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Abstract

This paper considers the estimation of the volatility of th&tantaneous short inter-
est rate from a new perspective. Rather than using disgredehpounded market rates as
a proxy for the instantaneous short rate of interest, wevelexirelationship between ob-
served LIBOR rates and certain unobserved instantaneowari rates. We determine the
stochastic dynamics for these rates under the risk-nentealsure and propose a filtering
estimation algorithm for a time-discretised version of thsulting interest rate dynamics
based on dynamic Bayesian updating in order to estimatediadility function. Our time
discretisation can be justified by the fact that data arerebdediscretely in time. The
method is applied to US Treasury rates of various maturibesompute a (posterior) dis-
tribution for the parameters of the volatility specificatio
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1 Introduction

The literature on the estimation of spot interest rate nuhgbarticular and term structure
dynamics in general continues to burgeon. Perhaps the mibsential early work has been
that of Chan et al. (1992) (henceforth CKLS). Their estiorabf the constant elasticity of the
diffusion term with respect to the instantaneous spot rateldeen repeated for many different
markets, time periods and estimation procedures. CKLS tisedeneralised method of mo-
ments whilst Nowman (1997, 1998, 2001, 2003) applied Gaanssstimation techniques and
Babbs and Nowman (1999) used Kalman filtering methods. USiaigssian estimation tech-
niques, Episcopos (2000) estimated the parameters of th&@Koe specification for a number
of markets. He obtained estimates of the spot rate elast€ithe diffusion term much lower
than that obtained by CKLS. Sun (2003) considered a nonlidéusion term and also al-
lowed for GARCH effects, but also found lower values for thes#city in several markets. All
of these estimation methodologies yield point estimatessaieature of these various empirical
studies is the wide range of point estimates obtained.

Another issue related to the estimation of the spot inteegstprocess is what data should
be used to proxy the unobserved instantaneous spot ratecallypmost studies have used US
one-month Treasury bill rates (CKLS and Nowman (1997)), kiSd¢-month Treasury bill rates
(Sun 2003), one month Euro-currency rates (Nowman 1998)oaedmonth interbank rates
(Sun (2003) and Episcopos (2000)). The results of Chapmaih €{1999) suggest that the
choice of proxy variable (in particular whether it be a onentih or three-month rate) should
not lead to a great deal of error in the estimation procediitewever, given that it is not
difficult to obtain the dynamics for, say, discrete tenoe#tmonth rates implied by a particular
instantaneous spot rate process, it seems strange thatetia¢ure has not developed in the
direction of estimating directly the parameters of the psses for observed market rates. This
will be one of the contributions of the current paper.

In this paper we use the framework of Heath, Jarrow and M1882) (henceforth HIM)
to model the dynamics of the interest rate market. The stapoint of HIM is a specification
of the dynamics of the forward rate to any general maturitg.9pecify a forward rate volatility
function that yields the same volatility function for thestantaneous spot rate of interest con-
sidered in the earlier cited literature. An important diffiece is that the dynamics of the interest
rate processes occur under the risk-neutral measure. mdeneasure the HIM procedures
enable us to obtain the dynamics of pure discount bond prifiesse can in turn be related to
the discretely compounded LIBOR rates. This link then eesiok to determine the dynamics
for LIBOR rates. It turns out that the dynamics of the LIBORerahe instantaneous spot rate
of interest and another instantaneous forward rate evatvelsneously under the risk-neutral
measure.

The link between pure discount bond prices and LIBOR ratesmtieat these rates can be
regarded as observable under the risk-neutral measurkst Wia other two instantaneous rates
referred to in the previous paragraph are not observableard/¢hus dealing with a partially
observed stochastic dynamic system whose estimation maydertaken by the use of non-
linear filtering methods. Here we develop a dynamic Bayespatating algorithm analogous to
the one proposed in Chiarella, Pasquali and Ruggaldierl(20the basic approach proposed
here has been applied to a much simpler (and approximatesequtation of discrete tenor



interest rate dynamics in Bhar, Chiarella and Runggald60?). The potential of Bayesian
methods in the estimation of financial models is startingea@ppreciated, see e.g. Polson and
Tew (2000). A range of implementations are possible, theppasented here has been chosen
because we are able to rigorously demonstrate its conveggeoperties.

The paper makes three main contributions. First, the spatin of the interest rate dy-
namics allows us to use as observations interest rates ofmaiyrity. In particular we use
interest rates of much longer maturity (6 and 12 months) thase usually used in the lit-
erature on estimation of interest rate models. Second, weodstrate the feasibility of the
Bayesian updating filtering algorithm as a tool for estimgtinterest rate models within the
HJIM framework. Third, we compute a posterior distribution the parameter values, rather
than just the point estimates of the traditional literaturais gives a better understanding for
the range of point estimates obtained in the literature.

The plan of the paper is as follows: in section 2 we derive tbehastic dynamic system
followed by the instantaneous spot rate and discretely caumged LIBOR rates. Since the
data are observed in discrete time, in section 3 we outli@&thy in which the continuous time
stochastic differential equation system is discretisadselction 4 we outline the way in which
the dynamic Bayesian updating algorithm is applied to thienegion problem. In section 5 we
discuss implementation issues and apply the algorithmneedd.S. data. Section 6 concludes
and makes suggestions for future research. Detailed teahsierivations are relegated to the
appendices.

2 TheDynamicsof LIBOR RatesImplied by HIM Bond Prices

We use the Brace and Musiela (1994) (henceforth BM) paramat®n of the HIM model,
which is interms of (¢, z)(z > 0) thez-period instantaneous forward rate at tifer maturity

t + z (see figure ). Under the risk-neutral measuPethis rate satisfies the stochastic integral
equation

r(t,z) =r(0,t+x) + /ta(s,t+x)5(s,t+x)ds + /ta(s,t+x)dzﬂ(s), (1)
0 0

wherer (0, z) is the initial forward curve;s is a Wiener process und@ ando(t, z) is the
instantaneous forward rate volatility function that co(ddd in our application will) depend on
certain instantaneous forward rates. In equation (1)

t+x
(s, t+xz)= / o (s, u)du. 2)

It is important to stress that even though we use the BM paexisation for the forward
rate dynamics, we use the notation for the volatility fuoctas in HIM in that (¢, x) refers to

n figures 1 and 2 we show the typical investor standing at fine represent the fact that all dynamics are
perceived from the perspective of time O where the relev#ntination is the currently observed forward curve
r(0,1).



