The SLA algorithm for problem (1.33) generates a finite
sequence (xk yk zk) with strictly decreasing objective function values and
terminates at a step k̄ satisfying the minimum principle necessary optimality
condition:

(1 − λ)eT (y − yk̄) + λα(ε−αzk̄
)T (z − zk̄) ≥ 0 ∀ (x y z) ∈ T .
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Chapter 2

Methods for Feature
Selection

With the growth in size of databases, the problem of focusing on the most
relevant information in a potentially overwhelming quantity of data has
become increasingly important. For instance, people working in different
fields such as engineering, astronomy, biology, remote sensing, economics,
deal with larger and larger observations and simulations and need a way
to effectively utilize these data. One of the most challenging problems in
high-dimensional data analysis is feature selection. This problem basically
consists in eliminating as many features as possible in a given problem while
still carrying out a certain task with good accuracy. In classification the goal
is that of discriminate between two given sets in a high-dimensional feature
space by using as few of the considered features as possible.
Although feature selection is primarily performed to choose informative fea-
tures, it can have other motivations: facilitating data visualization and data
understanding, reducing the storage requirements, reducing the execution
time, improving prediction performance. Some methods put more emphasis
on one aspect than another.
In this chapter the various aspects of feature selection for classification are
analyzed. The first section gives a brief description of classification, which is
a very important task in machine learning, and feature selection. The second
section is basically an overview of the existing methods for feature selection.
The last section is focused on mathematical programming approaches to
feature selection.
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2.1 Feature Selection in Classification

In this section we present some key notions that make easier the understand-
ing of this chapter. We start by giving a brief description of the classification
problem in supervised learning. Then we put our attention on a specific task:
the feature selection for classification. We formally define the problem and
explain why is so important in data mining.

2.1.1 Supervised Learning and Classification

Consider a functional dependency g that maps points from an input space
X to an output space Y . In supervised learning, the goal is extracting an
estimate ĝ of g from a given finite set of training data pairs (training set)
containing the input xi and the desired output yi:

T = {(xi, yi) | xi ∈ X, yi ∈ Y and i = 1, . . . ,m} .
When dealing with classification problems, the input space is divided into
k subsets X1, . . . ,Xk ∈ X such that

Xi ∩Xj = ∅ i, j = 1, . . . , k, i �= j

and the task becomes that of assigning a given input vector x to the subset
it belongs to. From now on we only consider the classification task in the
basic form of binary classification: we have two sets X1,X2 ∈ X, such that
X1 ∩ X2 = ∅, and we want to determine whether an input vector x ∈ X
belongs to X1 or X2. the training set for binary classification is formally
defined as follows

T = {(xi, yi) | xi ∈ X, yi ∈ {±1} and i = 1, . . . ,m}
with the two classes X1 and X2 labelled by +1 and −1, respectively. The
functional dependency g : X → {±1}, which determines the class of a given
vector x, assumes the following form:

g(x) =

⎧⎨
⎩

+1 if x ∈ X1

−1 if x ∈ X2 .
(2.1)
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It is possible to use various classes of learning machines, which have different
functional forms, for constructing an approximation ĝ of g. Here are three
widely-studied classes of learning machines:

1) Perceptron;

2) MultiLayer Perceptron Networks (MLPN),

3) Radial Basis Function Networks (RBFN),

4) Support Vector Machines (SVM).

A multilayer network typically consists of an input layer, which is basically
a set of source nodes, one or more hidden layers, composed by various com-
putational nodes, and an output layer of computational nodes. We can
construct (train) the desired network ĝ in a supervised manner by using a
popular algorithm known as the backpropagation algorithm [74, 42].
A completely different approach is that of designing a neural network as a
curve-fitting problem in a high-dimensional space by means of radial basis
functions. A radial basis function network [69, 13] has three layers. The first
layer is the input layer, a set of source nodes used to connect the network
to its environment. The second layer,which is the only hidden layer, maps
the input vector x into a hidden space of high dimensionality. The last layer
(output layer) gives the response of the network to a given input vector x.
Support vector machines, introduced by Vapnik [86], represent another ef-
ficient tool for classification. This class of learning machines implements in
an approximate way the method of structural risk minimization. Training
a support vector machine requires the solution of a large dense quadratic
programming problem. Different kinds of algorithms have been developed
in the last twenty years in order to tackle this challenging task [66, 45, 60,
76, 68, 48, 20, 30]. The hope is that the estimate ĝ of g obtained by us-
ing one of the learning machine models described above will generalize. A
learning machine is said to generalize well when it is able to compute cor-
rectly the input-output mapping for test data not included in the training
set. The generalization ability of a learning machine is strictly connected
with its complexity. In fact, a complex estimate ĝ usually approximates g
poorly on points not in the training set. Such a phenomenon is referred
to as overfitting or overtraining. A model which is too simple, however, is
also not preferred as it gives too poor a fit to the training data. In order
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to find the optimal complexity for our learning machine, we can utilize the
Occam’s Razor [9], named after William of Occam (1285-1349). This model
selection criteria favors the simplest model possible that still grants good
performance on the training data.
In order to evaluate the generalization ability of a learning machine, we
can use the procedure of cross-validation [80]. We divide the training set
T into k distinct segments T1,. . . , Tk. We then construct the function ĝ
by a learning algorithm using data from k − 1 of the segments and test its
performance using the remaining segment. This process is repeated for each
of the k possible choices for the segment omitted from the training process,
and the k results averaged to produce a single result. When k is equal to
the number of training data we obtain the leave-one-out method.

2.1.2 Feature Selection Problem

In real-world classification problems requiring supervised learning, nothing
is known about the mapping function g. The only information available is
in the features, or components, of the vectors xi contained in the training
set. Features can be divided into three groups [46]:

1. irrelevant features: these features do not affect the target concept in
any way (i.e. no useful information carried);

2. redundant features: a feature belonging to this group adds nothing
new to the target concept (i.e. information already carried by other
features);

3. relevant features: a relevant feature is neither irrelevant nor redundant.

As relevant features are unknown a priori, many candidate features are usu-
ally included in order to better describe the domain. Unfortunately, many of
these features are irrelevant or redundant and their presence does not pro-
vide more discrimination ability. Furthermore, data sets with a large number
of features and a limited number of training examples lead to the “curse of
dimensionality”: the data are very sparse and provide a poor representation
of the mapping [8]. Then the only way to construct a good estimator ĝ is to
choose a small subset of predictive features, discarding irrelevant/redundant
features. Feature selection for classification can be formally defined as a pro-
cess to select a minimally sized subset of features, while still having good
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performance and accurately estimating g over the training set.
Although feature selection is primarily performed to select informative fea-
tures, it can have other motivations:

1. data reduction, to limit storage requirements and make algorithms
faster;

2. feature set reduction, to save resources in the next round of data col-
lection or during utilization;

3. prediction accuracy improvement, to obtain better classification per-
formance;

4. data understanding, to better understand the process that generated
the data.

In an n-dimensional space, methods for features selection ideally try to find
the best subset of features among all the 2n candidate subsets according to
some criteria. It is evident that the search becomes too costly as n gets
large. Therefore, a good procedure to prevent an exhaustive search of the
subsets is needed. Various approaches to feature selection will be described
in the next sections.

2.2 Machine Learning Approaches to Feature Se-
lection

As the main aim of machine learning is addressing larger, more complex
tasks, feature selection has become one of the most important issues in this
field. Machine learning methods for feature selection can be divided into
three classes: (i) Filters; (ii) Wrappers; (iii) Embedded methods.
Filters select subsets of variables as a pre-processing step, no matter what
the predictor is. Wrapper algorithms utilize the learning machine of inter-
est as a black box to score subsets of variable according to their predictive
power. Embedded methods perform variable selection as a part of the train-
ing process and are usually specific to given learning machines.
The present section gives an overview of the existing machine learning ap-
proaches for feature selection.
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2.2.1 Filter Methods

Filters are a special class of feature selection algorithms that are indepen-
dent from the predictor used for classification, see Figure 2.2.1. In fact,
performance of filters are evaluated only by means of some metrics calcu-
lated directly from data, without taking into account the learning machine
that will be trained with reduced data. These algorithms are generally less
expensive than wrapper ones.

Figure 2.2.1. The filter approach to feature selection.

Given a set of data D, in filters we usually calculate a scoring function F (S)
that estimates how relevant is the subset S for classification. Using these
relevance indices with single features xj with j = 1, . . . , n, a ranking order
may be easily established:

F (xj1) ≤ F (xj2) ≤ · · · ≤ F (xjn) .

Those features having a low rank are discarded. Due to its simplicity, vari-
able ranking is included as a selection mechanism in various feature selection
algorithms [5, 90, 33].
A well-known method for variable ranking is the Relief Algorithm [49]. It
assigns a weight to each feature, which denotes the relevance of the feature
as represented in the training set. Examples from the training set are ran-
domly selected and the relevance is updated based on the difference between
the selected example and the two nearest examples of the same and oppo-
site class. Since each feature relevance is calculated independently of other
features, relief is not able to find redundant features [49].
The FOCUS algorithm [1] exhaustively examines all subsets of features, se-
lecting the minimal subset sufficient for classification. FOCUS may not be
able to find irrelevant features when noise is present in the training set, or
if the training set is not representative of future data [46].
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Another filter method based upon information theory is introduced in [51].
This method attempts to compute a subset of features such that the prob-
ability distribution of the class is close to the distribution of the class given
by the full set of features. Distance used is the KL-distance or equivalently,
cross-entropy.

2.2.2 Wrapper Methods

The Wrapper approach, described by Kohavi and John in [46], is a simple
and powerful tool for variable selection which consists in using the predic-
tion performance of a given learning machine to determine the usefulness of
a subset of variables, see Figure 2.2.2. This approach basically conducts a
search in the space of possible parameters. An exhaustive search can be per-
formed only if the number of variables is sufficiently small. Hence, in order
to save time we need to use efficient search strategies such as branch and
bound, greedy selection, simulated annealing, genetic algorithms. Search
strategies will be described in the next section. Performance evaluation is
usually done using a validation set or by cross-validation.
Wrappers are often considered a costly method as they seem to require a
large amount of computation. When good and inexpensive searches, such as
the greedy ones, are adopted, this is not necessarily true. Since the learning
machine can be represented as a black box, wrappers are a very simple to
use technique for feature selection.

Figure 2.2.2. The wrapper approach to feature selection.
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2.2.3 Search Strategies

A search strategy establishes the order in which the variable subsets are
evaluated. The simplest strategy is the exhaustive search: every possible
subset is evaluated and the best one is chosen. Unfortunately this approach
is affordable only when the number of variable is quite small. When ex-
haustive search is not possible, searching only a part of the subset would be
a good strategy. When a certain subset size d is given and the evaluation
function is monotonic (i.e. the addition of a variable never makes a subset
worse), search may be done by means of the branch and bound algorithm
[64]. The strategy is based on the fact that once a subset S having a di-
mension greater than d has been evaluated, if the score for S is worse than
the score obtained using the currently best known subset S′ of size d, then
there is no need to evaluate the subsets of S, because the score of those
subsets will never exceed the score of S′. The algorithm has an exponential
worst case complexity and this makes the approach infeasible when a large
number of variables is given.
Greedy selection methods [22, 62] represent a computationally advantageous
class of search strategies. There are two types of greedy searches:

1) forward selection: it begins with the empty set of features and pro-
gressively includes new variables to make the set larger;

2) backward elimination: it refers to a search that starts with the full set
of features and progressively eliminates the less promising ones.

Simulated annealing is a stochastic algorithm introduced by Kirkpatrick et
al. [50] for the general search of the minimum of a function. It is based on
how physical matter cools down and freezes, ending up in a structure that
minimizes the energy of the body. Siedlecki and Sklanski in [77] first sug-
gested this stochastic approach as a search strategy. In simulated annealing,
the search starts with an initial random subset in a high “temperature”. At
each step, a small random change is introduced to the subset. if the subset
obtained is better, the change is accepted. If the subset is worse, the change
is accepted or refused depending on the “temperature”: in a high tempera-
ture, a worse subset is more likely to be accepted than in a low temperature.
Genetic algorithms [61] represent another family of stochastic optimization
methods. The main difference between the two algorithms is that simulated
annealing has only a subset in memory, while genetic algorithms keep a set
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of them. In genetic algorithms a solution is usually called chromosome and
a set of chromosomes is called a population. A new population is usually
obtained by retaining some chromosomes in the old population and creating
new chromosomes by means of a manipulation of old chromosomes. The bet-
ter a chromosome is, the higher is the probability to be selected to the new
population or as a parent in a genetic operation. This method is well-suited
for problems with a large number of variables [52].

2.2.4 Embedded Methods

The main difference between embedded methods and other feature selection
methods is in the way the feature selection is combined with learning. Filter
methods are completely independent from learning. Wrappers use a learning
machine to evaluate the quality of a subset of features without taking into
account knowledge about the structure of the classification function. Dif-
ferently from filters and wrappers, embedded methods incorporate feature
selection as a part of the training process. The embedded approach can be
formally described as follows:

min
w∈Rn

g(w,X, Y )

s.t. s(w) ≤ s0
(2.2)

where g is a function measuring the performance of the selected learning
machine, described by the vector of parameters w, on the given training
data (X,Y ), and s is an approximation of the zero norm. Problem (2.2) can
be converted in a problem of the form

min
w∈Rn

g(w,X, Y ) + λs(w) (2.3)

with λ > 0. Some embedded methods iteratively add or remove features
from the data to approximate a solution of the problem (2.2). Iterative
methods can be divided in two classes:

1. Forward selection methods [15, 12, 67]: these methods start with one
or a few features selected according to some criteria and iteratively
add more features until a stopping criterion is satisfied;

2. Backward elimination methods [39, 54, 70]: methods belonging to this
class start with the full set of features and iteratively remove one or
more features.
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Weston et al. [89] proposed a method of using SVMs for feature selection
based on choosing the scaling factors which minimize a bound. Feature
selection is performed by scaling the input parameters by a vector σ ∈ [0, 1]n.
The larger is the value of σi the more useful is the i-th feature. Thus the
problem become that of choosing the best kernel of the form:

kσ(x, x′) = k(σ ∗ x, σ ∗ x′)

where ∗ is the element-wise multiplication.
Some embedded methods can be reformulated as a minimization problem of
type (2.3). These methods will be deeply described in the next section.

2.3 Feature Selection as an Optimization Problem

In feature selection methods for classification, the task is to discriminate
between two given sets in an n-dimensional feature space using as few of
the given features as possible. This problem can be addressed in a simple
way by means of linear classification models. The goal, in this case, is to
construct a separating plane that gives good performance on the training
set, while using a minimum number of problem features. When dealing with
linear models, feature selection can be directly enforced on the parameters
of the model. This can be made by adding a sparsity term to the objective
function that the model minimizes.
In the first part of the section we formulate the feature selection problem as a
mathematical program with a parametric objective function which attempts
to construct a separating plane in a feature space of as small dimension as
possible. We also show a fundamental result about the complexity of feature
selection for linearly separable data sets.
In the second part of the section various methods of solution for the mathe-
matical programming formulation of the problem are described: replacement
of the sparsity term in the objective function with the �1-norm; approxima-
tion of the sparsity term by a sigmoid function, by a concave exponential
function, and by a logarithmic function; a bilinear function minimization
over a polyhedral set.
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2.3.1 Feature Selection using Linear Models

Let us consider two nonempty finite point sets A and B in Rn consisting of
m and k points respectively. The point sets A and B are represented by the
matrices A ∈ Rm×n and B ∈ Rk×n, where each point of a set is represented
as a row of the matrix. In the feature selection problem, we want to con-
struct a separating plane:

P = {x | x ∈ Rn, xTw = γ} (2.4)

with normal w ∈ Rn and distance
|γ|

‖w‖2

to the origin, while suppressing as many of the components of w as possible.
The separating plane P determines two open halfspaces :

- {x | x ∈ Rn, xTw > γ} containing mostly points belonging to A;

- {x | x ∈ Rn, xTw < γ} containing mostly points belonging to B.

Therefore, we want to satisfy the following inequalities:

Aw > eγ, Bw < eγ (2.5)

to the extent possible. A normalized version of these inequalities is

Aw > eγ + e, Bw < eγ − e . (2.6)

Conditions (2.5) and (2.6) can be satisfied if and only if the convex hulls of
A and B are disjoint (i.e. the two sets are linearly separable). Amaldi and
Kann [3] established that the feature selection problem for linearly separable
data sets is hard to approximate:

Theorem 2.3.1. Let DTIME(ppolylog p) be the class of problems whose
instances of size s can be solved in deterministic time O(spolylog s), with
polylog s any polynomial in log s.
Assuming NP � DTIME(ppolylog p) , the feature selection problem is not
approximable within a factor of 2log1−εp for any ε > 0, where p is the number
of examples.

As shown in Theorem 2.3.1, designing close-to minimum size networks in
terms of nonzero weights is very hard even for linearly separable training
sets that are performable by the simplest type of networks.
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2.3.2 A Mathematical Programming Formulation of the Fea-
ture Selection Problem

In real-world applications we hardly find linearly separable data sets. Thus
we try to satisfy (2.6), in some approximate sense, by minimizing the norm
of the average violation of those inequalities:

min
w,γ

f(w, γ) = min
w,γ

1
m
‖(−Aw + eγ + e)+‖1 +

1
k
‖(Bw − eγ + e)+‖1 (2.7)

The reasons for choosing the �1-norm in (2.7) are:

(i) Problem (2.7) is equivalent to a linear programming problem (2.8)
with many important theoretical properties;

(ii) the �1-norm is less sensitive to outliers (i.e. those occurring when the
underlying data distributions have pronounced tails).

