Can't you hear me knocking

Identification of user actions on Android apps via traffic analysis

Candidate: Riccardo Spolaor Supervisor: Prof. Mauro Conti Co-Supervisor: Dr. Nino V. Verde

April 17, 2014

Università degli Studi di Padova

1 Introduction

2 Related work

3 Framework

4 Performance

5 Conclusions

Motivation

Attack regarding user privacy on smartphones.

Can we be able to recognize **user actions** on his smartphone analyzing the generated **network traffic**?

Contribution

- We prove that this is possible, with an accuracy > 95%.
- Traffic analysis using machine learning techniques.

Who do you sync you are? [Stöber et al., 2013]

Recognition of the **set of apps** installed on a smartphone, analyzing **traffic bursts** produced by apps in background.

Network profiler [Tongaonkar et al., 2013]

Building a **profile** for an apps.

Payload analysis on **HTTP** request and response.

Recognize an app from its network traffic.

Protocol	Presence (packets)
TLSv1	95.4% (54038)
ТСР	03.4% (1908)
HTTP	01.1% (644)
SSLv2	00.1% (63)

Table : Presence of different protocols among packets captured.

Payload analysis is not feasible because more than 95% of captured packets are **encrypted with TLS protocol**.

Framework overview

1 Data acquisition.

2 Flow building.

3 Flow clustering.

4 User action classification.

We test our solution on Twitter, Facebook and Gmail.

Data acquisition - Hardware environment

Data acquisition - Python scripts

- A script defines a **sequence of user actions** to explore the app functionality.
- Log files with a **timestamps** for every user action execution.
- Wireshark captures and log files are synchronized using ntp server.

Packets filtering

- **Domain** (WHOIS protocol).
- **Connection control** (three-way handshake and ACK).

Flow conditions

- Consecutive packets with the same IP address destination ad port.
- Terminated if not seen any new packets since 4.5 seconds [Stöber et al., 2013].

Flow building - Flow representation

Flow ID	Flow time series
Flow 1	[282, -1514, -1514, -315, 188, -113, 514, 96, 1514, 179, 603, 98, 801, 98, -477]
Flow 2	[282, -1514, -1514, -1266, -582, 188, -113, 692, 423, -661]
Flow 3	[926, 655, 136, -1245, 913, 1514, 1514, 863, -1514, -107, -465, -172, -111]

Motivation

A single user action can produce multiple flows.

Regroup flows in **clusters** by their similarities.

Missing knowledge about their number, nor features.

Implementation

We use **hierarchical agglomerative clustering** based on flows distances.

We evaluate the distance between two **flows time series** using **Dynamic Time Warping** [Müller, 2007].

Flow clustering - Clusters

Starting from hierarchy, we produce **sets of clusters** using thresholds.

Figure : Dendrogram for an hierarchy of clusters

Election of a flow f_i as **leader**, for each cluster $C = \{f_1, \ldots, f_n\}$

$$leader_C = \arg\min_{f_i \in C} \left(\sum_{j=1}^n dist(f_i, f_j) \right).$$

We use leaders to assign unseen flows to clusters.

Dataset organization:

- Classes \rightarrow User actions.
- **Features** \rightarrow Flow presence in a cluster.

ID	User actions	Cluster_1	 Cluster_k	 Cluster_n
001	send mail	0	 2	 0
002	send reply	1	 1	 0

The classifier we use is Random forest.

We collected data from **220 script executions** for each app.

Different user actions examples:

- 11660 for Gmail,
- 6600 for Twitter,
- 10120 for Facebook.

Divided in:

- Training set \rightarrow 70%.
- Test set \rightarrow 30%.

Produced with **disjoint accounts** sets.

We consider actions significant for the **user privacy**.

- **Facebook** \rightarrow Post a status, send a message.
- **Gmail** \rightarrow Send an email, reply to an email.
- **Twitter** \rightarrow Publish a tweet, open contacts page.

We regroup less significant actions in the class "other".

In "other", we also include the **background traffic** produced by an app.

Random forest accuracy

Figure : Accuracy obtained with Random forest classifier.

Performance

- We proposed a framework for the identification of user actions on Android apps.
- An eavesdropper can leverage this tool to undermine the privacy of mobile users.
- Learn habits of the target users, in order to gain some commercial or intelligence advantage.
- We believe that this work will **stimulate researchers** to work on countermeasures on the possible attacks.

[ACM WiSec 2014, 7th ACM Conference on Security and Privacy in Wireless and Mobile Networks (submitted)]

Thanks

Thanks for your attention.

Do you have any questions?

🚡 Müller, M. (2007).

Information Retrieval for Music and Motion. Springer-Verlag New York, Inc.

- Stöber, T., Frank, M., Schmitt, J., and Martinovic, I. (2013). Who do you sync you are?: Smartphone fingerprinting via application behaviour. WiSec '13.
- Tongaonkar, A., Dai, S., Nucci, A., and Song, D. (2013). Understanding mobile app usage patterns using in-app advertisements. PAM '13.

Dynamic Time Warping

Dynamic Time Warping (DTW) is an alignment method for time series [Müller, 2007], also used in speech recognition.

