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Abstract

We consider the possibility for an insurance company to rely on capital injections to bring
the reserve back to a given level if it has fallen below it and study the problem of dynamically
choosing the reinsurance level and the investment in the financial market in order to minimize
the expected discounted total amount of capital injection. The reserve process is described
by a piecewise deterministic process, where the random discontinuities are triggered by the
arrival of a claim or by a change in the prices of the risky assets in which the company
invests. The capital injections, combined with the specific model, make the problem non-
linear and difficult to solve via an HJB approach. The emphasis here is on making the actual
computation of a solution possible by value iteration combined with an approximation based
on discretization. This leads to a nearly optimal solution with an approximation that can be
made arbitrarily precise. Numerical results show the feasibility of the proposed approach.

Keywords: Reinsurance and investment, Minimizing capital injections, Value iteration, Ap-
proximation methods.

1 Introduction

A traditional criterion in Insurance is the minimization of the ruin probability and, among the
tools to achieve this, there is the choice of the reinsurance level and, possibly the investment
in the financial market. If one considers the possibility of capital injections, for example by
the shareholders, to bring the level of the reserve (below we shall refer to it as wealth process)
back to a given level if it has fallen below it, then a more recent criterion is (see e.g.[10],[11])
the minimization of the expected, discounted cumulative amount of capital injections. In this
paper we shall consider the dynamic stochastic optimization problem consisting of minimizing
this latter criterion by an optimal choice of the reinsurance level and of the investment in the
∗Corresponding author: Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova,
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financial market; our study could be extended to include also other control variables, such as
dividend payments. Without loss of generality we shall assume a zero-level, below which to inject
capital in order to bring the wealth process back to this level. We do not consider also a possible
dual approach for the case of negative risk sums (see [2], [16]).

As dynamic model for the wealth process we consider a model that was inspired by [24] and
then further developed in [9] and [23]. It leads to wealth processes of the type of piecewise
deterministic processes (see e.g. [8], [5]). We shall in fact assume that the wealth evolves as a
process with piecewise deterministic trajectories, where the random discontinuities are triggered
either by the arrival of a claim or by a change in the prices of the assets in which the company
invests. It corresponds to assuming that the asset prices do not follow continuous trajectories,
but rather change at random points in time and by tick size. This happens for example for high
frequency trading with frequent and small price changes, but we may also assume that a price
change is registered if it exits from a given band around some predetermined reference values,
which leads to less frequent and larger price changes. For such a model it follows that the control
actions (level of reinsurance, rebalancing of the investment portfolio) have to be made only at the
jump times as a consequence of a claim or a change in the asset prices.

To solve the resulting dynamic optimization problem, we may view our model either in discrete
or continuous time. In the latter case one may consider an HJB approach using either a diffusion
approximation or viscosity solutions (e.g. [3]). An HJB appproach is however not particularly
suitable in our case (see also the discussion in section 2.1.7 in [9]) and turns out to be compu-
tationally rather demanding. Remaining always in the context of the Dynamic Programming
(DP) principle, here we opt for a more direct approach, based on the contraction property of the
DP operator and leading to a Value Iteration algorithm (VI) of the type used in discrete time,
infinite-horizon Markovian decision problems. In fact, although for our problem we shall consider
a finite horizon, as it is more natural in economic activities, the number of possible jump times
is not bounded from above. On the other hand, viewing our problem in discrete time, the time
instants are not deterministically given, but random. A Value Iteration algorithm for a model
analogous to the one in this paper was already studied in [9], but for a more standard objective
function. Assuming, as we shall do without loss of generality, a zero level to trigger the capital
injections, the amount of the injection is given by the negative part of the wealth process. This
induces a non-linearity in the problem that is not easy to deal with.

The Value Iteration algorithm, that we shall derive, is quite general and can include problems
with additional control variables such as payments of dividends. To allow for feasible compu-
tations, in our Value Iteration algorithm we shall use an approximating model based on the
discretization of time and of the values of the wealth process and show the convergence of the
approximations. There is a well-established procedure to this effect (see e.g. [18]): one starts by
restricting the variables to a compact set so that the discretization leads to a finite number of
possible values. The specific structure of our problem leads however to various difficulties if one
tries a direct application of this procedure. Overcoming the difficulties requires various results
that make up a great portion of the technical part of the paper. Although there are some recent
more sophisticated methods to improve the discretization in view of a better convergence, namely
the so-called optimal quantization (see e.g.[21]), for our problem it can not be applied straightfor-
wardly and the simpler uniform discretization turned out to be satisfactory. Our approach could
however be extended to include also optimal quantization and an attempt in this direction has
been made in ([4]). Finally, in order to show the feasibility of our approach and to draw some
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qualitative conclusions, we also show examples of numerical calculations where, in addition to a
time and space discretization, we perform also a control discretization.

In the next Section 2 we present a formal description of the model and of the problem.
Section 3 contains preliminary definitions and results. Section 4 is intended to set the stage for
the application of the Value Iteration algorithm to our problem. In Section 5 we then derive
the approximate Value Iteration approach, by which the solution to the given problem becomes
feasible. Numerical results are reported in Section 6 and an Appendix contains technical and
longer proofs.

2 Model and objective

We consider a risk/reserve process Xt of a company, typically an insurance company, that here
we shall call wealth process and that results from deterministic premia collected by the company,
from stochastic claim payments and from investment in the financial market where, for simplicity,
we assume investment in a single risky asset only. We allow the evolution of the wealth process to
be controlled by reinsurance in addition to the investment. A standard criterion for the choice of
the controls is the minimization of the ruin probability (for a model analogous to the one studied
here, this was considered in [23]). Here, following some more recent literature (see e.g. [10],[11])
we do not consider the ruin probability but do not allow the wealth process to become negative
by assuming that, as soon as it becomes negative, the shareholders inject sufficient capital to
bring it back to zero. The zero level is chosen for convenience, but one may consider any other
solvency margin. Given a finite time horizon T > 0, our criterion will then be the minimization
of the expected value of the (discounted) cumulative injected capital up to the horizon T .

Claims occur at random points in time and also their sizes are random, while asset prices
are usually modeled as continuous time processes. As mentioned in the Introduction, here we let
the prices change at discrete random points in time (see e.g.[12],[14],[22]), with their sizes being
random as well. This will allow us to consider the timing of the events (arrivals of claims and price
changes) to be triggered by a single continuous-time semi-Markov process. Such a formulation
was already considered in Schäl (see [24],[25]), where the total number of random events is fixed
so that the horizon is random as well. Following [9] and [23] we consider here a fixed finite time
horizon as a more natural choice, which on the other hand implies that also the number and not
only the timing of the events becomes random and this makes the problem non-standard.

Since between event times the situation for the company does not change, we shall determine
the controls (level of reinsurance and amount of investment) only at the event times.

On a more formal basis we model the event times with a point process {Tn}n≥0, where Tn
denotes the time of the nth event with T0 = 0. We assume them to be non-explosive, namely
limn→∞ Tn = +∞ a.s. We denote by Sn := Tn−Tn−1 the waiting time between the (n−1)st and
the nth event, assuming that {Sn}n≥0 are i.i.d. with distribution function G(s) having support
in the positive half line and such that P{Tn ≤ T} > 0 for all n ≥ 0. Put

Nt = max {n : Tn ≤ t} =
+∞∑
n=1

1{Tn≤t}, ∀t ∈ [0, T ] (1)

and consider (see [25]) also a piecewise constant and right continuous process {Kt}t∈[0,T ] which
identifies the two types of events: if at Tn a claim arrives, then KTn = 0; if a price change occurs,
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then KTn = 1. This process is supposed to be a Markov process that results as a special case of
a more general semi-Markov process, where the transition matrix of the embedded Markov chain
{KTn}n≥1 is of the form

Π =

(
p0,0 p0,1

p1,0 p1,1

)
(2)

and such that

P
{
Tn − Tn−1 ≤ s,KTn = j|KTn−1 = i

}
= pi,jP {Tn − Tn−1 ≤ s} = pi,jP {Sn ≤ s} =: pi,jG(s),

for all s ≥ 0, i, j ∈ {0, 1} . In a general semi-Markov process, the G(s) may depend on i, j.
However, many cases of interest can be modeled also with a G(s) that is independent of i, j (see
e.g. [23] for the problem considered here) and so we stay with this Markovian model.

In addition to the i.i.d. sequence Sn consider two further i.i.d. sequences: {Zn}n≥1 repre-
senting the claim sizes at the various event times Tn and having distribution function F (z) with
support also in the positive half-line and with a finite second order moment; {Wn}n≥1 represent-
ing the returns of the risky asset between Tn−1 and Tn. More precisely, letting Πt be the price of
the risky asset at the generic time t, we have

ΠTn −ΠTn−1

ΠTn−1

=: Wn

For the i.i.d. sequenceWn we assume a distribution function H(w) that has support in an interval
of the form [w, w̄] where w ∈ (−1, 0] and w̄ > 0. The random variables Wn may be continuous or
discrete (prices changing by tick size).

All the various random variables are supposed to be defined on the same probability space
(Ω,F ,P) with a filtration F = {Ft}t∈[0,T ] given by

Ft = σ (Ns,Ks, SNs , ZNs ,WNs : 0 ≤ s ≤ t) , ∀t ∈ [0, T ] .