The formulation (2.7) is equivalent to the following linear programming
formulation proposed in [6]:

min
w,γ,y,z

eT y

m
+
eT z

k

s.t. −Aw + eγ + e ≤ y
Bw − eγ + e ≤ z
y ≥ 0, z ≥ 0

(2.8)

This linear programming problem, or equivalently formulation (2.7), defines
a separating plane P that approximately satisfies the conditions (2.6). Since
in feature selection the goal is suppressing as many elements of w as possible,
a feature selection term must be introduced:

min
w,γ,y,z

(1 − λ)(
eT y

m
+
eT z

k
) + λ‖w‖0

s.t. −Aw + eγ + e ≤ y λ ∈ [0, 1)
Bw − eγ + e ≤ z
y ≥ 0, z ≥ 0

(2.9)
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This problem is equivalent to the following parametric program:

min
w,γ,y,z,v

(1 − λ)(
eT y

m
+
eT z

k
) + λ

n∑
i=1

s(vi)

s.t. −Aw + eγ + e ≤ y λ ∈ [0, 1)
Bw − eγ + e ≤ z
−v ≤ w ≤ v
y ≥ 0, z ≥ 0

(2.10)

where s : R→ R+ is the step function such that s(t) = 1 for t > 0 and s(t) =
0 for t ≤ 0. This is the fundamental feature selection (FS) problem,
as defined in [57]. The parameter λ is used to balance two objectives:

1. the number of misclassified training data;

2. the number of nonzero elements of vector w.

The feature selection problem (2.10) will be solved for a value of λ for which
the generalization ability of the classifier is maximized. Usually, this will be
achieved in a feature space of reduced dimensionality, that is ‖w‖0 < n .
As the step function in (2.10) is discontinuous, it is typically replaced by a
smooth function, such as:

- sigmoid function;

- concave exponential function;

- logarithm function.

In order to make the problem (2.9) tractable, it is also possible to replace
the �0-norm with another function such as the �1-norm, or to reformulate it
as a linear program with equilibrium constraints.

2.3.3 Norms and their Duals

We introduce here the concept of dual norm (See [73, 44] for further details).

Definition 2.3.1. (Support Function) Let S be a nonempty set in Rn.
The function σS : Rn → R ∪ {+∞} defined by

Rn � x→ σS(x) = sup{sTx : s ∈ S}
is called the support of S.
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Definition 2.3.2. (Gauge) Let C be a closed convex set in Rn containing
the origin. The function γC defined by

γC(x) = inf{λ > 0 x ∈ λC}
is called the gauge of C.

It is possible to prove that

{x ∈ Rn : γC(x) ≤ 1} = C.

Let ‖ · ‖ be an arbitrary norm on Rn. It is a positive (except at 0) closed
sublinear function and its sublevel-set:

B = {x ∈ Rn, : ‖x‖ ≤ 1} (2.11)

is very interesting. In fact, the unit ball associated with the norm is a
symmetric, convex, compact set containing the origin as interior point; ‖ · ‖
represents the gauge of B. Let us consider the set whose support function
is ‖ · ‖:

B∗ = {s ∈ Rn, : sTx ≤ ‖x‖ for all x in Rn}. (2.12)

It easy to check that B∗ is also symmetric, convex, compact; and it contains
the origin as an interior point.
Now, we can generate two more closed sublinear functions: the support
function of B and the gauge of B∗. It turns out that we then obtain the
same function, which actually is a norm, denoted by ‖ · ‖∗: this is the so
called dual norm of ‖ · ‖. It is support of B and gauge of B∗.

Theorem 2.3.2. Let B and B∗ defined as in (1) and (2), where ‖ · ‖ is a
norm of Rn. The support function of B and the gauge of B∗ are the same
function ‖ · ‖∗ defined by:

‖s‖∗ = max{sTx : ‖x‖ ≤ 1}. (2.13)

Furthermore, we have:

‖x‖ = max{sTx : ‖s‖∗ ≤ 1}. (2.14)

Proof. See Proposition 3.2.1 [44].

Using theorem (2.3.2) we can show the following result:
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Corollary 2.3.1. The ∞-norm:

‖x‖∞ = max {|x1|, . . . , |xn|} (2.15)

is the dual of the �1-norm:

‖x‖1 =
n∑

i=1

|xi|. (2.16)

Proof. Let us consider the dual of the �1-norm. By using (2.13), we can
define it as follows:

‖s‖∗ = max{sTx : ‖x‖1 ≤ 1}. (2.17)

We need to maximize the scalar product sTx, which can be written as fol-
lows:

sTx = s1x1 + · · · + snxn. (2.18)

The following inequality holds for (2.18):

sTx = s1x1 + · · · + snxn ≤ |s1||x1| + · · · + |sn||xn|. (2.19)

Let sM be the component of s vector with the largest absolute value. By
considering the constraint of (2.17), we have:

|s1||x1| + · · · + |sn||xn| ≤ |sM |(|x1| + · · · + |xn|) ≤ |sM |. (2.20)

Thus we can write:

max{sTx : ‖x‖1 ≤ 1} ≤ |sM | (2.21)

Then, the optimal solution is x vector with:

xi = 0 i = 1, . . . , n, i �= M (2.22)
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xM =
{

1 if sM ≥ 0
−1 if sM < 0

(2.23)

This is equivalent to:

max {|s1|, . . . , |sn|} = ‖x‖∞ (2.24)

Let us show now :

‖x‖1 = max {sTx : ‖s‖∞ ≤ 1} (2.25)

Our problem is maximizing sTx , subject to constraint

‖s‖∞ ≤ 1 ≡ max {|s1|, . . . , |sn|} ≤ 1. (2.26)

In order to solve (2.25), we then set si as follows:

si =
{

1 if xi ≥ 0
−1 if xi < 0

i = 1, . . . , n. (2.27)

This is equivalent to write:

|x1| + · · · + |xn| =
n∑

i=1

|xi| = ‖x‖1 (2.28)

Therefore, we obtained that ∞-norm is the dual of 1-norm.

2.3.4 �1-norm based Approach

When an appropriate norm is used for measuring the distance between the
two parallel bounding planes for the sets being separated, SVMs does indi-
rectly suppress components of the normal vector w. In the SVM approach
the term ‖w‖′

2 is added to the objective function of (2.10) the same way the
term ‖w‖0 is added in (2.9). Here, ‖ · ‖′ is the dual of some norm on Rn

used to measure the distance between the two bounding planes.
The following theorem [59] gives an explicit form for the projection of an
arbitrary point on a plane using a general norm in order to measure the
distance between the point and its projection:
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Theorem 2.3.3. Let q be any point in Rn not on the plane:

P = {x | wTx = γ}, 0 �= w ∈ Rn, γ ∈ R .

A projection p(q) ∈ P using a general norm ‖ · ‖ on Rn is given by:

p(q) = q − wT q − γ

‖w‖′ y(w), (2.29)

where ‖ · ‖′ is the dual norm of ‖ · ‖ and:

y(w) ∈ arg max
‖y‖=1

wT y . (2.30)

The distance between q and its projection p(q) is

‖q − p(q)‖ =
|wT q − γ|

‖w‖′ . (2.31)

The distance between the two bounding planes is given in the following
corollary:

Corollary 2.3.2. Let ‖ · ‖ be a norm in Rn. The distance d between the
two bounding planes wTx = γ + 1 and wTx = γ − 1 is equal to 2

‖w‖′ .

Proof. Consider two points q1 and q2 belonging to wTx = γ + 1 and
wTx = γ − 1 respectively. Suppose these points have the same projection
on P :

p(q1) = p(q2) = p̄ .

By theorem 2.3.3, the distance d between the two planes is obtained as
follows:

d = ‖q1 − q2‖ = ‖q1 − p̄− (q2 − p̄)‖ =

=
|wT q1 − γ − (wT q2 − γ)| · ‖y(w)‖

‖w‖′ =
2

‖w‖′ .
�

The separating plane P (2.4) lies halfway between the two bounding planes
wTx = γ+1 and wTx = γ− 1 and, as shown in corollary 2.3.2, the distance
between these planes is exactly 2

‖w‖′ . Hence, the term ‖w‖′
2 is added to the
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objective function of (2.10) in order to drive up the distance between the
two planes, thus getting a better separation. The following mathematical
programming formulation for SVM is given:

min
w,γ,y,z

(1 − λ)(
eT y

m
+
eT z

k
) +

λ

2
‖w‖′

s.t. −Aw + eγ + e ≤ y
Bw − eγ + e ≤ z
y ≥ 0, z ≥ 0

(2.32)

with λ ∈ [0, 1). If the ∞-norm is used to measure the distance between
the planes, the dual norm is the �1-norm which leads to the following linear
programming problem [10]:

min
w,γ,y,z,s

(1 − λ)(
eT y

m
+
eT z

k
) +

λ

2
eT s

s.t. −Aw + eγ + e ≤ y
Bw − eγ + e ≤ z
−s ≤ w ≤ s
y ≥ 0, z ≥ 0

(2.33)

with λ ∈ [0, 1). The main difference with respect to a classical SVM is the
use of the ∞-norm instead of the �2-norm to measure the distance between
the two bounding planes and the change of the quadratic regularization
term ‖w‖2

2 with ‖w‖1 in (2.32). This new term induces big differences in
the outcome of the optimization. In fact, the solutions obtained by means
of (2.33) are much sparser than those obtained by using the classical SVM
approach [10].

2.3.5 Approximating the l0-norm by the Standard Sigmoid
Function

In [57], Mangasarian proposed a continuous approximation of the step func-
tion in (2.10) using the standard sigmoid function:

v(t) = (e+ ε−αt)−1 . (2.34)
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This leads to the following mathematical programming problem:

min
w,γ,y,z,v

(1 − λ)(
eT y

m
+
eT z

k
) + λ

n∑
i=1

(1 + ε−αvi)−1

s.t. −Aw + eγ + e ≤ y
Bw − eγ + e ≤ z
−v ≤ w ≤ v
y ≥ 0, z ≥ 0

(2.35)

with λ ∈ [0, 1). As the objective of this problem is neither concave nor
convex, it must be solved by means of a nonlinear optimization code.

2.3.6 A Concave Exponential Approximation of the �0-norm

Another way to solve problem 2.10 is replacing the step function with a
concave exponential function [57]. Thus the following concave programming
problem is obtained:

min
w,γ,y,z,v

(1 − λ)(
eT y

m
+
eT z

k
) + λ

n∑
i=1

(1 − ε−αvi)

s.t. −Aw + eγ + e ≤ y
Bw − eγ + e ≤ z
−v ≤ w ≤ v
y ≥ 0, z ≥ 0

(2.36)

with λ ∈ [0, 1). The replacement of (2.10) by the smooth concave problem
(2.36) is well-motivated (see [11]) both from a theoretical and a computa-
tional point of view:

- for sufficiently high values of the parameter α there exists a vertex
solution of (2.36) which provides a solution of the original problem
(2.10), and in this sense the approximating problem (2.36) is equivalent
to the given nonsmooth problem (2.10), as already shown in theorem
1.2.4;

- because its objective function is a differentiable concave function, and
has a vertex solution, it is possible to use the Successive Linear Approx-
imation (SLA) algorithm. This algorithm is guaranteed to converge
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to a vertex stationary point of (2.36) in a finite number of iterations
(this convergence result was proved for a general class of concave pro-
gramming problems, See theorem 1.2.5); thus the algorithm requires
the solution of a finite sequence of linear programs for computing a
stationary point of (2.36), and this may be quite advantageous from a
computational point of view.

Here is an outline of the SLA algorithm for feature selection, where T is the
feasible set of the problem (2.36):

SLA Algorithm for Feature Selection (Concave Exponential Ap-
proximation)

Initialization.Choose λ ∈ [0, 1). Start with a random (w0, γ0).
Set y0 = (−Aw0 + eγ0 + e)+, z0 = (Bw0 − eγ0 + e)+ and v0 = |w0|.

1. Having (wk, γk, yk, zk, vk) determine (wk+1, γk+1, yk+1, zk+1, vk+1) by
solving the linear program:

min
(w,γ,y,z,v)∈T

(1 − λ)(
eT y

m
+
eT z

k
) + λα(ε−αvk

)T (v − vk) (2.37)

2. If (wk, γk, yk, zk, vk) ∈ T and

(1− λ)(
eT (yk+1 − yk)

m
+
eT (zk+1 − zk)

k
) + λα(ε−αvk

)T (vk+1 − vk) = 0

then STOP.

3. Go to step 1.

By Theorem 1.2.5 we have the following finite termination result for this
version of the SLA algorithm:

Corollary 2.3.3. The SLA algorithm for problem (2.36) generates a finite
sequence (wk, γk, yk, zk, vk) with strictly decreasing objective function val-
ues and terminates at a step k̄ satisfying the minimum principle necessary
optimality condition:

(1 − λ)(eT (y−yk̄)
m + eT (z−zk̄)

k ) + λα(ε−αvk̄
)T (v − vk̄) ≥ 0,∀ (w, γ, y, z, v) ∈ T.
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2.3.7 A Logarithmic Approximation of the �0-norm

A similar concave optimization-based approach has been proposed in [90],
where the idea is that of using the logarithm function instead of the step
function, and this leads to a concave smooth problem of the form:

min
w,γ,y,z,v

(1 − λ)(
eT y

m
+
eT z

k
) + λ

n∑
i=1

log(ε+ vi)

s.t. −Aw + eγ + e ≤ y
Bw − eγ + e ≤ z
−v ≤ w ≤ v
y ≥ 0, z ≥ 0

(2.38)

with λ ∈ [0, 1) and 0 < ε� 1. Similarly to [?], the SLA algorithm has been
applied to solve (2.38). We now state the version of SLA algorithm using a
logarithmic approximation of the �0-norm; with T we indicate the feasible
set of the problem (2.38):

SLA Algorithm for Feature Selection (Logarithmic Approxima-
tion)

Initialization. Choose λ ∈ [0, 1). Start with a random (w0, γ0).
Set y0 = (−Aw0 + eγ0 + e)+, z0 = (Bw0 − eγ0 + e)+ and v0 = |w0|.

1. Having (wk, γk, yk, zk, vk) determine (wk+1, γk+1, yk+1, zk+1, vk+1) by
solving the linear program:

min
(w,γ,y,z,v)∈T

(1 − λ)(
eT y

m
+
eT z

k
) + λ

n∑
i=1

vi − vk
i

ε+ vk
i

(2.39)

2. If (wk, γk, yk, zk, vk) ∈ T and

(1 − λ)(
eT (yk+1 − yk)

m
+
eT (zk+1 − zk)

k
) + λ

n∑
i=1

vi − vk
i

ε+ vk
i

= 0

then STOP.

3. Go to step 1.
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By Theorem 1.2.5 we have for this version of the SLA algorithm the same
finite termination result we obtained in the previous section:

Corollary 2.3.4. The SLA algorithm for problem (2.38) generates a finite
sequence (wk, γk, yk, zk, vk) with strictly decreasing objective function val-
ues and terminates at a step k̄ satisfying the minimum principle necessary
optimality condition:

(1 − λ)(
eT (y − yk̄)

m
+
eT (z − zk̄)

k
) + λ

n∑
i=1

vi − vk
i

ε+ vk
i

≥ 0,∀ (w, γ, y, z, v) ∈ T.

Formulation (2.38) is practically motivated by the fact that, due to the form
of the logarithm function, it is better to increase one variable vi while setting
to zero another one rather than doing some compromise between both, and
this should facilitate the computation of a sparse solution. A relation of
(2.38) with the minimization of the zero-norm has been given in [?].

2.3.8 Feature Selection as a Linear Program with Equilib-
rium Constraints

By means of the following lemma [57], it is possible to give an exact refor-
mulation of problem (2.10) as a linear program with equilibrium constraints
(LPEC)[55, 57]:

Lemma 2.3.1. Let a ∈ Rm. Consider the following problem:

(r, u) = arg min
r,u

{eT r|0 ≤ r ⊥ u− a ≥ 0, 0 ≤ u ⊥ −r + e ≥ 0} . (2.40)

Then r = a∗, u = a+.

Proof. The constraints considered in the minimization problem constitute
the Karush-Kuhn-Tucker condition for the dual programs:

max
r

{aT r|0 ≤ r ≤ e} min
u

{eTu | u ≥ a, u ≥ 0} (2.41)

These two problems are solved by

ri =

⎧⎨
⎩

0 for ai < 0
ri ∈ [0, 1] for ai = 0, u = a+

1 for ai > 0
(2.42)
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As the objective function eT r is minimized in (2.40), ri = 0 for ai = 0, thus
giving r = a∗ . �

Using this lemma, problem (2.10) can be rewritten in the equivalent form
of a linear program with equilibrium constraints:

min
w,γ,y,z,v

(1 − λ)(
eT y

m
+
eT z

k
) + λeT r

s.t. −Aw + eγ + e ≤ y
Bw − eγ + e ≤ z
−v ≤ w ≤ v
y ≥ 0, z ≥ 0
0 ≤ r ⊥ u− v ≥ 0
0 ≤ u ⊥ −r + e ≥ 0

(2.43)

with λ ∈ [0, 1). As problem (2.43) contains complementarity constraints,
and the general linear complementarity problem is NP-complete [18], it is
NP-hard in general. In order to make this problem tractable, the comple-
mentarity terms rT (u − v) and uT (−r + e) are moved into the objective
function as a positive penalty term

−rTv + eTu

with penalty parameter µ ∈ (0, 1). The new formulation of the problem is:

min
w,γ,y,z,v,u,r

(1 − µ)((1 − λ)(
eT y

m
+
eT z

k
) + λeT r) + µ(−rTv + eTu)

s.t. −Aw + eγ + e ≤ y
Bw − eγ + e ≤ z
−v ≤ w ≤ v
y ≥ 0, z ≥ 0
0 ≤ r, u− v ≥ 0
0 ≤ u, −r + e ≥ 0

(2.44)
It is easy to see that the step function is modeled exactly when the penalty
term −rTv + eTu = 0. This parametric bilinear program can be easily
solved by means of an algorithm requiring the solution of a finite succession
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of linear problems and terminating at a stationary point [7]. The algorithm
can be applied as follows:

Bilinear Algorithm for Feature Selection

Initialization. Choose λ ∈ [0, 1), µ ∈ (0, 1). Start with a point
(w0, γ0, y0, z0, v0, r0, u0) belonging to the feasible set of (2.44).

