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Abstract

We consider the problem of maximization of expected utility from termi-
nal wealth for log and power utility functions in a market model that leads to
purely discontinuous processes. We study this problem as a stochastic control
problem both under complete as well as incomplete information. Our con-
tribution consists in showing that the optimal strategy can be obtained by
solving a system of equations that in some cases is linear and that a certainty
equivalence property holds not only for log-utility but also for a power utility
function. For the case of a power utility under incomplete information we also
present an independent direct approach based on a Zakai-type equation.
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1 Introduction

Portfolio optimization problems are important in Finance and they belong to the
general class of optimal stochastic control problems. The majority of these prob-
lems concern diffusion-type models. Here we consider a market model that leads
to a purely discontinuous state process. Such models may be of general interest in
stochastic control. In a financial context they may arise e.g. when asset prices are
observed over small time scales, in particular in the case of high frequency data. In
such a context the price trajectories are typically piecewise constant and jump only
at random discrete points in time in reaction to trading or significant new informa-
tion (for a more detailed discussion on this see e.g. [5]). While in such a context one
observes frequent jumps, discontinuous models with less frequent jumps may arise
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whenever small changes in prices are neglected and only major price movements are
registered as a jump. This may in particular be the case when one considers the value
of an index rather than prices of individual assets. Such values evolve along trajec-
tories presenting small fluctuations for most of the time with major movements only
now and then. Introducing some fixed bands in the trajectory space one may thus
consider a jump to have occurred whenever the price/value exits a given band. We
shall show that for such purely discontinuous processes the solution to the portfolio
optimization problem can be obtained rather easily. It follows that, by neglecting
smaller price/value movements, one has a considerable advantage for what concerns
the computation of an optimal investment strategy.

In our portfolio optimization problem we limit ourselves to maximization of ex-
pected utility from terminal wealth for two common utility functions : log-utility
and power utility in the risk averse case.

As for general stochastic control problems, also for portfolio optimization not all
quantities of relevance in a given model may be known or observable. This corre-
sponds then to the case of incomplete information and here an interesting property
is that of certainty equivalence (CE) : the solution of the incomplete information
problem is obtained from that of the complete information counterpart by replacing
the unknown quantities by their current conditional expectations. We shall show
that, in our context, such a property holds not only for log-utility, but also for power
utility functions.

In Section 2 we describe more precisely the model and the problem; the possibly
unknown quantities are the intensities of the driving Poisson processes. In Section
3 we study the log-utility case using both a direct method that turns out to be
equivalent to Dynamic programming (DP) as well as a method based on convex
duality. We show that an optimal strategy can be obtained by solving a system of
equations that in particular cases becomes linear. In Section 4 we treat the case of
a power utility and show that also in this case an optimal strategy can be obtained
by solving a system of equations and that a CE property holds, which is obtained
by applying a particular measure transformation. In subsection 4.2 we present an
independent direct approach for the case of partial information and this approach is
inspired by [10] and [11].

2 Market model and problem definition

We consider a market with a non-risky asset having, without loss of generality, a
price given by Bt ≡ 1 and d risky assets, the prices of which evolve on a filtered
probability space (Ω,F ,Ft,P) according to pure-jump processes, namely

dSi
t = Si

t−

[ m∑
j=1

(eaij − 1)dN j
t

]
i = 1, ..., d (2.1)

where aij are deterministic constants and N j
t , j = 1, ...,m, with m > d (incomplete

market) are point processes without common jumps having intensities λj
t . The lat-

ter can be characterized (see [1, Ch. II, T4]) by the fact that for all nonnegative
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predictable processes {Ct} and all t ≥ 0 we have

E
{∫ t

0

CsdN
j
s

}
= E

{∫ t

0

Csλ
j
sds
}

; j = 1, · · · ,m

It is well known that the solution to the stochastic equation (2.1) is given by

Si
t = Si

0 exp
[ m∑

j=1

aijN j
t

]
for i = 1, · · · , d. (2.2)

We consider both the case when the values of the intensities can be explicitly
observed (complete information case) as well as the case when only the prices {Si

t}
are observed (incomplete information). In the latter case the values of the intensities
have to be estimated on the basis of the observed prices so that a filtering problem
arises. For the explicit solution of the filtering problem we shall need to model the
time evolution of the intensity process λt = [λ1

t , ..., λ
m
t ]′ and for this we shall assume

that it forms an homogeneous Markov process with generator Lt. In particular, and
in order to get more explicit expressions (see the second part of Section 3.3 and
Section 4.2), we shall assume that the homogeneous Markov process λt takes a finite
number K of possible values so that the generator Lt is then given by the transition
intensity matrix Q.

