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Abstract

This paper considers the estimation of the volatility of theinstantaneous short inter-
est rate from a new perspective. Rather than using discretely compounded market rates as
a proxy for the instantaneous short rate of interest, we derive a relationship between ob-
served LIBOR rates and certain unobserved instantaneous forward rates. We determine the
stochastic dynamics for these rates under the risk-neutralmeasure and propose a filtering
estimation algorithm for a time-discretised version of theresulting interest rate dynamics
based on dynamic Bayesian updating in order to estimate the volatility function. Our time
discretisation can be justified by the fact that data are observed discretely in time. The
method is applied to US Treasury rates of various maturitiesto compute a (posterior) dis-
tribution for the parameters of the volatility specification.
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1 Introduction

The literature on the estimation of spot interest rate models in particular and term structure
dynamics in general continues to burgeon. Perhaps the most influential early work has been
that of Chan et al. (1992) (henceforth CKLS). Their estimation of the constant elasticity of the
diffusion term with respect to the instantaneous spot rate has been repeated for many different
markets, time periods and estimation procedures. CKLS usedthe generalised method of mo-
ments whilst Nowman (1997, 1998, 2001, 2003) applied Gaussian estimation techniques and
Babbs and Nowman (1999) used Kalman filtering methods. UsingGaussian estimation tech-
niques, Episcopos (2000) estimated the parameters of the CKLS type specification for a number
of markets. He obtained estimates of the spot rate elasticity of the diffusion term much lower
than that obtained by CKLS. Sun (2003) considered a nonlinear diffusion term and also al-
lowed for GARCH effects, but also found lower values for the elasticity in several markets. All
of these estimation methodologies yield point estimates and a feature of these various empirical
studies is the wide range of point estimates obtained.

Another issue related to the estimation of the spot interestrate process is what data should
be used to proxy the unobserved instantaneous spot rate. Typically most studies have used US
one-month Treasury bill rates (CKLS and Nowman (1997)), US three-month Treasury bill rates
(Sun 2003), one month Euro-currency rates (Nowman 1998) andone-month interbank rates
(Sun (2003) and Episcopos (2000)). The results of Chapman etal. (1999) suggest that the
choice of proxy variable (in particular whether it be a one-month or three-month rate) should
not lead to a great deal of error in the estimation procedure.However, given that it is not
difficult to obtain the dynamics for, say, discrete tenor three-month rates implied by a particular
instantaneous spot rate process, it seems strange that the literature has not developed in the
direction of estimating directly the parameters of the processes for observed market rates. This
will be one of the contributions of the current paper.

In this paper we use the framework of Heath, Jarrow and Morton(1992) (henceforth HJM)
to model the dynamics of the interest rate market. The starting point of HJM is a specification
of the dynamics of the forward rate to any general maturity. We specify a forward rate volatility
function that yields the same volatility function for the instantaneous spot rate of interest con-
sidered in the earlier cited literature. An important difference is that the dynamics of the interest
rate processes occur under the risk-neutral measure. Underthis measure the HJM procedures
enable us to obtain the dynamics of pure discount bond prices. These can in turn be related to
the discretely compounded LIBOR rates. This link then enables us to determine the dynamics
for LIBOR rates. It turns out that the dynamics of the LIBOR rate, the instantaneous spot rate
of interest and another instantaneous forward rate evolve simultaneously under the risk-neutral
measure.

The link between pure discount bond prices and LIBOR rates mean that these rates can be
regarded as observable under the risk-neutral measure, whilst the other two instantaneous rates
referred to in the previous paragraph are not observable. Weare thus dealing with a partially
observed stochastic dynamic system whose estimation may beundertaken by the use of non-
linear filtering methods. Here we develop a dynamic Bayesianupdating algorithm analogous to
the one proposed in Chiarella, Pasquali and Ruggaldier (2001). The basic approach proposed
here has been applied to a much simpler (and approximate) representation of discrete tenor
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interest rate dynamics in Bhar, Chiarella and Runggaldier (2002). The potential of Bayesian
methods in the estimation of financial models is starting to be appreciated, see e.g. Polson and
Tew (2000). A range of implementations are possible, the onepresented here has been chosen
because we are able to rigorously demonstrate its convergence properties.

The paper makes three main contributions. First, the specification of the interest rate dy-
namics allows us to use as observations interest rates of anymaturity. In particular we use
interest rates of much longer maturity (6 and 12 months) thanthose usually used in the lit-
erature on estimation of interest rate models. Second, we demonstrate the feasibility of the
Bayesian updating filtering algorithm as a tool for estimating interest rate models within the
HJM framework. Third, we compute a posterior distribution for the parameter values, rather
than just the point estimates of the traditional literature. This gives a better understanding for
the range of point estimates obtained in the literature.

The plan of the paper is as follows: in section 2 we derive the stochastic dynamic system
followed by the instantaneous spot rate and discretely compounded LIBOR rates. Since the
data are observed in discrete time, in section 3 we outline the way in which the continuous time
stochastic differential equation system is discretised. In section 4 we outline the way in which
the dynamic Bayesian updating algorithm is applied to the estimation problem. In section 5 we
discuss implementation issues and apply the algorithm to some U.S. data. Section 6 concludes
and makes suggestions for future research. Detailed technical derivations are relegated to the
appendices.

2 The Dynamics of LIBOR Rates Implied by HJM Bond Prices

We use the Brace and Musiela (1994) (henceforth BM) parameterisation of the HJM model,
which is in terms of�	
��	� � �

the
�
-period instantaneous forward rate at time



for maturity
 � �

(see figure 11). Under the risk-neutral measure�� this rate satisfies the stochastic integral
equation

�	
�� � �	�� 
 � � � � �� �	�� 
 � ��	�� 
 � ��� � � �� �	�� 
 � ����	�� (1)

where�	���
is the initial forward curve,�� is a Wiener process under�� and �	
��

is the
instantaneous forward rate volatility function that could(and in our application will) depend on
certain instantaneous forward rates. In equation (1)

�	�� 
 � � � � ���� �	������
(2)

It is important to stress that even though we use the BM parameterisation for the forward
rate dynamics, we use the notation for the volatility function as in HJM in that�	
��

refers to

1In figures 1 and 2 we show the typical investor standing at time0 to represent the fact that all dynamics are
perceived from the perspective of time 0 where the relevant information is the currently observed forward curve !"#$%.
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Figure 1: Time line for the BM forward rate.

the forward rate volatility at time



applicable for time
�	' 


. This is in contrast to BM who
use the volatility function( 	
��

to denote the forward rate volatility at time



applicable for
time


 � �
. Of course these two different specifications of the forwardrate volatility function

are related via ( 	
�� � �	
� 
 � �
and one may work with either specification. For our application it turns out to be more conve-
nient to use�	
��

.
In this notation the instantaneous spot rate of interest�	
 is given by�	
 � �	
� �� (3)

and satisfies the stochastic integral equation

�	
 � �	�� 
 � � �) �	*� 
�	*� 
�* � � �� �	*� 
���	*� (4)

The price at time



of a 	
 � �
- maturity zero coupon bond is related to�	
��

by+	
�� � ,�- ./� �� �	
����0 �
(5)

Next we relate the
�
-period LIBOR rate to the bond price

+	
��
. We then derive the re-

lationship between the bond price and the underlying state variables (a set of discrete tenor
forward rates) upon which the forward rate volatility function depends. The dynamics of these
state variables determine the evolution of the forward curve.

