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Abstract

Our problem is motivated by an exchange rate control problem, where the control is composed of a direct
impulsive intervention and an indirect, continuously acting intervention given by the control of the domestic
interest rate. Similarly to [2] we formulate it as a mixed classical-impulse control problem. Analogously to
[2], our approach builds on a quasi-variational inequality, which we consider here in a weakened version, and
we too start by conjecturing the optimal solution to have a specific structure. While in [2] the horizon is
infinite thus leading to a time-homogeneous solution and the value function is supposed to be of class C1

throughout, we have a finite horizon T and the value function is allowed not to be C1 at the boundaries of
the continuation region. By suitably restricting the class of impulse controls, we obtain a fully analytical
solution.

Mathematics Subject Classification: 93E20, 91G80, 49N25, 60H30, 49L20.

Keywords: Impulse control, quasi-variational inequalities, verification theorem, regularity of value function,
exchange rate control.

1 Introduction

In [2] Cadenillas and Zapatero consider the problem of a Central Bank to optimally control the exchange rate
by using two non-excluding tools: direct intervention in the foreign exchange market and indirect intervention
through determination of the interest rate levels. Interest rates have in fact an effect on the exchange rate
through the attraction or deflection of foreign capital. The control of the interest rate is of the type of a
continuously acting control, while the direct intervention on the exchange rate is of the type of an impulsive
control. The problem thus concerns a mixed classical-impulsive stochastic control problem and the authors in
[2] aim at determining this control in order to balance the purpose of keeping the exchange rate as close as
possible to a given target set and on the other hand to minimize the expected total cost of the intervention. The
approach in [2] builds on the notion of quasi-variational inequality (QVI). The control horizon in [2] is infinite,
which leads to a time-homogeneous solution and the authors search for such a solution within a specific class,
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‡Postal address: Faculty of Science and Engineering, Hosei University, 3-7-2, Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan.
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for which the value function has to be C1 throughout and C2 except for two boundary points. They end up with
six conditions on four parameters, but they nevertheless come up with a solution by using partly a numerical
approach.

In this paper we consider basically the same problem as in [2] concentrating on the case of a finite-horizon
that leads more generally to a time-non-homogeneous solution but our technique can also be applied to the
infinite-horizon time-homogeneous case. In addition to the theoretical interest of studying the problem on a
finite horizon, for which the solution is time-inhomogeneous and thus more complex, there is also a financial
interest. Like in other economic problems, where one searches for a strategy that achieves a certain objective,
one tries to reach this objective within a finite planning horizon. In fact, the context for a given problem might
change within a foreseeable amount of time, requiring the problem to be reformulated anew at the end of the
planning horizon. For our exchange rate problem notice also that, analogously to what was done in the relevant
literature, we consider only two currencies: the given domestic one and one specific foreign currency. This
specific foreign currency may in fact be of interest only over a given horizon, after which the interest may shift
to another one thus changing the problem.

We aim at a fully analytical solution within a specific class, which contains however the optimal solution obtained
in [2]. It will allow us to drop the requirement of having a C1−value function throughout thus ending up with
four conditions on four parameters, which allows then for a fully analytical solution. For our specific class of
strategies, which we shall denote by A, we assume, as in [2] and in general in the literature, that it consists in
an indirect intervention through a continuously acting control of the interest rate when the exchange rate is in
a specific interval, namely the continuation region that in the finite-horizon case depends on the current time.
On the other hand, the impulse control intervenes when the exchange rate reaches either of the two boundaries
of that interval, namely when it enters the intervention region. At that point the Central Bank is supposed to
intervene directly by pushing the exchange rate to yet another interval, the preferred region. We thus consider a
restricted form of impulse control and the determination of the control action reduces thus to the determination
of the boundaries of the continuation region and of the amount by which the exchange rate is pushed back
when it reaches either one of the two boundaries. More precisely, the solution is supposed to be given by four
continuous functions a(·) < α(·) < β(·) < b(·) with β(·) > 0, where a(·) and b(·) represent the boundaries of
the continuation region, while α(·) and β(·) represent the boundaries of the preferred region, namely the values
to which the exchange rate is shifted when it reaches a(·) or b(·) respectively. Finding a fully optimal solution
within this class is still not possible in a purely analytical way and this is why in [2] the solution was obtained
by a combination with a numerical approach. In our search for a completely analytical solution we therefore
make a further assumption that the value function is given, within the continuation region, by the quadratic
solution (20) of the HJB equation (18) below and is linear outside this region. This assumption is motivated by
the following:

i) It is intuitive, given the quadratic costs.

ii) It is consistent with the solution obtained in [2] for the ∞−horizon problem.

iii) It allows one to drop the requirement of having a C1 value function throughout; in fact, the numerical
results in section 6 show that the solution may not be C1 at the boundary points.

Restricting the solution of the HJB equation within the continuation region to a quadratic function implies that
our optimal solution may actually be only an upper bound to the true optimal solution; it leads however to
an explicitly computable strategy. The true optimal solution, even with controls in the class A, may have a
very complicated structure within the continuation region and we do not know of any result to this effect in the
literature.

The control of the exchange rate has been studied previously. It was initiated as an application of stochastic
impulse control in [4] and then further developed in [5]. Indirect intervention by using the control also of the
interest rate appears in [7]. Building on [1], the authors in [2] then generalized the previous approaches. The
solution in [2] can however not be obtained in a fully analytic way and the aim here is to fill this gap. As
example within a more general context of impulse control, but without indirect intervention through the control

2



of the interest rate, the problem has also been studied in [6] (see [3] as well), but over an infinite horizon and
with a long-term average cost criterion. On the other hand, our controller may act in two complementary ways
through a continuously acting control represented by the indirect intervention through the interest rate and an
impulse control given by direct interventions on the exchange rate. Furthermore, we concentrate on a given
finite horizon and this makes the problem time inhomogeneous.