Concerning the controls, consider first the reinsurance/retention level bt at the generic time t
putting bn := bTn−1 . Among the various reinsurance schemes we choose here, to fix the ideas, a
proportional reinsurance, by which the loss faced by the insurance company for a claim of size z
is h(b, z) = bz so that b ∈ [0, 1] with b = 0 meaning full reinsurance and b = 1 no reinsurance (the
results below all hold also for more general h(b, z) provided it is continuous and monotonically
increasing in both variables). Let then B = {bt}t∈[0,T ] be the predictable reinsurance control
process that we assume to belong to the set of piecewise constant processes

Ure =
{
B = {bt}t∈[0,T ] : bt = bn on [Tn−1, Tn), ∀n = 1, . . . , NT + 1; bt ∈ [0, 1]

}
(3)

where it is intended that TNT+1 = T . Recall now that the company collects premium payments
and we denote by c this premium rate. On the other hand, the company has to pay to the reinsurer
a premium that depends on the chosen level b. This leads to define the net premium rate c(b)
that can be determined on the basis of the so-called expected value principle with safety loading.
For this we base ourselves on a general definition of safety loading parameter in section I.1 of
[2], where the safety loading parameter θ > 0 of the re-insurer satisfies θ = p−ρ

ρ . In our case of

proportional reinsurance the parameters p and ρ can be determined as p = c−c(b), ρ = (1−b)E{Z1}
E{S1} ,

with S1 representing the time between two events and not just between two claims. This leads
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to c(b) = c − (1 + θ) (1 − b) E{Z1}
E{S1} . To determine the net premium rate c, the insurer may in

turn apply a safety loading principle with parameter η > 0 where, this time, we put p = c and
ρ = E{Z1}

E{S1} . It follows that c = (1+η) E{Z1}
E{S1} and, replacing this latter expression into the previous

expression for c(b), we finally end up with

c(b) = [b (1 + θ)− (θ − η)]
E{Z1}
E{S1}

(4)

that is continuous and increasing and, assuming θ > η, one has c(0) < 0. (See [23] for a comment
on using E{Z1} also when, as in our case, Z1 refers to the random time between events and not
necessarily just claims).

In addition to the reinsurance control we consider the predictable investment control process
D = {δt}t∈[0,T ] where δt represents the monetary amount invested at the generic time t in the
risky asset and that we also assume to belong to the set of piecewise constant processes

Uinv =
{
D = {δt}t∈[0,T ] : δt = δn on [Tn−1, Tn), ∀n = 1, . . . , NT + 1; δt ∈ [−C1, C2]

}
(5)

where both, C1 and C2, are positive constants. This means that the company cannot sell short
more than a monetary amount C1 of the risky asset, nor buy more than C2.

Any pair (B,D) of reinsurance and investment control processes belonging to Ure × Uinv
reduces to a sequence (bn, δn) belonging to U := [0, 1]× [−C1, C2] which is a compact set.

Definition 2.1. We shall call the pair (bn, δn) a control action over the period [Tn−1, Tn) and call
admissible policy a policy π = (B,D) ∈ Ure × Uinv (consists of a predictable sequence of control
actions (b, δ) ∈ U = [0, 1]× [−C1, C2]).

Finally, the evolution of the wealth process will also be affected by the capital injections that
take place only when Xt drops below zero. By their definition, injections can take place only at
event times. Denoting by Yn ≥ 0 the amount injected at Tn, for the wealth process we have

Xt = x+

∫ t

0
c(bs)ds+

Nt∑
n=1

(KTnδnWn − (1−KTn)bnZn + Yn) . (6)

This leads to the following one-step dynamics between the (n− 1)st and the nth event

XTn = XTn−1 + c(bn)Sn +KTnδnWn − (1−KTn) bnZn + Yn , Tn ≤ T (7)

where (bn, δn) are the control actions at t = Tn−1.

Remark 2.2. If one starts at a generic t ∈ [Tn−1, Tn) with a wealth x ≥ 0, then the one-
step dynamics up to Tn = TNt+1 can still be represented by (7) provided one replaces XTn−1 by
x− c(bn)(t− Tn−1), which is a known quantity at any time t ∈ [Tn−1, Tn).

Without loss of generality we can thus limit ourselves to time instants t = TNt = Tn for some
n ≥ 0 and, replacing for simplicity of notation the pedexes Tn by n, write (7) equivalently as

Xn = Xn−1 + c(bn)Sn +KnδnWn − (1−Kn) bnZ + Yn , n ≤ NT (8)

Below we shall follow a Dynamic Programming approach that leads to optimal controls of
the Markov type. For such controls, the pairs (XTn ,KTn) form a Markov process and so we may
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consider as state space triples of the form (t, x, k) (see Section 4.1 below). Since our objective is
the minimization of the expected total discounted capital injections, we let the objective criterion
be given by

V B,D(0, x; k) := EB,D0,x;k


NT∑
j=1

e−γTjY B,D
j

 (9)

where, assuming that we start at t = T0 = 0, x = XB,D
0 > 0, k = K0 and γ is a discount factor.

Put then
V ∗(0, x; k) := inf

(B,D)∈Ure×Uinv
V B,D(0, x; k) (10)

The discounting implies that the necessary capital should be injected as late as possible and never
exceed the amount required to restore the wealth to zero. This gives also a further justification
for (11) below.

3 Preliminary definitions and results

As mentioned, we assume that, as soon as the wealth process becomes negative, the shareholders
inject sufficient capital to bring it back to zero. We thus have, at t = Tn,

Yn = (Xn−1 + c(bn)Sn +KnδnWn − (1−Kn) bnZn)− (11)

and, by (8),
Xn = (Xn−1 + c(bn)Sn +KnδnWn − (1−Kn) bnZn)+ (12)

It follows from (11) that the only control processes are B and D. To stress this fact we shall write
XB,D and Y B,D. For convenience define

ΨB,D
n := c(bn)Sn +KnδnWn − (1−Kn)bnZn and put X̂B,D

n := XB,D
n−1 + ΨB,D

n (13)

We thus obtain the following representation

XB,D
n =

(
X̂B,D
n

)+
; Y B,D

n =
(
X̂B,D
n

)−
(14)

and from |X̂B,D
n | =

(
X̂B,D
n

)+
+
(
X̂B,D
n

)−
= XB,D

n + Y B,D
n we also have

0 ≤ XB,D
n ≤ |X̂B,D

n |, ∀n ≤ NT , ∀(B,D) ∈ Ure × Uinv and Y B,D
n ≤ |X̂B,D

n |, ∀n ≥ 1 (15)

We shall now show that, under our model assumptions, the criterion (10) is well defined with
the expectations in (9) being finite for all (B,D) ∈ Ure × Uinv. To this effect notice that by (13)
and (15) and recalling that XB,D

0 = x, we have

|X̂n| ≤ x+
n∑
j=1

|ΨB,D
j | as well as Y B,D

n ≤ x+
n∑
j=1

|ΨB,D
j | (16)

Defining

QB,D :=
∑NT

j=1 |Ψ
B,D
j |

G1 := T |c(1)|+ max[C1, C2]E{|W1|}+ E{Z1} <∞

G2 := 3 (T c(1))2 + 3 (max[C1, C2])2 E{(W1)2}+ 3E{Z2
1} <∞

(17)
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we have the following Lemma with proof in the Appendix.

Lemma 3.1. We have that, uniformly in (B,D) ∈ Ure × Uinv,

E{QB,D | NT } ≤ G1NT ; E{(QB,D)2 | NT } ≤ G2(NT )2

Corollary 3.2. Uniformly in (B,D) ∈ Ure × Uinv, and with R > 0 and 0 < x < R, we have

i) EB,D0,x;k

{
|X̂B,D

n | | NT

}
≤ x+G1NT ; EB,D0,x;k

{
Y B,D
n | NT

}
≤ x+G1NT ,

EB,D0,x;k

{
(Y B,D
n )2 | NT

}
≤ 2x2 + 2(G1)2(NT )2, ∀n ≤ NT

ii) PB,D0,x;k

{
supn≤NT |X̂

B,D
n | > R

}
≤ G1E{NT }

R−x

Proof. Given Lemma 3.1, the proof becomes immediate noticing that from (16) we have that
x +

∑NT
j=1 |Ψ

B,D
j | = x + QB,D is a common bound for |X̂B,D

n | with n ≤ NT , as well as for
supn≤NT |X̂

B,D
n |. For ii) one applies furthermore the Markov inequality.

Corollary 3.2 implies that, for all x > 0, k ∈ {0, 1}, and uniformly in the policy (B,D) ∈
Ure × Uinv, one has that

V B,D(0, x; k) = EB,D0,x;k


NT∑
j=1

EB,D0,x;k

{
e−γTjY B,D

j | NT

} ≤ xE{NT }+G1E{(NT )2}

For later use, we conclude this section with a further corollary of Lemma 3.1.

Corollary 3.3. For R > 0, x ∈ [0, R] and uniformly in the policy (B,D) ∈ Ure × Uinv we have

PB,D0,x;k

{
sup
n≤NT

|X̂B,D
n | > R | NT

}
≤ G2(NT )2

(R− x)2

Proof. Recalling from the proof of Corollary 3.2 that supn≤NT |X̂
B,D
n | ≤ x+QB,D and using the

Markov inequality as well as Lemma 3.1, we obtain

PB,D0,x;k

{
supn≤NT |X̂

B,D
n | > R | NT

}
≤ P

{
QB,D > R− x | NT

}
= P

{
(QB,D)2 > (R− x)2 | NT

}
≤ E{(QB,D)2|NT}

(R−x)2
≤ G2(NT )2

(R−x)2

4 Value Iteration

In this section we shall discuss some basic issues relating to a direct application of a Value Iteration
approach to the problem formulated in the previous Section 2 and we do it here for the objective
criterion V ∗(0, x; k) in (10), which then serves also to motivate the remaining part of the paper, in
particular the next Section 5 where we study an approximate Value Iteration approach and show
its convergence. For the solution of our problem one may in fact consider various approaches,
among which also an HJB approach which, as mentioned in the Introduction, turns out to be
not particularly suitable for the given problem. We shall therefore concentrate on a Dynamic
Programming Approach leading to Value Iteration (see e.g. [18], [19], [20], [5]).
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4.1 The Dynamic Programming methodology and Value Iteration

As it will follow from the Dynamic Programming (DP) setup, we may restrict ourselves to Markov
controls (B,D), (see Proposition 4.4 below) i.e. such that the induced control actions (bn, δn) are
of the form

bn = b(Tn−1, Xn−1;Kn−1) ; δn = δ(Tn−1, Xn−1;Kn−1) (18)

As already mentioned, with Markov controls the pair (Xn,Kn) = (XTn ,KTn) is Markov.
In view of applying the Dynamic Programming methodology we first extend the definition of

the objective criterion (9) to an arbitrary t ∈ [0, T ] with t = TN−t = Tn and consider as state
space the set

E := {(t, x, k) | t ∈ [0, T ], x ∈ R+, k ∈ {0, 1}} = [0, T ]× [0,∞)× {0, 1}, (19)

Definition 4.1. For (t, x, k) ∈ E with t = Tn < T, (Nt = n), and relying on the Markovianity of
the controls (B,D) ∈ Ure × Uinv, let the value function (cost-to-go function) be given by

V B,D(t, x; k) := EB,Dt,x;k


NT∑

j=n+1

e−γ(Tj−t)Y B,D
j

 = EB,Dt,x;k


∞∑

j=n+1

e−γ(Tj−t)Y B,D
j 1{j≤NT }


The optimal value (cost-to-go) function then is

V ∗(t, x; k) := inf
(B,D)∈Ure×Uinv

V B,D(t, x; k)

In line with Remark 2.2 we shall evaluate the value function for (random) triples (t, x, k) ∈ E of
the form t = TNt = Tn for some n ≥ 0, x = XTn , k = KTn , i.e. we may put V B,D

(Tn, XTn ,KTn) =

V
B,D

(t, x, k)|t=Tn,x=XTn ,k=KTn
.