Remark 1. In the Introduction we had mentioned that our simple purely discon-
tinuous model can, in a financial context, also be motivated by neglecting smaller
fluctuations in prices/values and registering only major changes as a jump. These
jumps occur when the price/value process exits a given band (the fact that these bands
are a priori given justifies the assumption that aij are deterministic constants also
in such a context). Now exit times are predictable while the jump times of a Poisson
process are totally inaccessible. This apparent discrepancy between our formal model
and the above justification in a financial context can be overcome on the basis of
recent results concerning crossing times (see e.g. [6], [7]), from which it follows that
also crossing times become totally inaccessible if they are observed with delay or in
noise.

In the given market we are interested in a portfolio optimization problem, for
simplicity without consumption. To this effect recall that, for a self-financing strategy
characterized by the predictable fractions hi

t of wealth invested in Si
t , i = 1, ..., d, the

portfolio value Vt satisfies

dVt

Vt−
=

d∑
i=1

hi
t

dSi
t

Si
t−

=
d∑

i=1

hi
t ·

m∑
j=1

(eaij − 1)dN j
t (2.3)

We shall assume that, in order to be admissible, an investment strategy ht =
(h1

t , · · · , hd
t ) satisfies

d∑
i=1

hi
t(e

aij − 1) ≥ −1 , ∀j = 1, · · · ,m, a.s. (2.4)
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One then has that, at a given final time T ,

VT = V0 ·
m∏

j=1

exp
[ ∫ T

0

log
(
1 +

d∑
i=1

hi
t(e

aij − 1)
)
dN j

t

]
> 0 (2.5)

Our optimization problem concerns both the logarithmic as well as the power
utility functions in the risk-averse case. In other words, we shall consider the problem
of maximizing, with respect to ht := (h1

t , ..., h
d
t ), the expected value of

log VT = log V0 +
m∑

j=1

∫ T

0

log
(
1 +

d∑
i=1

hi
t(e

aij − 1)
)
dN j

t (2.6)

and

V µ
T = V µ

0 ·
m∏

j=1

exp
[ ∫ T

0

log
(
1 +

d∑
i=1

hi
t(e

aij − 1)
)µ

dN j
t

]
(2.7)

with 0 < µ < 1 respectively.
The portfolio optimization problems will be studied in the next sections both in

the case of complete information and in the case of incomplete (partial) information.
The case of logarithmic utility (2.6) will be studied in the next Section 3, while

the power utility (2.7) will be examined in Section 4.
It is known that, for the portfolio optimization problem to make sense, the market

model should not allow for the possibility of arbitrage. Equivalently, there should
exist an equivalent martingale measure (EMM), namely a probability measure Q
under which the discounted asset prices are martingales. It will be seen later in
the paper that, in our context, the optimal value is finite for both utility functions
and so there is no possibility of arbitrage. Here, in the last part of this section we
conclude by describing the possible martingale measures as this will be used below,
in particular for the martingale approach.

To this end it is known (see [1]) that in the case of Poisson processes an absolutely
continuous measure change implies a change of the intensities λj

t , j = 1, ...,m into
new values λj

tψ
j
t , j = 1, ...,m, where ψj

t ≥ 0 are Ft-predicable and satisfy, for all
t ∈ [0, T ] ∫ t

0

ψj
sλ

j
sds <∞ , P− a.s. (2.8)

The corresponding measure transformation is described by a Radon-Nikodym
derivative of the form

dQ
dP |Ft

= Zt = exp
{ m∑

j=1

∫ t

0

(1− ψj
s)λ

j
sds+

m∑
j=1

∫ t

0

logψj
sdN

j
s

}
(2.9)

Furthermore, to guarantee that (2.9) represents a Radon-Nikodym derivative of two
probability measures, one should have

EP{ZT} = 1 (2.10)
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and a sufficient condition for this can be found in [1, Ch. VIII, T11].
Under the new measure Q the processes

dM j
t = dN j

t − λj
tψ

j
t dt j = 1, ...,m (2.11)

are martingales and the price processes admit the representation

dSi
t = Si

t−

{ m∑
j=1

(eaij − 1)dM j
t +

m∑
j=1

(eaij − 1)λj
tψ

j
t dt
}

i = 1, ..., d (2.12)

It is then clear that the prices, which coincide in our case with the discounted prices,
are themselves martingales under Q if and only if the ψj

t ’s satisfy for all i = 1, ..., d
the relations

m∑
j=1

(eaij − 1)λj
tψ

j
t = 0, (2.13)

with m > d. We assume that this system admits solutions and that they are
parametrized by k ≥ m − d parameters. Therefore, we can think of the EMM’s
as being parametrized by the vector process

νt = (ν1
t , ..., ν

k
t ) ∈ N

where N is the set of processes such that the resulting ψ’s are nonnegative and such
that (2.8), (2.10) and (2.13) are satisfied, so that N actually parametrizes the set of
EMM.