In the next section 2 we present the model, thereby building mainly on [2]. In the following section 3 we state
our problem and introduce various relevant concepts, among them a weaker notion of a QVI, define the class
of solutions that we consider and derive some preliminary results. The solution of the resulting HJB equation
and of the four equations for the four parameters is derived in section 4. In section 5 we prove a verification
theorem showing that the solution derived in section 4 is indeed optimal within the class specified in section 3.
Finally, some numerical illustrations are provided in section 6.

2 The model

Our model corresponds to that in [2] that we recall in this section. Let (Ω,F , {Ft}t≥0,P) be a filtered probability
space and W be a one dimensional Ft-Brownian motion. Consider a given foreign currency (e.g. the Dollar)
and a domestic currency (e.g. the Euro) and define, for each t ∈ R+ the exchange rate at time t as

Xt
.
= units of domestic currency for one unit of foreign currency.

Suppose that X is an adapted stochastic process given by

Xt = x+

∫ t

0

(
µXs +K us

)
ds+ σ

∫ t

0

Xs dWs +
∞∑

n=1

1{τn≤t}ξn, (1)

where x is the initial value of the exchange rate and u is the process defined by

ut
.
= log

rt
r̄
.

Here, µ ∈ R represents the exogenous economic pressure on the level of the exchange rate: µ > 0 indicates
a pressure towards a devaluation of the domestic currency, for example, as a consequence of political reasons,
while µ < 0 indicates the opposite situation. The constant K ∈ (−∞, 0) represents the influence of the interest
rate on the level of the exchange rate and the constant σ ∈ (0,∞) is the exogenous volatility of the exchange
rate. The stochastic process r is the domestic interest rate and the constant r̄ is the target. Furthermore, τn is
the time of the n-th intervention and ξn represents the amount of the n-th intervention. The stochastic process
u measures the relationship between the interest rate level r set by the Central Bank and the target r̄. Since
we consider the logarithm of the ratio, if the interest rate level r is above the target r̄, u will be positive and,
therefore, the interest rate pushes X downwards; if r is below r̄, the opposite happens. The justification is given
by the fact that r̄ is perceived as a natural equilibrium rate on the long run and deviations from this rate make
the domestic assets more or less attractive.

Definition 1. A mixed classical-impulsive stochastic control is a triple

(u, T , ξ) = (u; τ1, τ2, τ3, . . . , τn, . . . ; ξ1, ξ2, ξ3, . . . , ξn, . . .).

Here u is a classical stochastic control, namely u : R+ × Ω 7−→ R is an Ft-adapted stochastic process. Further-
more, the pair (T , ξ) is an impulsive control, namely 0 ≤ τ1 < τ2 < τ3 < . . . < τn < . . . is an increasing sequence
of stopping times and {ξn}n∈N is a sequence of random variables such that ξn : Ω 7−→ R is Fτn-measurable.
The Central Bank (the controller) decides to act at time τn adding the quantity ξn to the value of the exchange
rate at that moment of time, namely Xτn+ = Xτn + ξn. Since we want Xτn+ > 0, we consider only those mixed
stochastic controls for which

P
(
Xt ∈ R+ ∀ t ∈ R+

)
= 1. (2)
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In this paper we shall consider a finite horizon T > 0 and thus require that τi ≤ T . We shall call generically
admissible the mixed classical-impulsive stochastic control that possesses the above properties and denote their
class by Ag. Given the horizon T > 0, consider the following cost functional

J (t, x;u, T , ξ)
.
= Et,x

{∫ T

t

e−λ(s−t)f(Xs, us) ds+ e−λ(T−t)h(XT ) +
∞∑

n=1

e−λ(τn−t)g(ξn) 1{t≤τn≤T}

}
.

where
f(x, u)

.
= (x− ρ)2 + k u2, (3)

g(ξ)
.
=


C + c ξ if ξ > 0

min(C, D) if ξ = 0

D − d ξ if ξ < 0

, (4)

h(x)
.
= ℓ (x− ρ)2, ℓ > 0

k, ℓ, λ, ρ, C, c, D, d are positive constants.

Here, f is the running cost caused by the deviation from the target that has been set, both for the exchange
rate as well as for the interest rate: ρ is the target for the exchange rate, r̄ is the target for the interest rate,
k is a positive constant (by increasing k one penalizes the use of the continuous control), h(XT ) represents the
terminal cost. Furthermore, C and D represent the fixed intervention costs if the Central Bank pushes the
exchange rate upward or downward respectively, c and d represent proportional costs for each intervention when
the Central Bank pushes the exchange rate upward or downward respectively and λ is a discount rate. It is
for the sake of generality that we consider here also a discount factor with intensity λ. However, as pointed
out in [3], an exchange rate is not an asset and so the functions f, h, g do not represent a tangible cost leaving
a discount factor without a clear economic interpretation. This would not change the situation for the finite
horizon case that is our major setting here; for the infinite horizon case an average cost criterion could then be
preferable though.

In this context we may now consider the following problem: the Central Bank aims at selecting an admissible
triple (u, T , ξ) in the class Ag, which minimizes the functional J defined by

J (0, x;u, T , ξ) = E0,x

{∫ T

0

e−λsf(Xs, us) ds+ e−λTh(XT ) +

∞∑
n=1

e−λτng(ξn) 1{τn≤T}

}
. (5)

In this generality the problem is very difficult to solve and so we shall look for an optimal solution within a
subclass of strategies and value functions that is however still rather general, contains the optimal solution in
[2], and above all admits an analytical solution.