User action time interval

Apps	Sets	Weights	Incoming	Outgoing	Complete
	Conf. 1	0.80	[1,4]	[1,2]	[1,6]
		0.20	[1,6]	[1,3]	[1,9]
Gmail	Conf 2	0.66	[1,4]	[1,2]	[1,6]
Gillan	Com. 2	0.33	[1,6]	[1,3]	[1,9]
	Conf 3	0.33	[1,4]	[1,2]	[1,6]
	Com. 5	0.66	[1,6]	[1,3]	[1,9]
Facebook	Conf. 1	0.66	[1,3]	[1,5]	[1,7]
		0.33	[1,6]	[1,7]	[1,12]
	Conf. 2	0.33	[1,3]	[1,5]	[1,7]
		0.66	[1,6]	[1,7]	[1,12]
	Conf. 3	0.20	[1,3]	[1,5]	[1,7]
		0.80	[1,6]	[1,7]	[1,12]
Twitter	Conf. 1	0.95	-	-	[7,10]
		0.05	-	-	[1,10]
	Conf. 2	0.95	-	-	[8,11]
		0.05	-	-	[1,11]
	Conf. 3	0.95	-	-	[8,10]
		0.05	-	-	[1,10]

Table : Weights set configurations and packets intervals for Gmail,Facebook and Twitter apps.

Gmail flows

Figure : Flow representation for Gmail actions.

Twitter flows

Figure : Flow representation for Twitter actions.

Significant user actions

Facebook

send message	send a direct message to a friend	
post on wall	post a content on a friend's wall	
post user status	post a status on user's wall	
open user profile	select user profile page from menu	
open message	select a conversation on messages page	
status button	select "write a post" on user's wall	
open facebook	Facebook app execution start	
	Gmail	
send mail	send a new email	
send reply	send a reply to an email	
reply button	button to reply selection	
open chats	select chats page from menu	
Twitter		
tweet/message	publish a tweet or send a message	
refresh home	request for refresh the home page	
open contact	select contacts page on menu	
open messages	select direct messages page	
open tweets	select tweets page on menu	
open twitter	Twitter app execution start	

Figure : Classification accuracy of the Facebook user actions.

Facebook II

User actions	Precision	Recall	F-measure
send message	1.00	1.00	1.00
post user status	1.00	0.95	0.97
open user profile	0.96	0.91	0.94
open message	0.98	1.00	0.99
status button	1.00	1.00	1.00
post on wall	1.00	0.98	0.99
open facebook	1.00	1.00	1.00
other	0.99	1.00	0.99
Average	0.99	0.98	0.99

Table : Classification results of Facebook user actions reached usingConfiguration 3.

Facebook III

Figure : Facebook user actions confusion matrix for Configuration 3.

Gmail I

Figure : Classification accuracy of the Gmail user actions.

32 of 21

User actions	Precision	Recall	F-measure
send mail	1.00	1.00	1.00
reply button	0.85	1.00	0.92
open chats	0.36	0.94	0.52
send reply	0.98	1.00	0.99
other	0.99	0.82	0.90
Average	0.83	0.85	0.86

Table : Classification results of Gmail user actions reached usingConfiguration 1.

Gmail III

Figure : Gmail user actions confusion matrix for Configuration 1.

Twitter I

Figure : Classification accuracy of the Twitter user actions.

User actions	Precision	Recall	F-measure
refresh home	0.94	0.99	0.96
open contacts	0.97	0.96	0.97
tweet/message	0.97	1.00	0.98
open messages	1.00	0.95	0.97
open twitter	1.00	1.00	1.00
open tweets	1.00	0.95	0.97
other	0.96	0.96	0.96
Average	0.98	0.97	0.97

 $\ensuremath{ \mbox{Table}}$: Classification results of Twitter user actions reached using the Configuration 1.

Twitter III

Figure : Twitter user actions confusion matrix for Configuration 1.

LinearSVC accuracy

Figure : Accuracy obtained with LinearSVC classifier.

Random forest accuracy

Figure : Accuracy obtained with Random forest classifier.

Gaussian naive Bayes accuracy

Figure : Accuracy obtained with Gaussian naive Bayes classifier.

Protocol	Facebook	Gmail	Twitter	Total
TLSv1	96.0% (33398)	90.9% (7205)	96.3% (13435)	95.4% (54038)
ТСР	03.7% (1316)	00.8% (70)	03.7% (522)	03.4% (1908)
HTTP	00.0% (0)	08.1% (644)	00.0% (0)	01.1% (644)
SSLv2	00.1% (63)	00.0% (0)	00.0% (0)	00.1% (63)

Table : Protocol presence among all considered apps.

Payload analysis is not feasible because almost the 95% of captured packets are **encrypted with TLS protocol**.

Metrics

$$precision = \frac{TP}{TP + FP}.$$

$$recall = \frac{TP}{TP + FN}.$$

$$F_1 = 2 * rac{precision * recall}{precision + recall} = rac{2 * TP}{2 * TP + FP + FN}.$$

42 of 21