Consider a time period	�� 
 over which we have a set of observations of the
�
-period

LIBOR rate, that we denote1�	
.This is an annualised rate at which23 invested at time



compounds simply to become2	3 � �1�	
 at time (

 � �

).
The LIBOR rate1�	
 is related to the continuously compounded Brace-Musiela instanta-

neous forward rate by (see figure 2)3 � �1�	
 � ,�-	� �) �	
�����
(6)
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Figure 2: The LIBOR rate1�	

From equations (5) and (6) we deduce the relationship between the LIBOR rate and the

bond price, viz 1�	
 � 3� 	 3+	
�� / 3� (7)

However it turns out to be more convenient to work in terms of the quantity9� 	
 � 1�	
 � 3� �
(8)

which is related to
+	
��

via 9� 	
 � 3�+	
�� � (9)

We consider the volatility function of the general form2�	
�� � :	�	
��;� < < < � �	
��=,>?@A>�B � (10)

where C�	
� < D E�	
��;� < < < � �	
��=F is a vector of discrete tenor forward rates chosen in the
belief that these particular maturities most affect the evolution of the forward curve e.g. perhaps
they correspond to the most liquid maturities. In our subsequent application we shall specialise
(10) to the case where

:	< depends on just one argument and has the particular form:	� � ��	GHIJK>;�GL5EM� M�KFNO (11)

whereP Q �
and �� are parameters to be estimated andK Q �

is a given, arbitrarily small
constant.

This representation is consistent with the earlier cited empirical literature that concentrates
merely on dependence on the instantaneous short rate. We useGHIJK>;�GL5EM� M�KFN to the
prevent the volatility from becoming either zero or infinite.

Thus equation (10) specialises to�	
�� � :	�	
,>?@A>�B � (12)

2We write a minus sign in front of theR since we would normally expectR to be positive reflecting the empir-
ically observed fact that usually interest rate volatilitydecreases as maturity increases, though this relation often
inverts at very short maturities.
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Subsequent applications could allow for dependence on a number of discrete tenor forward
rates.

Chiarella and Kwon (2003) show that with the specification (12) the bond price may be
expressed as a deterministic combination of two discrete tenor forward rates�	
��;

, �	
��S
whose tenors may be chosen arbitrarily. The relevant details are summarized in Appendix 2
from equation (73) of which we have+	
�� � ,�-	/ET+) 	
�� � SUVW; T+V 	
���	
��VF� (13)

where the
T+V 	
��	X � �� 3� Yare defined in general by equations (71) and (74) and evaluated for

the specific volatility function (12) in equations (85)-(87). The stochastic differential equations
followed by the�	
��Z	[ � 3� Y� < < < �\

are given by equations (76) of appendix 1, namely3��	
��Z � E+]� 	
��Z � SUVW; +]V 	
��Z�	
��V � �	
� 
 � �ZT�	
� 
 � �ZF�
� ,>?�^:	�	
��;� ���� �	
��=���	
� 	[ � 3� Y� ����\�
(14)

Keeping in mind that our aim is to estimate the parameters	��� P� _
used to specify the

particular volatility structure (12), we use the foregoingterm structure dynamics as follows.
First we treat equation (9) for

9� 	
 (with
+	
��

given by (13)) as the observation equation, with
underlying unobserved state variables�	
��;� �	
��S� < < < � �	
��= being driven by the system
(14). Note that here we have set things up in such a way that the�	
��;� �	
��S

appearing
in (13) are the first two elements of the vectorC�	
� < upon which the volatility function is
dependent. It should be stressed that this choice is somewhat arbitrary and any two elements ofC�	
� < might have been chosen. Indeed it is possible to use two discrete tenor forward rates not
belonging toC�	
� <, in which case an additional two stochastic differential equations for their
dynamics would have to be appended to the system (14). The particular choices made in this
regard are implementation issues.

Turning to our particular implementation with the volatility function (12), this fits into the
general structure of equation (10) by setting

\ � 3 and
�; � �

so thatC�	
� < � �	
� � � �	
�
In equation (13) we also set�	
��; � �	
� � � �	
 and leave�	
��S

as some arbitrary
tenor discrete forward rate. The dynamics for�	
��S

will append an additional stochastic
differential equation to the one to which the system (14) reduces in this case.

To summarise, the expression for
+	
��

will be given by+	
�� � ,�-	/ T̀+� 	
�� � T+;	
���	
 � T+S 	
���	
��Sa�
(15)

where the dynamics for�	
 and�	
��S
are given by��	
 �E+b� 	
� � � +b;	
� ��	
 � +bS 	
� ��	
��SF�
� :	�	
���	
�

3Note thatcde !$#f% g hhice!$#f% and the precise expressions are given in equations (82)-(84).
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and ��	
��S � E+b� 	
��S � +b;	
��S�	
 � +bS 	
��S�	
��S��	
� 
 � �ST�	
� 
 � �SF �
� ,>?�j: 	�	
���	
�
As we have stated, the choice of

�S
is arbitrary, for an initial implementation we choose

�S
to be the same as the tenor

�
of the observed LIBOR rates.

Here we should stress that the driving dynamics (14) are under the risk neutral measure��.
However the LIBOR rates are observed under the real world measure

�
. To convert the dynamic

(14) to the dynamics under
�

we would have to introduce the market price of interest rate risk.
However the diffusion of the underlying process will be the same under

�
and��. Of course the

drifts will differ under the two measures, but we are not concerned in this paper with estimating
the drift term rather we focus just on estimating the volatility function. If we were interested
in estimating the drift as well then we would have to make someassumption about the market
price of risk; for instance, either it depends on the state variables in some way or it follows some
stochastic process. Then we would need to consider the dynamics and estimation procedure
under the historical measure. The Bayesian updating algorithm (appropriately modified) to be
described below could still be applied to the resulting stochastic dynamical system.

3 State Space Form of the Model

Summarizing the results of the previous section, we shall take as our partially observable sys-
tem the (unobservable) instantaneous

�
-period forward rate�	
��

, and instantaneous spot rate�	
� � D �	
. The set of stochastic differential equations for the statemay be succinctly written��	
�� � k�	�	
��� �	
� ��
 � ,>?�:	�	
� �����
(16)��	
� � � k	�	
��� �	
� ��
 � :	�	
� �����
(17)

where we set k�	�	
��� �	
� � �+b� 	
�� � +b;	
���	
� � � +bS 	
���	
��� �	
� 
 � �T�	
� 
 � ��
(18)

and k	�	
��� �	
� � � +b� 	
� � � +b;	
� ��	
� � � +bS 	
� ��	
���
(19)

Equations (16), (17) are the state transition equations forthe unobserved state variables,�	
��
, �	
� �.