3 The specific problem

3.1 Definitions and preliminary notions

Let Σ
.
= [0, T ]× R. For each (t, x) ∈ Σ define the value function as

V (t, x)
.
= inf

{
J (t, x;u, T , ξ) : (u, T , ξ) ∈ A

}
, (6)
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where as A we shall take a subclass of Ag according to Definition 3 below. For each continuous function
ϕ : Σ → R define now the minimal cost operator M as

Mϕ(t, x)
.
= inf

{
ϕ(t, x+ η) + g(η) : η ∈ R, x+ η ∈ (0,∞)

}
and notice that, for ϕ ∈ C2, the following differential operator is well defined

Luϕ(t, x)
.
=

σ2

2
x2ϕxx(t, x) +

(
µx+Ku

)
ϕx(t, x)− λϕ(t, x).

3.2 Quasi-variational inequalities (QVI)

As in [2], our solution methodology is based on the notion of a quasi-variational inequality (QVI) that we use
here in a weaker form than what is commonly done. More precisely, we introduce the following

Definition 2 (QVI). We say that a function v : Σ −→ R+ satisfies the (weak) quasi-variational inequality
(QVI) for Problem 1, defined in the next subsection 3.3, if

(vt + Luv) (t, x) + f(x, u) ≥ 0, ∀t ∈ [0, T ] and a.a. x ∈ R with v(T, x) = h(x) (7)

and
Mv(t, x)− v(t, x) ≥ 0 everywhere. (8)

Furthermore, noticing that from (7) we obtain

vt(t, x) + inf
u∈R

{
Luv(t, x) + f(x, u)

}
≥ 0, ∀t ∈ [0, T ] and a.a. x ∈ R (9)

we require that at least one of the two inequalities, (8), (9), holds as an equality.

Observe that a solution v of the QVI separates Σ into two disjoint regions: the continuation region

C .
=

{
(t, x) ∈ Σ : v(t, x) < Mv(t, x), vt(t, x) + inf

u∈R

{
Luv(t, x) + f(x, u)

}
= 0

}
and the intervention region

I .
=

{
(t, x) ∈ Σ : v(t, x) = Mv(t, x), vt(t, x) + inf

u∈R

{
Luv(t, x) + f(x, u)

}
≥ 0, ∀t ∈ [0, T ] and a.a. x ∈ R

}
.

3.3 Specific class of solutions

As suggested by the results in [2], we conjecture that the optimal solution of Problem 1, defined below in this
subsection, satisfies QVI and has the following structure: for given continuous functions a(·) < α(·) < β(·) < b(·)
with β(·) > 0 let the value function V (t, x) have the form

V (t, x) =


Φ(t, α(t)) + C + c(α(t)− x) if x ≤ a(t)

Φ(t, x) if a(t) < x < b(t)

Φ(t, β(t)) +D + d(x− β(t)) if x ≥ b(t)

(10)

where Φ(t, x) satisfies(
Φt + LûΦ

)(
t, X̂t

)
+ f

(
X̂t, ût

)
= Φt

(
t, X̂t

)
+ inf

u∈R

{
LuΦ

(
t, X̂t

)
+ f

(
X̂t, u

)}
= 0

Φ(T, x) = h(x) = ℓ (x− ρ)2
(11)
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with û a control achieving the inf on the right hand side in (11) and where X̂t is the process Xt corresponding
to this control û. Such a minimizing control û exists indeed and is given, for each t ∈ [0, T ], by

ût = −K

2k
Φx

(
t, X̂t

)
, (12)

implying that the corresponding optimal interest rate is

r̂t = r̄ exp

(
−K

2k
Φx

(
t, X̂t

))
. (13)

Furthermore, given always the continuous functions a(·) < α(·) < β(·) < b(·) with β(·) > 0, the mixed classical-
impulsive stochastic control (u, T , ξ) is taken to be in the class where u is as in (12) and (T , ξ) are of the
form

τn = inf
{
t > τn−1 : Xt /∈

(
a(t), b(t)

)}
, (τ0 = 0) (14)

Xτn+ = Xτn + ξn = β(τn) 1{b(τn)}(Xτn) + α(τn) 1{a(τn)}(Xτn) (15)

Since, modulo a slight adjustment, the optimal solution obtained by [2] belongs to the class described above, we
shall restrict the original class of generic admissible controls Ag to a subclass A of admissible controls according
to the following definition and search for an optimal solution within this class.

Definition 3. We say that a mixed classical-impulsive stochastic control (u, T , ξ) is admissible if u is of the
form as in (12) and there exists four continuous functions a(·) < α(·) < β(·) < b(·) with β(·) > 0 such that (14)
and (15) are satisfied. Furthermore, the functional J (0, x;u, T , ξ) in (5) has to be finite. We shall denote by A
this class of admissible mixed classical-impulsive stochastic controls for the process Xt.

Limiting ourselves to the class of solutions as specified above, the continuation region can then more specifically
be expressed as

C = {(t, x) ∈ Σ : a(t) < x < b(t)} (16)

and, consequently, the intervention region is then I = {(t, x) ∈ Σ∖ C}. Next we formalize the assumption of a
quadratic solution as it was described in the Introduction, namely

Assumption 1. The value function V (t, x) is supposed to be given, within the continuation region C, by
V (t, x) = Φ(t, x) where Φ(t, x) is quadratic in x (see (20)).

We can now formulate our specific problem as follows

Problem 1. Determine the value function V (t, x), defined in (6), in the form as given in (10) where, for
a(t) < x < b(t), the function Φ(t, x) is given by the quadratic solution (34) of the HJB equation (32), (33)
below. Furthermore, determine the optimal mixed classical-impulsive control (u, T , ξ) ∈ A that achieves the
inf in (6).