0 ¢ t+dt t+x t+dt+a

Figure 1: Time line for the BM forward rate.

the forward rate volatility at time applicable for timez(> ¢). This is in contrast to BM who
use the volatility functiorr (¢, =) to denote the forward rate volatility at tinteapplicable for

timet + x. Of course these two different specifications of the forwarté volatility function

are related via

T(t,z) = o(t,t + x)

and one may work with either specification. For our applaait turns out to be more conve-
nient to uses (¢, x).
In this notation the instantaneous spot rate of inter@stis given by

T(t) = T(ta 0), 3)

and satisfies the stochastic integral equation

r(t) = r(0,1) +/ U(v,t)ﬁ(v,t)dv—l—/o o(v,t)dw(v). 4)

The price at time of a (¢ + x)- maturity zero coupon bond is relatedi@, =) by

b(t,z) = exp (- /0 i, u)du) | (5)

Next we relate the:-period LIBOR rate to the bond pridét, z). We then derive the re-
lationship between the bond price and the underlying statmbles (a set of discrete tenor
forward rates) upon which the forward rate volatility fuioct depends. The dynamics of these
state variables determine the evolution of the forward eurv

Consider a time period0, t) over which we have a set of observations of thperiod
LIBOR rate, that we denoté,(¢).This is an annualised rate at whiglh invested at time
compounds simply to becon$¢1 + xL,(t)) at time ¢ + z).

The LIBOR rateL,(t) is related to the continuously compounded Brace-Musiedtairta-
neous forward rate by (see figure 2)

1+xL,(t) = e:ch(/m r(t, u)du). (6)
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Figure 2: The LIBOR ratd., (t)

From equations (5) and (6) we deduce the relationship betvlee LIBOR rate and the
bond price, viz

1 1
L,(t) = — —1). 7
=G~V (7)
However it turns out to be more convenient to work in termshefquantity
1
la: (t) = La: (t) + ;a (8)
which is related taé(¢, x) via
1
l(t) = . 9
(t) ) 9)
We consider the volatility function of the general form
ot,u) = g(r(t,1), -, r(t,za))e N, (10)
wherer(t,-) = [r(t,z1),--- ,r(t, z,)] IS a vector of discrete tenor forward rates chosen in the

belief that these particular maturities most affect thewvan of the forward curve e.g. perhaps
they correspond to the most liquid maturities. In our subseatjapplication we shall specialise
(10) to the case wherg-) depends on just one argument and has the particular form

g(r) = op(min{e *, max||r|, 5]})5 (11)

whered > 0 ando, are parameters to be estimated and 0 is a given, arbitrarily small
constant.

This representation is consistent with the earlier citegienal literature that concentrates
merely on dependence on the instantaneous short rate. Weiu$e !, max||r|, ]} to the
prevent the volatility from becoming either zero or infinite

Thus equation (10) specialises to

o(t,u) = g(r(t))e_)‘(“_t). (12)

2We write a minus sign in front of th& since we would normally expeatto be positive reflecting the empir-
ically observed fact that usually interest rate volatitiycreases as maturity increases, though this relation ofte
inverts at very short maturities.



Subsequent applications could allow for dependence on &@euaf discrete tenor forward
rates.

Chiarella and Kwon (2003) show that with the specificatioB) (the bond price may be
expressed as a deterministic combination of two discreterttorward rates: (¢, z1), r(t, x2)
whose tenors may be chosen arbitrarily. The relevant dedad summarized in Appendix 2
from equation (73) of which we have

2

b(t, x) = exp(—[bo(t, ) + Y bi(t, x)r(t, 2:)]), (13)

=1

where the);(t,z)(i = 0, 1, 2) are defined in general by equations (71) and (74) and evaltmte
the specific volatility function (12) in equations (85)-§8The stochastic differential equations
followed by ther(t, z;)(k = 1,2, -- ,n) are given by equations (76) of appendix 1, nantely

2
dr(t,zp) = [bo(t, zx) + > byt ap)r(t,xi) + o (bt + 24)o(t, + x4)]dt
=1

e g(r(t,11), oy (E, 1) ) AT (2), (k=1,2,...n). (14)

Keeping in mind that our aim is to estimate the parametesso, \) used to specify the
particular volatility structure (12), we use the foregoiegm structure dynamics as follows.
First we treat equation (9) fdg(¢) (with b(¢, z) given by (13)) as the observation equation, with
underlying unobserved state variabi¢s =), r (¢, z2), - - - , 7(¢, z,) being driven by the system
(14). Note that here we have set things up in such a way that(the,), r(t, z,) appearing
in (13) are the first two elements of the vecidt,-) upon which the volatility function is
dependent. It should be stressed that this choice is somewdhtaary and any two elements of
7(t,-) might have been chosen. Indeed it is possible to use twoedéstgnor forward rates not
belonging tor (¢, -), in which case an additional two stochastic differentialagpns for their
dynamics would have to be appended to the system (14). Thieyar choices made in this
regard are implementation issues.

Turning to our particular implementation with the voldtilfunction (12), this fits into the
general structure of equation (10) by setting- 1 andz; = 0 so that

7(t,-) = r(t,0) = r(t).

In equation (13) we also sett,z;) = r(t,0) = r(t) and leaver(t, z5) as some arbitrary
tenor discrete forward rate. The dynamics f@t, z5) will append an additional stochastic
differential equation to the one to which the system (14uoed in this case.

To summarise, the expression fdt, =) will be given by

b(ta x) = exp(_ [EU (ta x) + 61 (ta x)T(t) + 62 (ta :c)r(t, 372)}), (15)
where the dynamics for(t) andr (¢, x2) are given by

dr(t) =[by(t,0) + by (¢,0)7(t) + b (¢,0)r(t, x2)]dt
+ g(r(t))dw(t),

3Note thath} (¢, z) = 2 b;(t, ) and the precise expressions are given in equations (83)-(84
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and

dr(t,xe) = [by(t, xa) + by (t, xa)r(t) + by(t, )7 (¢, 22)
+o(t,t + x9)a(t, t + x9)] dt
+ e %2 g(r(t))dw(t).

As we have stated, the choicef is arbitrary, for an initial implementation we choasg
to be the same as the tenoof the observed LIBOR rates. N

Here we should stress that the driving dynamics (14) areruhéerisk neutral measuie
However the LIBOR rates are observed under the real worlgoreR. To convert the dynamic
(14) to the dynamics undétwe would have to introduce the market price of interest riste r
However the diffusion of the underlying process will be theng undei® andP. Of course the
drifts will differ under the two measures, but we are not @ned in this paper with estimating
the drift term rather we focus just on estimating the valstiunction. If we were interested
in estimating the drift as well then we would have to make sassgimption about the market
price of risk; for instance, either it depends on the statmfsées in some way or it follows some
stochastic process. Then we would need to consider the dgaand estimation procedure
under the historical measure. The Bayesian updating #hgorjappropriately modified) to be
described below could still be applied to the resulting lséstic dynamical system.