Next, denote by B(E) the Banach space of bounded functions on E with respect to the
sup-norm, namely B(E) = L∞(E), and let C(E) be

C(E) := {v ∈ B(E) | (t, x) → v(t, x; k) is continuous ∀k ∈ {0, 1}} (20)

It can be shown (see e.g. [1]) that also C(E) is a Banach space in the sup-norm. Noticing now
that, given x, k at the event time t = TNt = Tn, the values of XB,D and Y B,D at the next
event time Tn+1 = Tn + Sn+1 depend on B,D only through b = bn+1 = b (Tn, Xn,Kn) and
δ = δn+1 = δ (Tn, Xn,Kn), in line with the Dynamic Programming principle we introduce the
following

Definition 4.2. For v ∈ B(E), (b, δ) ∈ U and with t = TNt = Tn an event time, define an
operator, also called Bellman operator, by (being Sn i.i.d. we use simply the symbol S)

T b,δ[v](t, x; k) := Eb,δt,x;k

{
e−γ S1{t+S≤T}

[
Y b,δ
n+1 + v

(
t+ S,Xb,δ

n+1;Kn+1

)]}
(21)

and let
T ∗[v](t, x; k) := inf

(b,δ)∈U
T b,δ[v](t, x; k) (22)

Remark 4.3. For our model it follows easily that, for v ∈ B(E), also T [v] ∈ B(E) and it
can be shown (see [1]) that, for v ∈ C(E) ⊂ B(E) and any given (t, x; k) ∈ E, the mapping
(b, δ) → T b,δ[v](t, x; k) is continuous so that the inf in (22) is a min.
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Invoking Michael’s theorem (see e.g. Proposition D.3 in [19]) one can immediately deduce the
following

Proposition 4.4. Given v ∈ C(E), there exist continuous selectors b∗ : E → [b0, 1], δ∗ : E →
[−C1, C2] such that

T ∗[v](t, x; k) := min
(b,δ)∈U

T b,δ[v](t, x; k) = T b∗(t,x;k),δ∗(t,x;k)[v](t, x; k)

implying that we can indeed limit ourselves to Markov controls. Furthermore, T ∗[v] ∈ C(E).

Following are three preliminary Lemmas in view of the main result of this section, namely
Theorem 4.8 below, and their proofs are in the Appendix.

Lemma 4.5. (contraction property of T ∗)
Assuming G(0) = P{S = 0} < 1 and putting α := E

{
e−γS

}
< 1, for v, v′ ∈ B(E) we have

||T ∗[v]− T ∗[v′]||∞ ≤ α||v − v′||∞

Lemma 4.6. For given (B,D) ∈ Ure×Uinv, which we have assumed to be Markovian as in (18),
and (t, x; k) ∈ E (with t = TNt = Tn for some n) we have the following fixed-point property

T b,δ[V B,D](t, x; k) = V B,D(t, x; k)

where (b, δ) are the control actions corresponding to (B,D) evaluated at (t, x; k), i.e. if t = TNt,
then b = bn+1 = b(Tn, Xn;Kn) and, analogously, for δ = δn+1.

Lemma 4.7. V ∗ is a fixed point of the operator T ∗ : B(E) → B(E).

We come now to the main result of this section, namely

Theorem 4.8. Let V ∗ and T ∗ be as defined above. Then

i) V ∗ is the unique fixed point of the operator T ∗ in C(E).

ii) Define the sequence {v∗m}m≥0 as

v∗m(t, x; k) :=

{
0 for m = 0

T ∗[v∗m−1](t, x; k) for m > 0

then v∗m ∈ C(E) and limm→∞ ||v∗m − V ∗||∞ = 0.

iii) The stationary policy (B̃, D̃), corresponding to a control action (b̃, δ̃) given by

(b̃, δ̃) := argmin(b,δ)∈UT b,δ[V ∗],

is an optimal control policy and can be chosen to be Markovian.

Proof. Concerning point i), from Lemma 4.5 we have that T ∗ is a contraction operator in B(E)

and so V ∗ is by Lemma 4.7 the unique fixed point of T ∗ in B(E). For the restriction T ∗|C(E) of T
∗

to C(E) we have by Proposition 4.4 that T ∗|C(E) : C(E) → C(E) and, by the contraction property,
has a unique fixed point V ∗c , namely T ∗|C(E)(V

∗
c ) = T ∗(V ∗c ) = V ∗c ∈ C(E). Being C(E) ⊂ B(E),

it follows that V ∗ = V ∗c ∈ C(E) is indeed the unique fixed point of T ∗ in C(E).

9



Coming to ii) notice that, always by Proposition 4.4, we have v∗m ∈ C(E). By the uniqueness
of V ∗ as fixed point of the contraction mapping T ∗ in C(E) we obtain limm→∞ ||v∗m−V ∗||∞ = 0.

Concerning point iii) recall first that, since V ∗ ∈ C(E) (see point i)), the argmin exists by
virtue of Proposition 4.4 and, among the minimizers, there are continuous selectors in the form
of Markovian controls (see (18)) . Using also Lemma 4.7, we then have ∀(t, x; k) ∈ E (assume
t = TNt = Tn for some n)

V B̃,D̃(t, x; k) = min
(b,δ)∈U

T b,δ[V ∗](t, x; k) = T ∗[V ∗](t, x; k) = V ∗(t, x; k)

and (B̃, D̃) is Markovian.

Remark 4.9. It can be shown (see e.g. [17]) that v∗m coincides with the optimal value V ∗ in case
when there are at most m events.

By point iii) of the above Theorem 4.8, we could be able to obtain a stationary optimal policy
but this requires the knowledge of the fixed point V ∗ of the operator T ∗ that is not easy to
determine directly. On the other hand, point ii) of that Theorem shows that we can approximate
V ∗ arbitrarily closely by successively iterating T ∗ and this leads us to the Value Iteration.

4.2 The value iteration algorithm

Before presenting the main result of this subsection in Proposition 4.11 below, which can be seen
as a corollary to Theorem 4.8, we recall that V B,D is the fixed point of T b,δ in B(E) in the sense
of Lemma 4.6; furthermore, it can be easily shown that, analogously to the contracting properties
of T ∗ (see Lemma 4.5), also T b,δ is, for all (b, δ) ∈ U , contracting and has the same contracting
factor α.

Introduce next the following

Definition 4.10. For m > 0 a given integer, define Umre ⊂ Uinv [respectively Uminv ⊂ Uinv] as
the set of admissible Markov policies with only m components, i.e. where at most m event
times are considered. Denote its elements by Bm [resp. Dm], namely Bm := (bm1 , · · · , bmm) ∈
Umre [(resp.) Dm := (δm1 , · · · , δmm) ∈ Uminv].

The main result here is then

Proposition 4.11. Given ε > 0, let mε be such that (for v∗m see Theorem 4.8, point ii))

||V ∗ − v∗m||∞ < ε, ∀m > mε (23)

For m > mε let (B∗m, D∗m) ∈ Umre × Uminv be a (non-stationary) policy obtained from the first m
iterations of T ∗ when starting from v = 0 so that

(B∗m, D∗m) = argmin(Bm,Dm)∈Umre×UminvE
Bm,Dm

0,x;k


m∑
j=1

e−γ TjY Bm,Dm

j 1{j≤NT }


and let (B∗, D∗) ∈ Ure × Uinv be an arbitrary extension of (B∗m, D∗m) beyond the first m jumps.
Then

||V ∗ − V B∗,D∗ ||∞ < 2ε

10



Proof. From the given definition of (B∗, D∗) one has v∗m = vB
∗,D∗

m and, since T B∗,D∗ has the same
contraction factor as T ∗, we also have

||V B∗,D∗ − vB∗,D∗m ||∞ < ε, ∀m > mε (24)

From (23) and (24) one then obtains

||V ∗−V B∗,D∗ ||∞ ≤ ||V ∗− v∗m||∞+ ||v∗m−V B∗,D∗ ||∞ = ||V ∗− v∗m||∞+ ||vB∗,D∗m −V B∗,D∗ ||∞ ≤ 2ε

The contracting properties of the operators T ∗ and T B∗,D∗ have allowed us to approximate
arbitrarily closely the optimal value V ∗ by V B∗,D∗ where (B∗, D∗) is the strategy defined in Propo-
sition 4.11 for a sufficiently large m. At the same time this allows us to determine also a nearly
optimal (in general non-stationary) Markovian policy as specified in the following subsection.

4.2.1 Algorithm to determine the nearly optimal policy

Assume the company stands at the beginning of the planning period, namely at time t = T0 = 0

with an initial surplus of x > 0. Having chosen an m sufficiently large so that ||V ∗ − v∗m||∞ < ε

(such an m can be explicitly determined as a function of the contraction factor α and of the
parameters of the model, see [1], [7]) the nearly optimal strategy (B∗, D∗) that, according to
Proposition 4.11, guarantees that ||V ∗ − V B∗,D∗ ||∞ < 2ε, is an arbitrary extension beyond m of
the strategy (Bm, Dm) ∈ Umre × Uminv given by

Bm :=
(
bm1 (0, x;K0), · · · , bmm(Tm−1, X

Bm,Dm

m−1 ;Km−1)
)

Dm :=
(
δm1 (0, x;K0), · · · , δmm(Tm−1, X

Bm,Dm

m−1 ;Km−1)
)

where, recalling the definition of v∗m (see point ii) of Theorem 4.8), the individual action pairs
(bmi (·), δmi (·)) are, for i = 1, · · · ,m, determined as follows:

1. From the first iteration of T ∗ with v∗0 = 0 we obtain

(bmm, δ
m
m)(Tm−1, X

Bm,Dm

m−1 ;KTm−1) = argmin(b,δ)∈UT b,δ[v∗0](Tm−1, X
Bm,Dm

m−1 ;Km−1)

and this control action is applied when m − 1 < NT events have already happened, i.e.
the company stands at time Tm−1 with a surplus equal to XBm,Dm

m−1 (resulting from having
applied in the first m− 1 steps the policy (Bm, Dm)) and having observed Km−1.