Remark 1. i) Note that a control in A depends on the choice of the four boundaries a(·), α(·), β(·), b(·) and, if
Xt (t ∈ [0, T ]) is controlled by a control in A, then

P
(
Xt ∈ [a(t), b(t)], ∀ t > 0

)
= 1. (17)

Now, for admissibility in A ⊂ Ag we had required (see (2)) that Xt > 0 a.s. A sufficient condition for this is
that the constants d, D, ℓ, ρ are positive, as we had assumed. In fact, from Lemma 1 and Remark 3 in Section
4.1 below it then follows first that p(t) > 0, while q(t) < 0. This, as well as b(·) ≥ β(·) and the fact that β(·)
will be determined by the second equation in (42), lead then to b(t) ≥ β(t) > 0. By (15) this implies that an
impulse shift at the upper boundary cannot bring Xt to assume negative values. Furthermore, the fact that
q(t) < 0 as well as the structure of the continuous control in (12) with Φ(t, x) of the form of (34) below imply,
via a comparison theorem applied to (1), that Xt > 0 a.s. Finally, even if we would have a(t) < 0, no impulsive
control would be applied at the lower boundary and so we still would always have Xt > 0.
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ii) Thanks to the particular structure of our class of admissible impulse controls, namely by defining them
through the strategic boundaries a(·) < α(·) < β(·) < b(·) with β(·) > 0, as well as to the structure of the value
function as given in (10), in the proof of the verification theorem below (see Lemma 2) we do not need to use
Itô’s formula on the entire state space. We only need to apply it on the open interval (a(·), b(·)), which allows
us to avoid the requirement of C1−regularity throughout as it is required by the smooth fit condition in general
stopping and impulse control problems (see e.g. [9]). Notice also that if we would apply the generalized Itô’s
formula with local times (see e.g. in [8]) as it is often done, then we would run into difficulties to manage the
local time terms. With the controls restricted to our admissible class, the state space is restricted to the open
interval (a(·), b(·)) which, on one hand, prevents the application of the generalized Itô’s formula, on the other
hand it allows us however to apply the standard Itô’s formula on the process in the open interval (a(·), b(·)).
Finally, we want to point out that a further consequence of our class of admissible impulse controls is that in
equation (9) equality may hold also in the intervention region I.

3.4 Preliminaries in view of the solution approach

Notice that in C the value function V (t, x) has to satisfy (11) and so in the continuation region the optimal û
and r̂ are given by (12) and (13) respectively. Substituting (12) into (11) we obtain that, within our solution
class, the optimal value function has to satisfy, in C, the following HJB equation

Vt(t, x) +
σ2

2
x2 Vxx(t, x)−

K2

4k

(
Vx(t, x)

)2
+ µxVx(t, x)− λV (t, x) + (x− ρ)2 = 0, (18)

with the terminal condition
V (T, x) = ℓ (x− ρ)2. (19)

It is a Cauchy problem for a nonlinear partial differential equation for which, according to Assumption 1, we
search for a solution of the form

V (t, x) = p(t)x2 + q(t)x+R(t) (20)

that will be explicitly determined in in Section 4.

On the other hand, to be a QVI solution, in the intervention region the value function has to satisfy V (t, x) =
M V (t, x) and so it has to have the form

V (t, x) = V (t, α(t)) + C + c(α(t)− x), ∀x ∈ (−∞, a(t)]

V (t, x) = V (t, β(t)) +D + d(x− β(t)), ∀x ∈ [b(t),∞)
(21)

implying that, if V (t, x) is differentiable with respect to x in x = α(t) and x = β(t), then one has

Vx(t, α(t)) = −c and Vx(t, β(t)) = d. (22)

Remark 2. A solution V (t, x), that in C satisfies (18) and is of the form V (t, x) = p(t)x2+q(t)x+R(t), implies
that Vx(t, x) = 2p(t)x+ q(t) which is then bounded in C. The derivative Vx(t, x) is bounded also in (−∞, a(t)]
and [b(t),∞) since, by (21), we have Vx(t, x) = −c in (−∞, a(t)] and Vx(t, x) = d in [b(t),∞). Taking also
into account that û is given by (12), for each admissible control we then have that the following properties are
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satisfied

E

{∫ T

0

e−λs X2
s ds

}
< ∞, (23)

E

{∫ T

0

e−λs u2
s ds

}
< ∞, (24)

E

{ ∞∑
n=1

e−λτn 1{τn≤T}

}
< ∞, (25)

E

{ ∞∑
n=1

e−λτn |ξn| 1{τn≤T}

}
< ∞. (26)

From here it follows that, for each admissible control, the functional J (0, x;u, T , ξ) in (5) is automatically finite.
Furthermore, inequality (25) implies that

P
(
t ≤ lim

n→∞
τn ≤ T

)
= 0. (27)

It also follows that, for our finite horizon T > 0, the admissible controls here coincide with those in [2] (see
Definition 2.2 in [2]).

Summarizing, we are searching for a solution of Problem 1 within the class as described by (10) and (11) and
with controls having the structure (12) (which is equivalent to (13)) as well as (14), (15). This solution depends
on the choice of the four continuous functions a, b, α, β that, by (21) and (22), have to satisfy the following
system of equations

V (t, a(t)) = V (t, α(t)) + C + c
(
α(t)− a(t)

)
, (28)

V (t, b(t)) = V (t, β(t)) +D + d
(
b(t)− β(t)

)
, (29)

Vx(t, α(t)) = −c, (30)

Vx(t, β(t)) = d, (31)

with V satisfying (18), (19) and given in the form of (20). The system (28) to (31) forms, for each t ∈ [0, T ],
a system of four equations in the four unknowns a(·), b(·), α(·), β(·). In section 5 we shall provide a verification
result showing that a solution of (28) to (31) with V satisfying (18)-(20) leads indeed to an optimal solution of
our Problem 1.