3 State Space Form of the Model

Summarizing the results of the previous section, we shiedl &8 our partially observable sys-
tem the (unobservable) instantaneayseriod forward rate (¢, z), and instantaneous spot rate
r(t,0) = r(t). The set of stochastic differential equations for the stag be succinctly written

dr(t,z) = Ry(r(t,z),r(t,0))dt +e *g(r(t,0))dw, (16)
dr(t,0) = R(r(t,x),r(t,0))dt + g(r(t,0))dw, (17)

where we set

Ry(r(t,2),r(t.0)) =by(t, x) + b (£, 2)r(t,0) + by (¢, 2)r(t,2)
+o(t,t+x)a(t, t+ x), (18)
and
R(r(t,x),r(t,0)) = by(t, 0) + by (£, 0)r(£,0) + by(t, 0)r (2, ). (19)
Equations (16), (17) are the state transition equationsh®runobserved state variables,
r(t,z), r(t,0).
We shall uses(t) := (r(t,0),r(¢,z))T to denote the state vector at timeThis enables us

to write the state transition equations (16), (17) as

dS(t) = F(S(t); 0)dt + V(S(t); 0)dw, (20)



where

r(t,x),r(t,0)))7, (21)

F(5:0) = (R(r(t,z),r(t,0)), Ral
(t,0))", (22)

V(S;0) = (g(r(t,0)),e*g(r
andd is the (to be estimated) parameter vector
0= (0'(), (5, )\)

Financial implementations of estimation methodologiesumually carried out in a discrete
time setting as data are observed discretely. Thus we tdser@6), (17) using the Euler-
Maruyama scheme to obtain

r(k+1,2) —r(k,x) = Ry(r(k,z),7(k,0))At + e g (r(k,0)) AW},
r(k+1,0) —r(k,0) = R(r(k,x),r(k,0))At + g(r(k,0)) AW, (23)

where, At denotes the time step and (see (18), (19)),

Ry (r(k,x),r(k,0)) = by(kAt, z) + b) (kAL x)r(k,0) + by(kAt, z)r(k,z) + o(k, k + z)a(k, k + x)
R(r(k,z),r(k,0)) = by (kAt, 0) + by (kAL 0)r(k, 0) + by (kAL 0)r(k, x). (24)

Equation (23) can be synthesized as
Sk+1 — Sk = Fi(Sk; 0)At + Vi (Sk; ) AW, (25)

with F(-) andVj,(-) corresponding to (21) and (22) respectively and whevg, ~ A/ (0, At).
We have used the shorthand notatidi, =) to represent(kA, z) and, similarly, with other
quantities such aS; standing forS(kAt).

The quantities we observe in the market are the LIBOR rigfés From equations (9) and
(15), we have that,(¢) is related to the state variables by

Inl,(t) = —Inz + bo(t, x) + by (t,2)r(t) + ba(t, z)r(t, T). (26)

Thus it is most convenient to trelt/, (¢) as the observations equation in our system.
UsingY, to denotdn [, (kAt), the observation equation (26) becomes

Yy, = CySk + bo(kAL, z) — Inz + gy, (27)
where

We have assumed in (27) the existence of an observation teriseg,n,, wheren, ~
N(0,1) is serially uncorrelated and independent of thi#/,. The strength of the observation
noise, g, would reflect features (such as bid-ask spread) of the LIB@#Rket. In order to
express the observation equation (27) in standard form fweedine noise term

Ak = Gk, (29)
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so that
Ak~ N(0,Ay), (30)

where
A = QI%' (31)

With this notation the observation equation (27) may betemit

Yy = CySy + bo(kAt, z) — Inx + Ay (32)

4 TheDynamic Bayesian Updating Algorithm

From (25) we obtain for the conditional distribution®f, ;, givensSy, the Gaussian distribution

where we use the notatiokf (X'; m, X)) to denote a Gaussian random varialilevith meanm
and covariance matrix. More specifically, we have

g*(r(k,0)At) e A g%(r(k,0)At)

Vk(Ska G)Vk’(ska H)At = < 67/\“392(7“(/{, O)At) 672/\”392(7“(147, 0))At ) ’ (34)

which is immediately seen to be singular (the conditionatelation among the two compo-
nents is equal to 1 and their joint distribution degenejat&be two components of the state
vector are in fact linearly dependent and one can write

r(k4+1,2) = e r(k +1,0) + [(r(k, 2) + Ry(r(k, 2),7(k,0)) — e (r(k,0) + R(r(k, x), 7(k,0)))]
=ar(k+1,0)+ p(r(k,x),r(k,0)) (35)
thereby implicitly defining the constant and the functions(-) that (see (24) with (11), (12)
and (2)) is uniformly continuous in its arguments.
Putting S, = (S}, S?) whereS; = r(k,0), S = r(k, z), and making use of (35) we may
also rewrite (25) as

Spi1 = Sp + F} (Sk, 0)At + V,' (Sk, ) AW,
Sl%—l—l = O{S/i-l-l + B(Sk), (36)

where F}! andV}! are the first components of the 2-vectdfs and V} in (25) respectively.
Below we shall also consider the conditional distributidrp, ,, given Sy, that is induced by
(36) namely

Po( St Sk) ~ N (Sppas S+ Fe (S, 0) AL, (Vi (S, 0))°At) (37)

and that admits a density with respect to the Lebesgue measli' (notice thatpy (S 1/Sk),
being degenerate, does not admit a density with respece toehesgue measure &4).
On the other hand, from (32) we obtain the conditional dsition ofY;, givenS, andf as

1 _
exp {—— [V — CiSk — bo(kAL, ) +In xf} : (38)

1
V27TAk 2Ak

9



Using the representation (36) of the dynamics (25) we may@issider the distribution of
Y; givenS}, S, andd namely

1 1 _ _
_BﬂkAtxﬂ%ShJ)—EdkAax)+lnﬂ2}. (39)

We are interested in the conditional joint distributje(®;,, 6|y*) of S, andé in the generic
periodk = kAt, given the observationg = (y1, ...,yx). Notice that, since the two components
of Sy are linearly dependeng(Sk, f|y™) does not in general have a density with respect to the
Lebesgue measure @i. However, it still satisfies the recursive Bayes formulanaly

p(5k+1,9|yk+l) o p(Yyei1|Sk41,0) /p9(5k+1|8k)dp(5k,9|yk) (40)

with initial condition that we choose of the forpiS,, ) = p(Sy)p(¢) (independence o, and
#) and wherex denotes "proportional to”.