3 Logarithmic utility function

In this section we shall study the portfolio optimization problem for a logarithmic
utility function, namely the problem of determining a predictable portfolio ht =
(h1

t , ..., h
d
t ) which attains the optimal value

sup
h
E{log V h

T } = log V0 + sup
h

m∑
j=1

E
{∫ T

0

log
(
1 +

d∑
i=1

hi
t(e

aij − 1)
)
dN j

t

}
. (3.1)

Assuming that, in addition to (2.4), the admissible strategies satisfy also∫ T

0

[
log
(
1 +

d∑
i=1

hi
t(e

aij − 1)
)]−

λj
tdt <∞ , ∀j = 1, ...,m, a.s. (3.2)

where [Z]− denotes the negative part of Z, this optimal value can be rewritten as

sup
h
E{log V h

T } = log V0 + sup
h

m∑
j=1

E
{∫ T

0

log
(
1 +

d∑
i=1

hi
t(e

aij − 1)
)
λj

tdt
}

(3.3)
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3.1 A direct approach

If the intensities λt can be directly observed, then for the optimal investment strategy
it suffices to maximize for each t ∈ [0, T ] and each λt (observed)

C(ht, λt) :=
m∑

j=1

log
(
1 +

d∑
i=1

hi
t(e

aij − 1)
)
λj

t (3.4)

Due to the concavity of the function (3.4), by differentiating with respect to h, we
immediately have the following

Proposition 2. A necessary and sufficient condition for a portfolio ht to be optimal
in the optimization problem (3.3) is that it satisfies the following system of equations:

m∑
j=1

λj
t(e

aij − 1)

1 +
∑d

i=1 h
i
t(e

aij − 1)
= 0 i = 1, ..., d (3.5)

with the constraint (3.2) as well as with 1 +
∑d

i=1 h
i
t(e

aij − 1) > 0.

Remark 3. Notice that in the special case when m = 2 the system (3.5) becomes
a linear system of d equations in the d unknowns hj

t(j = 1, ..., d). For m > 2 the
system is nonlinear.

Remark 4 (Dynamic Programming approach). The same result can also be obtained
via dynamic programming techniques under the assumption that λt is a homogeneous
Markov process with generator Lt. In fact, defining the value function

w(t, λ) := sup
h
E
{∫ T

t

C(hs, λs)ds|λt = λ
}

(3.6)

with C(ht, λt) as given in (3.4), so that

sup
h
E{log VT |λt = λ, Vt = v} = log v + w(t, λ)

the corresponding HJB equation is given by

∂

∂t
w(t, λ) + Ltw(t, λ) + sup

h
[C(h, λ)] = 0 (3.7)

Since the investment strategy h appears only in the last term, we obtain the same
result given in Proposition 2.

3.2 Martingale approach

We shall now discuss an alternative approach that has some advantages with respect
to the direct method just described and which will allow also the derivation of the
optimal value. It is obtained by using techniques from the theory of convex duality
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(see e.g [9], see also the more recent developments as described e.g. in [15]). We
shall briefly review a few results which are relevant in our context.

In order to apply convex duality techniques, the portfolio optimization problem
will be studied in the framework of the so called “martingale approach”, namely the
constraint due to the initial wealth V0 = v will be expressed as EQ{V h

T } ≤ v for all
EMM Q (recall that we had assumed Bt ≡ 1). According to the results in Section 2,
the set of EMM can be parametrized by a multivariate process νt = (ν1

t , ..., ν
k
t ) ∈ N .

Consequently, this set will be denoted by {Qν , ν ∈ N}.
We can then reformulate as follows our problem that in the context of convex

duality will be called primal problem, namely
maxh E{u(V h

T )}

EQν
[V h

T ] ≤ v ∀ν = (νt) ∈ N
(3.8)

Its solution can be obtained in two steps: in the first step one determines V ∗
T such

that 
maxVT∈Vv E{u(VT )} = E{u(V ∗

T )}

Vv = {VT : EQν
[VT ] ≤ v ∀ν = (νt) ∈ N}

(3.9)

In the second step one then determines the optimal strategy h∗ such that

V h∗

T = V ∗
T P-a.s. (3.10)

According to [9], for each initial wealth v we can associate to the primal problem the
dual functional

L(ν, γ) := supVT

[
E{u(VT )} − γEQν{VT}+ γv

]
= supVT

[
E{ u(VT )− γZν

TVT}
]

+ γv

where Zν
T denotes the Radon-Nikodym derivative dQν

dP .
Since the maximization can be performed for each ω ∈ Ω, we have:

L(ν, γ) = γv + E{ũ(γZν
T )} (3.11)

where ũ(y) := supx≥0 u(x)− xy, y > 0 is the convex dual of u(·).
The associated dual problem is described by{

minν,γ L(ν, γ)
ν ∈ N , γ > 0

(3.12)

It is known [9, Theorem 1, Ch. 7.12] that for each admissible solution V̄T of the
primal problem (3.9) and each admissible solution (ν̄, γ̄) of the dual problem (3.12)
we have

E{u(V̄T )} ≤ L(ν̄, γ̄) (3.13)

and for any triple V ∗
T , ν

∗, γ∗ achieving equality in (3.13), V ∗
T is optimal for the primal

problem and (ν∗, γ∗) is optimal for the dual.
Using the above arguments it is possible to derive the optimal strategy and the

optimal value of the portfolio for a log-utility function. This is done in the following
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Proposition 5. In the case of a logarithmic utility function u(x) = log(x), if (ν∗, γ∗)
is the optimal solution to the dual problem, then

V ∗
T =

1

γ∗Zν∗
T

(3.14)

is the optimal solution to problem (3.9) and therefore the optimal strategy h∗ can be
obtained via a martingale representation of

Mt = EQ∗{V ∗
T | Ft} = EQ∗

{ v

Zν∗
T

|Ft

}
=

v

Zν∗
t

(3.15)

where Q∗ = Qν∗.