In their infinite time horizon model, Cadenillas and Zapatero in [2] add two more conditions to assure the
continuity of the first derivative of the value function also in the points a and b (in the infinite horizon setup the
value function does not depend on time and so also the functions a and b are constants, i.e. a(t) ≡ a, b(t) ≡ b)
and so to be able to apply the standard Ito formula in the verification theorem to prove the optimality of their
solution. In this way however the authors in [2] obtain six conditions on only the four parameters a, b, α, β.
This creates a problem that they try to overcome by using a numerical procedure. In our context we obtain a
completely analytic solution that we then illustrate by numerical results.

4 The solution of the HJB equation

In this section we present the quadratic solution to the HJB equation (18), (19) as well as the solution of the
equations (28)-(31).
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4.1 Solution of the HJB equation

We want to find an explicit solution for the Cauchy problem given, for a generic function Φ(t, x), by the PDE

Φt(t, x) +
σ2

2
x2 Φxx(t, x)−

K2

4k

(
Φx(t, x)

)2
+ µxΦx(t, x)− λΦ(t, x) + (x− ρ)2 = 0, (32)

and the terminal condition
Φ(T, x) = ℓ (x− ρ)2. (33)

According to section 3, see in particular (20), we search for a solution of the form

Φ(t, x) = p(t)x2 + q(t)x+R(t), (34)

where p, q and R are appropriate functions in C1([0, T ];R). The partial derivatives are

Φt(t, x) = p′(t)x2 + q′(t)x+R′(t),

Φx(t, x) = 2p(t)x+ q(t),

Φxx(t, x) = 2p(t).

Observe that the terminal condition (33) is equivalent to the following terminal conditions on p, q and R:

p(T ) = ℓ, q(T ) = −2ℓρ, R(T ) = ℓρ2.

Substituting (34) into (32) we obtain[
p′(t)− K2

k

(
p(t)

)2
+
(
− λ+ 2µ+ σ2

)
p(t) + 1

]
x2

+

[
q′(t) +

(
−K2

k
p(t) + µ− λ

)
q(t)− 2ρ

]
x

+R′(t)− λR(t)− K2

4k

(
q(t)

)2
+ ρ2 = 0.

It thus suffices to solve the following system of ordinary differential equations

p′(t)− K2

k

(
p(t)

)2
+
(
− λ+ 2µ+ σ2

)
p(t) + 1 = 0, (35)

q′(t) +

(
−K2

k
p(t) + µ− λ

)
q(t)− 2ρ = 0, (36)

R′(t)− λR(t)− K2

4k

(
q(t)

)2
+ ρ2 = 0, (37)

with the corresponding terminal conditions

p(T ) = ℓ, q(T ) = −2ℓρ, R(T ) = ℓρ2.

In the following we give the solutions of these ODEs, the detailed calculations that lead to these solutions can
be found in the Appendix (section 7).

Putting

∆ =

√(
− λ+ 2µ+ σ2

)2
+ 4

K2

k
,

the solution of (35) is

p(t) =
k

K2

(
−λ+ 2µ+ σ2 −∆

2
+

∆

C1 e∆t + 1

)
,

where the constant C1 is determined by the terminal condition p(T ) = ℓ, i.e.

C1 =

(
2∆

2K2

k ℓ+ λ− 2µ− σ2 +∆
− 1

)
e−∆T .

9



Lemma 1. For each t ∈ [0, T ], one has p(t) > 0.

Proof. The proof follows easily from the definition of C1. If C1 ≥ 0 we have

C1e
∆t =

(
2∆

2K2

k ℓ+ λ− 2µ− σ2 +∆
− 1

)
e∆(t−T )

≤ 2∆

2K2

k ℓ+ λ− 2µ− σ2 +∆
− 1,

from which

p(t) ≥ k

K2

−λ+ 2µ+ σ2 −∆

2
+

∆
(
2K2

k ℓ+ λ− 2µ− σ2 +∆
)

2∆


= ℓ > 0.

If C1 < 0 it results

p(t) ≥ k

K2

(
−λ+ 2µ+ σ2 −∆

2
+∆

)
,

which is positive by the definition of ∆.

Equation (36) has as solution

q(t) =
C1 + 1

C1e∆t + 1
e

1
2 (λ+σ2+∆)t

{
4ρ

C1 + 1

[
C1

e
1
2 (−λ−σ2+∆)t − 1

−λ− σ2 +∆
+

e
1
2 (−λ−σ2−∆)t − 1

−λ− σ2 −∆

]
+ C2

}
,

where the constant C2 is determined by the terminal condition q(T ) = −2ℓρ, namely

C2 = − 2ρ

C1 + 1

{
2

[
C1

e
1
2 (−λ−σ2+∆)T − 1

−λ− σ2 +∆
+

e
1
2 (−λ−σ2−∆)T − 1

−λ− σ2 −∆

]
+ ℓ

(
C1e

∆T + 1
)
e−

1
2 (λ+σ2+∆)T

}
.

Remark 3. Notice that, for all t ∈ [0, T ], the deterministic function q(t) is negative. This is best seen from
the fact that the ODE (36) can be written as q′(t) = F (t)q(t) + 2ρ with q(T ) = −2ℓρ where one sets F (t) =
K2

k p(t)−µ+λ. Then the solution can be expressed as q(t) = e
∫ t
0
F (u)du(−2ρ

∫ T

t
e−

∫ s
0
F (u)duds−2ℓρe−

∫ T
0

F (u)du),
so that from the assumption ρ, ℓ > 0, we have q(t) < 0.