2. From the last iteration of T ∗ we obtain

(bm1 , δ
m
1 )(0, x;K0) = argmin(b,δ)∈UT b,δ[v∗m−1](0, x;K0)

and it is applied at the initial time T0 = 0.

3. For a generic i ∈ {2, · · · ,m− 1}

(bmi , δ
m
i )(Ti−1, X

Bm,Dm

i−1 ;Ki−1) = argmin(b,δ)∈UT b,δ[v∗m−i](Ti−1, X
Bm,Dm

i−1 ;Ki−1)

which results from the (m− i)th iteration of T ∗ and is applied at time t = Ti−1.
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4. If more than m events happen, the strategy (Bm, Dm) is completed in an arbitrary way, for
example as follows: for m < j let

bmj (Tj−1, X
Bm,Dm

j−1 ;Kj−1) = 1 ; δmj (Tj−1, X
Bm,Dm

j−1 ;Kj−1) = 0 ; ∀j ∈ {m+ 1, · · · , NT }

.

5 Approximations for the Value Iteration approach

We already mentioned that, on the basis of point iii) of Theorem 4.8, one could obtain a stationary
optimal policy, but this requires the knowledge of V ∗ that, in general, is not available. On the other
hand, by the value iteration algorithm of subsection 4.2.1 one can obtain a policy (B∗, D∗) leading
to a value V B∗,D∗ that (see Proposition 4.11) differs from V ∗ by at most 2 ε for a sufficiently large
m, but this algorithm too requires the knowledge, this time, of the functions v∗m(t, x; k) obtained
from the successive applications of the operator T ∗ according to point ii) of Theorem 4.8. It is
however clear that, unless there exists a finitely parameterized family of functions v(t, x; k) that
is closed under the operator T ∗, the expressions for the successive functions v∗m may become more
and more analytically intractable (the functions v∗m have in fact different analytic expressions on
different portions of the state space E and these portions become more numerous as m increases,
see [1]).

To overcome this difficulty, in [1] an approach has been proposed that relies on a weaker
concept of optimality, which however overcomes only partially the difficulty. On the other hand,
accepting an at least approximate solution, one may perform a discretization in order to end up
with finite numbers of values for the various variables, so that computation becomes feasible in
any case. This concerns the values of the time variable t ∈ [0, T ], the values x of the wealth
process and, possibly, also the values (b, δ) ∈ U of the control actions. To obtain a finite number
of discretized values of the variables, one has to consider compact sets that contain the various
variables with high probability and perform the discretizations within these sets. The time and
control variables are already on a compact set, but XB,D

t is not. We shall thus restrict XB,D
t to

a compact set (see sub-section 5.1). More precisely, we shall do it for the sequence XB,D
n of the

values of XB,D
t at the various event times Tn which are also the time instants when the control

actions and the capital injections take place and that are therefore those that matter for the
optimization problem. We shall more specifically restrict the associated sequence X̂B,D

n (see (13))
to a compact interval [−R,R] with R > 0 sufficiently large so that this interval contains X̂B,D

n

with large probability, independently of the choice of the control policy. By Corollary 3.2 one may
choose R large enough so that G1E{NT }

R−x becomes small as desired. The fact that G1 depends on
the parameters of the model and the distributions of the random quantities, implies that in this
way R is chosen endogenously and not exogenously. Notice also that the bounds in Corollary 3.2
and those to be derived in sub-section 5.2 below are essentially only theoretical bounds intended
to show that the approximations indeed converge. In reality, as it is usual in such situations, the
approximations turn out to be much more precise.

Remark 5.1. In practice (see also the numerical results in section 6 below) a reasonable choice
for the value of R appears to be a fraction of the maximal value that the various XB,D

n can achieve
over the given horizon when there are no claims nor investments in the financial market. Also
such a choice of R turns thus out to be endogenously given.
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In sub-section 5.1 we shall consider the discretization of the variables and define then the
approximating problem. In sub-section 5.2 we shall show the convergence of the approximations
and thereby also show that an optimal/nearly optimal control for the approximating problem,
when suitably extended, is nearly optimal in the original problem. Finally, in sub-section 5.3 we
describe the implementation of the value iteration approach for the approximating problem.

5.1 The approximating problem

We shall first consider the restriction of the x−variable to a compact set and then perform a
discretization within the compact sets.

For R > 0 we shall restrict X̂B,D
n to [−R,R]. Our problem concerns then the three state

variables (t, x; k) on the compact state space ER := [0, T ] × [0, R] × {0, 1}, and the two control
variables (b, δ), defined on the compact set U = [b0, 1] × [−C1, C2] (see Definition 2.1). Except,
possibly, for the control variables, in order to actually compute a solution, in our case via a Value
Iteration algorithm as described in Section 4, the state variables should be discrete and finite
valued. Since k ∈ {0, 1} is already discrete, we shall next proceed with the discretization of
the time and space variables (t, x) and call the resulting discretized problem the approximating
problem.

We shall consider an uniform grid on the compact set [0, T ] × [−R,R]. Given two positive
integers N and M , possibly so that T and R are multiples of N and M respectively, consider the
following partitions of [0, T ] and [−R,R] (since the restriction to [−R,R] concerns actually the
associated sequence X̂B,D

n , we allow x to take values also in [−R, 0))

Γi =
[
i TN , (i+ 1) T

N

)
for i ∈ {0, · · · , N − 1} with ΓN = {T}

Ξj =
[
j R
M , (j + 1) R

M

)
for j ∈ {−M, · · · ,M − 1} with ΞM = [R,+∞)

and choose the following representative elements for each set in the partitions

t̄i = i
T

N
for i = 0, · · · , N ; x̄j = j

R

M
for j = −M, · · · ,M

.

Remark 5.2. For the convergence results in section 5.2 below we could choose as representative
elements any point in the various subintervals. Having chosen the lower endpoints, we can include
in the partition the upper half line [R,+∞), but have to exclude the lower half-line (−∞,−R].
We shall thus take x̄−M as representative element of

(
−∞,− M−1

M R
)
.

Define the grids

Ḡ := {t̄i | i = 0, · · · , N} × {x̄j | j = −M, · · · ,M} as well as G := Ḡ ∩ ([0, T ]× [0,+∞)) (25)

that depend on N and M and, implicitly, also on R and consider the projection operators

T̄ (t) :=

N∑
i=0

t̄i1{Γi}(t) , t ∈ [0, T ] ; X̄(x) :=

M∑
j=0

x̄j1{Ξj}(x) , x ∈ R (26)

Notice that T̄ (·) and X̄(·) are step functions with the discontinuities only in Ḡ and we shall
occasionally use the notation (T̄ , X̄) to denote a process on Ḡ.
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In order to define the approximating problem, given any (B,D) ∈ Ure×Uinv, we shall discretize
the processes XB,D

n and Y B,D
n so that they take values on the grid G and denote them by XB,D

G,n

and Y B,D
G,n respectively. We shall assume that x = XB,D

0 ∈ [−R,R] so that also XB,D
G,0 = x̄ =

X̄(XB,D
0 ) ∈ [−R,R]. For Tn > 0 let then XB,D

G,n = X̄
(
XB,D
G,n−1 + c(bn)Sn +KnδnWn − (1−Kn)bnZn

)
+ Y B,D

G,n

Y B,D
G,n =

(
X̄
(
XB,D
G,n−1 + c(bn)Sn +KnδnWn − (1−Kn)bnZn

))− (27)

Notice that the pedix G here and in further quantities below refers synthetically also to the
dependence on N and M as well as on R. For convenience of notation let, analogously to (13)
and for given XB,D

G,n−1,
X̂B,D
G,n := XB,D

G,n−1 + ΨB,D
n (28)

so that, by analogy with (14), we may write more concisely

XB,D
G,n =

(
X̄(X̂B,D

G,n )
)+

, Y B,D
G,n =

(
X̄(X̂B,D

G,n )
)−

(29)

By construction we have

XB,D
G,n ∈ {x̄j |j = 0, · · · ,M} ; Y B,D

G,n ∈ {−x̄j |j = −M, · · · ,−1}

so that both XB,D
G,n as well as Y B,D

G,n belong to [0, R].

Remark 5.3. The amounts of capital injections to be actually applied are the values Y B,D
n =(

X̂B,D
n

)−
, where X̂B,D

n are the actually observed values of the wealth process before the injections.

The quantities Y B,D
G,n are introduced only to define the value function of the approximating problem

in analogy to that of the original problem (see Definition 5.5 below).

For the approximating problem with the discretized values of (t, x), a Markov control policy
(B,D) ∈ Ure × Uinv corresponds to control actions that are defined on Ḡ and are of the form

bGn = bGn (T̄n−1, X̄n−1;Kn−1) ∈ [0, 1] ; δGn = δGn (T̄n−1, X̄n−1;Kn−1) ∈ [−C1, C2]

This Markov policy on Ḡ can be extended to become a Markov policy in E (state space of the
original problem) according to the following

Definition 5.4.

i) Given a Markov control policy (B,D) ∈ Ure×Uinv for the approximating problem on Ḡ, we
shall consider as its extension to E the one, where at the generic event time Tn−1

bn(Tn−1, Xn−1;Kn−1) =

{
bGn (T̄ (Tn−1), X̄(Xn−1);Kn−1) for Xn−1 ≤ R
bGn (T̄ (Tn−1), R;Kn−1) for Xn−1 > R

(30)

and, analogously, for δn(·).

ii) Given a control policy (B,D) ∈ Ure × Uinv on the state space E, one can consider its
restriction to Ḡ by simply evaluating it at the elements of Ḡ.
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We shall use the symbols (B,D) and (b, δ) for policies and control actions both on E as well as
on Ḡ.