We shall usel	
 m� 	�	
� �� �	
��n
to denote the state vector at time



. This enables us

to write the state transition equations (16), (17) as�l	
 � o 	l	
p q�
 � r 	l	
p q����
(20)
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where o 	lp q � 	k	�	
��� �	
� ��k�	�	
��� �	
� �n �
(21)r 	lp q � 	:	�	
� �� ,>?�:	�	
� �n �
(22)

and
q

is the (to be estimated) parameter vectorq � 	��� P� _�
Financial implementations of estimation methodologies are usually carried out in a discrete

time setting as data are observed discretely. Thus we discretise (16), (17) using the Euler-
Maruyama scheme to obtain�	[ � 3�� / �	[�� � k�	�	[��� �	[� �s
 � ,>?�:	�	[� �stZ��	[ � 3�� / �	[� � � k	�	[��� �	[� �s
 � :	�	[� �stZ�

(23)

where,
s


denotes the time step and (see (18), (19)),k�	�	[��� �	[� � � +b� 	[s
�� � +b;	[s
���	[� � � +bS 	[s
���	[�� � �	[� [ � �T�	[� [ � �k	�	[��� �	[� � � +b� 	[s
�� � +b;	[s
���	[� � � +bS 	[s
���	[���
(24)

Equation (23) can be synthesized aslZ�; / lZ � oZ	lZ p qs
 � rZ 	lZp qstZ�
(25)

with
oZ	< and

rZ 	< corresponding to (21) and (22) respectively and where
stZ u v 	��s


.
We have used the shorthand notation�	[��

to represent�	[s��
and, similarly, with other

quantities such aslZ
standing forl	[s


.
The quantities we observe in the market are the LIBOR rates

9� 	
. From equations (9) and
(15), we have that

9� 	
 is related to the state variables bywI 9� 	
 � /wI� � T+� 	
�� � T+;	
���	
 � T+S 	
���	
���
(26)

Thus it is most convenient to treat
wI 9� 	
 as the observations equation in our system.

UsingxZ
to denote

wI 9� 	[s

, the observation equation (26) becomesxZ � yZlZ � T+� 	[s
�� / wI� � zZ{Z �

(27)

where yZ � 	T+;	[s
���T+S 	[s
���
(28)

We have assumed in (27) the existence of an observation noiseterm
zZ{Z

, where
{Z uv 	�� 3 is serially uncorrelated and independent of the

stZ
. The strength of the observation

noise,
zZ

, would reflect features (such as bid-ask spread) of the LIBORmarket. In order to
express the observation equation (27) in standard form we define the noise term_Z � zZ{Z�

(29)
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so that _Z u |	��}Z�
(30)

where }Z � zSZ � (31)

With this notation the observation equation (27) may be writtenxZ � yZlZ � T+� 	[s
�� / wI� � _Z�
(32)

4 The Dynamic Bayesian Updating Algorithm

From (25) we obtain for the conditional distribution oflZ�;
, givenlZ

, the Gaussian distribution-~ 	lZ�;MlZ u v 	lZ�;plZ � oZ	lZ� q
s
�rZ 	lZ � q
r bZ 	lZ� �s

(33)

where we use the notation
v 	�p���

to denote a Gaussian random variable
�

with mean
�

and covariance matrix
�

. More specifically, we haverZ 	lZ� qr bZ 	lZ � qs
 � . :S	�	[� �s
 ,>?�:S	�	[� �s
,>?�:S	�	[� �s
 ,>S?�:S	�	[� �s
 0 �
(34)

which is immediately seen to be singular (the conditional correlation among the two compo-
nents is equal to 1 and their joint distribution degenerates). The two components of the state
vector are in fact linearly dependent and one can write�	[ � 3�� � ,>?��	[ � 3�� � E	�	[�� � k�	�	[��� �	[� � / ,>?�	�	[� � � k	�	[��� �	[� �F� ��	[ � 3�� � �	�	[��� �	[� �

(35)

thereby implicitly defining the constant
�

and the function
�	< that (see (24) with (11), (12)

and (2)) is uniformly continuous in its arguments.
PuttinglZ � 	l;Z �lSZ wherel;Z � �	[� �

, lSZ � �	[��
, and making use of (35) we may

also rewrite (25) as l;Z�; � l;Z � o ;Z 	lZ� qs
 � r ;Z 	lZ� qstZ�lSZ�; � �l;Z�; � �	lZ�
(36)

where
o ;Z and

r ;Z are the first components of the 2-vectors
oZ

and
rZ

in (25) respectively.
Below we shall also consider the conditional distribution of l;Z�;, givenlZ

, that is induced by
(36) namely -~ 	l;Z�;MlZ u v 	l;Z�;pl;Z � o ;Z 	lZ � qs
� 	r ;Z 	lZ� qSs


(37)

and that admits a density with respect to the Lebesgue measure on�;
(notice that-~ 	lZ�;MlZ

,
being degenerate, does not admit a density with respect to the Lebesgue measure on�S

).
On the other hand, from (32) we obtain the conditional distribution ofxZ

givenlZ
and

q
as-	xZ MlZ� q � 3�Y�}Z 456 �/ 3Y}Z x̀Z / yZlZ / T+�	[s
�� � wI�aS��

(38)
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Using the representation (36) of the dynamics (25) we may also consider the distribution ofxZ
givenl;Z �lZ>; and

q
namelyT- �xZ Ml;Z � lZ>;p q� � 3�Y�}Z 456 �/ 3Y}Z x̀Z / T+;	[s
��l;Z / T+S 	[s
���l;Z/T+S 	[s
��� 	lZ>; / T+� 	[s
�� � wI�aS� �

(39)

We are interested in the conditional joint distribution-	lZ� q M�Z of lZ
and

q
in the generic

period
[ � [s


, given the observations�Z � 	�;� �����Z. Notice that, since the two components
of lZ

are linearly dependent,-	lZ � q M�= does not in general have a density with respect to the
Lebesgue measure on�S

. However, it still satisfies the recursive Bayes formula, namely-	lZ�;� q M�Z�; � -	xZ�;MlZ�;� q � -~ 	lZ�;MlZ�- 	lZ� q M�Z (40)

with initial condition that we choose of the form-	l�� q � -	l�- 	q (independence ofl� andq
) and where

�
denotes ”proportional to”.

In the Bayesian estimation procedure the parameter vector
q

is assumed to take only a finite
number of values in a hypercube whose upper and lower bounds would be specified by eco-
nomic considerations of the range of likely parameter values. So in our context this vector is
considered as a discrete random variable.

SincelZ
takes a continuum of possible values (its dynamics are driven by the GaussianstZ

), to actually compute the recursion (40) we discretize the values oflZ
(for the conven-

gence of the ensuing approximation see Proposition 4.1 below).
For this purpose, given a step-sizeP Q �

and an integer�, consider the square in�S
given by 	/�P��PF � 	/�P��PF and its partition (grid) into��S

squares, the generic
9
-th	3 � 9 � ��S

of which is derived as follows: let9 � 	Y�� � [ � 3
where

� � � � Y�,
� � [ � Y�, thenk� � 		/� � [P� 	/� � [ � 3P � 		/� � �P� 	/� � � � 3Pm� 	��;���;F � 	��S���SF (41)

thereby implicitly defining
��;���;���S���S. In each of the��S

squares
k�

pick a representative
element, e.g. its middle point, namely../� � [ � 3Y0 P� ./� � � � 3Y0 P�0 (42)

if
9 � 	Y�� � [ � 3 (alternative choices for representative elements are equally valid).