Since the optimal continuous control ût in (12), and thus also the solution of Problem 1, does not depend on
R(t), we present the solution of (37) in implicit form

R(t) = eλt
{∫ t

0

[
K2

4k

(
q(s)

)2 − ρ2
]
e−λs ds+ C3

}
,

with C3 defined by R(T ) = ℓρ2, namely

C3 = ℓρ2e−λT −
∫ T

0

[
K2

4k

(
q(s)

)2 − ρ2
]
e−λs ds.
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4.2 Determining a, b, α, β

We determine now the four continuous functions that characterize the solution (14), (15), (12) and (13). We
derive these functions explicitly from the equations (see (28)-(31)), written for a generic function Φ(t, x),

Φ(t, a(t)) = Φ(t, α(t)) + C + c
(
α(t)− a(t)

)
, (38)

Φ(t, b(t)) = Φ(t, β(t)) +D + d
(
b(t)− β(t)

)
, (39)

Φx(t, α(t)) = −c, (40)

Φx(t, β(t)) = d, (41)

for each t ∈ [0, T ], where Φ is defined in (34) (namely as is V (t, x) in (20)). From (40) and (41) we obtain

α(t) =
−c− q(t)

2p(t)
, β(t) =

d− q(t)

2p(t)
∀t ∈ [0, T ]. (42)

while the identities (38) and (39) lead to

a(t) =
−c− q(t)− 2

√
Cp(t)

2p(t)
, b(t) =

d− q(t) + 2
√
Dp(t)

2p(t)
(43)

for each t ∈ [0, T ]. Notice that the above functions are continuous as requested (see Definition 3).

Remark 4. Note that the boundaries a, b, α, β given in (42) and (43) depend on the quadratic form of the
solution Φ of the HJB equation (32) in the continuation region.

5 A verification result

In this section we present a verification result proving that the solution described in sections 3 and 4 is indeed
optimal for our Problem 1 if a(t) and b(t) as given in (43) satisfy suitable inequalities that involve also α(t) and
β(t) as given in (42). We start by proving the following lemma

Lemma 2. Let Φ(t, x) be a solution of the HJB equation (18)-(19) as derived in section 4.1 in the form
of (34) and let (u, T , ξ) be a mixed classical-impulse control according to (12) as well as (14), (15), where
a(t), α(t), β(t), b(t) satisfy (28)-(31) and are thus given by (42), (43). Then V (t, x) defined according to (10) is
the optimal value function for our Problem 1 and (u, T , ξ) is an optimal control provided V (t, x) satisfies the
conditions required in Definition 2, namely satisfies the weak QVI.

Proof. Let (u, T , ξ) be an admissible control and denote by Xt the trajectory corresponding to (u, T , ξ). Note
that property (23) and the boundedness of Vx imply

E

{∫ T

0

[
e−λtXt Vx(t,Xt)

]2
dt

}
< ∞. (44)

We next derive an expression for e−λ(t∧τn)V (t ∧ τn, X(t∧τn)+)− V (0, x) for which, analogously to the proofs of

the classical verification theorems, we apply the Itô formula to the function e−λtV (t,Xt), but only between the
stopping times τi and recalling that, for an admissible control, we have Xt ∈ [a(t), b(t)] a.s. (see (17)). For each
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t ∈ [0, T ] and n ∈ N, we thus obtain

e−λ(t∧τn)V (t ∧ τn, X(t∧τn)+)− V (0, x)

=

n∑
i=1

[∫ t∧τi

t∧τi−1

e−λs (Vt + LusV ) (s,Xs)1R+∖{a(s),b(s)}(Xs) ds

+σ

∫ t∧τi

t∧τi−1

e−λsXs Vx(s,Xs)1R+∖{a(s),b(s)}(Xs) dWs

]

+
n∑

i=1

1{τi≤t}e
−λτi

[
V (τi, Xτi+)− V (τi, Xτi)

]
.

The inequality (7) implies that
(Vt + LutV ) (t,Xt) ≥ −f(Xt, ut)

∀ t ∈ [0, T ] and a.a. values of Xt. The a.a. values of Xt that we shall exclude are, for each t ∈ [0, T ], the values
Xt = a(t) and Xt = b(t). Furthermore, (8) in Definition 2 implies

V (τi, Xτi+)− V (τi, Xτi) = M V (τi, Xτi)− V (τi, Xτi)− g(ξi) ≥ −g(ξi) ∀ i ∈ N.

Therefore, for each t ∈ [0, T ] and n ∈ N we obtain

e−λ(t∧τn)V (t ∧ τn, X(t∧τn)+)− V (0, x)

≥ −
∑n

i=1

[∫ t∧τi
t∧τi−1

e−λsf(Xs, us) ds+ σ
∫ t∧τi
t∧τi−1

e−λsXs Vx(s,Xs) dWs

]
−
∑n

i=1 1{τi≤t}e
−λτig(ξi).

This inequality is an identity for the QVI-control specified in the statement of the lemma. From condition (27)
we deduce

e−λ(t∧τn)V (t ∧ τn, X(t∧τn)+)
n→∞−−−−→ e−λtV (t,Xt+) a.s..