Proof. For u(x) = log(x) we have from (3.11) that the dual functional is given by

L(ν, γ) = γv − 1 + E
{

log
1

γZν
T

}
so that the minimum with respect to γ is attained in

γ∗ =
1

v

Then (3.13) is satisfied as an equality for

V ∗
T =

1

γ∗Zν∗
T

=
v

Zν∗
T

(3.16)

It now remains to prove that (3.16) satisfies the constraint in (3.9) so that it provides
the optimal solution to the primal problem. This follows from Theorem 2.2 in [16].

The explicit derivation of the optimal strategy via the martingale representation
of (3.15) is based on standard arguments.

Remark 6. Notice that for m = d+1 the set of the EMM is parametrized by a scalar
process νt which appears linearly in the solution of the system of equations (2.13) and
consequently in the ψj

t ’s in (2.9). Using the expression of Zt thus obtained, it is easily
seen that in this case the solution to the dual problem (3.12) requires the solution of
a linear equation in the unknown νt.

On the contrary, for m > d+1, one has to solve a system of nonlinear equations.

Remark 7. The approach to portfolio optimization based on convex duality leads
thus to a linear system of equations for m = d + 1 and in this situation it is more
convenient than the direct approach (and the equivalent one based on dynamic pro-
gramming) which leads to a linear situation only for m = 2.
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3.3 Partial observations and certainty equivalence

For the case when the intensities λt are not directly observed a certainty-equivalence
property holds.

In fact, since in this case ht is measurable with respect to the filtration FS
t = FN

t

generated by the price process, equation (3.3) can be rewritten with λ̂j
t = E{λj

t |FS
t }

replacing λt.
As a consequence, the portfolio optimization problem can be solved using the

formulas derived above with λj
t replaced by λ̂j

t . This certainty equivalence property
for log utilities can be shown to hold also for a rather general class of Levy-driven
market models (see e.g. [12]).

The derivation of λ̂t requires the solution of a filtering problem. For the case when
λt is a finite state Markov process with intensity matrix Q, its solution is studied in
[1] and summarized next.

Denote by φi, i = 1, ..., K the (vector) values assumed by the process λt, with
φi = [φi

1, φ
i
2, ..., φ

i
m]′ and by φi, i = 1, ...,m the vector φi = [φ1

i , ..., φ
K
i ]′. Denote

Ẑi
t := P(λt = φi|FN

t ) i = 1, ..., K (3.17)

the corresponding vector
Ẑt = [Ẑ1

t , ..., Ẑ
K
t ]′,

the a priori probabilities p0 = [p1
0, ..., p

K
0 ]′ with pi

0 = P(λ0 = φi) and the matrix

Mi =

 φ1
i

. . .

φK
i

 = diag{φi}

We then have the recursive formula

Ẑt = p0 +

∫ t

0

Q′Ẑsds+
m∑

i=1

∫ t

0

(
− Ẑs +

MiẐs−

φ′iẐs−

)
(dN i

s − φ′iẐs)ds (3.18)

Finally, defining the matrix Φ = {φi
j}i=1,...,K; j=1,...,m we have that the (vector) esti-

mator of λt is given by
λ̂t = Ẑ ′

tΦ.

4 Power-utility function

We shall study here the case of the power-utility function (2.7), so that the portfolio
optimization problem consists in determining a predictable portfolio ht = (h1

t , ..., h
d
t )

which attains the optimal value

sup
h
E{V µ

T } = sup
h
V µ

0 · E
{ m∏

j=1

exp
[ ∫ T

0

log
(
1 +

d∑
i=1

hi
t(e

aij − 1)
)µ

dN j
t

]}
(4.1)
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4.1 A direct approach