In addition to the squares
k�

for
9 � ��S

that form a partition of	/�P��PF � 	/�P��PF,
consider further 8 subsets of�S

, denoted also by
k�

, and that for
9 � ��S � 3� ���� ��S � �

are
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given by (on the right of each set there appears a possible choice for its representative element)k��j�; � 	/��/�PF � 	/��/�PF� .	/� / 3YP� 	/� / 3YP0k��j�S � 	/�P��PF � 	/��/�PF� .�� 	/� / 3YP0k��j�� � 	�P���F � 	/��/�PF� .	� � 3YP� 	/� / 3YP0k��j�� � 	/��/�PF � 	/�P��PF� .	/� / 3YP� �0k��j�� � 	�P���F � 	/�P��PF� .	� � 3YP� �0k��j�� � 	/��/�PF � 	�P���F� .	/� / 3YP� 	� � 3YP0k��j�� � 	/�P��PF � 	�P���F� .�� 	� � 3YP0k��j�� � 	�P��F � 	�P���F� .	� � 3YP� 	� � 3YP0
We shall use the notation

k� � 	��;���;F �	��S ���S also for
9 � ��S � 3� ���� ��S ��

. Notice
that

k�	9 � 3� �����S � �
forms now a partition of all of�S

and we shall denote the chosen
representative element of

k�
by �� � 	��;� ��S.

Given the discrete-time, continuous state Markov chainlZ
with transition kernel-~ 	lZ�;MlZ

,
consider next the discrete-time finite state Markov chain

TlZ
, induced bylZ

and having state
space�� 	9 � 3� ���� ��S��

. Denote by� @Z�~B V�¡¢ the generic (
X� �

)-th element	X� � � 3� �����S��
of the corresponding transition probability matrix in period

[
. We then have, using the explicit

representation (23) of the state transition equation (25),
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� @Z�~B V�¡¢ � -~ £TlZ�; � �¡ MTlZ � �V¤ � �~ £�l;Z�;�lSZ�;� ¥ k¡ M	�V;� �VS¤� �~J	�	[ � 3��� �	[ � 3�� ¥ k¡M	�	[��� �	[� � � 	�V;� �VSN� �~ £�¡; � �	[ � 3�� � �¡; ��¡S � �	[ � 3�� � �¡S M�	[�� � �V;� �	[� � � �VS¤� �~ ��¡; / �V; /k�	�V;� �VSs,>?�:	�VS � stZ � �¡; / �V; /k�	�V;� �VSs,>?�:	�VS ��¡S / �VS / k	�V;� �VSs:	�VS � stZ � �¡S / �VS /k	�V;� �VSs:	�VS �
� �~ �GL5 ¦�¡; / �V; /k�	�V;� �VSs,>?�:	�VS � �¡S / �VS / k	�V;� �VSs:	�VS § � stZ

� GHI ¦�¡; / �V; / k�	�V;� �VSs,>?�:	�VS � �¡S / �VS /k	�V;� �VSs:	�VS §�
� ¨ . 3�s GHI ¦�¡; / �V; / k�	�V;� �VSs,>?�:	�VS � �¡S / �VS / k	�V;� �VSs:	�VS §0/ ¨ . 3�s GL5 ¦�¡; / �V; / k�	�V;� �VSs,>?�:	�VS � �¡S / �VS / k	�V;� �VSs:	�VS §0

(43)

where
¨	< is the cumulative standard Gaussian distribution function.

The recursive Bayes’ formula that corresponds to (40) for the discretized chain
TlZ

becomes
then T- �TlZ�; � �¡� q M�Z�;� � - �xZ�;MTlZ�; � �¡� q� ��j��UVW; � @Z�~B V�¡¢ T- 	TlZ � �V � q M�=� (44)

with initial condition
T-	l� � �V � q � � Jl� ¥ kVN-�	q and the normalizing factor is the

inverse of U~ ��j��U¡W; - 	xZ�;MTlZ�; � �¡� q < ��j��UVW; � @Z�~B V�¡¢ < T- 	 TlZ � �V � q M�Z� (45)

Formula (44) can be written in matrix form asT-~Z�; © 1~Z�;	� @Z�~Bn T-~Z � (46)

where
T-~Z is the 	��S � �

-vector with entriesT-	TlZ � �V p q M�Z� 	X � 3� < < < � ��S � ��� @Z�~B is the matrix with elements� @Z�~B V�¡¢ 	X� � � 3� < < < � ��S � �
and1~Z�; is the 	��S � � �	��S � �

-diagonal matrix with entry in position
� 	� � 3� < < < � ��S � �

given by (see (38))-	xZ�;MTlZ�; � �¡� q � 3�Y}Z�; <456J/ 3Y}Z�; 	xZ�; / T+S 		[ � 3s
���¡; / T+;		[ � 3s
���¡S / T+� 		[ � 3s
�� � wI�SN�
(47)

12



From the joint conditional distribution
T-	 TlZ � �¡� q M�Z, 	� � 3� < < < � ��S � �

one can
obtain the marginal conditional distributionsT-	TlZ � �¡ M�Z � U~ T-	TlZ � �¡� q M�Z� (48)T-	q M�Z � ��j��U¡W; T-	 TlZ � �¡� q M�Z� (49)

of
TlZ

and
q

respectively.
Combining (48) with (44) and (45) we obtain the explicit expressionT-	 TlZ � �¡ M�Z � ª~ -	xZ�;MTlZ�; � �¡� qª��j��VW; � @Z�~B V�¡¢ < T- 	 TlZ � X� q M�Zª~ ª��j��¡W; - 	xZ�;MTlZ�; � �¡� qª��j��VW; � @Z�~B V�¡¢ T- 	TlZ � X� q M�Z (50)

and, analogously, for
T-	q M�Z.

We next show that the discretization introduced above to make the recursion (40) com-
putable is meaningful by showing that the approximate conditional distributions computed via
(44) converge in a suitable weak sense to the original conditional distribution corresponding to
(40). Since

q
is discrete already from the outset, it suffices that we consider the convergence of

the conditional distributions for each fixed value of
q
. We have in fact the following

Proposition 4.1 (Weak convergence of conditional distributions)
Given any uniformly continuous and bounded function

o 	l
on�S

, we have for any period[
, for any sequence of observations�Z and for any of the finite values of

qwHG« ¬® ¬ ¯ ��j��U¡W; o 	�¡T- 	�¡� q M�Z�� o 	lZ�- 	lZ� q M�Z�lZ�
(51)

where
T-	�¡� q M�Z is as in (44) and-	lZ � q M�Z as in (40).

Proof: See Appendix 2.

From Proposition 4.1, we immediately obtain the following corollary (for (
X
) below takeo D 3).