Taking expectations, we obtain

V (0, x)− E
{
e−λtV (t,Xt+)

}
≤ E

{ ∞∑
i=1

[∫ t∧τi

t∧τi−1

e−λsf(Xs, us) ds− σ

∫ t∧τi

t∧τi−1

e−λsXs Vx(s,Xs) dWs

]
+

∞∑
i=1

1{τi≤t}e
−λτig(ξi)

}
,

with equality for the QVI control described in the statement. Inequality (44) implies

e−λtXt Vx(t,Xt) ∈ L2([0, T ]× Ω),

therefore

E

{∫ t∧τi

t∧τi−1

e−λsXs Vx(s,Xs) dWs

}
= 0 ∀ t ∈ [0, T ], i ∈ N.

Consequently

V (0, x)− E
{
e−λtV (t,Xt+)

}
≤ E

{∫ t

0

e−λsf(Xs, us) ds+
∞∑
i=1

1{τi≤t}e
−λτig(ξi)

}
,

with equality for the QVI control described in the statement. Finally, substituting T for t and recalling, see (7),
that V (T, x) = h(x), we get

V (0, x) ≤ E

{∫ T

0

e−λsf(Xs, us) ds+ e−λTh(XT ) +

∞∑
i=1

1{τi≤T}e
−λτig(ξi)

}
= J (0, x;u, T , ξ),

where one has equality for the QVI-control described in the statement. The conclusion then follows.
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We now state and prove the verification theorem

Theorem 1. Let the function V (t, x) satisfy (10), namely in Σ∖ C it is given by (21), while in C it is supposed
to satisfy (18), (19) and be given by (20) with the coefficients as determined in Section 4.1. Let the continuous
functions a(t), α(t), β(t), b(t) satisfy (28)-(31) and thus be given by (42), (43). Let the control (u, T , ξ) be given
by (12) as well as (14), (15) for a(t), α(t), β(t), b(t) as given by (42), (43). If for each t ∈ [0, T ],

a(t) ≤ 1

2

{
c(µ− λ) + 2ρ−

√[
c(λ− µ)− 2ρ

]2
− 4A(t)

}
, (45)

where
A(t) = Φt(t, α(t)) + Φx(t, α(t))α

′(t) + c α′(t)− λ
[
Φ(t, α(t)) + C + c α(t)

]
+ ρ2

and

b(t) ≥ 1

2

{
d(λ− µ) + 2ρ+

√[
d(µ− λ)− 2ρ

]2
− 4B(t)

}
, (46)

where
B(t) = Φt(t, β(t)) + Φx(t, β(t))β

′(t)− d β′(t)− λ
[
Φ(t, β(t)) +D − d β(t)

]
+ ρ2

and, furthermore, the right hand sides in (45) and (46) are well defined, then V (t, x) is the optimal value function
of our Problem 1, namely it is optimal among the value functions that are quadratic in the continuation region
and such that

V (0, x) = inf
{
J (0, x;u, T , ξ) : (u, T , ξ) ∈ A

}
. (47)

Furthermore, the above strategy is optimal in the sense that it achieves the infimum in (47).

Proof. If we show that V (t, x) satisfies the conditions for the QVI of Definition 2, then Lemma 2 ensures that
V (t, x) given by (10) is the optimal value function and the optimal strategy is given by (14), (15) and (12)-(13).
In fact, V (t, x) as defined in (10) with Φ(t, x) given by (34) (see also (20)) is C2 except in the points a(t) and
b(t) for each t ∈ [0, T ], where it is not even C1. For the QVI of Definition 2 it thus suffices to verify (7)-(9) and
that the QVI control associated with V is admissible. For this latter purpose notice that, in the continuation
region where Xt ∈ [a(t), b(t)], the process û, defined by

ût = −K

2k
V ′ (Xt) = −K

2k
(2pXt + q) ,

is bounded and so E
{∫ T

0
e−λtû2

t dt
}
< ∞, implying that J (0, x;u, T , ξ) in (5) is finite.

Coming to (7)-(9) notice that, excluding Xt = a(t) and Xt = b(t), we have

Vt(t, x) + inf
u∈R

{
LuV (t, x) + f(x, u)

}
= Vt(t, x) +

σ2

2
x2 Vxx(t, x)−

K2

4k

(
Vx(t, x)

)2
1(a(t),b(t))(x) + µxVx(t, x)− λV (t, x) + (x− ρ)2

=


Φt(t, α(t)) + Φx(t, α(t))α

′(t) + c α′(t)− cµx− λ
[
Φ(t, α(t)) + C + c(α(t)− x)

]
+ (x− ρ)2 if x < a(t)

0 if a(t) < x < b(t)

Φt(t, β(t)) + Φx(t, β(t))β
′(t)− d β′(t) + dµx− λ

[
Φ(t, β(t)) +D + d(x− β(t))

]
+ (x− ρ)2 if x > b(t)

.

For x < a(t) it holds that

Vt(t, x) + inf
u∈R

{
LuV (t, x) + f(x, u)

}
= x2 +

[
c(λ− µ)− 2ρ

]
x+Φt(t, α(t)) + Φx(t, α(t))α

′(t) + c α′(t)− λ
[
Φ(t, α(t)) + C + c α(t)

]
+ ρ2,
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with roots

x1,2 =
1

2

{
c(µ− λ) + 2ρ±

√[
c(λ− µ)− 2ρ

]2
− 4A(t)

}
.

Condition (45) then ensures
Vt(t, x) + inf

u∈R

{
LuV (t, x) + f(x, u)

}
≥ 0, (48)

for each x < a(t). Analogously, one can see that the condition (46) implies (48) for each x > b(t) and so (7)
and (9) are satisfied with (9) holding as an equality in the continuation region C.
On the other hand, the minimum cost operator is given by

Mv(t, x) =


Φ(t, α(t)) + C + c(α(t)− x) if x ≤ α(t)

Φ(t, x) + min(C,D) if α(t) < x < β(t)

Φ(t, β(t)) +D + d(x− β(t)) if x ≥ β(t)

, (49)

where, to obtain Mv in the interval (α(t), β(t)), we used the fact that, by the way in which α, β are defined and
by the convexity of Φ, we have −c < vx(t, x) < d ∀ (t, x) : α(t) < x < β(t).