Here we try to parallel as much as possible the approach of subsection 3.1 for the
logarithmic case. We first obtain an expression, equivalent to (4.1), with an integral
with respect to the time variable. By analogy to an approach in [11] (see also [10])
we rewrite (4.1) for the case when λt is known as

sup
h
E{V µ

T } = sup
h
V µ

0 · E
{ m∏

j=1

exp
[ ∫ T

0

log
(
1 +

d∑
i=1

hi
t(e

aij − 1)
)µ

dN j
t

+

∫ T

0

[1−
(
1 +

d∑
i=1

hi
t(e

aij − 1)
)µ

] λj
tdt

−
∫ T

0

[1−
(
1 +

d∑
i=1

hi
t(e

aij − 1)
)µ

] λj
tdt
]}

(4.2)

and therefore, if

E
{∏m

j=1 exp
[ ∫ T

0
log
(
1 +

∑d
i=1 h

i
t(e

aij − 1)
)µ

dN j
t

+
∫ T

0
[1−

(
1 +

∑d
i=1 h

i
t(e

aij − 1)
)µ

] λj
tdt
]}

= 1

(4.3)

so that the argument of the expectation in (4.3) represents the Radon-Nikodym
derivative of a transformation of the probability P into a probability Ph (see [1, Ch.
VI, T3]), the optimization problem becomes

sup
h
E{V µ

T } = sup
h
V µ

0 · Eh
{ m∏

j=1

exp
[ ∫ T

0

[(
1 +

d∑
i=1

hi
t(e

aij − 1)
)µ

− 1
]
λj

tdt
]}

(4.4)

and notice that, under the measure Ph, the intensity ofN j
t is λj

t

(
1 +

d∑
i=1

hi
t(e

aij − 1)

)µ

while the law of λt remains the same.

Remark 8. Using [1, Ch. VIII, T11] it is clear that a sufficient condition for (4.3)
is given by

d∑
i=0

(hi
t)
− ≤ c

where c is a positive constant and where we have denoted by h0
t the fraction of wealth

invested in the non-risky asset Bt.
As a consequence

d∑
i=0

(hi
t)

+ ≤ 1 + c.

Notice also that the above condition is implied by (2.4).
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The optimization problem (4.4) is of the form of a risk-sensitive control problem
and so its solution could be obtained by using DP techniques. In our case we can
however follow a direct approach analogously to what we did in subsection 3.1 for
the logarithmic case. In fact, if the intensities λt can be directly observed, in order
to maximize (4.4) it suffices to maximize for each t ∈ [0, T ] and each λt

C̄(ht, λt) :=
m∑

j=1

[(
1 +

d∑
i=1

hi
t(e

aij − 1)
)µ

− 1
]
λj

t (4.5)

which, for µ ∈ (0, 1), is again a concave function of ht. Differentiating then with re-
spect to h we immediately have the following result, analogous to that of Proposition
2.

Proposition 9. A necessary and sufficient condition for a portfolio ht to be optimal
in the optimization problem (4.4) is that it satisfies the following system of equations:

m∑
j=1

λj
t(e

aij − 1)(
1 +

∑d
i=1 h

i
t(e

aij − 1)
)1−µ = 0, i = 1, ..., d (4.6)

with the constraint that
∑d

i=1 h
i
t(e

aij − 1) ≥ −1.

The maximization in (4.6) leads here always to a nonlinear system of equations.

Remark 10 (Partial observation and certainty equivalence). In the case when the
intensities λt are not directly observed a certainty equivalence property holds here as
well.

In fact, in this case the investment strategy ht has to be adapted to the observation
filtration FS

t = FN
t and so it is possible to repeat the steps in (4.2) replacing λj

t with
λ̂j

t , j = 1, ...,m that, when λt is finite state Markov, can be determined as described
at the end of subsection 3.3.

Since λ̂j
t is the FS

t -intensity of the process Nt, the measure transformation tech-
niques described above apply also in this case and the Ph−intensities are here

λ̂j
t

(
1 +

d∑
i=1

hi
t(e

aij − 1)

)µ

.

Notice that, while the measure transformation does not change the law of λt, it
affects however the dynamics of λ̂t, i.e. the filter dynamics described at the end of
section 3.3 have to be considered under the measure Ph. This leads to an added
complication with respect to the case of a log-utility and so in the next section we
present an alternative approach for the case of a power utility function under partial
information.

Remark 11. For the case of the power-utility function the technique based on convex
duality is less direct than in the case of the log-utility. This technique is presently
under investigation and preliminary results can be found in [2].

11



4.2 An alternative approach for the partial information case

4.2.1 Reformulation of the problem

Inspired by [10] and [11] we shall reformulate our problem on the basis of a Zakai-type
equation.

We assume here more specifically that λt is finite-state Markov and that it is
obtained as follows : let Xt be an external factor process that is an independent
finite state Markov process with K states and transition intensity matrix Q. Let
then

λt = [λ1
t , · · · , λm

t ]′ with λj
t = λj(Xt) , j = 1, · · · ,m

Next perform an absolutely continuous change of measures from P to P̂ such that
dP̂
dP |Ft

= Lt with

Lt =
m∏

j=1

exp

[∫ t

0

(λj(Xs)− 1)ds−
∫ t

0

log λj(Xs−) dN j
s

]
(4.7)

Since Xt is finite-state, there exists λ̄ such that

λj(Xt) ≤ λ̄ , j = 1, · · · ,m (4.8)

namely the intensities are bounded and so the conditions are fulfilled for (4.7) to be
a Radon-Nikodym derivative. Under P̂ the intensities become λj(Xt) ≡ 1 and so Xt

and N j
t are P̂−independent ∀j = 1, · · · ,m.