Concerning the objective criterion for the approximating problem, recalling Definition 4.1
introduce, for t = 0, the following

Definition 5.5. Given t = T0 = 0, x = X0 ∈ [0, R], k ∈ {0, 1}, consider the following initial (for
t = 0) value function for the approximating problem where, letting (B,D) ∈ Ure×Uinv denote any
control policy also in Ḡ,

V B,D
G (0, x; k) := EB,D

0,X̄(x);k


NT∑
j=1

e−γT̄jY B,D
G,j

 (31)

and define as optimal value (cost-to-go) function for the approximating problem

V ∗G(0, x; k) := inf
(B,D)∈Ure×Uinv

V B,D
G (0, x; k) (32)

Notice that, whenever for a given policy (B,D) ∈ Ure×Uinv on E we write V B,D
G , we actually

consider the restriction of this policy to Ḡ. Analogously, when for a Markov policy (B,D) ∈
Ure×Uinv, considered on Ḡ, we write V B,D, we mean the extension of this policy to E according
to (30).

Remark 5.6. Analogously to the cost-to-go function V B,D(t, x; k) in Definition 4.1, we may
consider also a generalization of (31) to arbitrary t < T with t = Tn < T , namely

V B,D
G (t, x; k) := EB,Dt,x;k


NT∑

j=n+1

e−γ (Tj−t)Y B,D
G,j

 = EB,Dt,x;k


∞∑

j=n+1

e−γ (Tj−t)Y B,D
G,j 1{j≤NT }

 (33)

5.2 Convergence of the approximating problem

We shall now show that by choosing sufficiently large values of R,N and M , the solution of
the approximating problem leads to a value for the original problem on the state space E that is
arbitrarily close to its optimal value.

First we need the following preliminary Lemma, for which the proof is in the Appendix.

Lemma 5.7. Assuming x = X0 ∈ [0, R], on the events XB,D
n ∈ [−R,R] we have for all (B,D) ∈

Ure × Uinv

|XB,D
n −XB,D

G,n | ≤ (n+ 1)
R

M
for n ≥ 0 ; |Y B,D

n − Y B,D
G,n | ≤ (n+ 1)

R

M
, for n ≥ 1 (34)

where M is the discretization parameter for the wealth process.

We come now to the main result of this subsection, namely the following Proposition and
its Corollary. The proof of the Proposition is in the Appendix, while that of the Corollary is
immediate.
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Proposition 5.8. For t = t̄ = 0, for x̄ = X̄(x) with x = X0 ∈ [0, R], for all k ∈ {0, 1} as well as
all policies (B,D) ∈ Ure × Uinv on E we have

i) |V B,D(0, x; k)− V B,D
G (0, x; k)| ≤ B(R,N,M)

ii) | inf(B,D)∈Ure×Uinv V
B,D(0, x; k)− inf(B,D)∈Ure×Uinv V

B,D
G (0, x; k)| ≤ B(R,N,M)

where B(R,N,M), the same in both cases, is given by

B(R,N,M) :=

[
3R

2M
+ γT

R

N

]
E{NT }+

R

2M
E{N2

T }+
x
√

2G2E{(NT )2}+
√

2G1G2E{(NT )3}
(R− x)

(35)
with G1, G2 as defined in (17). This quantity can be made arbitrarily small by choosing R suffi-
ciently large so that, for a given inital wealth x, the last term in (35) is small. Given R, also the
discretization parameters N,M have then to be chosen sufficiently large so that also the first two
terms are small.

Corollary 5.9. For t = t̄ = 0, for x = X0 ∈ [0, R] and for all k ∈ {0, 1} we have

i) If (B∗G, D
∗
G) is an optimal policy for the approximating problem, namely

V
B∗G,D

∗
G

G (0, x; k) = inf
(B,D)∈Ure×Uinv

V B,D
G (0, x; k)

then
|V B∗G,D

∗
G(0, x; k)− inf

(B,D)∈Ure×Uinv
V B,D(0, x; k)| ≤ 2 (B(R,N,M)

where B(R,N,M) is as in Proposition 5.8.

ii) If (Bθ
G, D

θ
G) is an θ−optimal policy for the approximating problem, namely

V
BθG,D

θ
G

G (0, x; k) ≤ inf
(B,D)∈Ure×Uinv

V B,D
G (0, x; k) + θ

then
|V BθG,D

θ
G(0, x; k)− inf

(B,D)∈Ure×Uinv
V B,D(0, x; k)| ≤ 2B(R,N,M) + θ

We have now obtained that, if we determine an optimal or nearly optimal policy for the
approximating problem, then it results in being nearly optimal also in the original problem on
the state space E, provided the discretization parameters N,M as well as R are sufficiently large.
It remains thus to obtain for the approximating problem an optimal or also only nearly optimal
policy. For this, as mentioned, we shall use a Value Iteration algorithm in line with the description
in section 4. Notice also that, using the Value Iteration algorithm (Dynamic Programming) to
determine (B∗G, D

∗
G) or (Bθ

G, D
θ
G), this policy can be obtained as a Markov policy.

5.3 Value iteration in the discretized (approximating) problem

The value iteration algorithm has been described in section 4 (see in particular point ii) of
Theorem 4.8 and subsection 4.2.1). The algorithm is based on the operators T b,d and T ∗ and
so we have first to particularize these operators to the discretized approximating problem. To
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this effect consider the space D(ER) of cadlag functions on ER := [0, T ]× [0, R]× {0, 1} and let
DG(ER) ⊂ D(ER) be the subset of functions with the property that

v(t, x; k) = v(T̄ (t), X̄(x); k) ∀ (t, x; k) ∈ ER

where T (·) and X̄(·) are the projection operators defined in (26). These cadlag functions are
bounded with discontinuities only in Ḡ× {0, 1}.

By analogy to Definition 4.2 and taking into account the objective function (31) with (32) as
well as (33), for the approximating problem we introduce the following

Definition 5.10. Let (t, x; k) ∈ ER with t an event time, namely t = TNt = Tn for some n ≥ 0.
For v ∈ B(ER), the space of bounded functions on ER, and any (b, δ) ∈ U define the operator
T b,δG : B(ER) → B(ER) as

T b,δG [v](t, x; k) := Eb,δ
T̄ (t),X̄(x);k

{
e−γ (T̄ (t+S)−T̄ (t))1{t+S≤T}

[
Y b,δ
G,n+1 + v

(
T̄ (t+ S), Xb,δ

G,n+1;Kn+1

)]}
(36)

Furthermore,
T ∗G[v](t, x; k) := inf

(b,δ)∈U
T b,δG [v](t, x; k) (37)

Remark 5.11. By its definition in (36) we have that T b,δG [v](t, x; k) = T b,δG [v](T̄ (t), X̄(x); k) so
that, as a function of (t, x; k), it belongs to DG(ER). Furthermore (T̄ (t + S), Xb,δ

G,n+1;Kn+1) ∈
G× {0, 1} so that we may also consider T b,δG as an operator

T b,δG : DG(ER) → DG(ER)

The same with T ∗G.

In Section 4 we had seen that the Value Iteration algorithm builds on the sequence v∗m(t, x; k)

of the iterates of the operator T ∗ as specified in point ii) of Theorem 4.8. Here we shall therefore
consider iterates of the operator T ∗G on ER according to

v∗G,m(t, x; k) :=

{
0 for m = 0

T ∗G[v∗G,m−1](t, x; k) for m > 0
(38)

In Section 4 the convergence of v∗m to V ∗ was obtained on the basis of the contraction property
of T ∗ on the Banach space C(E). Here we are on the space D(ER) and so we could try to proceed
analogously by using the Skorokhod norm. To obtain just the convergence, which is basically what
we need, we can however avoid passing to the Skorokhod norm and base ourselves more simply
on the following Proposition of which the proof is in the Appendix.

Proposition 5.12. Given ε > 0, there exists an integer mε > 0 such that

‖v∗G,m − V ∗G‖∞ < ε for m > mε

Also for the approximating problem we can now state a Proposition that corresponds to
Proposition 4.11 and for which the proof is completely analogous.
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Proposition 5.13. Given ε > 0, let mε be such that ‖V ∗G − v∗G,m‖∞ < ε for m > mε. Having
chosen an m > mε and assuming that the inf in (37) is actually a min, let (Bm

G , D
m
G ) ∈ Umre×Uminv

be the (non-stationary) policy obtained from the first m iterations of T ∗G when starting from v = 0,
namely

(Bm
G , D

m
G ) = argmin(Bm,Dm)∈Umre×UminvE

Bm,Dm

0,X̄(x);k


m∑
j=1

e−γ T̄jY Bm,Dm

G,j 1{j≤NT }


and let (B∗G, D

∗
G) ∈ Ure × Uinv be an arbitrary extension of (Bm

G , D
m
G ) beyond the first m jumps.

Then
‖V ∗G − V

B∗G,D
∗
G

G ‖∞ < 2 ε

The nearly optimal policy for the approximating problem can now be described by com-
plete analogy to subsection 4.2.1. We limit ourselves to mention how Step 3, for a generic
i ∈ {2, · · · ,m− 1} with i ≤ NT , adapts to the present case, namely we have

(bmG,i, δ
m
G,i)(Ti−1, X

BmG ,D
m
G

i−1 ;Ki−1) = argmin(b,δ)∈UT
b,δ
G

[
v∗G,m−i

]
(Ti−1, X

BmG ,D
m
G

i−1 ;Ki−1)

in the sense that (bmG,i, δ
m
G,i) is the action-pair corresponding to the policy (Bm

G , D
m
G ) at the i−th

event time in the state (Ti−1, X
BmG ,D

m
G

i−1 ;Ki−1) ∈ ER.

5.3.1 Computational aspects

To complete the Value Iteration algorithm we need to be able to compute the expectation in (36)
and to minimize the resulting expression with respect to (b, δ) ∈ U . Notice that the expectation
concerns the random variables Y b,δ

G,n+1 as well as (T̄ (t+S), Xb,δ
G,n+1,Kn+1). Considering the defini-

tions in (27) and (29), the random variables with respect to which to perform the expectation are
thus only T̄ (t + S), X̄b,δ

G,n+1,Kn+1 that take values in the finite set Ḡ × {0, 1}. Furthermore, the
expectation is conditional on (T̄ (t), X̄(x), k) that also take values in Ḡ× {0, 1}. Denote then by
(t̄i, x̄j , k) the generic element in Ḡ×{0, 1}, where i ∈ {0, · · · , N}, j ∈ {−M, · · · ,M}, k ∈ {0, 1}.
Assuming that (T̄ (t), X̄(x), k) = (t̄i, x̄j , k), the expectation in (36) can be rewritten as

Eb,δ
T̄ (t),X̄(x);k

{
e−γ (T̄ (t+S)−T̄ (t))1{t+S≤T}

[
Y b,δ
G,n+1 + v

(
T̄ (t+ S), Xb,δ

G,n+1;Kn+1

)]}
=
∑N

`=0

∑M
m=−M

∑1
h=0

{
e−γ (t̄`−t̄i) [(x̄m)− + v (t̄`, (xm)+, h)]

}
P b,δ
t̄i,x̄j ,k

{(
T̄ (t+ S), X̄b,δ

G,n+1;Kn+1

)
= (t̄`, xm, h)

} (39)

which can be readily computed once, for each pair (b, δ) ∈ U , we are given the matrix of transition
probabilities P b,δ.