Corollary 4.1 (Convergence of the marginal distributions of
q

and weak convergence of the

13



marginal distributions oflZ
).	X wHG« ¬® ¬ ¯ T- 	q M�Z � wHG« ¬® ¬ ¯ ��j��U¡W; T-	�¡� q M�Z� � �-	lZ� q M�Z � -	q M�Zp

	XX wHG« ¬® ¬ ¯ ��j��U¡W; o 	�¡T- 	�¡ M�Z � wHG« ¬® ¬ ¯ U~ ��j��U¡W; o 	�¡T- 	�¡� q M�Z� U~ � o 	lZ�- 	lZ� q M�Z � � o 	lZ�- 	lZ M�Z�
Remark:
Since power functions are not uniformly continuous nor bounded, Proposition 4.1 and

Corollary 4.1 would not allow us to obtain convergence of theconditional moments. We can,
however, obtain their convergence by truncating them with an arbitrarily large truncation factor.

5 Empirical Analysis

In this section we present numerical results for the Bayesian updating estimation procedure
applied to real financial data. Figure 3 displays the monthlyUS LIBOR rates4 for one month
to twelve months quoted in the period from the 1st of December1997 to the 13th of November
1998 with time (in days) on one axis and maturity (as fractionof a year) on the other axis. We
chose this period as it seemed to be typical of periods not characterised by large interest rate
volatility that might require more sophisticated treatment of the noise term, such as stochastic
volatility or jump processes.

We observe from Figure 3 that the short maturity LIBOR rates (say less than 3-months)
seem to undergo very little diffusion type movement. This isprobably due to the fact that
the short maturities of the yield curve are strongly influenced by the interest rate policy of the
Federal Reserve. So it is unlikely that their motion is fullycaptured by the stochastic differential
equation systems discussed in Section 2. To properly capture the dynamics of the short rate one
would really need to also incorporate the interest rate policy function of the Federal Reserve
and this is beyond the scope of the current paper. For this reason we perform our estimation
procedure using only the

� � ��°
and

� � 3 time series for the LIBOR rates that we display
in Figure 4(a) and for which we have 250 observations. We havein fact, found that the results
obtained for the

� � ��Y°
time series are not consistent with those obtained for the other values

of
�
.
The observed initial forward curve, Figure 4b, is formed using the 1 to 12 months LIBOR

rates and the 1 to 15 year swap rates at the beginning of the period. This curve is approximated
by �	��� � ±� � 	+� � +;� � +S�S,>²³� �

(52)

4Our data source was Data StreamTM.
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Figure 3: Monthly US LIBOR rates. Daily from December 1997 toNovember 1998

where
±� � ���´µµ�3Y� +� � /�����µ¶¶·� +; � �����33Y´� +S � /�����3Y�µ and

+� ���3�µ¶°·� are obtained by least squares optimisation.
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Figure 4: Showing1�	
, for
� � ��°

(thin line) and3�� (thick line) (a), and the initial forward
curve (b).

The range of LIBOR rates observed over this period suggests that the state vector
k �	�	
��� �	
� � should lie in the square

E���Y� ���¶F � E���Y� ���¶F
, which is discretised into3° � 3° cells, each represented by its centre value. Also, surrounding this region are 8 cells,

representing the remaining possible values of
k

. The possible ranges of values for
q � 	_���� P

are not knowna priori. Rough estimates could be found by comparing various moments of
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observed changes in LIBOR rates with the expressions calculated from the model. However we
have found the most effective way to determine the ranges of

q
is by successive application of

the Bayesian algorithm over a successively decreasing range and finer grid, until the support is
found. This approach avoids the need to search over large regions of the parameter space where
the support is zero. Table 1 shows the final lower and upper bounds found by this procedure for
each parameter and the number of divisions used to achieve the results reported.

x
s1� _ �� P

mean std. low up # div. low up # div. low up # div.
0.5 3.0E-5 2.7E-4 -2.45 2.45 80 0.0 3.0 70 1.0 3.2 50
1.0 3.9E-5 3.4E-4 -1.55 1.45 80 0.0 3.0 70 1.0 3.2 50

Table 1: Table showing the mean and standard deviation of thechange in1�	
 and the ranges
for the parameters.

Figures 5, 6 and 7 show the estimated marginal distributionsfor
_
, �� and P respectively

for
� � ��°

and
� � 3. The mean and standard deviations of each distribution are shown in

Table 2. These values may presumably be regarded as the “best” estimates for the parameters.
The estimates for�� andP display some consistency across the two values of

�
. However the

two distributions-	_
in Figure 5, whilst showing the same general shape clearly have different

means. This is probably due to the fact that this parameter isthe one that is most sensitive to
the different evolutions of the six-month and 1-year LIBOR rates evident in Figure 4a.

The main comment to make in relation to the distributions for-	_
is that the great bulk

of probability mass and the means are in the
_ � �

region. This indicates that over the short
maturity (up to one year) of the data set, volatility is increasing with maturity. This seems to
contradict the comment in footnote 2, though we did add the qualification that volatility may
increase with maturity over very short maturities. In fact,using an HJM model for the dynamics
of futures prices and estimating it by a maximum likelihood method using futures price data,
Bhar, Chiarella and Tô (2002) have found that there is a humpin the volatility function at about
one year. This is consistent with our negative estimates of

_
in the present study. The increasing

volatility of the LIBOR rates with maturity can also be seen by casual inspection of Figure 3
where the time series of1�	
 at

� � 3�� seems to have more variation than that at
� � ��°

.
Looking at the three marginal distributions as a whole, one starts to appreciate why point

parameter estimates vary quite a deal amongst the various empirical studies cited in the intro-
duction. First the estimate of

_
is clearly affected by the maturity of the data series used. The

estimates of�� and P are far less sensitive to maturity, but their distributionsare quite wide,

x
_ �� P

mean std. dev. mean std. dev. mean std. dev.
0.5 -0.913 0.902 1.449 0.89 2.325 0.343
1.0 -0.297 0.311 1.459 0.884 2.189 0.316

Table 2: Mean and standard deviation from the distributionsof the parameters.
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Figure 5: The marginal distribution-	_
for

� � ��°
(thin line) and

� � 3 (thick line).

implying that a wide range of point estimates are equally likely 5. Certainly Figure 7 is consis-
tent with the wide range of point estimates ofP obtained in the empirical literature, however the
marginal distribution-	P has its mean at a much higher value (Q Y

) than the point estimates
(
��°

to 3�°) reported in much empirical literature. We believe the higher values ofP may be a
feature of LIBOR rates. Using a similar model structure for LIBOR rate dynamics to the one of
this paper, but a quite different estimation approach and a longer LIBOR rate series, Chiarella,
Hung and Tô (2005) obtained a point estimate ofP around 2, which is quite consistent with the
mean values reported in Table 2.