In the Bayesian estimation procedure the parameter vécsarssumed to take only a finite
number of values in a hypercube whose upper and lower boundidvibe specified by eco-
nomic considerations of the range of likely parameter \v&lugo in our context this vector is
considered as a discrete random variable.

Since Sy, takes a continuum of possible values (its dynamics are wiibyethe Gaussian
AWy), to actually compute the recursion (40) we discretize theeas ofS; (for the conven-
gence of the ensuing approximation see Proposition 4.1elo

For this purpose, given a step-sige> 0 and an integeiZ, consider the square iR?
given by (—H¢, HS] x (—Hd, Hé] and its partition (grid) intotH? squares, the generieth
(1 <1 < 4H?) of which is derived as follows: let

l=Q2H)h+Ek+1
where0 < h < 2H,0 < k < 2H, then

R =((—H+k)5,(—H + k+1)8) x ((=H + h)d, (—H + h +1)0))
= (af, Bi] X (03, B (41)

thereby implicitly defininge!, 8L, o, 35. In each of thetH? squaresk’ pick a representative
element, e.g. its middle point, namely

<<eH+k+%>&(—H+h+%>&> (42)

if l=(2H)h + k + 1 (alternative choices for representative elements arellgquzdid).
In addition to the squareR’ for I < 4H? that form a partition of —Hd, H5] x (—Hd, H4],
consider further 8 subsets Bf, denoted also byt!, and that fori = 4H? +1,...,4H? + 8 are

10



R = (00, —H] x (—o0, —H),
RYT+2 — (—H§, Hb) x (—o0, —HJ),
RMI*+3 — (H§, 4-00] x (—o0, —HJ],
RMH = (—00, —H6) x (—H6, HY),
R4S = (H§, +o00] x (—HE, HO),
RYM*H6 — (—o0, —H 8] x (H6, +00),

RMI*HT — (—H§, Hb)] x (H6, +00),

RYTHE — (H§, 0] x (H6, +00).

given by (on the right of each set there appears a possibleecfar its representative element)

((—H - %)5, (—H — %)5)

We shall use the notatiok! = (o!, 8!] x (o}, }) also forl = 4H? + 1, ...,4H? + 8. Notice
that R/(I = 1,...4H? + 8) forms now a partition of all of®?> and we shall denote the chosen

representative element &f by r' = (r}, 7).

Given the discrete-time, continuous state Markov clsqiwith transition kerneby (Sy.1/Sk),
consider next the discrete-time finite state Markov chgininduced bysS, and having state
space’!(l =1,...,4H?+8). Denote byP[gf“,ﬁ) the generic{ h)-th elementi, h = 1, ...4H*+38)
of the corresponding transition probability matrix in metk. We then have, using the explicit
representation (23) of the state transition equation (25),

11



P = py { Sk = 1"k = 1"} = P {(Sh11. SE1) € RM(r}.7d)}
= P{(r(k+1,z),r(k+1,0)) € R"|(r(k,),r(k,0)) = (r{,7%)}
=P {o/f <r(k+1,2) < 6{‘,0/21 <r(k+1,0) < ﬁg|r(/~c,x) = r{,r(k,(]) = 7“3}

_p {a? — ri_—/\ Rx(z"i, rH)A < AW, < [ — ri_—)\ Rx(ir{', rH)A |
e g(rt) e~ g(r})
0/21 - T‘% - }}(Ti,T%)A S AWk S /Bg - T‘% - }f(riar%)A}
g(r) 9(5)
h i i i h i i i
— P, {max [Oﬁ 7“17)\ Rm(;lﬂb)A, Oy — Ty ]?(7“1:7"2)A} < AW,
? mg(rz) ‘ . g(rh) -
S min [5? B Ti _/\ RI(Zﬂia T%)A’ ﬁg B T% B Ij(ria T%)A:| }
el o)
_ ( . {5?—T§—Rm(ri;ré)ﬁ 53—7"§—R(T§;7“3)AD
= —— min = , -
VA ) R T R
o (Lo [a’f —r}— Ro(ri.ri)A af 7} - A ra))
VA e g(rh) ’ g(r5)

(43)

where®(-) is the cumulative standard Gaussian distribution function
The recursive Bayes’ formula that corresponds to (40) ferdiscretized chaif;, becomes
then
4H?+8
D (Ster =" 01 ") o p (Ve[S =1",0) > PEIB(Se =1 0y"),  (44)
=1
with initial condition p(Sy = r%,0) = P{S, € R'}py(f) and the normalizing factor is the
inverse of

4H%+8 4H?+8
S>3 pViilSeer =1"0) - > PED (S =1, 0y"). (45)
0 h=1 =1
Formula (44) can be written in matrix form as
Phar < Ly (PR)TpL, (46)

wherep} is the(4H? + 8)-vector with entries
ﬁ(gk:fi;myk)a (Z:L 74H2+8)7

P(+9 is the matrix with element®," (i,h = 1,---  4H? + 8) andL{,, is the(4H? + 8) x
(4H? + 8)-diagonal matrix with entry in positioh (h = 1,--- ,4H* + 8) given by (see (38))

~ 1
Y, == .
p( k+1|5k+1 r 79) My
exp{~ g (Vi = bo((k + DAL )l — by((k -+ DAL )rd — Bo((k +1)A, 2) + Ina)?).
k+1

(47)
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From the joint conditional distributiop(S, = r”,0|y*), (h = 1,---,4H? + 8) one can
obtain the marginal conditional distributions

P(Sk =1"y*) = B(Sk =", 0ly"), (48)
[%
4H?+8 ~
POl = > p(Sk=r"0y"). (49)
h=1

of S, andd respectively.
Combining (48) with (44) and (45) we obtain the explicit esgsion

55 = ) — — 2P TealSin =1,6) S Pf’“” (S = i, 6ly")
k=T == ) 2
> 4H +8 (Yk+1|Sk+1 =rh, 0) pild +8P H (Sk =1i,0]y*)

(50)

and, analogously, fq#(0|y").

We next show that the discretization introduced above toarthk recursion (40) com-
putable is meaningful by showing that the approximate domthl distributions computed via
(44) converge in a suitable weak sense to the original cimmdit distribution corresponding to
(40). Sincd is discrete already from the outset, it suffices that we a@rghe convergence of
the conditional distributions for each fixed valuedofWe have in fact the following

Proposition 4.1 (Weak convergence of conditional distributions)
Given any uniformly continuous and bounded func#dis) onR?, we have for any period
k, for any sequence of observatiogfsand for any of the finite values 6f

4H?+8

lim Z F(r"p(r", 0|y*)

H — oo
5 —0

- / F(S0)dp(S. 01y )dS. 6
wherep(r”, 0|y*) is as in (44) angy(S, 0]y*) as in (40).

Proof: See Appendix 2.