In view of the matrix of transition probabilities, recall that the only driving quantities in the
model are the independent sequences of i.i.d. random variables (Sn, Zn,Wn). This allows one
to derive from the distributions G(s), F (z), H(w) of (Sn, Zn,Wn) a stationary transition matrix.
More precisely, with t̄i = T̄ (t) where t is an event time, namely t = TNt = Tn, one has for m with
−M < m < M

P b,δ
t̄i,x̄j ,k

{(
T̄ (t+ S), Xb,δ

G,n+1;Kn+1

)
= (t̄`, xm, h)

}
= pk,hP

{
` TN ≤ t̄i + S < (`+ 1) T

N ,m
R
M ≤ x̄j + c(b)S + hδW − (1− h)bZ < (m+ 1) R

M

}
(40)
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while for m = M we put

P b,δ
t̄i,x̄j ,k

{(
T̄ (t+ S), Xb,δ

G,n+1;Kn+1

)
= (t̄`, R, h)

}
= ε (41)

and for m = −M ,

P b,δ
t̄i,x̄j ,k

{(
T̄ (t+ S), Xb,δ

G,n+1;Kn+1

)
= (t̄`,−R, h)

}
= pk,hP

{
` TN ≤ t̄i + S < (`+ 1) T

N ,−R ≤ x̄j + c(b)S + hδW − (1− h)bZ < (1−M) R
M

}
+ ε

∀i, ` ∈ {0, · · · , N}, j ∈ {−M, · · · ,M}, h ∈ {0, 1}
(42)

On the basis of the last term in (35) (see also Corollary 3.3), for a given initial condition x = XB,D
0 ,

the ε in the last two expressions can be related to R via x
√

2G2 E{(NT )2}+
√

2G1G2 E{(NT )3}
(R−x) , where

G1 and G2 depend on the characteristics of the model. In practice we shall choose independently
a sufficiently large R so that ε is small enough to become negligible. Choosing R as specified in
Remark 5.1, the probability in (41) will be practically zero.

The detailed expressions in (40) can be readily worked out and can be found in [7]. As an
example, we mention here just the case when h = 0, for which

pk,0P
{
` TN ≤ t̄i + S < (`+ 1) T

N ,m
R
M ≤ x̄j + c(b)S − bZ < (m+ 1) R

M

}
= pk,0

∫ (`+1) T
N
−t̄i

` T
N
−t̄i

∫ 1
b (x̄j+c(b)s−m

R
M )

1
b (x̄j+c(b)s−(m+1) R

M )
dF (z) dG(s)

Since c(b) is a continuous function of b, the transition probability for the above case of h = 0 is
a continuous function of b on [0, 1]. When h = 1, one has to distinguish between δ < 0, δ = 0, δ > 0

but, again, for δ < 0 and δ > 0 one obtains a continuous dependence the transition probability on
δ in [−C1, 0) and (0, C2] respectively. The existence of a minimizer in (37) and thus of an optimal
policy for the approximating problem is therefore guaranteed. How easy it is to actually do the
computations depends on the form of the distributions G(s), F (z), H(w). In those cases for which
this turns out too difficult, one can proceed with a further discretization of (b, δ) ∈ [0, 1]×[−C1, C2]

that leads to a finite number of pairs (bi, δi), for each of which one has then to compute the
(stationary) transition probability matrix and the minimization reduces then to one over a finite
set. This is the approach taken in [7], where convergence is shown when the control discretization
becomes finer and finer and this is also the approach underlying the numerical examples in the
next section. In this way one obtains also for the approximating problem only a nearly optimal
policy that, as shown, can however be extended to become, for sufficiently fine discretizations and
a sufficiently large value of R, nearly optimal in the original problem.

6 Numerical results

We present here some numerical results for which we consider a problem with the following data.

• The horizon is T = 10 (days, hours,....)

• The random time S between events is supposed to be an exponential random variable with
parameter λ = 1.8. It implies that the average number of events is E{NT } = λT = 18.
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• The random claim size Z is also supposed to be an exponential random variable with
parameter µ = 0.002 implying that the average claim size is E{Z} = 500 USD, Euro,...

• The random asset return W is here supposed to be a standard Gaussian random variable,
restricted to the interval [w, w̄] with w = −0.9, w̄ = 5 (the price can decrease at most by
90% and increase at most by 500%).

• The amount δt invested at time t in the risky asset is supposed to take values in the compact
set [−C1, C2] with C1 = 500, C2 = 1000.

• The transition matrix for the identifier process Kt has as entries p00 = 0.2, p01 = 0.8, p10 =

0.4, p11 = 0.6.

• The discount factor is taken as e−0.03.

• If not explicitly stated otherwise (shall do it for comparison reasons), the initial wealth is
X0 = 25.

• The number of iterations for the Value Iteration algorithm is taken to be m = 40, namely
by the expected number 18 of events in [0, 10] plus a multiple of the standard deviation.

• The safety loading parameters are chosen as η = 0.01 for the insurer and θ = 0.02 for the
re-insurer (again, only for comparison reasons, we shall consider also θ = 0.05).

• The optimal values for b and δ in the different states (t, x, k) are determined on the basis of a
simple comparison algorithm after having discretized the values of (b, δ) ∈ [0, 1]× [−C1, C2].
As discretization step ∆ for [0, 1] we take ∆ = 0.1, while for [−C1, C2] we take ∆ = 100.

The above data imply that (see (4)) c(b) = 900 (1.02 b− 0.01) so that c(b) = 0 for b∗ = 0.0098

and c(b) ≤ 909. Over the given horizon T = 10 the wealth/reserve XB,D
n thus grows on average

at most up to 9090 (case of no re-investement nor claims). According to Remark 5.1 a reasonable
choice for R thus turns out to be the value R = 6000, i.e. roughly two thirds of this maximal
value 9090.

Table I below reports the numerical results obtained for the given data with the values of
X0 = 25 and θ = 0.02. The first four columns show the values (event time, event type, claim size,
asset return) obtained for a sample simulation run (a peculiarity here is the large value of the first
two claims). The next four columns are intended as a benchmark showing the values of the wealth
process Xn and of the capital injections Yn obtained for the fixed strategy bn ≡ 1, δn ≡ 0 (no
insurance and no investment in the financial market). The remaining two pairs of four columns
each show the optimal values obtained for bn and δn as well as the values of the corresponding
wealth process Xn and capital injections Yn obtained from solving the approximating problem
when the time interval [0, 10] is discretized into 20 subintervals (denoted as N20) and the wealth
interval [−R,R] = [−6000, 6000] into 2 × 15 and into 2 × 24 intervals respectively (denoted as
M15 and M24). The row “Discounted total capital injections” in the bottom part of Table I shows
the values, obtained for the given specific simulation run, that correspond to the fixed benchmark
strategy and to the optimal strategies computed for the two discretization levels respectively. The
last two rows show the empirical average and standard deviation for the total discounted capital
injections, obtained in the three cases, when averaging over 100000 simulation runs. Figure I is
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a graphical representation for the evolution of the wealth/reserve process Xn in the three cases
and for the specific simulation run.

From the results one may notice the considerable decrease in the total discounted capital
injections when using the optimal strategy instead of the fixed benchmark strategy. Finer dis-
cretizations levels than N20M24 have, for the given data, not led to significant improvements
(the optimal amount of the total discounted capital injections remains roughly at the same level).

Concerning the optimal strategy one may notice that the optimal choice for b is to re-insure as
much as possible (proportional reinsurance leads in fact to linearity in b). Notice that 0.1 is the
first discretized value for b after b = b∗ = 0.0098 (below the level b∗ the c(b) becomes negative).
The optimal values for b depend of course also on the discrepancy between the two safety loading
parameters η and θ. For comparison purposes, in the further Table II we thus report the results,
obtained for the specific simulation run as in Table I (for convenience they are repeated in the
first four columns of Table II), in the case when the value of η remains the same, but that of θ is
increased to θ = 0.05 (second group of four columns of Table II). One may notice that, given the
larger reinsurance cost, at the beginning the proportion b of non re-insured claims is increased
from 0.1 to 0.2 and the optimal amount of discounted total capital injections augments from 43.67
to 116.71.