6 Conclusion

We have derived the risk-neutral dynamics for unobserved factors upon which pure dis-
count bond prices depend within the Heath-Jarrow-Morton framework using a certain forward
rate volatility specification. We have then used the link between LIBOR rates, forward rates and
pure discount bond prices to obtain the corresponding dynamics for LIBOR rates. The overall
stochastic dynamic system can then be treated as a partiallyobserved system with changes in
the LIBOR rates being the observations. Since data are observed discretely, we have considered
a discretised version of the model and developed a dynamic Bayesian updating algorithm to
compute the posterior distribution for the model parameters conditional on the observed mar-
ket LIBOR rates. The algorithm has been applied to some U.S. data and gives a model fit
that seems consistent with some of the traditional econometric studies. The estimated marginal
distributions of the parameters help to explain the wide range of point estimates for some pa-
rameters obtained using traditional econometric estimation procedures. Our results also suggest

5We conjecture the probability density̧!¹º% approaches a uniform distribution as the discretisation in¹º
becomes finer.
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Figure 6: The marginal distribution-	�� for
� � ��°

(thin line) and
� � 3 (thick line).

that the dynamics for LIBOR rates may be characterised by a higher interest rate elasticity (the
parameterP) than for the one–month Treasury rates used in much of the empirical literature.

Future research could go in a number of directions. First, there is a need to relax some of our
restrictive assumptions, in particular allowing for more Wiener processes to drive the forward
rate dynamics, since a number of empirical studies suggest that at least two and maybe three
factors need to be considered. In this regard see Chiarella,Hung and Tô (2005). Second, one
could exploit the fact that in addition to avoiding the use ofproxy variables for the instanta-
neous spot rate of interest, the methodology proposed here has the advantage that a number of
available discretely compounded rates may be used as the observed quantities. Thus it would
be of interest to consider a data set with a range of maturities, particularly those corresponding
to the most actively traded points on the yield curve. In thisway one could obtain the volatil-
ity for the instantaneous spot rate most consistent with a set of discretely compounded LIBOR
rates whose maturities are of most relevance to the application at hand. Third, more work also
needs to be done on statistical diagnostics to assess the goodness-of-fit of the estimated models.
Finally, more efficient numerical schemes for the implementation of the dynamic Bayesian up-
dating need to be developed. Here we have relied on the Euler-Marayama discretisation of the
stochastic dynamics and the attendant convenience of working with normal distributions. Fur-
ther developments could involve using higher order discretisation schemes or using an entirely
different philosophy for the dynamic Bayesian updating, such as particle filters, see for example
Bølviken and Storvik (2001) and Chib et al. (2002).
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Figure 7: The marginal distribution-	P.
7 Appendix 1: BM Dynamics - Forward Rate Dependent Volatil-

ity Function

Consider the HJM model within the BM parameterisation. Under the risk neutral measure�� the
forward rate�	
��

satisfies the stochastic integal equation�	
�� � �	�� 
 � � � � �� �	�� 
 � �T�	�� 
 � ��� � � �� �	�� 
 � ����	�� (53)

where T�	�� 
 � � � � ���� �	������
(54)

From(53) with
� � �

we obtain the stochastic integal equation for the instantaneous spot
rate�	
	� �	
� ��	
 � �	�� 
 � � �� �	*� 
T�	*� 
�* � � �� �	*� 
���	*� (55)

Here we consider volatility functions of the form�	
�� � : 	�	
��;� ���� �	
��= ,>?@A>�B � (56)

The dynamics for each state variable�	
��V	X � 3� ����\
is obtained by setting

� � �V in
(53). We note that with the specification (56), the expression (54) for

T�	�� 
 becomesT�	�� 
 � 	3 / ,>?@�>�B_ : 	�	���;� ���� �	���= �
(57)
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To ease the notation we set: 	C�	�� < D : 	�	���;� ���� �	���= �
(58)

so that we can write �	
�� � : 	C�	
� < ,>?@A>�B �
and T�	
�� � : 	C�	
� < 3 / ,?@A>�B_ �

With these various notations the stochastic integal equation for �	
��V becomes�	
��V � �	�� 
 � �V � � �� :S 	C�� 	�� < ,>?@���»>�B 3 / ,>?@���»>�B_ ��� � �� : 	C�	�� < ,>?@���»>�B���	�� (59)

for
X � 3�Y� ����\�
Note that in terms of the Chiarella and Kwon (2003) notation we may write�	
�� � ¼;;	
�;;	��

(60)

where �;;	� � ,>?A � ¼;;	
 � ,?�: 	C�	
� < �
(61)

and so T�;;	� � 3 / ,>?�_ �
(62)

The naturally arising subsidiary variables needed to Markovianise the dynamics then turn
out to be6 ½	
 � � �) ,?�: 	C�	�� < ���	� / � �) : 	C�	�� <S ,S?� �3 / ,>?��_ ��� (63)

¾	
 � � �) ¼;;	�S�� � � �) : 	C�	�� <S ,S?���� (64)

The quantities

½	
, ¾	
 are both stochastic, so in terms of Chiarella and Kwon (2003)
notation the stochastic differential equation for�	
��

is written�	
�� � �	�� 
 � � � �;;	
 � �½	
 � �;;	
 � �T�;;	
 � �¾	
� (65)

6Note that in Chiarella and Kwon (2003)¿!$%, À!$% are respectively denoted¿dÁ!$% andÀÁÁ!$%.
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By choosing any two values for
�

e.g.
�;��S

, we have two equations for

½	
 and¾	
 in
terms of�	
��;

and�	
��S
.

Thus we have the system¦ �;;	
 � �; �;;	
 � �;T�;;	
 � �;�;;	
 � �S �;;	
 � �ST�;;	
 � �S § ¦ ½	
¾	
 § � ¦ �	
��; / �	�� 
 � �;�	
��S / �	�� 
 � �S § �
so that ¦ ½	
¾	
 § � ¦ s;;	
 s;S 	
sS;	
 sSS 	
 § ¦ �	
��; / �	�� 
 � �;�	
��S / �	�� 
 � �S § �

(66)

where

s;;	
 � �;;	
 � �ST�;;	
 � �SÂs� s;S	
 � /�;;	
 � �;T�;;	
 � �;Âs�sS;	
 � /�;;	
 � �SÂs� sSS	
 � �;;	
 � �;Âs�
(67)s � �;;	
 � �;�;;	
 � �S 	T�;;	
 � �S / T�;;	
 � �; �

Rearranging (66) we can express

½	
 and¾	
 as
½	
 � s;;	
�	
��; � s;S	
�	
��S / P;	
� (68)¾	
 � sS;	
�	
��; � sSS	
�	
��S / PS	
� (69)

where P;	
 � s;;	
�	�� 
 � �; � s;S	
�	�� 
 � �S�PS	
 � sS;	
�	�� 
 � �; � sSS	
�	�� 
 � �S�
Thus the forward rate of any tenor can be expressed in terms of�	
��;

and �	
��S
by

substituting (68) and (69) into (65) i.e.�	
�� � �	�� 
 � � /�;;	
 � �P;	
 / �;;	
 � �T�;;	
 � �PS 	
� E�;;	
 � �s;;	
 � �;;	
 � �T�;;	
 � �sS;	
F �	
��;� E�;;	
 � �s;S	
 � �;;	
 � �T�;;	
 � �sSS	
F �	
��S�
(70)

In terms of equation (22) of Chiarella and Kwon (2003) we have+� 	
�� � �	�� 
 � � /�;;	
 � �P;	
 / �;;	
 � �T�;;	
 � �PS 	
�+;	
�� � �;;	
 � �s;;	
 � �;;	
 � �T�;;	
 � �sS;	
� (71)+S 	
�� � �;;	
 � �s;S 	
 � �;;	
 � �T�;;	
 � �sSS 	
�
Thus (70) can be written�	
�� � +�	
�� � SUVW; +V 	
���	
��V� (72)
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We can then use equation (25) from Chiarella and Kwon (2003) to obtain the expression for
theÃÄ bond price, namely