From Proposition 4.1, we immediately obtain the followirgalary (for (/) below take

F=1).

Corollary 4.1 (Convergence of the marginal distributions ébfind weak convergence of the

13



marginal distributions of5},).

4H?48
) i p(0lyF) = i p(r", O]y*
(i) lim Oy = lim Y p(e" 6ly")
§—0 §—0 h=1

B /dP(Sk,GIy’“) = p(0]y");

4H?48 4H248
- : M\ =(.h|, kY _ : h\=(..h k
() lim hz; F()pc"ly") = lim ; hz; F(r)p(c", 0ly")
5§—0 = §—0 =

= Z/F(Sk)dp(sk,9|yk) :/F(Sk)dp(Skly’“)-

Remark:

Since power functions are not uniformly continuous nor lod) Proposition 4.1 and
Corollary 4.1 would not allow us to obtain convergence of ¢baditional moments. We can,
however, obtain their convergence by truncating them withréitrarily large truncation factor.

5 Empirical Analysis

In this section we present numerical results for the Bayesjadating estimation procedure
applied to real financial data. Figure 3 displays the montHB/LIBOR rate$ for one month
to twelve months quoted in the period from the 1st of DecemB8i7 to the 13th of November
1998 with time (in days) on one axis and maturity (as fracbba year) on the other axis. We
chose this period as it seemed to be typical of periods notcherised by large interest rate
volatility that might require more sophisticated treatmefithe noise term, such as stochastic
volatility or jump processes.

We observe from Figure 3 that the short maturity LIBOR rasssy(less than 3-months)
seem to undergo very little diffusion type movement. Thipisbably due to the fact that
the short maturities of the yield curve are strongly infllehby the interest rate policy of the
Federal Reserve. Soitis unlikely that their motion is faifyptured by the stochastic differential
equation systems discussed in Section 2. To properly @agitardynamics of the short rate one
would really need to also incorporate the interest ratecgdlinction of the Federal Reserve
and this is beyond the scope of the current paper. For thgoreae perform our estimation
procedure using only the = 0.5 andz = 1 time series for the LIBOR rates that we display
in Figure 4(a) and for which we have 250 observations. We Irafact, found that the results
obtained for the: = 0.25 time series are not consistent with those obtained for theratalues
of x.

The observed initial forward curve, Figure 4b, is formechggine 1 to 12 months LIBOR
rates and the 1 to 15 year swap rates at the beginning of tiep@ihis curve is approximated
by

7(0,7) = ag + (bo + b1z + byx?)e %%, (52)

40ur data source was Data Stredm

14
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Figure 3: Monthly US LIBOR rates. Daily from December 199 Nwvember 1998

whereay, = 0.0677012,bp = —0.0087993,b; = 0.0001126,b, = —0.0001247 andb; =
0.1479538 are obtained by least squares optimisation.

Ly L(0)

0060 Observed

0.055

0050 F X
2 4 6 8 10 12 14
t
0.059

Figure 4: Showind.,(t), for x = 0.5 (thin line) and1.0 (thick line) (a), and the initial forward
curve (b).

The range of LIBOR rates observed over this period sugghststhe state vectoR =
(r(t,z),r(t,0)) should lie in the squarf.02,0.09] x [0.02,0.09], which is discretised into
15 x 15 cells, each represented by its centre value. Also, suriagritlis region are 8 cells,
representing the remaining possible valueRoThe possible ranges of values fo (A, 0y, )
are not knowra priori. Rough estimates could be found by comparing various masnant
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observed changes in LIBOR rates with the expressions edémifrom the model. However we
have found the most effective way to determine the rangé@s®by successive application of
the Bayesian algorithm over a successively decreasingerang finer grid, until the support is
found. This approach avoids the need to search over largensegf the parameter space where
the supportis zero. Table 1 shows the final lower and uppendiound by this procedure for
each parameter and the number of divisions used to achieveshlts reported.

X ALx A 0o )

mean | std. low | up | #div. | low | up | #div. | low | up | # div.
0.5| 3.0E-5| 2.7E-4| -2.45| 245 80 | 0.0|3.0, 70 |1.0|3.2| 50
1.0| 3.9E-5| 3.4E-4| -1.55| 1.45| 80 | 00|30 70 |1.0|3.2| 50

Table 1: Table showing the mean and standard deviation afitarge in’,(¢) and the ranges
for the parameters.

Figures 5, 6 and 7 show the estimated marginal distributiong, o, andé respectively
for z = 0.5 andz = 1. The mean and standard deviations of each distributionrerersin
Table 2. These values may presumably be regarded as thé éséstates for the parameters.
The estimates fot, andd display some consistency across the two values dfilowever the
two distributiongy(A) in Figure 5, whilst showing the same general shape cleaxy téferent
means. This is probably due to the fact that this parametdei®ne that is most sensitive to
the different evolutions of the six-month and 1-year LIBGHes evident in Figure 4a.

The main comment to make in relation to the distributionsyfoy) is that the great bulk
of probability mass and the means are in the: 0 region. This indicates that over the short
maturity (up to one year) of the data set, volatility is irag@g with maturity. This seems to
contradict the comment in footnote 2, though we did add tradification that volatility may
increase with maturity over very short maturities. In fasing an HJIM model for the dynamics
of futures prices and estimating it by a maximum likelihoodthod using futures price data,
Bhar, Chiarella and T6 (2002) have found that there is a hirtipe volatility function at about
one year. This is consistent with our negative estimatesmthe present study. The increasing
volatility of the LIBOR rates with maturity can also be segndasual inspection of Figure 3
where the time series df, () atz = 1.0 seems to have more variation than that at 0.5.

Looking at the three marginal distributions as a whole, daesto appreciate why point
parameter estimates vary quite a deal amongst the variopsieah studies cited in the intro-
duction. First the estimate dfis clearly affected by the maturity of the data series usdee T
estimates oty ando are far less sensitive to maturity, but their distributi@ame quite wide,

X A 00 0

mean | std. dev.| mean| std. dev.| mean| std. dev.
0.5|-0.913| 0.902 | 1.449| 0.89 |2.325| 0.343
1.0| -0.297| 0.311 | 1.459| 0.884 | 2.189| 0.316

Table 2: Mean and standard deviation from the distributafrtee parameters.
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-2.0 -1.0 1.0 2.0

Figure 5: The marginal distributigin(\) for 2z = 0.5 (thin line) andx = 1 (thick line).

implying that a wide range of point estimates are equallgl{iR. Certainly Figure 7 is consis-
tent with the wide range of point estimatesiaibtained in the empirical literature, however the
marginal distributiorp(d) has its mean at a much higher value %) than the point estimates
(0.5 to 1.5) reported in much empirical literature. We believe the kighalues oy may be a
feature of LIBOR rates. Using a similar model structure ftBQR rate dynamics to the one of
this paper, but a quite different estimation approach ammhgdr LIBOR rate series, Chiarella,
Hung and T6 (2005) obtained a point estimaté afound 2, which is quite consistent with the
mean values reported in Table 2.