With the use of the above measure transformation we obtain that

E{V µ
T } = V µ

0 Ê
{∏m

j=1 exp
[ ∫ T

0

{
log
(
1 +

∑d
i=1 h

i
t(e

aij − 1)
)µ

+ log λj(Xt−)
}
dN j

t −
∫ T

0
(λj(Xt)− 1)dt

]}
= V µ

0 Ê
{

exp
[ ∫ T

0

∑m
j=1 log Γj(ht, Xt−) dN j

t −
∫ T

0

∑m
j=1(λ

j(Xt)− 1)dt
]}

(4.9)

having put

Γj(ht, Xt) := λj(Xt)

(
1 +

d∑
i=1

hi
t(e

aij − 1)

)µ

(4.10)

Notice that, on the basis of the two inequalities in Remark 8, by the admissibility
condition (2.4) for the investment strategy we have

|
∑d

i=1 h
i
t(e

aij − 1) |≤ maxi,j | eaij − 1 |
∑d

i=1 | hi
t |

= maxi,j | eaij − 1 |
∑d

i=1 ((hi
t)

+ + (hi
t)
−) ≤ (1 + 2c) maxi,j | eaij − 1 |

(4.11)

Taking also (4.8) into account it then follows that

0 < Γj(ht, Xt) ≤ λ̄

(
1 + (1 + 2c) max

i,j
| eaij − 1 |

)
:= Γ̄ (4.12)

12



Motivated by the right hand side for E{V µ
T } in (4.9), consider next as in [11] the

process

Ht := exp
[ ∫ t

0

m∑
j=1

log Γj(hs, Xs−) dN j
s −

∫ t

0

m∑
j=1

(λj(Xs)− 1)ds
]

(4.13)

and put
qt(k) = Ê

{
1{Xt=k}Ht | FS

t

}
, k = 1, · · · , K (4.14)

From the bounds in (4.8) and (4.12) and taking into account the moment generating
function of a Poisson random variable as well as the fact that, under P̂, the intensities
are λj(Xt) ≡ 1, one obtains the following bounds for Ê{Ht} and qt(k), (k = 1, · · · , K) 0 < Ê{Ht} ≤ emT Γ̄emT := q̄

0 < qt(k) < q̄ , k = 1, · · · , K
(4.15)

Furthermore, from (4.9) one then obtains

E{V µ
T } = V µ

0 Ê{HT} = V µ
0 Ê{Ê{HT | FS

T }}

= V µ
0

K∑
k=1

Ê{Ê{1{XT =k}HT | FS
T }} = V µ

0 Ê

{
K∑

k=1

qT (k)

}
≤ V µ

0 Kq̄

(4.16)

Proceeding by complete analogy to [11], using Ito’s formula on Ht and properties of
finite-state Markov chains as well as the fact that the law of Xt is the same under P
and P̂, one obtains for the processes qt(k) as defined in (4.14) the following dynamics

dqt(k) = (Q′qt)(k)dt+ qt(k)
m∑

j=1

(1− λj(k))dt

+ qt−(k)
m∑

j=1

(Γj(ht, k)− 1) dN j
t ; k = 1, · · · , K

(4.17)

It furthermore follows that, defining πt(k) := P{Xt = k | FS
t }, one obtains πt(k) =

qt(k)PK
j=1 qt(j)

, so that qt(k) has the interpretation of an unnormalized conditional proba-

bility.
Our portfolio problem for a power utility function and under incomplete informa-

tion about the intensities of the driving Poisson processes can then be synthesized
as (putting qt = [qt(1), · · · , qt(K)]′)

max
hadm

V µ
0 Ê

{
K∑

k=1

qT (k)

}

dqt =

[
Q′ +

m∑
j=1

[I − diag(λj(k))]

]
qtdt+

[
m∑

j=1

(diag(Γj(ht, k))− I)qt− dN
j
t

]
(4.18)
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where diag(z(k)) is used to denote the diagonal matrix with entries z(1), · · · , z(K),
hadm denote the strategies satisfying the admissibility condition (2.4) and the dy-
namics of qt are under the measure P̂ for which the intensities are all λj(Xt) ≡ 1.

4.2.2 Solution approach

Our reformulated problem in (4.18) is of the type of a piecewise deterministic control
problem. We could thus try to adapt to our situation the more general approaches for
the solution of such problems as described e.g. in [3], [4] or, more recently, in [13]. It
turns out, however, that for our particular situation we can rather straightforwardly
extend an approach followed in [8] for the solution of the hedging problem in a purely
discontinuous market model corresponding to (2.1).