1. Having (wk, γk, yk, zk, vk, rk, uk) determine the next iterate by solving
the two linear programs:

rk+1 ∈ arg min
r

{(1 − µ)λeT r − µvkT
r | 0 ≤ r ≤ e}

(wk+1, γk+1, yk+1, zk+1, vk+1, rk+1, uk+1) solution of

min
w,γ,y,z,v,u

(1 − µ)(1 − λ)(
eT y

m
+
eT z

k
) + µ(−rk+1T

v + eTu)

s.t. −Aw + eγ + e ≤ y
Bw − eγ + e ≤ z
−v ≤ w ≤ v
y ≥ 0, z ≥ 0
0 ≤ u, u− v ≥ 0

2.Stop when:

(1 − µ)((1 − λ)(
eT (yk+1 − yk)

m
+
eT (zk+1 − zk)

k
) + λeT (rk+1 − rk))+

+µ(−rk+1T
vk+1 + rkT

vk + eT (uk+1 − uk)) = 0

The parameter µ is chosen as the smallest one in (0, 1) such that the following
complementarity condition holds at termination for the stationary point
(wk̄, γk̄, yk̄, zk̄, vk̄, rk̄, uk̄) found by means of the bilinear algorithm:

−rk̄T
vk̄ + eTuk̄ = rk̄T

(uk̄ − vk̄) + uk̄T
(rk̄ + e) = 0 .

The following theorem shows that the algorithm terminates at a stationary
point in a finite number of steps [7]:
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Theorem 2.3.4. For a fixed λ ∈ [0, 1) and µ ∈ (0, 1), the bilinear algorithm
for feature selection terminates in a finite number of steps at a stationary
point (wk̄, γk̄, yk̄, zk̄, vk̄, rk̄, uk̄) satisfying the following necessary optimality
condition:

(1 − µ)((1 − λ)(
eT (y − yk)

m
+
eT (z − zk)

k
) + λeT (r − rk+1))+

+µ(−rk+1T
(v − vk) + (r − rk+1)

T
vk + eT (u− uk)) ≥ 0

for all feasible points (w, γ, y, z, v, r, u).
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Chapter 3

Concave Programming for
Minimizing the Zero-Norm
over Polyhedral Sets

Given a non empty polyhedral set, we consider the problem of finding a
vector belonging to it and having the minimum number of nonzero compo-
nents, i.e., a feasible vector with minimum zero-norm. This combinatorial
optimization problem is NP-Hard and arises in various fields such as ma-
chine learning, pattern recognition, signal processing. We introduce two new
smooth approximations of the zero-norm function, where the approximating
functions are separable and concave. We first formally prove the equivalence
between the approximating problems and the original nonsmooth problem.
To this aim, we preliminarly state in a general setting theoretical conditions
sufficient to guarantee the equivalence between pairs of problems. Moreover
we also define an effective and efficient version of the Frank-Wolfe algorithm
for the minimization of concave separable functions over polyhedral sets in
which variables which are null at an iteration remain zero for all the follow-
ing ones, with significant savings in computational time, and we prove the
global convergence of the method. Finally, we report the numerical results
on test problems showing both the usefulness of the new concave formula-
tions and the efficiency in terms of computational time of the implemented
minimization algorithm.
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3.1 The Zero-Norm Problem

In this section a formal description of the general problem of finding a vector
belonging to a given polyhedral set and having as few nonzero components as
possible will be given. As the problem is NP-complete, various approximate
formulations, which can be used in order to make the problem tractable,
will be described.

3.1.1 General Formulation

Given a polyhedral set, we consider the problem of finding a vector belonging
to it and having the minimum number of nonzero components. Formally,
the problem is

min
x∈Rn

‖x‖0

x ∈ P

(3.1)

where P ⊂ Rn is a non empty polyhedral set. This combinatorial optimiza-
tion problem is NP-Hard [3], and arises in various fields such as machine
learning (see, e.g., [40]), pattern recognition (see, e.g., [87]), signal process-
ing (see, e.g., [26]).

3.1.2 Concave Approximations of the Zero-Norm

In order to make the problem tractable, the simplest approach can be that
of replacing the zero-norm, which is a nonconvex discontinuous function, by
the �1 norm thus obtaining the linear programming problem

min
x,y∈Rn

n∑
i=1

yi

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n,

(3.2)
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which can be efficiently solved even when the dimension of the problem is
very large. Under suitable assumptions on the polyhedral set P (defined
by an underdetermined linear system of equations) it is possible to prove
that a solution of (3.1) can be obtained by solving (3.2) (see, e.g., [38]).
However, these assumptions may be not satisfied in many cases, and some
experiments concerning machine learning problems and reported in [10] show
that a concave optimization-based approach performs better than that based
on the employment of the �1 norm.
In order to illustrate the idea underlying the concave approach, we observe
that the objective function of problem (3.1) can be written as follows

‖x‖0 =
n∑

i=1

s(|xi|)

where s : R→ R+ is the step function such that s(t) = 1 for t > 0 and s(t) =
0 for t ≤ 0. The nonlinear approach experimented in [10] was originally
proposed in [57], and is based on the idea of replacing the discontinuous step
function by a continuously differentiable concave function v(t) = 1 − e−αt,
with α > 0, thus obtaining a problem of the form

min
x,y∈Rn

n∑
i=1

(1 − e−αyi)

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n.

(3.3)

The replacement of (3.1) by the smooth concave problem (3.3) is well-
motivated see [57]) both from a theoretical and a computational point of
view:

- for sufficiently high values of the parameter α there exists a vertex
solution of (3.3) which provides a solution of the original problem
(3.1), and in this sense the approximating problem (3.3) is equivalent
to the given nonsmooth problem (3.1);

- the Frank-Wolfe algorithm [34] with unitary stepsize is guaranteed to
converge to a vertex stationary point of (3.3) in a finite number of iter-
ations (this convergence result was proved for a general class of concave
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programming problems); thus the algorithm requires the solution of a
finite sequence of linear programs for computing a stationary point of
(3.3), and this may be quite advantageous from a computational point
of view.

A similar concave optimization-based approach has been proposed in [90],
where the idea is that of using the logarithm function instead of the step
function, and this leads to a concave smooth problem of the form

min
x,y∈Rn

n∑
i=1

ln(ε+ yi)

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n,

(3.4)

with 0 < ε� 1. Formulation (3.4) is practically motivated by the fact that,
due to the form of the logarithm function, it is better to increase one variable
yi while setting to zero another one rather than doing some compromise be-
tween both, and this should facilitate the computation of a sparse solution.
A relation of (3.4) with the minimization of the zero-norm has been given in
[90], and similarly to [57], the Frank-Wolfe algorithm with unitary stepsize
has been applied to solve (3.4), and good computational results have been
obtained.
In section 3.2 we derive new results on the equivalence, in a sense to be
made more precise later, between a specific optimization problem and a
parametrized family of problems. These results allow us to derive, within
a general framework, results about two previously known families of ap-
proximations schemes for the zero-norm problem. Then we introduce two
new families of approximation problems for which, thanks to the theory
developed in section 3.2, it is possible to obtain convergence results. In
section 3.3.6 after a brief review of the well known Frank-Wolfe method,
we derive some new theoretical results having an important impact on the
computational efficiency of the method when applied to concave optimiza-
tion over polyhedra. In particular we prove that once the algorithm sets
a variable to zero, it will not change this variable any more, thus allow-
ing for a dimensionality reduction which greatly increments the speed of
the procedure. We formally prove the global convergence of this modified
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version of the Frank-Wolfe method. Finally, in section 3.4 we report the
numerical results on test problems showing both the usefulness of the new
concave formulations and the efficiency in terms of computational time of
the implemented minimization algorithm.

3.2 Results on the Equivalence between Problems

In the first part of this section we state general conditions sufficient to
ensure that a problem depending on a vector of parameters is equivalent to a
given (unspecified) problem. Then we define two concave smooth problems
depending on some parameters, and we show (using the general results) that
these problems, for suitable values of their parameters, are equivalent to the
original nonsmooth problem (3.1).

3.2.1 General Results

Consider the problem
min
x∈T

g(x)
(3.5)

where g : Rn → R, T ⊆ Rn, and assume that it admits solutions. Let G� be
the set of such solutions.
Let f(·, u) : Rn → R be a function depending on a vector of parameters
u ∈ U ⊆ Rm. For any u ∈ U , consider the following problem

min
x∈T

f(x, u)
(3.6)

Assumption 3.2.1. There exists a finite set S� ⊂ Rn having the property
that, for any u ∈ U , a point x(u) ∈ S� exists such that

x(u) ∈ arg min
x∈T

f(x, u). (3.7)

Theorem 3.2.1. Let {uk} ⊂ U be an infinite sequence such that for every
x̃ ∈ T \G� and every x� ∈ G�, for all but finitely many indices k we have:

f(x̃, uk) > f(x�, uk). (3.8)
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Then, under Assumption 3.2.1, there exists a finite index k̄ such that, for
any k ≥ k̄, problem (3.6), with u = uk, has a solution xk that also solves the
original problem (3.5).

Proof. Let x� ∈ G� be a solution of (3.5). In order to prove the thesis,
by contradiction let us assume that there exists a subsequence {uk}K such
that, for all k ∈ K, denoting by xk a point in S� such that

xk ∈ arg min
x∈T

f(x, uk), (3.9)

we have
g(xk) > g(x�). (3.10)

Since S� is finite, we can extract a further subsequence such that xk = x̄ for
all k ∈ K, and hence, from (3.10), we can write

g(x̄) > g(x�) . (3.11)

Thus x̄ ∈ T \G� and, as a consequence,

f(x̄, uk) > f(x�, uk) (3.12)

for all k sufficiently large. But this contradicts (3.9). �

Using the above theorem we can state the next proposition.

Proposition 3.2.1. Let {uk} ⊂ U be an infinite sequence such that

lim
k→∞

f(x̃, uk) − f(x�, uk)
a+ |f(x�, uk)| = C · [g(x̃) − g(x�)] ∀x̃ ∈ T, x� ∈ G� (3.13)

with a ≥ 0 and C > 0. Under Assumption 3.2.1, there exists a finite index
k̄ such that, for any k ≥ k̄, problem (3.6), with u = uk, has a solution xk

that also solves the original problem (3.5).

Proof. If x̃ ∈ T \G� then the right hand side in (3.13) is strictly positive.
From this it follows that, for k large enough, also f(x̃, uk) − f(x�, uk) will
be strictly positive. �

As immediate consequence of Proposition 3.2.1 we have the following result.
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Corollary 3.2.1. Let {uk} ⊂ U be an infinite sequence such that

lim
k→∞

f(x, uk) = g(x) ∀x ∈ T. (3.14)

Under Assumption 3.2.1, there exists a finite index k̄ such that, for any
k ≥ k̄, problem (3.6), with u = uk, has a solution xk that also solves the
original problem (3.5).

Under additional assumptions on the feasible set T and on the objective
function f(x, u) we can prove the following results.

Proposition 3.2.2. Suppose that the feasible set T is a polyhedral set and
that it admits a vertex. Assume that, for any u ∈ U , the objective function
of (3.6) is concave, continuously differentiable, and bounded below on T . Let
{uk} ⊂ U be an infinite sequence such that

lim
k→∞

f(x̃, uk) − f(x�, uk)
a+ |f(x�, uk)| = C · [g(x̃) − g(x�)] ∀ x̃ ∈ T, x� ∈ G� (3.15)

with a ≥ 0 and C > 0. There exists a finite index k̄ such that, for any k ≥ k̄,
problem (3.6), with u = uk, has a solution xk that also solves the original
problem (3.5).

Proof. Let S� be the set of vertices of T . Since the objective function
of (3.23) is concave, continuously differentiable, and bounded below on T , it
follows that S� satisfies Assumption 3.2.1, and hence the thesis follows from
Proposition 3.2.1. �

Corollary 3.2.2. Suppose that the feasible set T is a polyhedral set and that
it admits a vertex. Assume that, for any u ∈ U , the objective function of
(3.6) is concave, continuously differentiable, and bounded below on T . Let
{uk} ⊂ U be an infinite sequence such that

lim
k→∞

f(x, uk) = g(x) ∀x ∈ T. (3.16)

There exists a finite index k̄ such that, for any k ≥ k̄, problem (3.6), with
u = uk, has a solution xk that also solves the original problem (3.5).

61



Chapter 3 Results on the Equivalence between Problems

3.2.2 Concave Formulations Equivalent to the Zero-Norm
Problem

For our convenience we rewrite the zero-norm problem as follows:

min
x∈Rn,y∈Rn

‖y‖0

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n

(3.17)

We state the following assumption.

Assumption 3.2.2. The polyhedral set P has at least a vertex.

We denote by T the feasible set of (3.17), i.e.,

T =
{(

x
y

)
∈ R2n : x ∈ P, −yi ≤ xi ≤ yi i = 1, . . . , n

}
. (3.18)

Assumption 3.2.2 implies that the polyhedral feasible set T has at least a
vertex.
We introduce two concave formulations related to the ideas developed in
[57] and [90], respectively.

Formulation I

min
x∈Rn,y∈Rn

n∑
i=1

(yi + ε)p

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n

(3.19)

with 0 < p < 1, and 0 < ε.

We observe that:

- given p and ε, the objective function is concave, continuously differen-
tiable, bounded below on the feasible set set;

- lim
p→0

n∑
i=1

yp
i = ‖y‖0, so that the objective function can be view as a

smooth approximation of the zero-norm.
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The following proposition shows the equivalence between the approximating
problem (3.19) and the zero-norm problem (3.17).

Proposition 3.2.3. There exist values p̄ > 0, ε̄ > 0, γ̄ > 0 such that, for
any pair (p, ε)T ∈ R2

+ and satisfying

p ≤ p̄

ε ≤ ε̄

εp ≤ γ̄,

(3.20)

problem (3.19) has a vertex solution (x(p, ε), y(p, ε))T which is also solution
of the original problem (3.17).

Proof. In order to prove the thesis, assume by contradiction that there
exists a sequence {(pk, εk, γk)T } converging to (0, 0, 0)T , with

(εk)p
k ≤ γk, (3.21)

and such that, any vertex solution of (3.19), with p = pk and ε = εk, is not
a solution of (3.17).

Set z = (x, y)T , u = (p, ε)T , g(z) = ‖y‖0, f(z, u) =
n∑

i=1

(yi + ε)p. Problems

(3.17) and (3.19) can be written as follows

min
z∈T

g(z)
(3.22)

min
z∈T

f(z, u)
(3.23)

where T is defined in (3.18). From (3.21), as γk → 0, we can write

lim
k→∞

(εk)p
k

= 0. (3.24)

Let {uk} =
{(
pk, εk

)T
}

be the sequence convergent to (0, 0)T and satisfying

condition (3.24). Since for any y ∈ R+ we have

lim
k→∞

(
yi + εk

)pk

=
{

1 if yi > 0
0 if yi = 0
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we obtain
lim

k→∞
f(z, uk) = g(z) ∀z ∈ T. (3.25)

For any u ∈ U the objective function of (3.23) is concave, continuously differ-
entiable, and bounded below on T , so that, recalling (3.25), the assumptions
of Corollary 3.2.2 hold and hence, for any k sufficiently large there exists a
vertex solution

(
xk, yk

)T which is also a solution of (3.22), in contradiction
with our initial assumption. �

Formulation II

min
x∈Rn,y∈Rn

−
n∑

i=1

(yi + ε)−p

x ∈ P

−yi ≤ xi ≤ yi i = 1, . . . , n

(3.26)

with 1 ≤ p, and 0 < ε.

We observe that:

- given p and ε, the objective function is concave, continuously differen-
tiable, bounded below on the feasible set set;

- similarly to the logarithm functions appearing in problem (3.4), the
functions −(yi + ε)−p favor sparse vectors rather than points having
many small nonzero components; indeed, when a variable is set to zero
the decrease of the function is strong compared to the increase for a
larger value of another variable;

- differently from the logarithm functions of problem (3.4), the functions
−(yi + ε)−p are bounded above for positive values of the independent
variables, and this may be a useful additional feature for finding sparse
solutions.

The equivalence between problem (3.26) and the original problem (3.17) is
formally proved below.

Proposition 3.2.4. Assume that problem (3.17) admits a solution y� such
that ‖y�‖0 < n. There exists a value ε̄ > 0 such that, for any ε ∈ (0, ε̄],
problem (3.26) has a vertex solution (x(ε), y(ε))T which is also solution of
the original problem (3.17).
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Proof. In order to prove the thesis, assume by contradiction that there
exists a sequence {εk} converging to zero and such that, any vertex solution
of (3.26), with ε = εk, is not a solution of (3.17).

Set z = (x, y)T , u = ε, g(z) = ‖y‖0, f(z, u) = −
n∑

i=1

(yi + u)−p. Problems

(3.17) and (3.26) can be written as follows

min
z∈T

g(z)
(3.27)

min
z∈T

f(z, u)
(3.28)

where T is defined in (3.18). Let {uk} = {εk} be the sequence convergent
to 0. For any z ∈ T we have

f(z, u) = −
∑

i:yi=0

u−p −
∑

i:yi �=0

(yi + u)−p = −(n− ‖y‖0)u−p −
∑

i:yi �=0

(yi + u)−p,

so that, recalling that uk → 0 for k → ∞, we can write for each z̃ ∈ T and
for each z� ∈ G� (being G� the set of optimal solutions for problem (3.17))

lim
k→∞

f(z̃, uk) − f(z�, uk)

|f(z�, uk)|

= lim
k→∞

−(n − ‖ỹ‖0)(uk)−p −
∑

i:ỹi �=0

(ỹi + uk)−p + (n − ‖y�
i ‖0)(uk)−p +

∑
i:y�

i �=0

(y�
i + uk)−p

| − (n − ‖y�‖0)(uk)−p −
∑

i:y�
i �=0

(y�
i + uk)−p|

=
‖ỹ‖0 − ‖y�‖0

n − ‖y�‖0
= C · [g(z̃) − g(z�)]

(3.29)

For any u ∈ U = R+ the objective function of (3.28) is concave, continu-
ously differentiable, and bounded below on T , so that, recalling (3.29), the
assumptions of Proposition 3.2.2 hold (by setting a equal to zero) and hence,
for any k sufficiently large there exists a vertex solution

(
xk, yk

)T which is
also a solution of (3.27), in contradiction with our initial assumption. �

We terminate the section by showing that the general results allow us to
prove the equivalence between the smooth concave problems (3.3) and (3.4)

65



Chapter 3 Results on the Equivalence between Problems

and the given nonsmooth problem (3.17). We remark that the equivalence
between (3.3) and (3.17) was formally proved in [57], while the equivalence
between (3.4) and (3.17) was not formally proved.