6 Conclusion

We have derived the risk-neutral dynamics for unobservetbfa upon which pure dis-
count bond prices depend within the Heath-Jarrow-Mortaméwork using a certain forward
rate volatility specification. We have then used the linkazstn LIBOR rates, forward rates and
pure discount bond prices to obtain the corresponding dicsafor LIBOR rates. The overall
stochastic dynamic system can then be treated as a padizbrved system with changes in
the LIBOR rates being the observations. Since data arewdxsdiscretely, we have considered
a discretised version of the model and developed a dynanmyeddan updating algorithm to
compute the posterior distribution for the model paransetenditional on the observed mar-
ket LIBOR rates. The algorithm has been applied to some Uag dnd gives a model fit
that seems consistent with some of the traditional econmersttidies. The estimated marginal
distributions of the parameters help to explain the widgyeaof point estimates for some pa-
rameters obtained using traditional econometric estongirocedures. Our results also suggest

SWe conjecture the probability densipfo,) approaches a uniform distribution as the discretisationgin
becomes finer.
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Figure 6: The marginal distributigi(o,) for = 0.5 (thin line) andx = 1 (thick line).

that the dynamics for LIBOR rates may be characterised byglaghniinterest rate elasticity (the
parameteb) than for the one—month Treasury rates used in much of thérieadpiterature.

Future research could go in a number of directions. Firstgtis a need to relax some of our
restrictive assumptions, in particular allowing for moréeWér processes to drive the forward
rate dynamics, since a number of empirical studies sugbastt least two and maybe three
factors need to be considered. In this regard see Chiakdélliag and Td (2005). Second, one
could exploit the fact that in addition to avoiding the usepodxy variables for the instanta-
neous spot rate of interest, the methodology proposed laeréhle advantage that a number of
available discretely compounded rates may be used as tleeveldsquantities. Thus it would
be of interest to consider a data set with a range of matsiypi@rticularly those corresponding
to the most actively traded points on the yield curve. In Wiy one could obtain the volatil-
ity for the instantaneous spot rate most consistent with afs#iscretely compounded LIBOR
rates whose maturities are of most relevance to the apiplicat hand. Third, more work also
needs to be done on statistical diagnostics to assess tdeggssof-fit of the estimated models.
Finally, more efficient numerical schemes for the impleragah of the dynamic Bayesian up-
dating need to be developed. Here we have relied on the Eldestyama discretisation of the
stochastic dynamics and the attendant convenience of mgrukith normal distributions. Fur-
ther developments could involve using higher order disgagbn schemes or using an entirely
different philosophy for the dynamic Bayesian updating}sas particle filters, see for example
Balviken and Storvik (2001) and Chib et al. (2002).
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Figure 7: The marginal distributign(d).

7 Appendix 1: BM Dynamics- Forward Rate Dependent Volatil-
ity Function

Consider the HIM model within the BM parameterisation. Uride risk neutral measutethe
forward rater (¢, x) satisfies the stochastic integal equation

r(t,z) =r(0,t+x) + /t o(s,t+x)a(s,t+x)ds+ /t o(s,t+ x)dw(s), (53)
where
(s, t+x)= /ter o(s,u)du. (54)

From(53) withz = 0 we obtain the stochastic integal equation for the instadas spot
rater(t)(= r(t,0))

t t
r(t) = r(0,t) +/ U(v,t)5(v,t)dv+/ o(v,t)dw(v). (55)
0 0
Here we consider volatility functions of the form
o(t,u) =g (r(t,a1), ., r(t, z,)) e, (56)

The dynamics for each state variable, x;)(i = 1, ..., n) is obtained by setting = z; in
(53). We note that with the specification (56), the expraséhd) fora(s,t) becomes

(1 _ e—/\(t—s))

a(s,t) = ;)

g(r(s,x1), ..., r(s,2,)) . (57)
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To ease the notation we set
g(7(s,°) = g(r(s,z1), ..., (8, 22)) , (58)
so that we can write
o(t,u) = g (7(t,-)) e M=t
and

1 — e/\(u—t)
A

With these various notations the stochastic integal eqnddtir (¢, z;) becomes

o(t,u) =g (7t -))

1— e—)\(t—l—xi—s)

t
r(t, @) =70, +z;) + / G2 (7, (s,-)) e AtFei=s) \ ds
0

+Agu%f»fW”r%mwx (59)

fori =1.2,....n.
Note that in terms of the Chiarella and Kwon (2003) notati@may write

O'(t, U) = Cll(t)O'H(U), (60)
where
o (u) = eﬂ\u; cui(t) = e/\tg (7(t,-)) (61)
and so
PV

The naturally arising subsidiary variables needed to Magdse the dynamics then turn
out to bé

601 = [ ot Nane) - o e e ey

)= [ en(ods = [ 9T, s (64)

The quantities)(t), ¢(t) are both stochastic, so in terms of Chiarella and Kwon (2003)
notation the stochastic differential equation 7¢t, =) is written

r(t,z) = 70,0+ ) + ou(t + 2)(t) + on(t + )51t + x)p (). (65)

5Note that in Chiarella and Kwon (2008)t), (t) are respectively denoteg (¢) and:: (t).
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By choosing any two values far e.g. 21, 5, we have two equations far(t) andp(t) in
terms ofr(t, ;) andr(t, z5).
Thus we have the system

[011(t+x1) o (t+21)0, (t+x1)} [¢(t)

] _ [r(t,xl) —7r(0,t+ x1) ]
o1 (t+xz3) o1t + x9)T11(t + x2) r(t,xe) —r(0,t +x9) |’

R R R e PR

so that

All( ) = O'll(t +$2)O’11(t+$2)/A A12( ) = —011(t+x1)611(t +$1)/A,
Where ( ) —0'11(t+l'2)/A AQQ( ) = O'11(t+l‘1)/A, (67)
A = o1 (t+$1)0’11(t+$2) (5’11(t+l‘2) —5’11(t+l‘1)).