To simplify the expressions we first introduce some shorthand notations. The
dynamics in (4.18) imply that, at the generic jump time τ j of the j−th driving
Poisson process N j

t one has

qτj = diag(Γj(hτj , k)) q(τj)− (4.19)

while, between two generic jump times of the multivariate jump process Nt =
(N1

t , · · · , Nm
t ), i.e. for t ∈ [τ, τ + 1) one has the deterministic evolution

dqt =

[
Q′ +mI − diag

(
m∑

j=1

λj(k)

)]
qtdt := Λ qtdt (4.20)

so that, always for t ∈ [τ, τ + 1),

qt = exp[Λ (t− τ)] · qτ (4.21)

Let τn be the time of the n−th jump of the multivariate jump process Nt =
(N1

t , · · · , Nm
t ) before T (if τn > T put τn = T ). By analogy to Lemma 2.2 in [8]

and recalling that, under P̂, for all intensities one has λj(Xt) ≡ 1, we can state the
following

Lemma 12. Given any function f(q) of the process qt, one has

Ê
{
f(qτn+1) | qτn = q

}
=

∫ T

τn

[
m∑

j=1

f
(
diag(Γj(ht, k))e

Λ(t−τn)q
)]
e−m(t−τn)dt

+ f
(
eΛ(T−τn)q

)
e−m(T−τn)

(4.22)

Proof : Notice first that

Ê
{
f(qτn+1) | qτn = q

}
= Ê

{
f(qτn+1), τn+1 ≤ T | qτn = q

}
+ Ê

{
f(qτn+1), τn+1 > T | qτn = q

} (4.23)

14



By (4.21) it immediately follows that

Ê
{
f(qτn+1), τn+1 > T | qτn = q

}
= f

(
eΛ(T−τn)q

)
e−m(T−τn) (4.24)

Coming to the first term on the right in (4.23) and denoting by τ j
n+1 the first jump

time of the j−th driving Poisson process N j
t after τn, we have (see (4.19))

Ê
{
f(qτn+1), τn+1 ≤ T | qτn = q

}
=

m∑
j=1

Ê

{
f
(
diag(Γj(hτj

n+1
, k)) q(τj

n+1)−

)
, τ j

n+1 < min
i6=j

τ i
n+1, τ

j
n+1 ≤ T | qτn = q

}

=
m∑

j=1

Ê
{
f
(
diag(Γj(hτj

n+1
, k)) q(τj

n+1)−

)

·P̂
{
τ j
n+1 < mini6=j τ

i
n+1, τ

j
n+1 ≤ T | τ j

n+1

}
| qτn = q

}
=

m∑
j=1

∫ T

τn

f
(
diag(Γj(ht, k)) qt−

)
P̂
{
t < min

i6=j
τ i
n+1 | qτn = q

}
P̂
{
τ j
n+1 ∈ dt | qτn = q

}

=
m∑

j=1

∫ T

τn

f
(
diag(Γj(ht, k)) qt−

)
e−(m−1)(t−τn)e−(t−τn)dt

=
m∑

j=1

∫ T

τn

f
(
diag(Γj(ht, k)) qt−

)
e−m(t−τn)dt

=
m∑

j=1

∫ T

τn

f
(
diag(Γj(ht, k)) e

Λ(t−τn)q
)
e−m(t−τn)dt

(4.25)

The process qt with dynamics in (4.18) is a Markov process that, by (4.15),
satisfies 0 < qt < q̄ 1. For our problem we may thus consider as state space the
following

E =
{
(q, t) | q ∈ RK , 0 < qt < q̄ 1, t ∈ [0, T ]

}
(4.26)

For J : E → R+ define the operator Ψ mapping J to ΨJ : E → R+ by

(ΨJ)(q, t) =

∫ T−t

0

e−ms max
h

[
m∑

j=1

J
(
diag(Γj(h, k))eΛsq, t+ s

)]
ds

+ e−m(T−t)

K∑
k=1

(
eΛ(T−t)q

)k (4.27)
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where the last term on the right is motivated by the objective function in (4.18)
((V )k denotes the k−th component of the column vector V ) and the max is over the
values of h = (h1, · · · , hd) that satisfy the admissibility condition (2.4). As already
taken into account in (4.11), by Remark 8 this latter condition implies that

d∑
i=1

| hi
t |≤

d∑
i=1

(hi
t)

+ +
d∑

i=1

(hi
t)
− ≤ 1 + 2c (4.28)

so that the maximization is performed over a compact set. From here on we can now
follow rather closely the development in [8]. In fact, denoting by C(E) the class of
functions J on E such that (q, t) → J(q, t) is continuous, by an easily adapted proof
one can next show

Lemma 13. The operator Ψ : C(E) → C(E) is a contraction with contraction
constant 1− e−mT .