What may not appear to be obvious is that, at least for the given data, the optimal amount δ
to be invested in the risky asset is basically always equal to zero. In this context it has to be noted
though that our criterion concerns the minimization of the capital injections, not the maximization
of wealth. Again for comparison purposes, in the last four columns of Table II we report the results
for the case when the initial wealth X0 is considerably increased from the value 25 to 5000, the
simulation data are as in Table I and the number of subintervals of [−R,R] = [−6000, 6000] is
increased from 24 to 30 (N20 M30 R6000). In the latter case the optimal investment strategy δ
is not anymore zero, but requires to go short in the risky asset and this the more so the closer
one gets to maturity. This can be see to be in line with findings in [13] and [16] where it is shown
that, for a diffusion-type model with a volatility of the wealth/reserve process large with respect
to the drift, ruin is certain when one invests in the financial market even independently of the
initial wealth. Here we see in fact that, for moderate values of the wealth/reserve process, one
should not invest in the financial market as it might become dangerous, particularly if the market
shows a negative tendency.
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Simulation results Fixed strategy b=1, d=0 N20 M15 R6000 N20 M24 R6000

Claim size b_n delta_n X_{n-1} Y_{n-1} b_n delta_n X_{n-1} Y_{n-1} b_n delta_n X_{n-1} Y_{n-1}

0.000 0 0 0 1 0 25.00 0 0.2 0 25 0 0.1 0 25 0

0.162 0 297.28 0 1 0 0 124.66 0.2 0 0 6.10 0.1 0 8.72 0

0.365 0 696.62 0 1 0 0 512.30 0.2 0 0 103.92 0.1 0 0 44.15

0.591 1 0 1.484 1 0 205.44 0 0.2 0 39.46 0 0.1 0 18.71 0

1.232 0 97.16 0 1 0 690.65 0 0.2 0 131.89 0 0.1 0 62.04 0

1.616 1 0 0.352 1 0 1040.29 0 0.2 0 199.05 0 0.1 0 93.89 0

3.837 1 0 1.443 1 0 3059.14 0 0.1 0 586.83 0 0.1 0 277.79 0

4.114 0 482.92 0 1 0 2827.31 0 0.1 0 561.41 0 0.1 0 252.37 0

4.123 1 0 1.784 1 0 2835.4 0 0.1 0 562.14 0 0.1 0 253.11 0

4.303 0 587.28 0 1 0 2412.09 0 0.1 0 518.35 0 0.1 0 209.31 0

4.469 1 0 1.646 1 0 2563.26 0 0.1 0 532.12 0 0.1 0 223.08 0

5.869 0 494.29 0 1 0 3341.11 0 0.1 0 598.57 0 0.1 0 289.53 0

6.112 1 0 -0.361 1 0 3562.88 0 0.1 0 618.77 0 0.1 0 309.73 0

6.396 1 0 0.470 1 0 3820.31 0 0.1 0 642.22 0 0.1 0 333.18 0

6.754 0 790.71 0 1 0 3355.03 0 0.1 0 592.79 0 0.1 0 283.75 0

7.022 0 733.02 0 1 0 2865.78 0 0.1 0 541.70 0 0.1 0 232.66 0

8.281 1 0 0.676 1 0 4009.97 0 0.1 0 645.92 0 0.1 0 336.88 0

8.328 1 0 -0.738 1 0 4052.87 0 0.1 0 649.83 0 0.1 0 340.79 0

9.024 1 0 -0.770 1 0 4685.72 0 0.1 0 707.47 0 0.1 0 398.43 0

9.832 1 0 -0.040 1 0 5419.58 0 0.1 0 774.32 0 0.1 0 465.28 0

Discounted total capital injections 630.77 108.86 43.67

180.30 32.25 15.1

Standard  deviation 455.66 87.44 43.1

Table I. Main numerical results

Event time 
T_{n-1}

Type of 
event

Return of 
asset

Average discounted total capital 
injections over 100000 simulations

Figure I. Graphical representation
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Simulation results as before
Theta=0.05, X_0=25, N20 M24 R6000 Theta=0.02, X_0=5000, N20 M30 R6000

b_n X_{n-1} Y_{n-1} b_n delta_n X_{n-1} Y_{n-1}

0.000 0 0 0 0.2 0 25 0 0.1 0 5000 0

0.162 0 297.28 0 0.2 0 0 9.67 0.1 0 4983.69 0

0.365 0 696.62 0 0.2 0 0 108.27 0.1 0 4930.83 0

0.591 1 0 1.484 0.2 0 34.58 0 0.1 0 4949.54 0

1.232 0 97.16 0 0.2 0 113.22 0 0.1 0 4992.90 0

1.616 1 0 0.352 0.2 0 171.97 0 0.1 0 5024.70 0

3.837 1 0 1.443 0.1 0 511.78 0 0.1 0 5208.60 0

4.114 0 482.92 0 0.1 0 479.70 0 0.1 0 5183.24 0

4.123 1 0 1.784 0.1 0 480.22 0 0.1 0 5183.99 0

4.303 0 587.28 0 0.1 0 432.03 0 0.1 0 5140.16 0

4.469 1 0 1.646 0.1 0 441.74 0 0.1 0 5153.91 0

5.869 0 494.29 0 0.1 0 474.21 0 0.1 0 5220.40 0

6.112 1 0 -0.361 0.1 0 488.42 0 0.1 0 5240.52 0

6.396 1 0 0.470 0.1 0 505.04 0 0.1 0 5264.03 0

6.754 0 790.71 0 0.1 0 446.91 0 0 0 5214.61 0

7.022 0 733.02 0 0.1 0 389.28 0 0 0 5212.19 0

8.281 1 0 0.676 0.1 0 462.94 0 0 -100 5200.86 0

8.328 1 0 -0.738 0.1 0 465.69 0 0 -100 5274.24 0

9.024 1 0 -0.770 0.1 0 506.40 0 0 -100 5344.98 0

9.832 1 0 -0.040 0.1 0 553.67 0 0 -200 5337.70 0

Discounted total capital injections 116.71
0

Table II.  Results with changed data for comparison

Event 
time 

T_{n-1}

Type 
of 

event

Claim 
size

Return of 
asset

delta_
n

Appendix.

Proof of Lemma 3.1

Proof. From the definition of ΨB,D
n in (13) and the properties of the coefficients in its expression

we obtain
|ΨB,D

n | ≤ |c(1)|Sn + max[C1, C2]|Wn|+ |Zn|

Given that Sn ≥ 0, from
∑NT

n=1 Sn = TNT ≤ T it follows that, for n ≤ NT , one has Sn ≤ T .
Considering also the i.i.d. property of Wn and Zn and their independence on Sn, and thus on
NT , we then have ∀n ≤ NT

E{|ΨB,D
n | | NT } ≤ T |c(1)|+ max[C1, C2]E{|W1|}+ E{Z1} = G1
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that does not depend on NT . The first expression in the statement of the Lemma then follows
from

E{QB,D | NT } =

NT∑
j=1

E{|ΨB,D
j | | NT } ≤ G1NT

Next we have (
ΨB,D
n

)2 ≤ 3 (T c(1))2 + 3 (max[C1, C2])2(Wn)2 + 3 (Zn)2 = G2

from where, again by the i.i.d. and the independence property of Sn,Wn and Zn, it follows that

EB,D0,x;k

{(
ΨB,D
n

)2
| NT

}
≤ G2. The second statement now follows by

EB,D0,x;k

{
(QB,D)2 | NT

}
= NT

NT∑
j=1

EB,D0,x;k

{(
ΨB,D
j

)2
| NT

}
= G2(NT )2

Proof of Lemma 4.5

Proof. Let (b∗, δ∗) = argmin(b,δ)∈UT b,δ[v](t, x; k) and (b′∗, δ′∗) = argmin(b,δ)∈UT b,δ[v′](t, x; k),
then

(T ∗[v]− T ∗[v′])(t, x; k) =
(
T b∗,δ∗ [v]− T b′

∗,δ′∗ [v′]
)

(t, x; k) ≤
(
T b′

∗,δ′∗ [v]− T b′
∗,δ′∗ [v′]

)
(t, x; k)

≤ Eb
′∗,δ′∗

t,x;k

{
e−γS1{t+S≤T}

}
||v − v′||∞ ≤ α ||v − v′||∞

Analogously(
(T ∗[v′]− T ∗[v])(t, x; k)

)
≤
(
T b∗,δ∗ [v′]− T b∗,δ∗ [v]

)
(t, x; k) ≤ α ||v − v′||∞

from which the conclusion follows.

Proof of Lemma 4.6

Proof. With t = TNt = Tn and x = XTn , k = KTn we have

V B,D(t, x; k) = EB,Dt,x;k

{∑∞
j=n+1 e

−γ(Tj−t)Y B,D
j 1{j≤NT }

}
= EB,Dt,x;k

{
e−γS1{n+1≤NT }Y

B,D
n+1 +

∑∞
j=n+2 e

−γ(Tj−t)Y B,D
j 1{j≤NT }

}
= Eb,dt,x;k

{
e−γS1{n+1≤NT }

(
Y b,d
n+1

+EB,Dt,x;k

{∑∞
j=n+2 e

−γ(Tj−Tn+1)Y B,D
j 1{j≤NT } | Tn+1, X

B,D
Tn+1

;KTn+1

})}
= Eb,dt,x;k

{
e−γS1{n+1≤NT }

(
Y b,d
n+1 + V B,D

(
Tn+1, X

B,D
Tn+1

;KTn+1

))}
= T b,δ[V B,D](t, x; k)
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Proof of Lemma 4.7

Proof. We use the fact that V B,D is a fixed point of the operator T B,D in the sense of Lemma
4.6. In line with Remark 2.2 let t = Tn for some n so that t+ S = Tn+1. We then have (see also
the proof of Lemma 4.6)

V ∗(t, x; k) = inf(B,D)∈Ure×Uinv V
B,D(t, x; k) = inf(B,D)∈Ure×Uinv T bn+1,δn+1 [V B,D](t, x; k)

= inf(bn+1,δn+1)∈U E
(bn+1,δn+1)
(t,x;k)

{
e−γS1{n+1≤NT }

[
Y
bn+1,δn+1

n+1

+ inf(B,D)∈Ure×Uinv V
B,D(Tn+1, X

B,D
Tn+1

;KTn+1)
]}

= inf(bn+1,δn+1)∈U E
(bn+1,δn+1)
(t,x;k)

{
e−γS1{n+1≤NT }

[
Y
bn+1,δn+1

n+1 + V ∗
(
Tn+1, X

bn+1,δn+1

Tn+1
;KTn+1

)]}
= T ∗[V ∗](t, x; k)

where in the third equality we have used the DP principle.

Proof of Lemma 5.7

Proof. We recall from (13) and (14) that X̂B,D
n = XB,D

n−1 + ΨB,D
n and that XB,D

n =
(
X̂B,D
n

)+
and

Y B,D
n =

(
X̂B,D
n

)−
. We recall also from (28) and (29) that X̂B,D

G,n = XB,D
G,n−1 + ΨB,D

n and that

XB,D
G,n =

(
X̄(X̂B,D

G,n )
)+

, Y B,D
G,n =

(
X̄(X̂B,D

G,n )
)−

.