Proposition 3.2.5. There exists a value ᾱ > 0 such that, for any α ≥ ᾱ,
problem (3.3) has a vertex solution (x(α), y(α))T which is also solution of
the original problem (3.17).

Proof. In order to prove the thesis, assume by contradiction that there
exists a sequence {αk} such that αk → ∞, and any vertex solution of (3.3),
with α = αk, is not a solution of (3.17).

Set z = (x, y)T , u = α, g(z) = ‖y‖0, f(z, u) =
n∑

i=1

(1 − e−uyi) and consider

the problems
min
z∈T

g(z)
(3.30)

min
z∈T

f(z, u)
(3.31)

where T is defined in (3.18). Let {uk} = {αk} be the sequence convergent
to +∞. Since for any y ∈ R+ we have

lim
k→∞

(
1 − e−ukyi

)
=

{
1 if yi > 0
0 if yi = 0

we obtain
lim

k→∞
f(z, uk) = g(z) ∀z ∈ T. (3.32)

For any u ∈ U = R+ the objective function of (3.31) is concave, continu-
ously differentiable, and bounded below on T , so that, recalling (3.32), the
assumptions of Corollary 3.2.2 hold and hence, for any k sufficiently large
there exists a vertex solution

(
xk, yk

)T which is also a solution of (3.30), in
contradiction with our initial assumption. �

Proposition 3.2.6. Assume that problem (3.17) admits a solution y� such
that ‖y�‖0 < n. There exists a value ε̄ > 0 such that, for any ε ∈ (0, ε̄],
problem (3.4) has a vertex solution (x(ε), y(ε))T which is also solution of the
original problem (3.17).
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Proof. In order to prove the thesis, assume by contradiction that there
exists a sequence {εk} such that εk → 0, and any vertex solution of (3.4),
with ε = εk, is not a solution of (3.17).

Set z = (x, y)T , u = ε, g(z) = ‖y‖0, f(z, u) =
n∑

i=1

log(yi + u) and

consider the problems
min
z∈T

g(z)
(3.33)

min
z∈T

f(z, u)
(3.34)

where T is defined in (3.18). Let {uk} = {εk} be the sequence convergent
to 0. For any z ∈ T we have

f(z, u) =
∑

i:yi=0

log u+
∑

i:yi �=0

log(yi + u) = (n−‖y‖0) log u+
∑

i:yi �=0

log(yi +u),

so that, recalling that uk → 0 for k → ∞, we can write for each z̃ ∈ T, z� ∈
G� (being G� the set of optimal solutions for problem (3.17))

lim
k→∞

f(z̃, uk) − f(z�, uk)

|f(z�, uk)|

= lim
k→∞

(n − ‖ỹ‖0) log uk +
∑

i:ỹi �=0

log(ỹi + uk) − (n − ‖y�‖0) log uk −
∑

i:y�
i
�=0

log(y�
i + uk)

|(n − ‖y�‖0) log uk +
∑

i:y�
i �=0

log(y�
i + uk)|

=
‖ỹ‖0 − ‖y�‖0

n − ‖y�‖0
= C · [g(z̃) − g(z�)]

(3.35)

For any u ∈ U = R+ the objective function of (3.34) is concave, continu-
ously differentiable, and bounded below on T , so that, recalling (3.35), the
assumptions of Proposition 3.2.2 hold (by setting a equal to zero) and hence
for any k sufficiently large there exists a vertex solution

(
xk, yk

)T which is
also a solution of (3.33), in contradiction with our initial assumption. �

For easier reference, in Figure 3.1 we report the graphs of the four concave
functions we have analyzed.
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Figure 3.1: Graph of functions (3.3) with α = 5, (3.4) with ε = 10−9, (3.19)
with ε = 10−9, p = 0.1, (3.26) with ε = 10−9, p = 1

3.3 The Frank-Wolfe Algorithm

The FrankWolfe algorithm is a well-known algorithm in operations research.
It was originally proposed by Marguerite Frank and Phil Wolfe in 1956 as
a procedure for solving quadratic programming problems with linear con-
straints. At each step the objective function is linearized and then a step is
taken along a feasible descent direction.
We first describe the algorithm and give some results about its convergence
to a stationary point. Then we analyze the case of minimizing a concave
function over a polyhedral set. In the last part of this section, we propose a
new efficient version of the Frank-Wolfe algorithm for minimizing a concave
separable function over a polyhedral set.
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3.3.1 A General Framework

Let us consider the constrained optimization problem:

min f(x)
s.t. x ∈ C

(3.36)

We make the following assumptions:

1. C is a non-empty compact convex set of Rn;

2. f(x) is a continuously differentiable function over C.

Herein, we describe the Conditional Gradient Method for solving problem
(3.36); this method is also known as the Frank-Wolfe Method [34].
Given a feasible point xk ∈ C, a feasible direction at xk that satisfies the
descent condition ∇f(xk)T (x − xk) < 0 can be generated by solving the
optimization problem:

min ∇f(xk)T (x− xk)
s.t. x ∈ C (3.37)

As we assumed compactness of set C, a solution xk ∈ C is guaranteed to
exist by Weierstrass Theorem. Therefore xk can be defined as follows:

xk = arg min
x∈C

∇f(xk)T (x− xk)

and two different cases can occur:

∇f(xk)T (xk − xk)

⎧⎨
⎩

= 0 (a)

< 0 (b)
(3.38)

When case (a) occurs, we have that minimum principle necessary optimality
conditions are satisfied:

0 = ∇f(xk)T (xk − xk) ≤ ∇f(xk)T (x− xk) ∀x ∈ C

and xk is a stationary point.
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When case (b) occurs, the algorithm does not stop at iteration k; a feasible
direction at xk, which is also a descent direction, can then be defined

dk = xk − xk

and a new feasible vector is generated according to

xk+1 = xk + αkdk

where αk ∈ (0, 1].

3.3.2 Stepsize rules

We report some of the most popular rules for choosing the stepsize αk:

1. Minimization Rule
Here αk is the value obtained by minimizing the function along the
direction dk,

f(xk + αkdk) = min f(xk + αdk) .

Minimization rule is typically implemented by means of line search
algorithms. In practice, minimizing stepsize is not computed exactly,
and it is replaced by a stepsize αk satisfying some termination criteria.

2. Armijo Rule
Here fixed scalars �k, δ and γ, with δ ∈ (0, 1) and γ ∈ (0, 1/2), are
chosen, and αk = δmk�k, where mk is the first nonnegative integer m
for which

f(xk + αdk) ≤ f(xk) + γα∇f(xk)T dk .

The stepsizes δm�k, m = 1, 2, . . . , are tried successively until the
above inequality is satisfied for m = mk.

3. Constant Stepsize
Here a fixed stepsize

αk = 1, k = 0, 1, . . .

is used. The choice is not as simple or as restrictive as it may seem. In
fact, a constant unit stepsize can always be used in a feasible direction
method by defining appropriately the direction dk.
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3.3.3 Convergence Analysis

The following Proposition provides an analysis of convergence behavior of
the Frank-Wolfe Algorithm.

Proposition 3.3.1. Let {xk} be a sequence generated by the Frank-Wolfe
Algorithm

xk+1 = xk + αkdk.

Assume that method used for choosing stepsize αk satisfies the following
conditions:

(i) f(xk+1) < f(xk), with ∇f(xk) �= 0;

(ii) if ∇f(xk) �= 0 ∀ k, then we have

lim
k→∞

∇f(xk)T dk

‖dk‖ = 0 .

Then every limit point x̄ of {xk} is a stationary point.

Proof. As we assumed compactness of C, a limit point x̄ ∈ C exists
and the norm of vector dk is bounded above

‖dk‖ = ‖x̄k − xk‖ ≤ ‖x̄k‖ + ‖xk‖ .
We can now define a subsequence {xk}K such that

lim
k→∞,k∈K

xk = x̄, lim
k→∞,k∈K

dk = d̄ .

By using hypothesis (ii), we obtain

∇f(x̄)T d̄ = 0.

Let k be a direction generated by the Frank-Wolfe method; we have

∇f(xk)Tdk ≤ ∇f(xk)T (x− xk), ∀ x ∈ C .

By taking the limit as k ∈ K, k → ∞,

0 = ∇f(x̄)T d̄ ≤ ∇f(x̄)T (x− x̄), ∀ x ∈ C .

It follows that every limit point is a stationary point.
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3.3.4 Convergence Results with Concave Differentiable Func-
tions

In this section we consider the problem (3.36), where we assume that:

1. C is a non-empty compact convex set of Rn;

2. f(x) is a differentiable concave function over C.

The Frank-Wolfe Algorithm remains basically the same. It is possible to
show convergence when:

a) a fixed stepsize αk = s with s ∈ (0, 1] is chosen;

b) a variable stepsize αk ∈ (ᾱ, 1] with ᾱ > 0 is chosen.

The following proposition shows convergence of the Frank-Wolfe Algorithm
with stepsize αk = s and s ∈ (0, 1] when a concave function is minimized
over a compact convex set:

Proposition 3.3.2. Let {xk} be a sequence generated by the Frank-Wolfe
algorithm

xk+1 = xk + αkdk ,

where a constant stepsize is chosen

αk = s, k = 0, 1, . . .

with s ∈ (0, 1). Then every limit point x̄ of {xk} is a stationary point.

Proof. we have from concavity of f :

f(xk+1) ≤ f(xk) + ∇f(xk)T (xk+1 − xk) < f(xk) .

Note that since {f(xk)} is monotonically decreasing, {f(xk)} either con-
verges to a finite value or diverges to −∞.
Let x̄ be a limit point of {xk}; since f is continuous f(x̄) is a limit point of
{f(xk)}, so it follows that the entire sequence converges to f(x̄). Therefore,
we obtain

f(xk) − f(xk+1) → 0

From concavity of f :

f(xk) − f(xk+1) ≥ −αk∇f(xk)T dk .
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Since αk is a constant stepsize, we have that

∇f(xk)T dk → 0 .

By Proposition 3.3.1 it follows that every limit point x̄ of {xk} is a stationary
point.

Let us consider the case when stepsize is variable over a finite interval. A
convergence result similar to the ones shown for constant stepsize can be
obtained:

Proposition 3.3.3. Let {xk} be a sequence generated by the Frank-Wolfe
Algorithm

xk+1 = xk + αkdk ,

where a variable stepsize is chosen

αk ∈ (ᾱ, 1], k = 0, 1, . . .

with ᾱ > 0. Then every limit point x̄ of {xk} is a stationary point.

Proof. It is a verbatim repetition of the proof of Proposition 3.3.2

From concavity of f , we have:

f(xk) − f(xk+1) ≥ −αk∇f(xk)T dk .

Since αk ∈ (ᾱ, 1] and ᾱ > 0, we have that

∇f(xk)T dk → 0 .

By Proposition 3.3.1 it follows that every limit point x̄ of {xk} is a stationary
point.

3.3.5 The Case of a Concave Function over a Polyhedral
Convex Set

Let us consider the problem

min f(x)
x ∈ P

(3.39)
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where P ⊂ Rn is a non empty polyhedral set, f : Rn → R is a concave,
continuously differentiable function, bounded below on P .
Herein, we describe a modified version of Frank-Wolfe algorithm, which con-
siders assumptions made above. By the concavity of f and its boundedness
from below on P , we have:

−∞ < inf
x∈P

f(x) − f(xk) ≤ f(x) − f(xk) ≤ ∇f(xk)T (x− xk), ∀ x ∈ P .

It follows that ∇f(xk)T (x − xk) is bounded below on P for any xk ∈ Rn.
Therefore, the linear program (3.37) is solvable, even if xk /∈ P . Thus, we
have:

xk = arg min
x∈C

∇f(xk)T (x− xk) .

We note that because xk ∈ P for k = 1, 2 . . . , it follows that only two cases
can occur:

∇f(xk)T (xk − xk)

⎧⎨
⎩

= 0 (a)

< 0 (b)
.

When case (a) occurs, we have that minimum principle necessary optimality
conditions are satisfied:

0 = ∇f(xk)T (xk − xk) ≤ ∇f(xk)T (x− xk) ∀ x ∈ P

and the algorithm terminates (provided xk ∈ P , which may not be the case
if xk = x0 /∈ P ).

When case (b) occurs, the algorithm does not stop at iteration k; a feasible
direction at xk, which is also a descent direction, can then be defined

dk = xk − xk

and we have from concavity of f :

f(xk) ≤ f(xk) + ∇f(xk)T (xk − xk) < f(xk) .
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Therefore, we obtain f(xk) < f(xk), and set xk+1 = xk , which is equivalent
to choose a constant stepsize αk = 1.

The Frank-Wolfe algorithm with unitary stepsize can be described as follows.

Frank-Wolfe - Unitary Stepsize (FW1) Algorithm

1. Let x0 ∈ Rn be the starting point;

2. For k = 0, 1, . . .,

if xk /∈ arg min
x∈P

∇f(xk)Tx then compute a vertex solution xk+1 of

min
x∈P

∇f(xk)Tx (3.40)

else exit.

The algorithm involves only the solution of linear programming problems,
and the following result, see [57], shows that the algorithm generates a finite
sequence and that it terminates at a stationary point.

Proposition 3.3.4. The Frank-Wolfe algorithm with unitary stepsize con-
verges to a vertex stationary point of problem (3.39) in a finite number of
iterations.

Proof. By Corollary 1.2.3 it follows that f has its minimum at a vertex
of the feasible region P . Since P has a finite number of vertices, {f(xk)} is
strictly decreasing and f(x) is bounded below on P , a vector xs ∈ P , such
that

∇f(xs)T (x− xs) ≥ 0, ∀ x ∈ P

must be generated after a finite number of steps.
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3.3.6 A New Version of the Frank-Wolfe Algorithm for Con-
cave Separable Functions

Now consider the problem

min f(x) =
n∑

j=1

fj(xj)

x ∈ P
xi ≥ 0, i ∈ I ⊆ {1, . . . , n}

(3.41)

where fj : R → R, for j = 1, . . . , n are concave, continuously differentiable
functions. We assume that f is bounded below on P .
We observe that problem (3.41) includes as particular cases the concave
programming problems presented in the preceding section.
The next proposition shows that, under suitable conditions on the concave
functions fj, the algorithm does not change a nonnegative variable once that
it has been fixed to zero.

Proposition 3.3.5. Let {x0, x1, . . . , xh} be any finite sequence generated
by the Frank-Wolfe algorithm with unitary stepsize. There exists a value M
such that, if i ∈ I and f

′
i (0) ≥M , then we have that

xk
i = 0 implies xk+1

i = . . . = xh
i = 0.

Proof. At each iteration k of the Frank-Wolfe algorithm the linear
problem to be solved is

min
∑

j:xk
j �=0

f ′j(x
k
j ) xj +

∑
j /∈I:xk

j =0

f ′j(0)xj +
∑

j∈I:xk
j =0

f ′j(0)xj

x ∈ P
xi ≥ 0, i ∈ I ⊆ {1, . . . , n}

(3.42)

Let xk+1 be a vertex solution of (3.42). For any i ∈ I such that xk
i = 0, by

(ii) of Proposition 3.6.1 it follows that there exists a value Mk such that, if
f

′
i (0) ≥Mk, then we have xk+1

i = 0. Thus, if i ∈ I, xk
i = 0 and f

′
i (0) ≥Mk,

then we obtain
xk+1

i = xk
i = 0.

Letting
M = max

0≤k≤h
{Mk},
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and assuming
f

′
i (0) ≥M

the thesis follows by induction. �

On the basis of Proposition 3.3.5 we can define the following version of the
Frank-Wolfe algorithm with unitary stepsize, where the linear problems to
be solved are of reduced dimension. We denote by Ω the feasible set of
problem (3.41), i.e.,

Ω = {x ∈ Rn : x ∈ P, xi ≥ 0, i ∈ I}.

Frank-Wolfe - Unitary Stepsize - Reduced Dimension (FW1-
RD) Algorithm

1. Let x0 ∈ Rn be the starting point;

2. For k = 0, 1, . . .,

let Ik = {i ∈ I : xk
i = 0}, P k = {x ∈ Ω : xi = 0 ∀i ∈ Ik}

if xk /∈ arg min
x∈P k

∇f(xk)Tx then compute a vertex solution xk+1 of

min
x∈P k

∇f(xk)Tx (3.43)

else exit.

Note that the linear programming problem (3.43) is equivalent to a lin-
ear problem of dimension n − |Ik|, and that Ik ⊆ Ik+1, so that the linear
problems to be solved are of nonincreasing dimensions. This yields obvious
advantages (shown in the next section) in terms of computational time. We
formally prove the finite convergence of the algorithm at a stationary point.

Proposition 3.3.6. There exists a value M such that, if f
′
j(0) ≥ M for

j = 1, . . . , n, then Algorithm FW1-RD converges to a vertex stationary point
of problem (3.41) in a finite number of iterations.
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Proof. Since f is a concave differentiable function and is bounded below
on Ω, we can write

−∞ < inf
x∈Ω

f(x) − f(xk) ≤ f(x) − f(xk) ≤ ∇f(xk)T (x− xk), ∀ x ∈ Ω.

Therefore, as P k ⊆ Ω, it follows that ∇f(xk)Tx is bounded below on the
polyhedral set P k and hence problem (3.43) admits a vertex solution xk+1,
so that Step 2 is well-defined.
We observe that the number of polyhedral sets P k is finite and hence the
number of vertex points generated by the algorithm is finite.
Now we show that xk /∈ arg min

x∈P k
∇f(xk)Tx implies f(xk+1) < f(xk). In-

deed, in this case we have ∇f(xk)T (xk+1 −xk) < 0, and hence, recalling the
assumptions on f , we can write

f(xk+1) ≤ f(xk) + ∇f(xk)T (xk+1 − xk) < f(xk). (3.44)

Since the number of points visited by the algorithm is finite, from (3.44)
we get that the algorithm terminates in a finite number k of iterations with
a point xk ∈ arg min

x∈P k
∇f(xk)Tx. We prove that xk is a stationary point.