+	
�� � ,�-	/ET+) 	
�� � SUVW; T+V 	
���	
��VF� (73)

where T+V 	
�� � � �� +V 	
����� 	X � �� 3� Y� (74)

The
�/ tenor LIBOR rate is related to

+	
��
via1�	
 � 3� . 3+	
�� / 30 �

(75)

We treat (75) as the observation equation with the state variables�	
��;� ���� �	
��= being
driven the stochastic differential equation system (see Chiarella and Kwon (2003) just below
equation (23)��	
��Z � Å+]� 	
��Z � SUVW; +]V 	
��Z�	
��V � �	
� 
 � �ZT�	
� 
 � �ZÆ �
� ,>?�^:	�	
��;� ���� �	
��=���	
� 	[ � 3� Y� ����\�

(76)

Note that in (76) +]V 	
�� D Ç+V 	
��Ç� �
(77)

From the particular specification in (60) we have�;;	
 � � � ,>?@���B� (78)

so that Ç�;;	
 � �Ç� � /_,>?@���B � /_�;;	
 � ��
(79)

and T�;;	
 � � � 3 / ,>?@���B_ � 3 /�;;	
 � �_ �
(80)T�b;;	
 � � � /�b;;	
 � �_ � �;;	
 � ��
(81)
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From equation (71) we calculate+b� 	
�� � �b 	�� 
 � � /�b;;	
 � � EP;	
 � T�;;	
 � �PS 	
F / T�b;;	
 � ��;;	
 � �PS 	
� �b 	�� 
 � � � _�;;	
 � � EP;	
 � T�;;	
 � �PS 	
F / �S;;	
 � �PS 	
� �b 	�� 
 � � � �;;	
 � � E_P;	
 � 	3 / Y�;;	
 � �PS 	
F � (82)+b;	
�� � �b;;	
 � �s;;	
 � �b;;	
 � �T�;;	
 � �sS;	
 � T�b;;	
 � ��;;	
 � �sS;	
� /_�;;	
 � �Es;;	
 � T�;;	
 � �sS;	
F � �S;;	
 � �sS;	
� �;;	
 � �E/_s;;	
 / _T�;;	
 � �sS;	
 � �;;	
 � �sS;	
F� �;;	
 � �E/_s;;	
 � 	�;;	
 � � / 3sS;	
 � �;;	
 � �sS;	
F� �;;	
 � �E	Y�;;	
 � � / 3sS;	
 / _s;;	
F� (83)

and +bS 	
�� � �;;	
 � �E	Y�;;	
 � � / 3sSS	
 / _s;S	
F� (84)

To operationalise equation (73) we calculate according to equation (74) the quantities7T+� 	
�� � � �� E�	�� 
 � � / �;;	
 � �P;	
 / �;;	
 � �T�;;	
 � �PS	
F ��� T�	�� 
 � � / P;	
 � �� ,>?@��AB�� / PS	
 � �� ,>?@��AB / ,>S?@��AB_ ��� T�	�� 
 � � � _P;	
 � PS	
_S 	�;;	
 � � / �;;	
 � PS	
Y_S 	�S;;	
 / �S;;	
 � ��
(85)T+;	
�� � � �� �;;	
 � �s;;	
 � �;;	
 � �T�;;	
 � �sS;	
��� � �� �;;	
 � �s;;	
 � �;;	
 � � / �S;;	
 � �_ sS;	
��� _s;;	
 � sS;	
_S 	�;;	
 / �;;	
 � � � sS;	
Y_S 	�S;;	
 � � / �S;;	
� (86)

andT+S	
�� � _s;S	
 � sSS	
_S 	�;;	
 / �;;	
 � � � sSS	
Y_S 	�S;;	
 � � / �S;;	
� (87)

For our application
�; � �

and
�S � �

so in equation (67) we set
�; � ���S � �

, to obtains;;	
 � ,S?� 3 / ,>?@���B3 / ,?� � s;S 	
 � /,?@S���B 3 / ,>?�3 / ,>?� �sS;	
 � /,S?� _3 / ,>?� � sSS 	
 � ,?@S���B _3 / ,>?� �
From equations (12) and (54) we find thatT�	
� 
 � � � ���O_ 	3 / ,>?��

7Note thatÈ !"#$ É f% g Ê iº  !"#$ É Ë%ÌË
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8 Appendix 2: Proof of Proposition 4.1.

(The proof is an adaptation to the present situation of the one of Theorem 4.1 in Bhar,
Chiarella and Runggaldier (2002).)

In the proof we shall usel�Z to denote, for the generic period
[ � [s


, the random variable
previously denoted by

TlZ
that takes the values�¡ 	� � 3� < < < � ��S � �

of the representative
elements in the discretization defined in this section and has distribution

T-	TlZ� q M�Z (see (44))
for a given value of

q
. The proof then amounts to showing that, for any uniformly continuous

function
o

, wHG« ¬ ® ¬ ¯ Í~Jo 	l�Z M�ZN � Í~Jo 	lZM�ZN� (88)

We proceed by induction on
[
. For

[ � �
we have by construction thatwHG« ¬ ® ¬ ¯ Í~Jo 	l�� N � Í~Jo 	l�N� (89)

Assume then that the statement is true for
[
. In period	[ � 3s


consider now (see (44))

Í~Jo 	l�Z�;M�Z�;N � ��j��U¡W; o 	�¡T- 	l�Z�; � �¡ M�Z�;
© ��j��U¡W; o 	�¡- 	�Z�;M�¡� q ��j��UVW; � @Z�~B V�¡¢ T- 	�V � q M�Z
���j��UVW; Î�Ï 	�V � q��Z�;T- 	�V � q M�Z � ÍJÎ�Ï 	l�Z � q��Z�;M�ZN� (90)

With Î�Ï 	�V � q��Z�; � ��j��U¡W; o 	�¡- 	�Z�;M�¡� q� @Z�~B V�¡¢� ��j��U¡W; o 	�¡- 	�Z�;M�¡� q �ÐÑ �-~ 	lZ�;Ml�Z � �V (91)

where the rightmost equality follows from (43). Notice that

Í~Jo 	l�Z�;M�Z�;N � Í~JÎ�Ï 	l�Z � q��Z�;M�ZNÍ~JÎ�; 	l�Z � q��Z�;M�ZN�
(92)

On the other hand, according to (40) we haveÍ~Jo 	lZ�;M�Z�;N � � o 	lZ�;�- 	lZ�;� q M�Z�;© � o 	lZ�;- 	�Z�;MlZ�;� q � �-~ 	lZ�;MlZ�- 	lZ � q M�Z� � ÎÏ 	lZ � q��Z�;�- 	lZ� q M�Z� (93)
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With ÎÏ 	lZ � q��Z�; � � o 	lZ�;- 	�Z�;MlZ�;� q�-~ 	lZ�;MlZ
(94)

and notice that, here too,

Í~Jo 	lZ�;M�Z�;N � Í~JÎÏ 	lZ � q��Z�;M�ZNÍ~JÎ;	lZ � q��Z�;M�ZN �
(95)