Next, given n ∈ N, let

J0 = 0 and, for j ≤ n, J j = ΨJ j−1 (4.29)

and let (hn
t )t∈[0,T ] be the strategy induced by computing Jn(q0, 0) (for more details on

this see Section 3.1 in [8]). Motivated always by the particular form of our objective
function in (4.18), corresponding to (17) in [8] define

J∗,n(q, t) = max
hadm

Ê

{
K∑

k=1

qT (k) , τn > T | qt = q

}
(4.30)

where, here, τn is the time of the n−th jump of the multivariate Poisson process Nt

after t. This definition implies that J∗,n(q0, 0) is the optimal value for the problem
obtained from our original problem in (4.18) by replacing Ω with Ω ∩ {τn > T}. By
a proof that is completely analogous to that of Lemma 3.2 in [8] one then has

Lemma 14. The n−th iterate according to (4.29) corresponds to the optimal value
of the original problem when at most n jumps are taken into account, i.e.

Jn(q, t) = J∗,n(q, t) , ∀(q, t)

The following further lemma will allow us to prove the main Theorem 16 below.

Lemma 15. For J∗(q, t) = max
hadm

Ê

{
K∑

k=1

qT (k) | qt = q

}
we have the double inequal-

ity
Jn(q, t) ≤ J∗(q, t) ≤ Jn(q, t) +Kq̄ P̂{τn ≤ T} (4.31)

where q̄ is the bound in (4.15) and, as in (4.30), τn denotes the n−th jump of the
multivariate Poisson process Nt = [N1

t , · · · , Nm
t ] after t.
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Proof : For the first inequality we have

J∗(q, t) = max
hadm

[
Ê

{
K∑

k=1

qT (k), τn > T | qt = q

}
+ Ê

{
K∑

k=1

qT (k), τn ≤ T | qt = q

}]

≥ max
hadm

Ê

{
K∑

k=1

qT (k) , τn > T | qt = q

}
= J∗,n(q, t) = Jn(q, t)

For the second inequality, using the bound on qt(k) in (4.15), we have instead

J∗(q, t) = max
hadm

[
Ê

{
K∑

k=1

qT (k), τn > T | qt = q

}

+ Ê

{
K∑

k=1

qT (k) | qt = q , τn ≤ T

}
P̂ {τn ≤ T}

]

≤ max
hadm

Ê

{
K∑

k=1

qT (k), τn > T | qt = q

}
+Kq̄ P̂{τn ≤ T}

= J∗,n(q, t) +Kq̄ P̂{τn ≤ T} = Jn(q, t) +Kq̄ P̂{τn ≤ T}

We can now state and prove the main

Theorem 16.

i) The optimal value function J∗ = J∗(q, 0) = max
hadm

Ê

{
K∑

k=1

qT (k) | q0 = q

}
is the

unique fixed point of the operator Ψ, i.e.

J∗ = ΨJ∗ (4.32)

and we have
||Jn − J∗|| ≤ emT

(
1− e−mT

)n ||J1|| (4.33)

ii) The following strategy h∗ is optimal : given a generic jump time τn of the multi-
variate Poisson process Nt = (N1

t , · · · , Nm
t ), for t ∈ (τn, τn+1] and q = qτn the

value of h∗t is given by the solution, that exists, of the deterministic optimization
problem embedded in (4.27), i.e.

h∗t = argmaxh

[
m∑

j=1

J∗
(
diag(Γj(h, k))eΛ(t−τn)q, t

)]
(4.34)

with h satisfying (2.4).
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iii) Let J̃n = J̃n(q, 0) be the value function of the original problem corresponding to
the strategy (hn

t ) induced by computing Jn(q, 0). Then

Jn ≤ J̃n ≤ Jn +Kq̄ P̂{τn ≤ T} (4.35)

Remark 17. Since lim
n→∞

P̂{τn ≤ T} = 0, it follows from (4.33) and (4.35) that

lim
n→∞

J̃n = J∗, i.e. the strategy (hn
t ), induced by computing the n−th iterate Jn(q, 0)

of Ψ, is, for n sufficiently large, nearly optimal in the original problem.

Proof : The proof can, for most of its part, be adapted from that of the corre-
sponding Theorem 3.3 in [8]. Item i) follows from Lemmas 13 and 15 by consider-
ations analogous to those for the proof of item i) in Theorem 3.3 of [8]. Item ii)
follows similarly by applying the Dynamic Programming Principle. The existence
of a maximizer follows from the fact that, by the (uniform) convergence of Jn to
J∗, by Lemma 13 and (4.28) as well as the considerations following it, we have to
maximize a continuous function over a compact set. Item iii) follows from consid-
erations analogous to those in the proof of Lemma 15 taking into account the fact

that J̃n(q, 0) = max
h

Ê

{
K∑

k=1

qT (k), τn > T | q0 = q

}
.

To actually determine a nearly optimal investment strategy hn
t , one has to be

able to perform the iterations in (4.29), i.e. to compute the operator Ψ in (4.27).
For this purpose one has to discretize (quantize) the problem in the variables (q, t)
and then to interpolate it in the same variables. It is possible to control the error
induced by this interpolation as well as by the stopping after the n−th iteration. All
this can be done in complete analogy to [8] (for the numerical aspects see also [14])
and so we do not describe it here but refer to those articles.
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