Indeed, xk is a vertex solution of

min
∑

j:xk
j �=0

f ′j(x
k
j ) xj +

∑
j /∈Ik:xk

j =0

f ′j(0) xj

x ∈ Ω
xi = 0, i ∈ Ik

and by (i) of Proposition 3.6.1 it follows that there exists a value M such
that, if f

′
j(0) ≥M then xk is a solution of

min
∑

j:xk
j �=0

f ′j(x
k
j ) xj +

∑
j /∈Ik:xk

j =0

f ′j(0) xj +
∑

j∈Ik:xk
j =0

f ′j(0)xj

x ∈ Ω
(3.45)

Therefore we have

∇f(xk)Txk ≤ ∇f(xk)Tx ∀x ∈ Ω,

and this proves that xk is a stationary point of problem (3.41). �
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Concerning the separable concave objective functions of problems (3.3),
(3.4), (3.19), (3.26), we have for j = 1, . . . , n

- fj(yj ;α) = 1 − e−αyj and f
′
j(0) = α;

- fj(yj ; ε) = ln(yj + ε) and f
′
j(0) = 1/ε;

- fj(yj ; ε, p) = (yj + ε)p and f
′
j(0) = p(ε)p−1 with 0 < p < 1;

- fj(yj ; ε, p) = −(yj + ε)−p and f
′
j(0) = p(ε)−p−1 with 1 ≤ p;

Therefore, the assumption of Proposition 3.3.6 holds for suitable values of
the parameters of the above concave functions, so that Algorithm FW1-
RD can be applied to solve problems (3.3), (3.4), (3.19), (3.26). The results
obtained on computational experiments will be presented in the next section.

3.4 Computational experiments

In order to show both the usefulness of the new concave formulations and the
efficiency in terms of computational time of the new version of the Frank-
Wolfe algorithm for concave separable functions we report in this section
numerical results on various test problems.

3.4.1 Feature Selection Problems

In our computational experiments we have considered feature selection prob-
lems of linear classification models. Given two linearly separable sets of
points in a n−dimensional feature space, the problem is that of finding the
hyperplane that separates the two sets and utilizes as few of the feature as
possible. Formally, given two linearly separable sets

S1 = {ui ∈ Rn, i = 1, . . . , p} S2 = {vj ∈ Rn, j = 1, . . . , q},
the problem is

min
w∈Rn,θ∈R

‖w‖0

wTui + θ ≥ 1 i = 1, . . . , p
wT vj + θ ≤ −1 j = 1, . . . , q

(3.46)
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Thus, according to the notation adopted in the chapter, the problems we
used in our experiments take the form

min
x∈Rn,θ∈R

‖x‖0

A

(
x
θ

)
≥ e

(3.47)

where A ∈ Rm×(n+1), e ∈ Rm is a vector of ones.
We remark that the aim of the experiments has been that of evaluating the
effectiveness of various formulations in finding sparse vectors (possibly the
sparsest vectors) belonging to polyhedral sets. As said above, the class of
problems (3.47) considered in the experimentation derives from a specific
machine learning problem, that is the feature selection problem of linear
classifier models. Such a machine learning problem would require to in-
vestigate other important issues concerning, for instance, the generalization
capability of the linear classifier model determined. This aspect will not be
considered here, since it deserves particular attention and will be the object
of the next chapter.
We observe that the mixed integer linear programming problem

min
x∈Rn,θ∈R,δ∈{0,1}n

n∑
i=1

δi

A

(
x
θ

)
≥ e

−Mδi ≤ xi ≤Mδi i = 1, . . . , n

δi ∈ {0, 1} i = 1, . . . , n

(3.48)

is equivalent to problem (3.47) for sufficiently high values of M . Thus,
for relatively small dimensional test problems we can determine an optimal
solution of (3.47) by solving (3.48) by means of an exact method.

3.4.2 Test problems

P-random. For several values of n and m we randomly generated the
matrix A. In particular, each instance of (3.47) was generated as follows: we
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randomly defined an hyperplane in a n1-dimensional space, and we randomly
determined m1 points ui in an half-space (corresponding to labels +1) and
other m2 points vj in the other half-space (corresponding to labels -1), for
a total number of m = m1 +m2 points. We added to each of these vectors
a number n2 of random components, thus obtaining two linearly separable
sets, of cardinality m1 and m2 respectively, in the space of dimension n =
n1 +n2. In this way, the resulting problem (3.47) had the optimal objective
function value less or equal than n1 < n.

Colon cancer [2]. The colon cancer dataset contains 22 normal and 40
colon cancer tissues described by 2000 genes expression values extracted
from DNA microarray data.

Catalysis. In Catalysis Dataset targets represent the presence (or absence)
of catalytic activity of a protein. Inputs are gene expression levels of the
genes encoding those proteins. This version of the database was prepared
for the Pascal 2004 Evaluating Predictive Uncertainty Challenge. The data
are available at
http://predict.kyb.tuebingen.mpg.de/pages/home.php.

Nova. This dataset consists of 1754 articles collected from 20 different
newsgroups. There are 499 articles related to politics or religion topics and
1255 articles related to other topics. Input variables use a bag-of-words rep-
resentation with a vocabulary of approximately 17000 words. This version
of the database was prepared for the WCCI 2006 challenge on performance
prediction. The data are available at
http://clopinet.com/isabelle/Projects/modelselect/.

3.4.3 Experiments and Implementation Details

For each problem we performed experiments using:

- formulation (3.2), denoted by �1;

- formulation (3.3), denoted by exp, with α = 5;

- formulation (3.4), denoted by log, with ε = 10−9;

- formulation (3.19), denoted by Formulation I, with ε = 10−9 and p =
0.001;

81



Chapter 3 Computational experiments

- formulation (3.26), denoted Formulation II, with ε = 10−9 and p = 1.

We applied the Frank-Wolfe algorithm for solving the instances of (3.3),
while we used Algorithm FW1-RD, that is the version of the Frank-Wolfe
algorithm presented in the preceding section, for solving problems (3.4),
(3.19), (3.26). The reason for which we employed the standard version of
the Frank-Wolfe algorithm, instead of Algorithm FW1-RD, for solving the
instances of (3.3) is that the chosen value α = 5, suggested in [10], did not
seem sufficiently high to ensure that the assumptions of Proposition 3.3.6
were satisfied. We used 100 random initial points for all the problems.
The instances of problem (3.48) were solved by means of CPLEX (8.0).
Algorithms FW1 and FW1-RD were implemented in C using GLPK (4.9)
as solver of the linear programming problems. The experiments were carried
out on Intel Pentium 4 3.2 GHz 512 MB RAM.

3.4.4 Results

The results obtained on P-random problems and on the other three test
problems are shown in tables 1 and 2 respectively, where we report

- the number m of constraints, the number n of variables;

- for formulation �1, the zero-norm of the optimal solution attained;

- for each nonlinear concave formulation:

• the average of the zero-norm value of the stationary points deter-
mined;

• the best zero-norm value of those stationary points;

• percentage of runs where the best zero-norm value was attained.

In Table 1, which concerns relatively small dimensional problems, we also
report the optimal value ‖x∗‖0 determined by solving (3.48).
From Table 1 we can observe that the best results are obtained by means
of Formulation II. Indeed, in seven problems over ten, a simple multi-start
strategy applied to Formulation II allowed us to attain the certificated op-
timal solution. We may note that the results obtained by means of formu-
lations log and Formulation I are comparable, and clearly better than those
corresponding to formulations �1 and exp.
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The results obtained on problems Colon cancer, Catalysis, and Nova are
reported in Table 2, where we can observe that the multi-start strategy ap-
plied to the nonlinear concave formulations performed clearly better than
the approach based on the minimization of the �1 norm. Furthermore, we
can note that the best results on problem Colon Cancer were obtained by
exp and Formulation I, the best results on problem Catalysis were obtained
by Formulation II, while the best results on problem Nova were obtained by
log and Formulation I.
Summarizing, the computational experiments confirm the validity of the
concave-based approach for the minimization of the zero-norm over a poly-
hedral set, and show that the concave formulations here proposed are valid
alternatives to known formulations. Indeed, Formulation I and Formula-
tion II attained the best results in 3 tests over 13 and 9 tests over 13 re-
spectively. We remark that a wider availability of efficient formulations is
important since it can facilitate the search of sparse enough solutions for
different classes of problems.
Finally, in order to assess the differences in terms of computational time be-
tween the standard Frank-Wolfe (FW1) algorithm and the version of the
algorithm presented in the preceding section and denoted by Algorithm
FW1-RD, we report in Table 3 the results obtained by the two algorithms
on the three benchmark problems using Formulation I. As we might expect,
the differences are remarkable and show the usefulness of Algorithm FW1-
RD. Further experiments not here reported and performed using the other
concave formulations point out the same differences between the two algo-
rithms in terms of computational time. In all the tests we did not detect
differences between the two algorithms in terms of computed solution.

83



Chapter 3 Conclusions

P-random m n ‖x∗‖0 l1 Exp Log Form. I Form. II

1 20 10 2 3 3.0/3/100 2.1/2/93 2.1/2/93 2.0/2/97
2 20 10 3 4 4.0/4/100 3.6/3/66 3.6/3/66 3.9/3/45
3 40 20 3 8 8.0/8/100 6.3/4/9 6.2/4/9 5.7/3/6
4 40 20 4 10 10.0/10/100 7.7/5/1 7.7/5/1 6.5/5/15
5 60 30 6 12 12.0/12/100 10.0/8/2 10.0/8/2 8.8/6/3
6 60 30 7 14 13.9/13/3 10.9/8/1 11.0/8/1 9.7/7/6
7 80 40 6 14 14.0/14/100 10.4/7/1 10.4/7/1 9.4/6/3
8 80 40 9 24 23.4/22/14 16.4/12/1 16.4/12/1 14.1/11/4
9 100 50 8 19 19.0/19/100 15.1/11/1 15.2/11/1 13.0/8/2
10 100 50 10 28 28.0/28/100 18.5/14/3 18.5/14/2 16.0/12/6

Table 3.1: Comparison on P-random problems (average zero-norm
value/best zero-norm value/percentage of best values attained).

Problem m n l1 Exp Log Form. I Form. II

Colon Cancer 62 2000 57 8.5/6/10 13.8/7/1 13.7/7/1 9.4/6/3
Catalysis 873 617 422 199.3/184/1 222.1/201/1 221.0/201/1 189.8/173/1

Nova 1754 16969 448 168.5/147/2 127.0/105/1 126.7/105/1 131.9/114/1

Table 3.2: Comparison on three benchmark problems (average zero-norm
value/best zero-norm value/percentage of best values attained).

3.5 Conclusions

In this chapter we have considered the general hard problem of minimiz-
ing the zero-norm over polyhedral sets, which arises in different important
fields, such as machine learning and signal processing. Following the con-
cave optimization-based approach, we have proposed two new smooth con-
cave formulations and we have formally proved the equivalence of these and
other formulations with the original nonsmooth problem. The main con-
tributions of this work are both theoretical and computational. From the
theoretical point of view, we have been able to introduce some general results
on approximability for concave optimization problems and we obtained an
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Problem FW1 FW1-RD

Colon Cancer 225 24
Catalysis 2776 465

Nova 10448 1003

Table 3.3: Comparison using Formulation I between the two versions of the
Frank-Wolfe algorithm in terms of CPU-time (seconds).

important characterization of the behaviour of the Frank-Wolfe algorithm
which has, as we could confirm in computational experiments, a dramatic
influence on the efficiency of the method. The computational evidence we
report suggests a speed-up in the range 5 to 10 when using the variable fix-
ing variant of the Franke-Wolfe method in place of the traditional one. This
very high speed-up might prove to be extremely beneficial when multiple
runs of the algorithm are performed, e.g. in a Multistart method. Apart
from the great improvement in efficiency, the computational experiments
also evidenced that the new formulations are valid alternatives to known
formulations, as in most cases they allowed us to compute highly sparse
solutions. We remark that a wider availability of efficient formulations is
important since it can facilitate the search of sparse enough solutions for
different classes of problems.
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3.6 Appendix

We report here a known result (and its proof) that we have used to derive
some new convergence results of the Frank-Wolfe method and of the modified
version we have presented.

Proposition 3.6.1. Consider the linear programming problems

min cTx
Ax ≥ b
Hx = d

(3.49)

min cTx+MeT z
Ax+Qz ≥ b
Hx+ Sz = d
z ≥ 0

(3.50)

where c ∈ Rn, e ∈ Rnz is a vector of ones, b ∈ Rm, d ∈ Rp, A ∈ Rm×n,
H ∈ Rp×n, Q ∈ Rm×nz , S ∈ Rp×nz . Assume that problem (3.49) admits a
solution x�. Then, there exists a value M0 such that for all M ≥ M0 we
have that

(i) the vector (x�, 0)T is a solution of (3.50);

(ii) if (x̄, z̄)T is a solution of (3.50), then z̄ = 0 and x̄ is a solution of
(3.49).

Proof. (i) Since x� is a solution of problem (3.49) we have that the dual
problem

max bTλ+ dTµ

ATλ+HTµ = c
λ ≥ 0

(3.51)

admits a solution (λ�, µ�)T ∈ Rm+p and we have

cTx� = bTλ� + dTµ�. (3.52)
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Now consider problem (3.50) and its dual

max bTλ+ dTµ

ATλ+HTµ = c
QTλ+ STµ ≤Me
λ ≥ 0

(3.53)

The vector (x�, 0)T is a feasible point for (3.50), and for M sufficiently large
the vector (λ�, µ�)T is a feasible point for (3.53). Thus, from (3.52) the
assertion is proved. Furthermore, we can also conclude that (λ�, µ�)T is a
solution of (3.53) for M sufficiently large.

(ii) By contradiction let us assume that there exist a sequence of positive
scalars {Mk}, with Mk → ∞ for k → ∞, and a corresponding sequence
of vectors {(xk, zk)T } such that zk �= 0, and (xk, zk)T is solution of (3.50)
when M = Mk. We can then define an infinite subset K such that, for all
k ∈ K

- we have zk
i > 0 for some index i ∈ {1, . . . , nz};

- the vector (λ�, µ�)T is a solution of (3.53) when M = Mk.

Then, using the complementarity conditions we can write
(
eTi Q

Tλ� + eTi S
Tµ� −Mk

)
= 0 ∀k ∈ K,

which contradicts the fact that Mk → ∞. �
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Chapter 4

Concave Programming
Methods for Feature
Selection and Sparse
Approximation of Signals

In this chapter new methods for feature selection and sparse approximation
of signals are described. Since both of these problems can be modelled as
a search for a sparse solution to a linear system, new approaches can be
developed using the ideas described in Chapter 3.
Concerning feature selection problems, which are of great importance in
machine learning, a new algorithm has been described. It combines the
concave optimization-based approach (to eliminate irrelevant features) with
linear Support Vector Machines (to guarantee predictive capability). An ex-
tensive computational experience is performed on several datasets in order
to show the efficiency of the proposed feature selection technique.
A concave approach for finding sparse representations of noisy signals (based
on FW1-RD algorithm) is also proposed. In order to show both the use-
fulness of the proposed concave formulations and the efficiency of the new
method, various problems concerning sparse approximation of noisy signals
are solved.
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4.1 Feature Selection Combining Linear Support

Vector Machines and Concave Optimization

Feature selection is a crucial task in a wide range of machine learning prob-
lems. Given an unknown process that generates data represented by vectors
of an Euclidean space and corresponding label values, the feature selection
problem consists in selecting a subset of relevant features (components of
the vectors) that permit to build a reliable model of the underlying process.
As we already said in Chapter 2, feature selection can have various moti-
vations: improving the generalization performance of the predictive model,
reducing the computational time to construct the model, better understand-
ing of the underlying process.
In this section we introduce a new method for feature selection combining
linear SVMs and concave minimization. We first give a brief overview of the
problem we deal with. Then, we describe our feature selection approach.
Finally, we show results obtained on various datasets.

4.1.1 Feature Selection for Linear Classification Models

We focus on feature selection problems of two-class linear models, which
are common in several applications (see, e.g., [16]). We assume that the
unknown process generates vector data belonging to two classes, and we
suppose that the process can be modelled by a linear machine defined by a
decision function of the form

y(x) = sgn(wTx+ b), (4.1)

where x ∈ Rn is the input vector, w ∈ Rn is the vector of weights, b ∈ R
is the threshold, sgn : R → {−1, 1} is the sign function such that s(t) = 1
for t ≥ 0 and s(t) = −1 for t < 0. We denote by H(w, b) the separating
hyperplane associated to the decision function (4.1). In order to model the
process, a finite set (the training set) of data

TS = {(xi, yi), xi ∈ Rn, yi ∈ {−1, 1}, i = 1, . . . , N}
is available, where the label yi denotes the class of the vector xi.
We are interested in finding the relevant features of the input space Rn,
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namely we want to reduce the dimensionality of the data by selecting those
variables that permits to model the unknown process by a linear classifier
in a subspace of Rn. Our motivation lies in the fact that, as said above,
the detection of the relevant features provides a better understanding of
the underlying phenomenon, and this can be of great interest in important
fields, such as medicine and biology. For instance, feature selection in data
concerning healthy patients and patients affected by a given pathology may
help to better understand the considered pathology from a medical point of
view.

4.1.2 A brief review of Linear Support Vector Machines

Consider the training set

TS = {(xi, yi), xi ∈ Rn, yi ∈ {−1, 1}, i = 1, . . . , N}
and assume it is linearly separable, that is, there exists a separating hyper-
plane

H(w, b) = {x ∈ Rn : wTx+ b = 0}
such that

wTxi + b ≥ 1 ∀xi : yi = 1

wTxi + b ≤ −1 ∀xi : yi = −1
(4.2)

The margin ρ(w, b) of a separating hyperplane H(w, b) is the distance from
the hyperplane to the closest training points, i.e.,

ρ(w, b) = min
xi,i=1,...,N

|wTxi + b|
‖w‖ .