Given our assumptions, the function
o 	l- 	� Ml� q

with -	� Ml� q
as in (38) is uniformly

continuous inl for all values of� and
q
. Notice, in fact, that-	� Ml� q

is continuous inl and
its limit for l going to infinity is, uniformly in	�� q

equal to zero. Given
{ Q �

, there is thus�)Ï (depending on
o

and the parameters in the model such as
�

and
}Z

) such that, for� Q �)Ï
andP � 	�)Ï >;

, one has in any period
[s


and for all values oflZ� q��Z�;
,MÎ�Ï 	lZ � q��Z�; / ÎÏ 	lZ � q��Z�;M

���j��U¡W; �ÐÑ Mo 	�¡- 	�Z�;M�¡� q / o 	lZ�;- 	�Z�;MlZ�;� qM�-~ 	lZ�;MlZ
� { ��j��U¡W; � �-~ 	lZ�;MlZ � {�

(96)

To complete the induction step we have to show thatÎÏ 	lp q�� is, for all values of	q��,
uniformly continuous inl. In fact, if this is the case, then, given

{ Q �
, there exists�;Ï 	�Z�;� q

(depending on
o

and the parameters in the model) such that, for� Q �;Ï andP � 	�;Ï >;
,MÍ~JÎÏ 	l�Z � q��Z�;M�ZN /Í~JÎÏ 	lZ� q��Z�;M�ZN � {�
(97)

From (96) and (97) it then follows thatMÍ~JÎ�Ï 	l�Z p q��Z�;M�ZN / Í~JÎÏ 	lZ p q��Z�;M�ZNM�MÍ~JÎ�Ï 	l�Z p q��Z�;M�ZN / Í~JÎÏ 	l�Z p q��Z�;M�ZNM� MÍ~JÎÏ 	l�Z p q��Z�;M�ZN / Í~JÎÏ 	lZ p q��Z�;M � Y{
(98)

for � Q �Ï m� GL5J�)Ï ��;Ï 	�Z�;� qN
andP � 	�Ï >;

. Combining (98) with (92) and (95)
allows to complete the induction step and thus the proof of the proposition.

It remains thus to show thatÎÏ 	lp q�� is uniformly continuous inl for each pair	q��.
To this effect notice that, by (36) as well as (38) and (39) (see also (94)) we have thatÎÏ 	lZ� q��Z�; � � o 	l;Z�;�lSZ�;- 	�Z�;Ml;Z�;�lSZ�;� q < �-~ 	l;Z�;�lSZ�;Ml;Z � lSZ� � To 	l;Z�;�l;Z � lSZT-	�Z�;Ml;Z�;�l;Z � lSZ � q <-~ 	l;Z�;Ml;Z � lSZ�l;Z�;� (99)

where To 	l;Z�;�l;Z � lSZ m� o 	l;Z�;��l;Z�; � �	l;Z �lSZ (100)
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and-~ 	l;Z�;Ml;Z � lSZ coincides with the Gaussian density-~ 	l;Z�;MlZ
in (37).

Since (see comment after (35))
�	l;Z �lSZ is uniformly continuous we have that

To 	l;Z�;�l;Z � lSZ
is bounded and uniformly continuous inlZ � 	l;Z �lSZ.

We next have from (37) with (35) and (22) that-~ 	l;Z�;MlZ � 3�Y�:	�	[� � < 456 �/ 3Y:S	�	[� � 	l;Z�; / l;Z / k	�	[��� �	[� �S�m� Î;	lZ < ÎS	lZ pl;Z�; (101)

where (see (11) and (24))Î;	lZ
andÎS	lZ pl;Z�; are bounded functions that are uniformly

continuous inlZ
. ConcerningÎS	lZ pl;Z�; notice in fact that it is continuous and the limit forlZ

going to infinity is, uniformly inl;Z�;, equal to zero. Being a product of two bounded and
uniformly continuous functions,-~ 	l;Z�;MlZ

is thus bounded and uniformly continuous inlZ
.

Coming to
T-	�Z�;Ml;Z�;�lZp q

defined in (39), it is immediately seen that, as a function
of lZ

, it is bounded uniformly in	�Z�;�lZ�;� q
. Since it is continuous inlZ

and the limit
for lZ

going to infinity is zero uniformly in	�Z�;�lZ�;� q
, it is also a uniformly continuous

function oflZ
. Notice, furthermore, that the integral with respect tol;Z�; is equal to the constantÒ � T+;		[ � 3s
�� � T+S 		[ � 3s
���

.
Take nowlZ

, ÓlZ ¥ �S
. By (99), the previously shown uniform continuity properties and

uniform integrability inl;Z�; of -~ 	l;Z�;Ml;Z � lSZand
T-	�Z�;Ml;Z�;� Ól;Z � ÓlSZ � qwe have that, given{ Q �

, one can chooseP Q �
such that forÔlZ / ÓlZÔ � P it results thatMÎÏ 	lZ� q��Z�; / ÎÏ 	 ÓlZ � q��Z�;M�� M To 	l;Z�;�l;Z � lSZT-	�Z�;Ml;Z�;�l;Z � lSZ � q/ To 	l;Z�;� Ól;Z � ÓlSZT- 	�Z�;Ml;Z�;� Ól;Z � ÓlSZ � qM-~ 	l;Z�;Ml;Z � lSZ�l;Z�;� � To 	l;Z�;� Ól;Z � ÓlSZM-~ 	l;Z�;Ml;Z � lSZ /-~ 	l;Z�;MÓl;Z � ÓlSZMT-	�Z�;Ml;Z�;� Ól;Z � ÓlSZ � q�lZ�;�{ � -~ 	l;Z�;Ml;Z � lSZ�l;Z�; � {Ò � T-	�Z�;Ml;Z�;� Ól;Z � ÓlSZ � q�l;Z�; � Y{�

(102)

Thus showing the uniform continuity inl of ÎÏ 	l� q�� for each pair	q�� and with it also
the induction step. Õ
9 Appendix 3:

We derive the stochastic differential equation followed by
wI	9� 	
 and hence obtain its volatil-

ity function.
From equation (9) and (13) we havewI 9� 	
 � T+� 	
�� � SUVW; T+V 	
���	
��V / wI��
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Then

� wI	9� 	
 � �ET+� 	
�� � SUVW; T+V 	
���	
��VF� T+b� 	
���
 � SUVW; T+bV 	
���	
���
 � T+V 	
����	
��V�
Substituting the dynamics for�	
��Z

in (14) and simplying gives

� wI	9� 	
 � ÅT+b� 	
�� � SUVW; T+bV 	
���	
��V � SUVW; T+V 	
�� ÅT+b� 	
��V � SUZW; T+bZ 	
��V�	
��Z
� �	
� 
 � �VT�	
� 
 � �VFF �
 � SUVW; T+V 	
��,>?�»:���

Therefore *±�	� wI	9� 	
 � Ö SUVW; T+V 	
��,>?�»×S :Ss
�
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