Given the assumptions, we may limit ourselves to the events XB,D
n ∈ [0, R]. We start by

showing the first relation in (34), which is immediately seen to be true for n = 0. For n ≥ 1 we
proceed by induction. For n = 1 we have

|XB,D
1 −XB,D

G,1 | =
∣∣∣∣(x+ ΨB,D

1

)+
−
(
X̄
(
x̄+ ΨB,D

1

))+
∣∣∣∣

≤
∣∣∣∣(x+ ΨB,D

1

)+
−
(
x̄+ ΨB,D

1

)+
∣∣∣∣+

∣∣∣∣(x̄+ ΨB,D
1

)+
−
(
X̄
(
x̄+ ΨB,D

1

))+
∣∣∣∣

≤ |x− x̄|+ R
M

where the second summand in the last inequality follows from the fact that the corresponding
previous expression concerns the difference between the positive part of a given quantity belonging
to [−R,R] and that of its projection on the grid G. The first summand results from the fact that
the corresponding previous expressions are identical except for the initial condition. The result is
immediate for the case when those expressions are either both positive or both negative. Otherwise
we have

i) Case of x+ ΨB,D
1 > 0, x̄+ ΨB,D

1 < 0 :∣∣∣∣(x+ ΨB,D
1

)+
−
(
x̄+ ΨB,D

1

)+
∣∣∣∣ = x+ ΨB,D

1 < x− x̄

ii) Case of x+ ΨB,D
1 < 0, x̄+ ΨB,D

1 > 0 :∣∣∣∣(x+ ΨB,D
1

)+
−
(
x̄+ ΨB,D

1

)+
∣∣∣∣ = | − x̄−ΨB,D

1 | = x̄+ ΨB,D
1 < x̄− x
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Assuming then that the statement holds for n− 1, we obtain

|XB,D
n −XB,D

G,n | =
∣∣∣∣(X̂B,D

n

)+
−
(
X̄(X̂B,D

G,n )
)+
∣∣∣∣

≤ |X̂B,D
n − X̄(X̂B,D

G,n )| ≤ |X̂B,D
n − X̂B,D

G,n |+ |X̂
B,D
G,n − X̄(X̂B,D

G,n )|

≤ |XB,D
n−1 + ΨB,D

n −XB,D
G,n−1 −ΨB,D

n |+ R
M ≤ n

R
M + R

M = (n+ 1) R
M

where in the next-to-last inequality we have used the induction hypothesis.
Coming to the second relation in (34) notice that, since for n ≥ 1,

|Y B,D
n − Y B,D

G,n | =
∣∣∣∣(X̂B,D

n

)−
−
(
X̄(X̂B,D

G,n )
)−∣∣∣∣ ≤ |X̂B,D

n − X̄(X̂B,D
G,n )|,

one can continue as above for the first relation.

Proof of Proposition 5.8

Proof. Starting from i) notice that, since (see (29)) Y B,D
G,n =

(
X̄(X̂B,D

G,n )
)−

and X̂B,D
G,n has as

initial condition X̂B,D
G,0 = X̄(x), the value function in Definition 5.5 can equivalently be expressed

as V B,D
G (0, x; k) = EB,D0,x;k

{∑NT
j=1 e

−γT̄jY B,D
G,j

}
by conditioning simply on x instead of on x̄ := X̄(x).

Introduce next the stopping time

νB,DR := min
{
n ≤ NT | X̂B,D

n < −R
}

(43)

and, for convenience, let V B,D
R (0, x; k) := EB,D0,x;k

{∑νB,DR
j=1 e−γTjY B,D

j

}
. We have now the following

inequalities,

|V B,D(0, x; k)− V B,D
G (0, x; k)| ≤ |V B,D(0, x; k)− V B,D

R (0, x; k)|+ |V B,D
R (0, x; k)− V B,D

G (0, x; k)|

≤ EB,D0,x;k

{∑NT
j=νB,DR +1

e−γTjY B,D
j

}
+ EB,D0,x;k

{∑NT
j=1 e

−γTj |Y B,D
j − Y B,D

G,j |
}

+EB,D0,x;k

{∑NT
j=1 | e−γTj − e−γT̄j |Y

B,D
G,j

}
= I + II + III

(44)
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First, for I we have with the use of the Cauchy-Schwartz inequality and Corollaries 3.2 and 3.3

I ≤ EB,D0,x;k

{∑NT
j=1E

B,D
0,x;k

{
1{νRB,D<NT }Y

B,D
j | NT

}}
≤ EB,D0,x;k

{∑NT
j=1

√
EB,D0,x;k{1{νRB,D<NT } | NT }

√
EB,D0,x;k{(Y

B,D
j )2 | NT }

}
≤ EB,D0,x;k

{∑NT
j=1

√
PB,D0,x;k

{
supi≤NT |X̂

B,D
i | > R | NT

}√
EB,D0,x;k{(Y

B,D
j )2 | NT }

}

≤ EB,D0,x;k

{
NT

√
G2(NT )2

(R−x)2

√
2x2 + 2G2(NT )2

}
≤ EB,D0,x;k

{√
G2 (NT )2

R−x
(√

2x+
√

2G1NT

)}
= x

√
2G2 E{(NT )2}+

√
2G1G2 E{(NT )3}

R−x

Concerning II notice that, for j ≤ νB,DR we have XB,D
j ∈ [−R,R] and so we can apply the second

relation in (34) obtaining

II ≤ R

M
EB,D0,x;k


NT∑
j=1

(j + 1)

 =
R

M

[
3

2
E{NT }+

1

2
E{N2

T }
]

Coming to III recall that Y B,D
G,j ≤ R. Since T̄j ≤ Tj , by Lagrange’s theorem one has, with

cj ∈ [Tj − T̄j ],

III ≤ REB,D0,x;k


NT∑
j=1

γe−γcj
(
Tj − T̄j

) ≤ γR T

N
E{NT }

Putting all three parts together, we arrive at statement i).
Concerning statement ii), from i) we have that, for any given policy (B0, D0) ∈ Ure×Uinv on

E,
inf

(B,D)∈Ure×Uinv
V B,D(0, x; k) ≤ V B0,D0

(0, x; k) ≤ V B0,D0

R,G (0, x; k) +B(R,N,M)

and so
inf

(B,D)∈Ure×Uinv
V B,D(0, x; k) ≤ inf

(B,D)∈Ure×Uinv
V B,D
R,G (0, x; k) +B(R,N,M) (45)

Analogously

inf
(B,D)∈Ure×Uinv

V B,D
R,G (0, x; k) ≤ inf

(B,D)∈Ure×Uinv
V B,D(0, x; k) +B(R,N,M) (46)

From (45) and (46) the statement ii) follows immediately.

Proof of Proposition 5.12

Proof. The cost-to-go function V B,D
G (t, x; k) in (33), evaluated at t = TNt = Tn < T , can be

written for a given integer m > 0 as

V B,D
G (t, x; k) = EB,D

T̄ (t),X̄(x);k

{∑NT
j=n+1 e

γ (T̄j−T̄ (t))Y B,D
G,j 1{Tn+1+m<T}

}
+EB,D

T̄ (t),X̄(x);k

{∑NT
j=n+1 e

γ (T̄j−T̄ (t))Y B,D
G,j 1{Tn+1+m≥T}

}
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The second term on the right corresponds to V B,D
G (t, x; k) when one considers at most m event

times after t and it can be obtained by iterating m times the operator T b,δG starting from v = 0

and where (b, δ) is induced by (B,D) in the various current states (t, x; k). It can be rewritten
as V Bm,Dm

G (t, x; k) (for (Bm, Dm) see Definition 4.10 and subsection 4.2.1). Since all the terms
in the sum are positive and Y B,D

G,j ≤ R, we have

EB
m,Dm

T̄ (t),X̄(x);k

{∑NT
j=n+1 e

γ (T̄j−T̄ (t))Y Bm,Dm

G,j 1{Tn+1+m≥T}

}
≤ EB,D

T̄ (t),X̄(x);k

{∑NT
j=n+1 e

γ (T̄j−T̄ (t))Y B,D
G,j

}
≤ EB

m,Dm

T̄ (t),X̄(x);k

{∑NT
j=n+1 e

γ (T̄j−T̄ (t))Y Bm,Dm

G,j 1{Tn+1+m≥T}

}
+RE

{
NT1{NT>n+1+m}

}
(47)

having used the fact that 1{Tn+1+m<T} = 1{NT>n+1+m}. By the comments preceding (47) we may
rewrite (47) as

V Bm,Dm

G (t, x; k) ≤ V B,D
G (t, x; k) ≤ V Bm,Dm

G (t, x; k) +RE
{
NT1{NT>n+1+m}

}
(48)

From (47) we also have

inf(Bm,Dm)∈Umre×Uminv E
Bm,Dm

T̄ (t),X̄(x);k

{∑NT
j=n+1 e

γ (T̄j−T̄ (t))Y Bm,Dm

G,j 1{Tn+1+m≥T}

}
≤ inf(B,D)∈Ure×Uinv E

B,D
T̄ (t),X̄(x);k

{∑NT
j=n+1 e

γ (T̄j−T̄ (t))Y B,D
G,j

}
≤ inf(Bm,Dm)∈Umre×Uminv E

Bm,Dm

T̄ (t),X̄(x);k

{∑NT
j=n+1 e

γ (T̄j−T̄ (t))Y Bm,Dm

G,j 1{Tn+1+m≥T}

}
+RE

{
NT1{NT>n+1+m}

}
(49)

Based on the Dynamic Programming recursions one can furthermore deduce that (see e.g. [17])

inf
(Bm,Dm)∈Umre×Uminv

EB
m,Dm

T̄ (t),X̄(x);k


NT∑

j=n+1

eγ (T̄j−T̄ (t))Y Bm,Dm

G,j 1{Tn+1+m≥T}

 = v∗G,m(t, x; k)

namely the m−th iterate of T ∗G starting from v = 0. The inequalities (49) then lead to

v∗G,m(t, x; k) ≤ V ∗G(t, x; k) ≤ v∗G,m(t, x; k) +RE
{
NT1{NT≥n+1+m}

}
(50)

Next, using the Cauchy-Schwartz and Markov inequalities, one obtains

E
{
NT1{NT>n+1+m}

}
≤
√
E{N2

T }E
{
1{NT>n+1+m}

}
≤
√
E{N2

T }P{NT > m} ≤ 1√
m

√
E{N2

T }E{NT }

which tends to zero with m→∞ independently of the choice of (t, x; k) ∈ ER. There exists thus
mε, independent of (t, x; k) ∈ ER such that, for m > mε one has RE

{
NT1{NT≥n+1+m}

}
< ε

which concludes the proof of the Proposition.
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