Rearranging (66) we can expresg) andy(t) as
W(t) = A (B)r(t, 1) + Ao (t)r(t, x2) — 61(2), (68)
(p(t) = Agl (t)?"(t, 371) + AQQ(t)T(t, 372) — (52(t), (69)
where

(51 (t) = An(t)r(O, t+ 1131) + Alg (t)r((), t+ Ig),
62(t) = A21 (t)r(O, t+ .ZEl) —+ AQQ (t)r(O, t+ 372).
Thus the forward rate of any tenor can be expressed in termétof;) andr (¢, o) by
substituting (68) and (69) into (65) i.e.
T(t, LL‘) = T(O, t+ l‘) - O'u(t + 13)(51(t) — O'11(t + 113)5'11(t + I)(Sg(t)
+ [Ull(t + iL‘)AH(t) + O'll(t + 113)5'11(t + I)Agl (t)] T(t, l‘l)
+ [Ull(t + .ZE)AH (t) + Ull(t + x)én(t + x)AQQ(t)] T(t, 372). (70)

In terms of equation (22) of Chiarella and Kwon (2003) we have

bo(t, 37) = 7"(0, t+ .ZU) — Ull(t + 37)61 (t) — O'll(t + x)&ll(t + LU)(SQ(t),
bi(t,z) = o (t+ ) A (t) + o1 (t + x)on1 (t + ) Ao (2), (71)
bo(t, ) = o11(t + 2)A12(t) + 011 (t + )11 (t + 2) Aga(2).

Thus (70) can be written

2

r(t,x) =bo(t,x) + Y bilt, x)r(t,z;). (72)

=1
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We can then use equation (25) from Chiarella and Kwon (2G®8ptain the expression for
the BM bond price, namely

b(t, x) = exp(—[b,(t, (73)

=l
—~
~
8
~—
=l
<
—~~
~
S
~—
—~
~
8
<
~—
N—

where
bita) = [ blta)de, (=0.1,2) (74)
0

Thez— tenor LIBOR rate is related (¢, x) via

La(t) = % <b(;$) _ 1) . (75)

We treat (75) as the observation equation with the statam@sr (¢, z,), ..., r(¢, z,) being
driven the stochastic differential equation system (ser€ha and Kwon (2003) just below
equation (23)

2
dr(t, zy) = [ (t, z1) Z (t, zp)r(t, z;) + o(t, t + 2)F(t, t + 21) | dt
+ e Mg (r(t, xl) 1 (t, ) dw(t), (k=1,2,...,n). (76)
Note that in (76)
’ abl (t, .'17)
b,(t = . 77
(7)== (77)
From the particular specification in (60) we have
Ull(t + .'L’) = e_A(t—HE), (78)
so that
t
M — e Mtta) — oy (t+ ), (79)
ox
and
—e M) ] o (t+
O'u(t + l‘) \ 11)\( ) s (80)
t+x
a1 (t+ ) 11()\ ) = o1 (t + ). (81)
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From equation (71) we calculate
bo(t,x) =7"(0,t + ) — oty (t + ) [61(¢) + a1 (t + 2)02(t)] — 71, (t + 2)o11(t + 7)o (%)
r'(0,t 4+ z) + Aoy (E+ @) [01() + 511 (t + 2)82()] — 07, (¢ + 3)5,(t)
(0t + ) + o1 (t+ ) N1 (8) + (1 — 2001 (¢ + 2))d2(2)], (82)
Vi(t,z) = ofy (t+ ) A1 (t) + 011 (t + 2)a11(t + 2) Aoy () + 711 (t + 2) o1 (t + 2)Agy (1)
= —Aou(t + 2)[Au(t) + Tt + ) Agr ()] + oF, (¢ + 2) Ana ()
= o1 (t + ) [=AA 1 (B) — Aon (E + 2) Ao (t) + 011 (E 4+ ) Agy ()]
=011 (t +2)[-AA 1 (t) + (o (t+2) — 1) Ax (t) + 011 (t + 2) Ag (2)]
=0 (t +2)[(2011(t + 2) — 1) Agi(t) — AA(2)], (83)
and
by(t,x) = o11(t + 2)[(2011(t + ) — 1) Aga(t) — MA(1)]. (84)

To operationalise equation (73) we calculate accordingjtmtion (74) the quantitie’s

bo(t, ) = /Um [r(0,t +u) — o1 (t +u)dy (t) — or1 (t + w)ory (¢t + u)da(t)] du

x T =A(t+u) _ ,—2X(t+u)
— (0,4 2) = 6u(t) [ e gy — 5y(1) / ¢ . du
0
Aoy (t) + 92(1) 5o (t)

=7(0,t+x) + 2 (o11(t +2) = o1 (1) + 35 (o1 (H) — oni (t + 2)),
(85)
:/ t+u AH( )+011(t+u)611(t—|—u)A21(t)du
2
:/ t+u All( ) Ull(t+u> )\Jll(t+U)A21(t)dU
AA +A Aogq (t
_ u(t )/\2 21(t )(On(t) —op(t+2))+ %g)(afl(t + 1) — o2, (1)), (86)
and
- AA 9 (1) + Ago(t Ao (t
in(r,0) = 2220820 6 ) o)+ 22D 02 k) ot @7
For our application:; = 0 andz, = x S0 in equation (67) we set = 0, x5 = x, to obtain
1— e*/\(ter) 1 — e A
)\ _ A2+
Anlt) =P Aalt) ==
A A
_ 2\ _ A(2t+x
Agi(t) = —e tm’ Am(t) = X0 )m'

From equations (12) and (54) we find that

J
ot t+x) = %(1 _ ey,

"Note thatF(0, ¢ + z) = [, r(0,t + u)du
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8 Appendix 2: Proof of Proposition 4.1.

(The proof is an adaptation to the present situation of the @hTheorem 4.1 in Bhar,
Chiarella and Runggaldier (2002).)

In the proof we shall uss’ to denote, for the generic periéd= kAt, the random variable
previously denoted by, that takes the valueg' (h = 1,--- ,4H? + 8) of the representative
elements in the discretization defined in this section arsddigtributionp(Sy, 0]y*) (see (44))
for a given value of). The proof then amounts to showing that, for any uniformlgtoaious
function F,

lim  E{ F(ST)|y"} = Bo{ F(Si)ly"}. (88)

H — oo
5 —0

We proceed by induction ol Fork = 0 we have by construction that
dim Eo{F(S§")} = Eo{F(S0)}. (89)

§—0

Assume then that the statement is trueffom period(k + 1) At consider now (see (44))

4H?48
EG{F(SIZA v} = Z F(r k+1 = r"y* )
4H248 4H2+8
X Z P(yria|r”, 0) Z P ', 0ly")
4H2+8 _ .
- Z (/b}['{(fz; 9; yk+l)ﬁ(£1; 9|yk) = E{(b}[f{(slflﬂ 9; yk+1)|yk} (90)
With
. 4H?+8
SR 0. yar) = Y F")p(yeiile", 0) P
h=1
4H?48 _
=y F(zh)p(yk+1|£h,9)/hdpa(5k+1|51f = 1) (91)
h=1 R

where the rightmost equality follows from (43). Notice that
EG{QSI};I(SE, 0, yk+1|yk}

Eo{F(Sit)ly"'} = Bl (ST 0 yee) o] (92)
On the other hand, according to (40) we have
Eo{F(Sky1)]y* '} = /F(5k+1)dp(5k+1a 0ly™+")
o [ F(Sue0pluner|Serss0) [ dpalSen|Su)dp(S1. 010"
:/¢F(5k,a,yk+1)dp(5k79|yk)- (93)
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With
O (Sk, 0, Yr41) = /F(Sk+1)p(yk+1|5k+laH)dp0(5k+1|sk) (94)

and notice that, here too,

EG{QSF(S/W 07 yk+1|yk}
E0{¢1(Ska 9, yk-i—l) |yk} .