Support Vector Machine approach picks out, among the linear classifiers,
the optimum separating hyperplane (i.e. the hyperplane having maximum
margin). The basic training principle of SVM, motivated by the statistical
learning theory [86], is that the expected classification error for unseen test
samples is minimized, so that SVM defines a good predictive model.

The optimum hyperplane can be determined by solving the following
quadratic programming

min
w∈Rn,b∈R

1
2
‖w‖2

yi(wTxi + b) ≥ 1 i = 1, . . . , N.

(4.3)
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In the case that the training set is not linearly separable, the system of
inequalities (4.2) does not admit solution. By introducing slack variables ξi,
for i = 1, . . . , N , the SVM classifier is determined by solving

min
w∈W,b∈R,ξ∈RN

1
2
‖w‖2 + C

N∑
i=1

ξi

yi(wTxi + b) ≥ 1 − ξi i = 1, . . . , N

ξi ≥ 0 i = 1, . . . , N,

(4.4)

where the term
N∑

i=1

ξi is an upper bound on the training error. The regu-

larization parameter C > 0 trades off margin size and training error, and
is usually determined by standard cross-validation tuning procedures. More
specifically, discrete values of C are defined, and for each value a k−fold
cross validation on the training set is performed. The value of C which
gives the lowest cross validation error rate is selected. Recently, some algo-
rithms have been developed for efficiently solve large-scale problems of the
form (4.4) (see [31] and the references therein).

We observe that SVM provides a good linear classifier, but we can not
expect that the obtained separating hyperplane utilizes as few of the features
as possible, since the minimization of the Euclidean norm favorites solutions
with many small nonzero components. We will induce sparsity by suitably
exploiting the concave approach described in Chapter 3.

4.1.3 A new Algorithm for Feature Selection

In feature selection two objectives have to be considered:

(a) the goodness (to be maximized) of the data fitting of the linear clas-
sifier modelling the process;

(b) the number of input variables (to be minimized) of the classifier.

A reasonable and often adopted approach is that of formalizing the feature
selection problem as an optimization problem whose objective function con-
sists of two terms, the first one related to the error on the training data (its
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inverse gives a measure of the goodness of the training data fitting), the sec-
ond one to the sparsity of the solution to be determined. The second term is
also introduced to prevent overtraining (the machine learns too specifically
the training data), a phenomenon that could lead to a linear classifier with
poor generalization capabilities. The general formulation (see Chapter 2)
takes the form

min
w,b,ξ

(1 − λ)f(ξ) + λg(w)

s.t. yi(wTxi + b) ≥ 1 − ξi i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N,

(4.5)

where λ ∈ [0, 1) is a parameter, ξi for i = 1, . . . , N are slack variables, the
first term f in the objective function is a measure of the classification error
on the training data, the second term g penalizes nonzero components of w.
In this formulation, the term f is the sum (possibly weighted) of the slack
variables ξi, and hence measures the (average) training error. Concerning
the term g, a good choice is that of using a concave smooth approximation
of the so called zero-norm of w, denoted by ‖w‖0, and indicating the number
of nonzero components of w. The concave-based approach performs well as
feature selection technique, that is, the classifiers obtained select a small
number of features, still granting good prediction accuracy.
In this section we present a feature selection strategy that combines SVM
and the concave optimization-based approach. Differently from the ap-
proach described above, where the two objectives (a) and (b) are embedded
in the objective function of formulation (4.5) and assessed by means of pa-
rameter λ, we sequentially and iteratively operate on the two separated
objectives (a) and (b). Our strategy is essentially a two-step strategy, with
the two steps described as follows:

1) LSVM step: a good linear classifier (according to the statistical learn-
ing theory [86]) is computed in a given subspace (which is the original
input space at the beginning) by means of linear SVM;

2) Concave optimization step: a new sparse linear classifier, not “too far”
from SVM solution, is determined using concave optimization.

In practice, starting from the SVM solution in a given subspace, we perform
a single iteration of the Frank-Wolfe method applied to a problem whose ob-
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jective function is a concave approximation of the zero norm (that favorites
sparse solutions), and the constraints are the linear inequalities related to
the training data correctly classified by SVM. Again, the nonzero compo-
nents of the computed separating hyperplane define a subspace of lower
dimension, and we repeat the two-phase procedure in this subspace.
In the sequel we refer to an unspecified concave function of the form

F (z) =
n∑

i=1

fi(zi),

where fi : R → R are concave smooth functions, aimed to approximate
the zero-norm problem. Specific concave functions that can be practically
employed are the objective functions of formulations (3.3)-(3.26).
Formally, the Feature Selection algorithm, based on the combination of SVM
with Concave Programming, is reported below.

Algorithm FS-SVMCP

Let W = Rn.

1. Solve SVM problem

min
w∈W,b∈R,ξ∈RN

1
2
‖w‖2 + C

∑
i∈I

ξi

yi(wTxi + b) ≥ 1 − ξi i = 1, . . . , N

ξi ≥ 0 i = 1, . . . , N

(4.6)

and let (w�, b�, ξ�) be the solution obtained.

2. Set I = {1, . . . , N}/{i : (ξ�)i ≥ 1}, z�
i = |w�

i | for i = 1, . . . , n, and
compute a vertex solution (ŵ, b̂, ẑ)T of

min
w∈W,b∈R,z∈RN

∇F (z�)T z

yi(wTxi + b) ≥ 1 i ∈ I

−zh ≤ wh ≤ zh h = 1, . . . , n

(4.7)
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If ‖ŵ‖0 < ‖w�‖0 then remove features corresponding to null components
of ŵ, i.e., set

W = {w ∈ Rn : wh = 0, ∀h : ŵh = 0},

and go to step 1, otherwise let H(w�, b�) be the separating hyperplane
and exit.

At Step 1 a good classifier in a given subspace of Rn (defined by W ) is de-
termined by means of the standard SVM technique (as said in Section 2, the
value of parameter C can be computed by means of a cross-validation tun-
ing procedure). The misclassified training points xi are those corresponding
to slack variables (ξ∗)i greater than 1. The index set I, defined at Step 2,
identifies the well-classified training points.
At Step 2, starting from the point (w�, b�, z�)T provided by the SVM clas-
sifier, a single iteration of FW1 Algorithm is applied to the problem

min
w∈W,b∈R,z∈RN

F (z)

yi(wTxi + b) ≥ 1 i ∈ I

−zh ≤ wh ≤ zh h = 1, . . . , n,

(4.8)

where, as said above, the set I identifies the inequalities corresponding to
the training points well-classified by SVM classifier. The inequalities defined
by the set I should induce the good behavior of SVM classifier in terms of
separation, in other words, the constraints defined by the set I impose that
the hyperplane provides a decision function yielding, on the training data,
the same outputs of the SVM classifier. The aim of the single-iteration of
Step 2 is to determine a separating hyperplane that utilizes fewer features
and is not too far from the SVM solution. The nonzero components of the
separating hyperplane so determined define a subspace of lower dimension,
and we repeat the two-phase procedure in this subspace. The algorithm
terminates whenever no dimension reduction is obtained by the concave
minimization phase.
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4.1.4 Computational experiments

We describe the numerical results obtained by Algorithm FS-SVMCP on
nine data sets (See next paragraph for further information) usually employed
in linear classifier testing.

Implementation details of the algorithm

At Step 1, SVM problem (4.6) has been solved by LIBLINEAR A Library for
Large Linear Classification, developed by the Machine Learning Group at
National Taiwan University (see [31] for the details). At each iteration, the
parameter C has been determined by a standard cross-validation procedure.
At Step 2, we have used the following concave zero-norm approximation
corresponding to the objective function of formulation (3.26):

F (z) = −
n∑

i=1

(zi + ε)−p (4.9)

with ε = 10−6 and p = 1. At each iteration, the linear programming problem
(4.7) has been solved using GLPK (4.9). The experiments were carried out
on Intel Pentium 4 3.2 GHz 512 MB RAM.

Experiments and Results

For each problem, we randomly divided the available data into training set
and test set, thus generating ten instances. We grouped the nine problems
into two sets:

- the first set is made of four well-known problems in Bioinformatics
(Breast Cancer, Colon Cancer, Leukemia, Lymphoma) having many
features (of the order of thousands) and a small number of training
and test data (of the order of tens);

- the second set is made of five miscellaneous problems (Ionosphere,
Sonar, Musk, Sylva, Gina) with number n of features ranking from 34
to 970, and number N of training data ranking from 180 to 13056.

The results obtained on the two sets of test problems are shown in tables
4.1 and 4.2 respectively, where for each problem we report

- the number Tr of training data, the number Ts of test data, the
number n of features;
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DataSet Tr Ts n SVM FS-SVMCP
TR% TS% TR% TS% ‖w∗‖0

Breast Cancer 40 4 7129 100% 95.00% 100% 90.00% 10.10
Colon Cancer 50 12 2000 100% 88.33% 100% 85.00% 9.30

Leukemia 58 14 7129 100% 98.57% 100% 97.14% 7.30
Lymphoma 85 11 4026 100% 97.27% 100% 96.36% 10.50

Table 4.1: Results obtained by Algorithm FS-SVMCP on the first set of test
problems

DataSet Tr Ts n SVM FS-SVMCP
TR% TS% TR% TS% ‖w∗‖0

Ionosphere 300 51 34 100% 94.51% 99.83% 93.92% 15.90
Sonar 180 28 60 91.22% 79.99% 89.73% 81.07% 21.60
Musk 430 46 166 96.28% 89.77% 94.95% 88.91% 48.2
Sylva 13086 1308 216 98.15% 97.95% 98.85% 98.70% 17.9
Gina 3153 315 970 93.85% 85.17% 91.95% 85.78% 156.10

Table 4.2: Results obtained by Algorithm FS-SVMCP on the second set of
test problems

- the average (on the ten instances) classification accuracy on the train-
ing set (TR%) and on the test set (TS%) obtained by the standard
linear SVM classifier (SVM);

- the average (on the ten instances) classification accuracy on the train-
ing set (TR%), on the test set (TS%), and the number of selected
features ‖w�‖0 obtained by Algorithm FS-SVMCP (FS-SVMCP).

he results of tables 4.1 and 4.2 clearly show the effectiveness of the proposed
feature selection technique. Indeed, we can note that, for each problem, the
algorithm is able:

(a) to detect a very small number (in comparison with the number n of
original features) of relevant features;

(b) to obtain a good linear classifier (in the reduced dimension space)
as model of the process underlying the data (see the classification
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accuracies on the training and test sets, and observe that they are
comparable with those of the standard SVM classifier operating in the
original input space);

Note that the data sets of the first table are very different (in the structure)
from those of the second table, and that the performance of the proposed al-
gorithm on the two sets of problems are very similar. This points out a good
robustness of the method (thanks to its simplicity), which is useful whenever
different kind of applications must be tackled. As previously remarked, the
method involves convex quadratic and linear programming problems (which
can be efficiently solved by available solvers) and this makes it possible its
application, as shown by the experiments, to large dimensional problems.
Further experiments not here reported point out that the adoption at Step
2 of other concave functions in place of (4.9) yields results similar to those
reported in tables 1 and 2. From the computational experience we get that
the proposed feature selection methodology could be advantageously em-
ployed to detect the relevant variables of an unknown process (that can be
modelled by a linear classifier) and hence to better understand it. This can
be of great interest in important fields, such as medicine and biology.

4.1.5 Test problems

Breast Cancer [88]. The duke breast-cancer dataset contains 44 breast
cancer tissues described by 7129 genes expression values extracted from DNA
microarray data. The data are available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

Colon Cancer [2]. The colon cancer dataset contains 22 normal and 40
colon cancer tissues described by 2000 genes expression values extracted
from DNA microarray data. The data are available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

Leukemia [37]. The leukemia dataset contains information on gene-expression
in samples from human acute myeloid (AML) and acute lymphoblastic
leukemias (ALL). It contains 25 ALL examples and 47 AML examples de-
scribed by 7129 genes. The data are available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
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Lymphoma The gene expression of 96 samples is measured with microarray
to give 4026 features; 61 of the samples are malignant and 35 are normal.
The data are available at
http://llmpp.nih.gov/lymphoma/.

Ionosphere The Ionosphere dataset describes a binary classification task
where radar signals target two types of electrons in the ionosphere: those
that show some structure (good) and those that do not (bad). The dataset
contains 351 samples described by 34 attributes. The data are available at
http://archive.ics.uci.edu/ml/datasets/.

Sonar The dataset contains 111 sonar signals bounced off a metal cylinder
and 97 bounced off a roughly cylindrical rock. Each pattern is a set of 60
numbers in the range 0.0 to 1.0. The data are available at
http://archive.ics.uci.edu/ml/datasets/.

Musk This dataset contains 476 conformations of molecules. The goal is to
learn to predict whether new molecules will be musks or non-musks. Each
sample is described by a set of 166 features. The data are available at
http://archive.ics.uci.edu/ml/datasets/.

Sylva The task of Sylva is to classify forest cover types. This is a two-class
classification problem with 216 input variables. Each pattern is composed of
4 records: 2 true records matching the target and 2 records picked at random.
Thus a half of the features are distracters. This version of the database was
prepared for the WCCI 2006 challenge on performance prediction. The data
are available at
http://clopinet.com/isabelle/Projects/modelselect/.

Gina The task of Gina is handwritten digit recognition. We chose the
problem of separating the odd numbers from even numbers. We use 2-
digit numbers. Only the unit digit is informative for that task, therefore at
least a half of the features are distracters. This version of the database was
prepared for the WCCI 2006 challenge on performance prediction. The data
are available at
http://clopinet.com/isabelle/Projects/modelselect/.
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4.2 Sparse Approximation of Signals

As we have already said in Chapter 1, the goal in sparse approximation is
that of approximating a given input signal by means of a linear combination
of elementary signals. These elementary signals, usually called atoms, do
belong to a large, linearly dependent collection. A preference for linear com-
binations involving only a few elementary signals is obtained by penalizing
nonzero coefficients. A well-known penalty function is the number of ele-
mentary signals used in the approximation. Obviously the choice we make
about the specified collection, the linear model and the sparsity criterion
must be justified by the domain of the problem we deal with.
In this section we propose an approach based on the Frank-Wolfe - Unitary
Stepsize - Reduced Dimension (FW1-RD) algorithm described in Chapter 3.

4.2.1 A Concave Approach for Sparse Approximation of Sig-
nals

The sparse approximation problem is formally described as follows:

min f(x) = ‖Ax− b‖1 + C ‖x‖0, (4.10)

where A is the dictionary of elementary signals, b is the target signal, and
C > 0 is a regularization parameter which trades off reconstruction error
and sparsity of the optimal solution. Problem (4.10) can be rewritten as

min
x,z∈Rn y∈Rm

m∑
i=1

yi + C g(z)

s.t. −y ≤ Ax− b ≤ y

−z ≤ x ≤ z

(4.11)

with g(z) a concave approximation of the zero norm. As we want to minimize
a concave function over a polyhedral set, the FW1-RD Algorithm can be
used for for solving the problem.
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4.2.2 Experiments and Implementation Details

The set of experiments is performed on synthetic data built as described
in [28]. The dictionary A is comprised of L random orthonormal bases,
meaning that K = LN is the length of the coefficients vector x. We denote
x0 as the original coefficients vector, which is built by randomly choosing a
few non-zero elements (either 1 or -1) with probability γ. The clean signal
b is then given by b = Ax0, while its noisy version is b̃ = b+ n, where n is a
white-Gaussian pseudo-random noise with variance σ2

n .
We tested our algorithm on 3 different randomly generated problems having
the following features:

- synthetic signals of length N = 64;

- random dictionaries comprised of L = 4 orthonormal bases;

- probability γ = 0.03;

- variance σ2
n = {0.01, 0.05, 0.1}.

For each problem we performed experiments using:

- formulation (3.19), denoted by Formulation I, with ε = 10−9 and p =
0.001;

- formulation (3.26), denoted Formulation II, with ε = 10−6 and p = 1.

We run the FW1-RD Algorithm over 10 random initial points and selected
the solution having the smallest reconstruction error, defined as:

err(x) = ‖Ax− b‖1 .

Algorithm FW1-RD were implemented in C using GLPK (4.9) as solver of
the linear programming problems. The experiments were carried out on
Intel Pentium 4 3.2 GHz 512 MB RAM.
We make a comparison between our method and the PCD-SESOP method
proposed in [28]. This algorithm is for linear least squares problems with
non-quadratic regularization, i.e., for unconstrained minimization problems
of the form

min f(x) = ‖Ax− b‖2
2 + ρ(x),
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where ρ(x) is a general regularizer.
Figure 4.1, 4.5, 4.9 show the original solution obtained respectively with
σ2

n equal to 0.01, 0.05, 0.1; Figure 4.2, 4.6, 4.10 show the reconstructed
solution generated by means of PCD-SeSOP; 4.3, 4.7, 4.11 show the re-
constructed solution generated by FW1-RD using FormulationI; Figure
4.4, 4.8, 4.12 show the reconstructed solution generated by FW1-RD using
FormulationII. These preliminary results highlight the effectiveness of our
method in finding sparse solutions, especially when dealing with noisy sig-
nals. However, methods for the sparse approximation of signals in presence
of noise deserve more attention and should be the object of a deeper study.

4.3 Conclusions

In this chapter we have tackled two challenging tasks: feature selection and
sparse approximation of signals. We proposed a new approach for feature
selection based on concave programming and linear SVMs. The results ob-
tained on various datasets seem to show the effectiveness of the method.
In fact, the number of features selected by our algorithm is very small if
compared with the original number of features. Furthermore, the accuracy
of the classifier trained using the data projected on the selected features
is comparable with the accuracy obtained by training a classifier on the
original data. The absence of significant deterioration in classification per-
formance basically means that the feature selected by our algorithm are
among the relevant ones. The results obtained on sparse approximation us-
ing the FW1-RD algorithm highlight how helpful can be a concave approach
in searching a good representation of a signal, especially in presence of noise.
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Figure 4.1: Original solution (σ2
n = 0.01).