Given our assumptions, the functidf(S)p(y|S, #) with p(y|S,0) as in (38) is uniformly
continuous inS for all values ofy andé. Notice, in fact, thap(y|S, ) is continuous inS and
its limit for S going to infinity is, uniformly in(y, #) equal to zero. Given > 0, there is thus
HY, (depending orF' and the parameters in the model such andA,) such that, fold > Hy.
andd < (H%)™', one has in any perioklAt and for all values oy, 0, yx 1,

Eo{F(Sk41)|y* '} = (95)

|67 (Sky 0, Yk s1) — dr(Sk, 0, Yrr1)|

4H2+8

/ F()pnle’, 0) — F(Skin)p(is|Sesr, 0)ldpo(Sea 1S)

4H2+8

< 7 Z /dpa Sk+1|5k) = (96)

To complete the induction step we have to show thatS; 0, y) is, for all values of(8, y),
uniformly continuous irf. In fact, if this is the case, then, givern> 0, there exists7 - (y***, 0)
(depending orf’ and the parameters in the model) such thatHos Hi andd < (Hi) !

|Eo{dr (S, 0, yrs)|y"} — Bo{dr(Sk, 0, yxs1) |y} < . (97)

From (96) and (97) it then follows that

|Eo{om (SE': 0, yir1)|y"} — Eo{dr(Sk; 0. i) [y*}H
<|Eo{op (St 0, k) |y*} — Eo{dr(Se5 0, yri) [y*}]
+ |E6{¢F(SI€I§ 9;?Jk+1)|yk} - E9{¢F(5k; aayk+1)| < 2n (98)

for H > Hp := max{H%, H}.(y*',0)} andé < (Hp)~'. Combining (98) with (92) and (95)
allows to complete the induction step and thus the proof@ptfoposition.

It remains thus to show that.(.S; 6, y) is uniformly continuous ir for each pair(9, y).

To this effect notice that, by (36) as well as (38) and (39¢ @so (94)) we have that

¢F(Sk,9,yk+1) = /F(Sziﬂ,S§+1)p(yk+1|5é+1752+1,9) : dp9(5é+1,52+1|5;,5,3)
- / F(SL 1, S S2)p(sisr |SLy1. L S2,6) - pol(SL, IS, S2)dSL, . (99)

where B
F(S;Jrlasliaslz) = F(Sl%+1aasli+1+ﬂ(sliaslz)) (100)
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andpy(S;,,|S;, Sp) coincides with the Gaussian densigyS;,_,|S) in (37).

Since (see comment after (38))S;, S;) is uniformly continuous we have thatS;_ . S;, S7)
is bounded and uniformly continuous$ = (S}, S7).

We next have from (37) with (35) and (22) that

1 _ 1 . ex I 7 S r(k,z),r 2
p(Sha180) = s e { (5L = S = ROk o). r(h0)
:= ¢1(Sk) - $2(Sk; Spy1) (101)

where (see (11) and (249 (Sx) and¢,(Sk; Si,,) are bounded functions that are uniformly
continuous inSy. Concerningp,(Sk; S,iﬂ) notice in fact that it is continuous and the limit for
Sk going to infinity is, uniformly inS;, ;, equal to zero. Being a product of two bounded and
uniformly continuous functiong, (S;,,|Sk) is thus bounded and uniformly continuousip
Coming top(yk+1]Sk. 1. Sk; 0) defined in (39), it is immediately seen that, as a function
of Sk, it is bounded uniformly in(yx.1, Sk+1,6). Since it is continuous it%,, and the limit
for Sy going to infinity is zero uniformly in(yy.1, Sk11,0), it is also a uniformly continuous
function of S;.. Notice, furthermore, that the integral with respec$to, is equal to the constant
v =bi((k+1)At ) + bo((k + 1)At, z)cv.
Take nowsS, S, € R2. By (99), the previously shown uniform continuity propesiand
uniform integrability inS}., , of pe(S},,|S}, S7) andp(ye+1|Sp, 1, i, S, 0) we have that, given
n > 0, one can choos& > 0 such that fol| S, — Si|| < J it results that

|¢F(Sk, 0, yk+1) - ¢F(§k, 0, ?Jk+1|
S/|F(Sli+1aSliaslz)ﬁ(yk+l|sli+laSliaslgaa)

- F(SliJrla 5,%, S’Iz)ﬁ(yk+l|sli+1’ S’Ii: glza 9) |p9(511+1|5117 Slz)dsl%Jrl
+ F(S;Jrl’ 511’ S;g)|po(5;+1|511, Slg) - p0(5;+1|‘§117 313) |ﬁ(yk+1|5’]1+17 5’11’ S’Iga 0)d5k+1

< / pSialSt. Spast, + 2 / P(yes1|S) 1, 5L 52.6)dS),, = 21, (102)

Thus showing the uniform continuity ifi of ¢ (.S, 6, y) for each paird, y) and with it also
the induction step.

9 Appendix 3:

We derive the stochastic differential equation followediby, (¢)) and hence obtain its volatil-
ity function.
From equation (9) and (13) we have

2

Inly(t) = bo(t, ) + Y _bi(t, x)r(t, z;) — Inx.

=1



Then

dln(l, (1)) = d[bo(t, ) + Z bi(t, x)r(t, ;)]

= Uyt x)dt + Y Bi(t, x)r(t,z)dt + by(t, x)dr(t, z;).

=1

Substituting the dynamics foi(¢, ;) in (14) and simplying gives

dIn(l(t)) = |Bp(t, z) + D Bi(t,x)r(t, z) + > bilt, x) [Bg(t, z) + Y bt )r(t )

i=1 i=1 k=1

2
+ ot t+x)a(t t+ )]l dE+ > bilt, x)e i gdw.
=1

Therefore

var(dIn(l,(t)) = (Z bi(t, x)e_)‘mi> g>At.
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