Figure 4.2: PCD-SeSOP solution (σ2
n = 0.01).
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Figure 4.3: FW1-RD solution using FormulationI (σ2
n = 0.01).

Figure 4.4: FW1-RD solution using FormulationII (σ2
n = 0.01).
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Figure 4.5: Original solution (σ2
n = 0.05).

Figure 4.6: PCD-SeSOP solution (σ2
n = 0.05).
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Figure 4.7: FW1-RD solution using FormulationI (σ2
n = 0.05).

Figure 4.8: FW1-RD solution using FormulationII (σ2
n = 0.05).
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Figure 4.9: Original solution (σ2
n = 0.1).

Figure 4.10: PCD-SeSOP solution (σ2
n = 0.1).
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Figure 4.11: FW1-RD solution using FormulationI (σ2
n = 0.1).

Figure 4.12: FW1-RD solution using FormulationII (σ2
n = 0.1).
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Chapter 5

Exact Methods for Global
Optimization of Separable
Concave Functions over
Polyhedral Sets: Challenges
and Future Perspectives

The hard task of minimizing a separable concave function over a polyhe-
dral set, which has first examined by researchers more than forty years ago,
represents one of the earliest branches of nonlinear programming to be ex-
plored in depth. Exact global methods that effectively solve this problem
are largely used nowadays.
These global techniques can be very useful when searching for sparse solu-
tions over a linear system. In fact, by combining local approaches described
in previous chapters with global optimization methods, we might find solu-
tions much more sparser than those obtained by means of local approaches
only.
The problem when dealing with exact global methods is that they are very
time and memory consuming as the dimensions of the problem get large.
Then some ad-hoc techniques must be used to speed up the algorithms.
In this chapter we first describe convex envelopes and their properties. Then
we make an overview of the well-known Branch and Bound algorithm.
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5.1 Convex Envelopes

The convex envelopes are a powerful tool widely used in global optimization
to solve non-convex mathematical problems. A convex envelope of a function
f on a subset S of Rn is defined as the tightest convex underestimating
function of f on S. In this section we report some well known properties of
convex envelopes [29, 43, 73, 83].

5.1.1 Properties of Convex Envelopes

Definition 5.1.1. Given a set S ⊆ Rn a convex underestimator of a
function f : S → R is a function g having the following properties:

(a) g(x) is convex;

(b) g(x) ≤ f(x) ∀ x ∈ S.

Definition 5.1.2. Given a set S ⊆ Rn the convex envelope of a function
f : S → R is a function g having the following properties:

(a) g(x) is a convex underestimator of f ;

(b) g(x) ≥ h(x) ∀ x ∈ S and ∀ h convex underestimator of f .

Definition 5.1.3. Given a set S ⊆ Rn the epigraph epi(f) of a function
f : S → R is:

epi(f) = {(x, r) ∈ S ×R : r ≥ f(x)} . (5.1)

Definition 5.1.4. Given a set S ⊆ Rn the convex envelope g of a function
f : S → R can be expressed as follows:

g(x) = inf{ r : (x, r) ∈ conv(epi(f)) } . (5.2)
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By applying Caratheodory’s Theorem to (2) g(x) can be defined as

g(x) = inf
n+1∑
i=1

λif(xi)

s.t.

n+1∑
i=1

λixi = x

n+1∑
i=1

λi = 1

xi ∈ S, λi ≥ 0, i = 1, . . . , n + 1 .

(5.3)

When S is compact and f is lower semicontinuous , the set conv(epi(f))
is a closed and convex set, and the convex envelope admits a more precise
characterization:

g(x) = min
n+1∑
i=1

λif(xi)

s.t.

n+1∑
i=1

λixi = x

n+1∑
i=1

λi = 1

xi ∈ S, λi ≥ 0, i = 1, . . . , n + 1 .

(5.4)

If S is finite and conv(S) is full-dimensional, conv(epi(f)) is a full dimen-
sional polyhedron and the convex envelope is:

g(x) = max
i∈I

aT
i x+ bi (5.5)

with I a finite set of indices. The following propositions show some useful
properties of convex envelopes.
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Proposition 5.1.1. Let f1, f2 : S → R be two functions defined on a
convex set S ⊂ Rn. Let g1 and g2 be their convex envelopes. Let us define
the sum of these two function as

f0(x) = f1(x) + f2(x)

and g0 its convex envelope. Then

g1(x) + g2(x) ≤ g0(x) ∀ x ∈ S (5.6)

and if f2 is affine, then

g1(x) + g2(x) = g0(x) ∀ x ∈ S . (5.7)

Proof. By definition of convex envelope we have for all x ∈ S

g0(x) ≤ f1(x) + f2(x)

and
g1(x) + g2(x) ≤ f1(x) + f2(x) .

Let us suppose, by contraddiction, there exists a point x ∈ S such that

g0(x) ≤ g1(x) + g2(x) .

This contradicts (b) of Definition 5.1.2. Hence, we obtain

g0(x) ≥ g1(x) + g2(x) ∀x ∈ S .

Let us now consider the convex function

g0(x) − g2(x) .

By using definition of convex envelope and affine function, we have for all
x ∈ S

f1(x) ≥ g1(x) ≥ g0(x) − f2(x) = g0(x) − g2(x)

and
g1(x) + g2(x) ≥ g0(x)

which we can combine to (5.6) to have

g1(x) + g2(x) = g0(x) ∀ x ∈ S .

�
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Proposition 5.1.2.
(i) Let f1, f2 : S → R be two functions defined on a convex set S ⊂ Rn such
that

f1(x) ≤ f2(x) ∀ x ∈ S .

Let g1 and g2 be their convex envelopes. Then

g1(x) ≤ g2(x) ∀ x ∈ S . (5.8)

(ii) Let f1 : S → R be a function defined over a set S ⊂ Rn with convex
envelope g1. Let f2 : T → R be a function defined over a set T ⊂ S such
that

f2(x) = f1(x) ∀ x ∈ T . (5.9)

with convex envelope g2. Then

g1(x) ≤ g2(x) ∀ x ∈ T . (5.10)

Proof. By definition of convex envelope we have for all x ∈ S

g1(x) ≤ f1(x)

and
g2(x) ≤ f2(x) .

Let us suppose, by contradiction, there exists a point x̃ ∈ S such that

g1(x̃) ≥ g2(x̃) .

Thus we obtain
f2(x̃) ≥ f1(x̃) ≥ g1(x̃) ≥ g2(x̃)

but this contradicts (b) of Definition 5.1.2.

By definition 5.1.4 we have

g1(x) = inf{ r : (x, r) ∈ conv(epi(f1)) }

and
g2(x) = inf{ r : (x, r) ∈ conv(epi(f2)) } .
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It is easy to see that

conv(epi(f1)) ⊇ conv(epi(f2))

and
g1(x) ≤ g2(x) ∀ x ∈ T .

�

Proposition 5.1.3. if f : S → R is lower semicontinuous on the compact
convex set S ⊂ Rn, then the convex envelope g is such that

(i) minx∈S g(x) = minx∈S f(x);

(ii) arg minx∈S g(x) ⊇ arg minx∈S f(x);

(iii) g(x) = f(x) at extreme points of S.

Proof. Let x∗ ∈ arg minx∈S f(x). Let us suppose, by contradiction, there
exists a point x̃ ∈ S satisfying the following relation:

g(x̃) < f(x∗)

it is possible to define a constant function

h(x) = f(x∗) ∀x ∈ S

which satisfies properties (a) and (b) of Definition 5.1.1 and such that

h(x̃) = f(x∗) > g(x̃)

but this contradicts (b) of Definition 5.1.2.

Thus we have
g(x) ≥ min f(x) ∀ x ∈ S

and by using property (b) of Definition 5.1.1

g(x∗) = f(x∗) .

Hence (i) and (ii) are both proved.

An extreme point x̄ cannot be represented by a convex combination of points
in S different from itself, then by using (5.4):

g(x̄) = f(x̄)

and (iii) is proved. �
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5.1.2 Necessary and Sufficient Conditions of Poliedrality of
Convex Envelopes

Finding the convex envelope of a function is a hard task in general. Here
we report necessary and sufficient conditions for a convex envelope to be a
polyhedral function and illustrate the way these conditions can be used to
construct convex envelopes [72].

Definition 5.1.5. A function f(x) is said to be a polyhedral function if
it is the pointwise maximum of a finite set of affine functions hi(x):

f(x) = max{hi(x) i = 1, . . . ,m} . (5.11)

Definition 5.1.6. A lower semicontinuous function f : P → R defined over
a polytope P is said to be a vertex-polyhedral function if is such that

{x : (x, f(x)) ∈ vert(epi(f))} = vertP .

Definition 5.1.7. Let f : P → R be a lower semicontinuous function on a
polytope P . Let g be the convex envelope of f . Set X(f) is said to be the
generating set of f , if

X(f) = {x : (x, f(x)) ∈ vert(epi(g))} . (5.12)

Definition 5.1.8. Let f : P → R be a lower semicontinuous function on
a polytope P . The convex envelope of f is said to be a vertex-polyhedral
convex envelope if the generating set X(f) coincides with the set of vertices
of P :

X(f) = vertP , (5.13)

which is equivalent to say that its convex envelope on P polytope coincides
with the convex envelope of the following function

f∞(x) =
{
f(x) x ∈ vertP
∞ x /∈ vertP

.
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It is self-evident that convex envelope of f∞ is vertex-polyhedral.

Proposition 5.1.4. Let f : P → R be a lower semicontinuous function
on a polytope P . Let g and g∞ be the convex envelopes of f and f∞. The
convex envelope g is vertex-polyhedral if and only if

f(x) ≥ g∞(x) ∀ x ∈ P .

Proof.

Necessity. From vertex-polyhedrality of convex envelope g and definition
5.1.1 we have that

f(x) ≥ g(x) = g∞(x) ∀ x ∈ P .

Sufficiency. As g∞(x) is a convex function, from Definition 5.1.2:

g(x) ≥ g∞(x) ∀ x ∈ P .

From (i) of Proposition 5.1.2 we have that

g∞(x) ≥ g(x) ∀ x ∈ P ,

then
g∞(x) = g(x) ∀ x ∈ P

which means that g(x) is vertex-polyhedral. �

Remark A vertex-polyhedral function is obviously polyhedral but the con-
verse cannot be always guaranteed (e.g. the function f(x) = |x| on P =
[−1, 1] ⊂ R).

However, in [72] the following result has been proved:

Proposition 5.1.5. Let f : P → R be continuously differentiable over the
polytope P . The convex envelope g of f is polyhedral if and only if it is
vertex-polyhedral.

The convex envelope vertex-polyhedrality for a function f is a very impor-
tant property. In fact, if convex envelope of f is vertex-polyhedral, then
it can be explicitly calculated and expressed as the maximum of a finite
number of affine functions.
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Corollary 5.1.1. Let fi : P → R i = 1, . . . , n be continuously differentiable
on the polytope P . Let the convex envelopes of all these functions and their
sum f0(x) =

∑n
i=1 fi(x) be polyhedral. Let g0 be the convex envelope of f0

and gi the convex envelope of fi. Then

g0(x) =
n∑

i=1

gi(x)

if and only if the generating set of
∑n

i=1 gi(x) coincides with the vertices of
P:

X
( n∑

i=1

gi(x)
)

= vertP . (5.14)

Proposition 5.1.6. Let f : P → R be lower semicontinuous on the polytope
P and for every point x̃ ∈ int(P ) there exists a set

L = {x : x = α x1 + (1 − α) x2, 0 ≤ α ≤ 1, x1, x2 ∈ P} (5.15)

such that x̃ ∈ int(L) and f is concave on L. Then g the convex envelope of
f is a vertex-polyhedral function.

Proof. Let us suppose, by contradiction, there exists x̃ ∈ X(f)\vertP . We
can find two points x1, x2 ∈ P such that

x̃ = α x1 + (1 − α) x2, 0 < α < 1

and by concavity of f , we obtain

f(x̃) ≥ α f(x1) + (1 − α) f(x2) .

Hence, (x̃, f(x̃)) /∈ vert(epi(g)) and x̃ /∈ X(f). �

It might be useful to have a criterion to check if an affine function h(x) is
an element of the convex envelope of a function f(x).
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Lemma 5.1.1. Let f(x) be continuously differentiable on P polytope with
vertices Vi i = 1, . . . , k and let g the convex envelope of f be polyhedral.
Then it is possible to define g(x) as follows

g(x) = min {
k∑

i=1

λif(Vi) :
k∑

i=1

λiVi = x;
k∑

i=1

λi = 1, λi ≥ 0, i = 1, . . . , k} .
(5.16)

Proof. By our hypothesis g is polyhedral, then from Proposition 5.1.5 we
have that

X(f) = vertP .

We can write the convex envelope as follows

g(x) = min{α : (x, α) ∈ F}

where F is the convex hull of vertices (Vi, f(Vi)) i = 1, . . . , k of P .
This is equivalent to write

g(x) = min {
k∑

i=1

λif(Vi) :
k∑

i=1

λiVi = x;
k∑

i=1

λi = 1, λi ≥ 0, i = 1, . . . , k} .

�

Lemma 5.1.2. Let f(x) be continuously differentiable on P polytope and let
g the convex envelope of f be polyhedral. Let an affine function h(x) be such
that

(a) h(x) ≤ f(x) for all x ∈ vertP ;

(b) h(Vi) = f(Vi) with Vi i = 1, . . . , n+1 affinely independent vertices
of P.

Then h(x) belongs to the polyhedral description of g and

g(x) = h(x)

for any x ∈ Conv{Vi i = 1, . . . , n+ 1} .
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Proof. By using Lemma 5.1.1 we have that

g(x) = min
k∑

i=1

λif(ξi)

s.t.

k∑
i=1

λiξi = x

k∑
i=1

λi = 1

ξi ∈ P, λi ≥ 0, i = 1, . . . , n+ 1 .

with ξi i = 1, . . . , k vertices of P .

As h(x) is an affine function

h(x) =
k∑

i=1

λih(ξi)

and from (a) we have

h(x) =
k∑

i=1

λih(ξi) ≤
k∑

i=1

λif(ξi) = g(x) ∀ x ∈ P .

Let x̃ ∈ Conv{Vi i = 1, . . . , n+ 1}, then from (b)

h(x̃) =
n+1∑
i=1

λih(Vi) =
n+1∑
i=1

λif(Vi) ≥ g(x̃) ∀ x ∈ S

with x̃ =
n+1∑
i=1

λiVi,
n+1∑
i=1

λi = 1 , λi ≥ 0, i = 1, . . . , n+ 1 .

Thus we obtain h(x̃) = g(x̃) . �
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Proposition 5.1.7. Let f(x) be continuously differentiable on P polytope
and let g the convex envelope of f be polyhedral. Let {hi(x)} i = 1, . . . ,m
be a collection of affine functions which respect conditions of Lemma 5.1.2.
Then the function

ψ(x) = max{hi(x) i = 1, . . . ,m}
coincides with g(x) if and only if

(i) X(ψ) = vertP ;

(ii) ∀ ξ ∈ vertP there exists an index i ∈ {1, . . . ,m} such that ψi(ξ) = f(ξ).

Proof. Necessary part follows immediately from definition of g. In order to
prove the sufficient part, by using property (a) of Lemma 5.1.2 and condition
(ii), we obtain:

ψ(ξ) = f(ξ) ∀ ξ ∈ vertP .

By condition (i) and Proposition 5.1.5 we have

vert(epi(ψ)) = vert(epi(g))

and by using Lemma 5.1.1:

ψ(x) = g(x) ∀ x ∈ P .

�

5.1.3 Convex Envelopes of Concave Functions

Concave programming represents one of the most interesting and tough class
of problems in global optimization. Although finding a convex envelope of
an arbitrary concave function is an hard task in general, some useful results
for functions defined over special sets have been obtained [43].

Proposition 5.1.8. Let f(x) be a concave function over P polytope with
vertices Vi i = 1, . . . , k.
Then the convex envelope g of f can be defined as

g(x) = min {
k∑

i=1

λif(Vi) :
k∑

i=1

λiVi = x;
k∑

i=1

λi = 1, λi ≥ 0, i = 1, . . . , k} .
(5.17)
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Proof. By our hypothesis f is a concave function over P polytope, then
from Proposition 5.1.6 we have that the convex envelope g is a polyhedral
function and

X(f) = vertP .

We can write the convex envelope as follows

g(x) = min{α : (x, α) ∈ F}
where F is the convex hull of vertices (Vi, f(Vi)) i = 1, . . . , k of P .
This is equivalent to write

g(x) = min {
k∑

i=1

λif(Vi) :
k∑

i=1

λiVi = x,

k∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , k} .

�

Proposition 5.1.9. Let f(x) be a concave function over an n-simplex with
vertices V1, . . . , Vn+1.
Then the convex envelope g of f is an affine function

g(x) = aTx+ b, a ∈ Rn, b ∈ R (5.18)

which a and b determined by solving the following system of linear equation

f(Vi) = aTVi + b, i = 1, . . . , n+ 1 . (5.19)

Proof. By our hypothesis a vector x has a unique representation as a convex
combination of the n+ 1 vertices of the simplex:

n+1∑
i=1

λiVi = x,

n+1∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . , n+ 1 .

By using Proposition 5.1.8 and Proposition 5.1.3, we have

g(x) =
n+1∑
i=1

λif(Vi) =
n+1∑
i=1

λig(Vi)

which means g(x) is an affine function.

It is easy to see that g(x) coincides with the function obtained by solving
system (5.19). �
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Corollary 5.1.2. Let f : S → R be a concave function over a closed interval
S = [l, u] ⊂ R .
Then the convex envelope g of f is the segment passing through the points
(l, f(l)) and (u, f(u)).

Corollary 5.1.3. Let fi : Si → R i = 1, . . . , n be concave functions over
Si = [li, ui] ⊂ R and let gi be their convex envelope. Let f0 : S → R be the
sum of functions fi defined over the box S = S1×· · ·×Sn. Then the convex
envelope of f0 is defined as follows

g0(x) =
n∑

i=1

gi(xi)

with gi(x) affine function of the single variable xi that agrees with fi at the
endpoints of Si.

5.2 Branch and Bound Methods

Branch and Bound is probably the most popular approach for solving global
minimization problems. In this technique, the feasible set (or a relaxation)
is split into parts (branching phase) over which lower bounds of the objec-
tive function value are determined (bounding phase). The main feature of
Branch and Bound is its ability to delete (fathom) subsets of the original
feasible set during the iteration process.
In this section a general framework is first presented, then a Branch-and-
Bound algorithm for separable concave problems is described. Finally, var-
ious techniques for speeding up the branch-and-bound algorithm are re-
ported.

5.2.1 Branch and Bound: A General Framework

We consider the following problem (P):

min f(x)
s.t. x ∈ X

(5.20)
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where X is a subset of Rn, and assume the minimum of f over X exists and
is finite.

Definition 5.2.1. Let X be a subset of Rn and I be a finite set of indices.
A set {Xi | i ∈ I} of subsets of X is said to be a partition of X if

X = ∪i∈I Xi;

Xi ∩Xj = ∂Xi ∩ ∂Xj ∀ i, j ∈ I, i �= j

In order to give a flavor of how Branch and Bound works, we describe here
the scheme of a general prototype algorithm [75, 43]:

Branch and Bound :

Initialization: M0 = X, PX0 = {M0}, L0 = L(M0) and U0 = U(M0)
If U0 = L0 then STOP. U0 is an optimum for P;

Iteration k

1. Partitioning Step: Construct a partition PMk−1 of the consid-
ered subset Mk−1 and add it to the list of partition elements
PXk = (PXk−1\Mk−1) ∪ PMk−1 to be further explored;

2. Bounding Step: For each subregion M ∈ PMk−1 determine lower
and upper bounds L(M) and U(M), such that

L(M) ≤ f(x) ≤ U(M), ∀ x ∈M ;

3. Global Bounding Step: Set Lk and Uk according to the following
formulas:

Lk = min{L(M) |M ∈ PXk}, Uk = min{U(M) |M ∈ PXk};

4. Fathoming Step: Remove each M ∈ PXk from PXk for which:

L(M) ≥ Uk;

5. Termination and Selection Step:
If Uk = Lk then STOP. Uk is an optimum for P;
Otherwise,
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Select a subregionMk from the list of partition elements PXk

Set k = k + 1
Go to STEP 1.

The Branch-and-Bound process is usually represented as a tree, where the
nodes and the branches respectively correspond to the bounding and the
partitioning steps.

Definition 5.2.2. A Branch-and-Bound algorithm is finite if Lk = Uk for
some k <∞.

This is equivalent to say that a globally optimal solution is obtained af-
ter a finite number k of steps of the algorithm. When there is no finite
termination, one needs to analyze the limit behavior of the algorithm.

Definition 5.2.3. A Branch-and-Bound algorithm is convergent if

lim
k→∞

|Uk − Lk| = 0.

The convergence of the Branch and Bound algorithm depends on the choice
of three crucial operations:

1. Partitioning;

2. Bounding;

3. Selection.

Definition 5.2.4. (See Definition IV.4 [43]) A bounding operation is called
consistent if at every step any unfathomed partition element can be further
refined, and if any infinitely decreasing sequence {Miq} of successively refined
partition elements satisfies

lim
q→∞L(Miq) = lim

q→∞Uiq . (5.21)

As Uiq is not necessarily attained at Miq , the relation (5.21) is difficult to
verify in practice. Then it is easier to show that the following consistency
condition holds:

lim
q→∞L(Miq) = lim

q→∞U(Miq).
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Definition 5.2.5. (See Definition IV.6 [43]) The selection operation is said
to be bounding improving if at least every finite number of iteration Mk

satisfies
L(Mk) = min{L(M) | M ∈ PXk} = Lk.

Equivalently, we can say that at least one element where the actual lower
bound is attained is selected for further partition in a finite number of steps
of the prototype algorithm.

Theorem 5.2.1. (See Theorem IV.3 [43]) Suppose in the prototype Branch-
and-Bound algorithm that

(i) the bounding operation is consistent;

(ii) the selection operation is bounding improving.

Then the procedure is convergent:

�L = lim
k→∞

Lk = min
x∈X

f(x) = lim
k→∞

Uk = U.

5.2.2 Branch-and-Bound Algorithm for Separable Concave
Problems

The problem of minimizing a separable concave function represents one of
the earliest branches of nonlinear programming to be explored. In [78] Shect-
man and Sahinidis introduced a Branch-and-Bound algorithm that finds the
global minimum of the problem in a finite number of iterations. In this para-
graph we give a detailed description of the algorithm.
Let us consider the following problem:

min f(x)
s.t. x ∈ X ∩B (5.22)

with

1. X = {x ∈ Rn | aT
i x ≤ bi, i = 1, . . . ,m};

2. B =
∏n

j=1Bj, Bj = [lj, uj ] and lj, uj ∈ R ∪ {−∞,+∞};
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3. f(x) =
∑n

j=1 fj(xj) and fj : R→ R concave and bounded on Bj;

4. X ∩B bounded.

The algorithm combines the standard Branch-and-Bound procedure with
domain reduction techniques (we give in the next paragraph a detailed de-
scription of this class of accelerating devices). The algorithm basically fol-
lows the general scheme showed in the previous paragraph:

Branch and Bound for Concave Separable Problems:

Initialization: S0 = B, PB0 = {B}, L0 = L(S0) and U0 = U(S0).
If U0 = L0 then STOP. U0 is an optimum for P;
Choose an integer value 2 ≤ N <∞;

Iteration k

1. Partitioning Step: Construct a partition PSk−1 of the consid-
ered subset Sk−1 and add it to the list of partition elements
PBk = (PBk−1\Sk−1) ∪ PSk−1 to be further explored;

2. Bounding Step: For each subregion S ∈ PSk−1 determine lower
and upper bounds L(S) and U(S), such that

L(S) ≤ f(x) ≤ U(S), ∀ x ∈ X ∩ S;

3. Global Bounding Step: Set Lk and Uk according to the following
formulas:

Lk = min{L(S) | S ∈ PBk}, Uk = min{U(S) | S ∈ PBk};

4. Fathoming Step: Remove each S ∈ PBk from PBk for which:

L(S) ≥ Uk;

5. Termination and Selection Step:
If Uk = Lk then STOP. Uk is an optimum for P;
Otherwise,

Select a subregion Sk from the list of partition elements PBk

Set k = k + 1
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Go to STEP 1.

Here we report an in-depth description of the critical operations:

1. Preprocessing : For any variable xj unrestricted from below (i.e. lj =
−∞), replace lj in Bj with the solution of the following linear pro-
gramming problem:

min xj

s.t. x ∈ X ∩B (5.23)

and for any variable xj unrestricted from above (i.e. uj = +∞),
replace uj in Bj with the solution of the following linear programming
problem:

max xj

s.t. x ∈ X ∩B. (5.24)

2. Bounding : The bounds on the rectangular subregion S are determined
by solving a linear programming relaxation of the original problem.
For each concave term fj we construct a linear underestimator gj in-
tersecting fj at the current bounds lSj and uS

j of xj. The function gj so
described represents the convex envelope of fj over [lSj , u

S
j ]. We also

know (see previous section) that the convex envelope of a separable
concave function over a rectangular set S is the sum of the convex
envelopes of its individual terms fj over the set S. Then we have

g(x) =
n∑

i=1

gj(xj).

BOUNDING RULE
Let wS be a basic optimal solution of the relaxed problem:

min g(x)
s.t. x ∈ X ∩ S. (5.25)

A lower bound is given as follows

L(S) = g(wS),

and an upper bound may be obtained by evaluating

U(S) = f(wS).
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3. Selection: At each step the procedure selects from the list of open
subproblems a subproblem having the least lower bound.

SELECTION RULE
select any S from the list of partition elements PBk such that

L(S) = Lk.

4. Branching : The subset Sk selected for partitioning is replaced by two
new elements, thus obtaining a binary tree of the problem. If the level
of the problem in the tree is a multiple of N , the algorithm selects
the longest edge of the selected subset and bisects it. This measure
ensures the finiteness of the algorithm.
Otherwise, the partitioning rule selects and bisects the edge that corre-
sponds to a variable most responsible for the gap between the objective
function f(wSk) and the underestimator g(wSk ).
Furthermore, when the best current solution lies within Sk , it substi-
tutes the midpoint in the branching step. This operation is also made
to guarantee the finiteness of the procedure.
We indicate with j′ the index of the partitioning variable, p represents
the partitioning point, N is a parameter, D(Sk) gives the level of the
tree related to subset Sk, x̃ is the best current solution.

PARTITIONING RULE

if D(Sk) mod N = 0 then
j′ ∈ arg max(uSk

j′ − lSk
j′ )

p = (uSk
j′ − lSk

j′ )/2.
else
j′ ∈ arg max[fj(w

Sk
j ) − gj(w

Sk
j )]

if x̃ ∈ Sk and x̃j′ ∈]lSk
j′ , u

Sk
j′ [ then

p = x̃j′

else
p = (uSk

j′ − lSk
j′ )/2

endif
endif
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Basically, what we do is splitting the domain Sk =
∏n

j=1[l
Sk
j , uSk

j ] into two
subdomains:

[lSk
j′ , p]

∏
j �=j′

[lSk
j , uSk

j ]

and
[p, uSk

j′ ]
∏
j �=j′

[lSk
j , uSk

j ].

The following theorem (see [78]) shows that the algorithm has a much
stronger property than convergence, namely finiteness.

Theorem 5.2.2. The algorithm determines a solution of problem (5.22) in
a finite number of steps.

5.2.3 Acceleration Techniques

In this paragraph we describe some devices normally used to speed up the
Branch-and-Bound algorithm. Techniques similar to the ones given below
have been adopted in integer programming [81] and in concave programming
[82, 41, 53, 75, 79].
Consider the following LP relaxation:

min g(x)
s.t. x ∈ X ∩ S. (5.26)

Let wS be an optimal solution of the problem, let LS = g(wS), and let U
be the upper bound on the global solution.

1. Linear Parametric Programming Acceleration Techniques:

T1. Generation of valid inequalities by linear parametric program-
ming : These methods, widely discussed in [35], consist in per-
turbing a particular constraint from its current value

∑n
i=1 aijw

S
j

by a quantity µi. Let Lπ(µi) be the function representing the
optimum value obtained for the problem when a quantity µi is
added to the i-th constraint. When dealing with LP problems,
this function is well known to be convex.
As µi is decreased from zero, let lπi be the value (

∑n
j=1 aijw

S
j )+µi
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such that Lπ(µi) = U or the perturbed problem becomes infea-
sible. Similarly, as µi is increased from zero, let uπ

i be the value
(
∑n

j=1 aijw
S
j ) + µi such that Lπ(µi) = U or the perturbed prob-

lem becomes infeasible. From convexity of Lπ(µi), for any feasible
value (

∑n
j=1 aijw

S
j )+µi lower than lπi or greater than uπ

i , we have

Lπ(µi) > U.

Hence, the two new inequalities:

n∑
j=1

aijxj ≥ lπi

and
n∑

j=1

aijxj ≤ uπ
i

are valid for the considered subproblem.

T2. Bound Tightening by linear parametric programming : Similarly
to the previous technique, we consider a variable xj , to be per-
turbed from its current value wS

j by λj . As λj is decreased from
zero, let lπj be the value wS

j +λj such that Lπ(µi) = U or the per-
turbed problem becomes infeasible. Similarly, as λj is increased
from zero, let uπ

j be the value wS
j + λj such that Lπ(µi) = U

or the perturbed problem becomes infeasible. From convexity of
Lπ(µi), for any feasible value wS

j + λj lower than lπj or greater
than uπ

j , we have
Lπ(µi) > U.

Hence, the two new inequalities:

xj ≥ lπj

and
xj ≤ uπ

j

are valid for the considered subproblem.
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2. Sensitivity Analysis-based Acceleration Devices:
The general global optimization problem considered here is

min f(x)
s.t. h(x) ≤ 0 x ∈ X

(5.27)

where f : X → R, h : X → Rm and X ⊆ Rn.
The relaxation of (5.27) to be solved at the root node of a branch-and-
bound tree is

min g(x)
s.t. h̄(x) ≤ 0 x ∈ X̄

(5.28)

where f : X̄ → R, h̄ : X̄ → Rm and X̄ ⊆ Rn. For any feasible x in
the original problem we have

g(x) ≤ f(x) and h̄(x) ≤ h(x).

A perturbed version of (5.28) is

ϕ(y) = min g(x)
s.t. h̄(x) ≤ y x ∈ X̄.

(5.29)

The following theorem [63] shows an important property of the per-
turbation function ϕ(y) considered above:

Theorem 5.2.3. Assume relaxed problem (5.28) has a finite optimum
at x̄ with value ϕ(0) and lagrange multipliers µ. Then the hyperplane:

z(y) = ϕ(0) − µT y

is a supporting hyperplane of the graph of ϕ(y) at y = 0, i.e.

ϕ(y) ≥ ϕ(0) − µT y ∀y ∈ Rm

The following result can be derived from theorem 5.2.3:

Theorem 5.2.4. If relaxed problem (5.28) is convex with optimal
value ϕ(0) = L, constraint i is active at the optimum and the lagrange
multiplier µi > 0 then, if U is an upper bound of the original problem
(5.27) the constraint:

h̄i(x) ≥ −(U − L)/µi (5.30)

is valid for problem (5.27), i.e. does not exclude any feasible solution
with value better than U .
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Proof. Problem (5.29) can be seen as a convex relaxation of the
perturbed nonconvex problem

Φ(y) = min f(x)
s.t. h(x) ≤ y x ∈ X.

(5.31)

then we have ϕ(y) ≤ Φ(y). Let y = eiyi; From theorem 5.2.3 we have

L− µT eiyi ≤ ϕ(y) ≤ Φ(y).

By requiring that Φ(y) ≤ U , we obtain

L− µT eiyi ≤ U.

Finally, consider only non-positive values for y. Since h̄i(x) ≤ yi is
active for yi = 0, then it will also be active for yi ≤ 0. Then we can
substitute yi with h̄i(x) and deduce

L− µih̄i(x) ≤ U.

�

These general results can be specialized to the case we have described
in the previous pages, and the following techniques can be obtained:

T1. Generating mirror inequalities by means of sensitivity analysis
with respect to bi: Consider the linear constraint

n∑
j=1

aijxj ≤ bi

that is active at ws with the lagrange multiplier µi > 0. Then we
can deduce:

n∑
j=1

aijxj ≥ bi − (U − L)/µi

is valid for the considered subproblem.
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T2. Tightening bounds by means of sensitivity analysis: Consider the
upper bound

xj ≤ uj

that is active at ws with the lagrange multiplier µi > 0. Then we
can deduce:

xj ≥ uj − (U − L)/µi

is valid for the considered subproblem. Consider the lower bound

xj ≥ lj

that is active at ws with the lagrange multiplier µi > 0. Then we
can deduce:

xj ≤ lj + (U − L)/µi

is valid for the considered subproblem.

3. Domain Reduction using Probing to induce Marginal Values:
The generation of valid inequalities is based upon the sets of con-
straints that are active at the solution ws of the considered relaxed
subproblem. Valid inequalities can be also derived from constraints
not active at ws by probing at the bounds. In practice, we temporar-
ily fix these variables at their bounds and solve the partially restricted
relaxed problem. This lead to the following techniques:

T1. Generating mirror inequalities by probing the slack domain of i:
Consider the linear constraint

n∑
j=1

aijxj ≤ bi

that is not active at ws. Solve subproblem after fixing
n∑

j=1

aijxj = bi

(i.e by adding
∑n

j=1 aijxj ≥ bi). Let Z be the optimal solution of
this partially restricted problem. If the lagrange multiplier µi > 0
for constraint

∑n
j=1 aijxj ≥ bi, then we can deduce:

n∑
j=1

aijxj ≤ bi + (U − Z)/µi
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is valid for the considered subproblem.
T2. Tightening bounds by probing the existing domain of variable xi:

Consider the upper bound

xj ≤ uj

that is not active at ws. Solve subproblem after fixing

xj = uj

(i.e by adding xj ≥ uj). Let Z be the optimal solution of this
partially restricted problem. If the lagrange multiplier µi > 0 for
constraint xj ≥ uj, then we can deduce:

xj ≤ uj + (U − Z)/µi

is valid for the considered subproblem. Consider the lower bound

xj ≥ lj

that is not active at ws. Solve subproblem after fixing

xj = lj

(i.e by adding xj ≤ lj). Let Z be the optimal solution of this
partially restricted problem. If the lagrange multiplier µi > 0 for
constraint xj ≤ lj, then we can deduce:

xj ≥ lj − (U − Z)/µi

is valid for the considered subproblem.

4. Acceleration Devices using no Dual Information:

T1. Optimality-based Tightening : This method uses current upper
and lower bounds on the global solution to generate constraints
that may trim-off inferior portions of S.

T2. Feasibility-based Tightening : This method generates constraints
that cut-off infeasible portions of the solution space.

See [78] for further details.
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5.3 Future Perspectives

Significant progress has been made in global optimization, but there is
clearly still a lot of work that need to be done.
First, when dealing with large scale concave problems we need efficient con-
vex envelopes that give a good lower bound (i.e. a lower bound that makes
the gap narrow enough). So the crucial task of finding tight lower bounds of
a separable concave function over a polyhedral set deserves a deeper study.
Second, Branch-and-Bound algorithms for separable concave programming
problems should be further developed and investigated, as well as imple-
mented using parallel techniques.
Third, Computational strategies for speeding up the Branch-and-Bound al-
gorithm (e.g. domain reduction techinques) need to be studied in depth and
implanted effectively.
Finally, a great deal of work should be devoted to the development of effi-
cient local optimization methods for finding useful upper bounds (i.e. fea-
sible points not far from the optimal solution). In fact, combining effective
local methods with exact global approaches might lead to fast algorithms
able to close the gap in reasonable time.
Anyway, results obtained in global optimization are very encouraging, so
there is reason for optimism in the future of this area.
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