Therefore, v(t, x)−M v(t, x) is zero in the intervention region {(t, x) : x ∈ (−∞, a(t)]∪ [b(t),∞)} and is negative
in the continuation region {(t, x) : x ∈ (a(t), b(t))}. In fact, it suffices to notice that, by the way in which α and
β have been defined,

vx(t, x) ≤ −c ∀ (t, x) : a(t) ≤ x ≤ α(t),

vx(t, x) ≥ d ∀ (t, x) : β(t) ≤ x ≤ b(t),

This leads to (8) as well as (9) for what concerns the intervention region thus concluding the proof.

6 Numerical illustrations

In this section, we give some numerical illustrations in order to get a better understanding of our theoretical
results. In the following subsections we show, for various situations, the shapes of the functions a(t), b(t), α(t)
and β(t) for all t ∈ [0, T ], as well as the value function and the optimal interest rate at selected time points.

6.1 Maturity T = 1: Case 1

In this subsection, we show the behavior of a(t), b(t), α(t) and β(t), and the shapes of the value function and
of the optimal interest rate at the time points t = 0, 0.5, 0.9 using the parameters in Table 1. For those
parameters the conditions (45) and (46) in Theorem 1 are satisfied. Note that the sign of K does not affect a
possible trend for the exchange rate because, given our continuous strategy ût = −K

2kΦx(t, X̂t), it is only the

sign of Φx(t, X̂t) that influences it.

From Figure 1, we can see the behavior of a(t), b(t), α(t) and β(t) for t ∈ [0, T ]. The functions a(t) and α(t)
are both decreasing and b(t) and β(t) are both increasing. The reason is that the strength of the penalty with
respect to the terminal condition of the exchange rate, namely the size of ℓ = 1, is the same as the one with
respect to the running cost, that is the coefficient 1 of the first term in f(x, u). Therefore, as a policy, the
Central Bank does not strongly try to reach its target exchange rate ρ at the maturity T = 1, so at first it
narrows the exercise boundaries to the level of the target exchange rate ρ = 1.3 since it has much residual time,
but towards maturity the power is weakened. Note, however, that this monotonicity does not always hold, it
depends on the size of the parameters, especially µ, K, k, ℓ and ρ. In Figure 1, there are some asymmetries,
namely the distance from the target exchange rate ρ to the upper boundary b(t) is larger than that from ρ to
the lower boundary a(t), and the distance between b(t) and β(t) is larger than the difference between a(t) and
α(t). This behavior is mainly determined by the parameter values for the impulse penalties, namely C, c, D

14



Table 1: parameters (case 1)

parameter notation size

drift µ 0.05
target interest rate r̄ 0.04
coefficient of continuous control K −0.2
volatility σ 0.2
level of exchange rate ρ 1.3
coefficient of running cost k 2
penalty of impulse (fixed cost for lower bound) C 0.24
penalty of impulse (proportional cost for lower bound) c 1.5
penalty of impulse (fixed cost for upper bound) D 5
penalty of impulse (proportional cost for upper bound) d 4
coefficient of terminal condition ℓ 1
discount factor λ 0.01
maturity T 1

and d and that for the continuous control, namely k. In fact, C = 0.24 < D = 5 and c = 1.5 < d = 4, that
is, the intervention at the upper boundary is more costly than that at the lower boundary. Hence the Central
Bank does not want to intervene too often at the upper boundary, and so the upper boundary is positioned
farther from the target exchange rate ρ. The differences α(t)− a(t) and b(t)− β(t) are due to similar reasons.
As mentioned above, the Central Bank does not want to intervene often at the upper boundary due to the
cost; therefore, when it decides to intervene, it does it decisively at a single time and the difference b(t)− β(t)
becomes large.

In Figure 2 we show the relationship between the exchange rate and the optimal interest rate r̂t = r̄ exp(ût)
in the continuation region at the time points t = 0, 0.5, 0.9. They are increasing functions with exponential
growth. In the drift term of our exchange rate model (1), we use ut which is defined as ut = log rt

r̄ , and our
running cost with respect to ut in the value function is the quadratic function ku2

t which is a symmetric function.
Because of the asymmetry of the logarithmic function, when the interest rate is less than the target interest rate
r̄, the Central Bank is penalized much more than in the case when it is larger than r̄. In Figure 2 we find that,
for all time points, the optimal interest rate does not fall much below the target rate r̄ = 0.04, but exceeds it by
far more. On the other hand, the gradients of the optimal interest rate are becoming small as the residual time
is decreasing since, as mentioned above, now the Central Bank does not strongly try to reach its target exchange
rate ρ at the maturity T = 1 and does not care anymore about the market towards the maturity avoiding that
the interest rate value moves far from its target rate.

From Figure 3 we can find that the value function at time t = 0 is quadratic in the interval (a(0), b(0)), is linear
outside of (a(0), b(0)), is continuous on R, but is not smooth at the exercise boundaries a(0) and b(0). The
gradients of the value function at α(0) and β(0) are the same as the slopes c and d respectively. They show the
typical shape of our value function in Theorem 1, and the value functions in the following subsections have a
similar shape.

From Figure 4, we can see that our value function varies with t, that is, it depends on time since our optimization
problem has a finite horizon. The minimizers of the value functions tend to the level of the target exchange rate
ρ = 1.3. This is not too easy to see from Figure 4 but under different parameter values, as those for Figures 8
and 12 below, one can clearly see it. The shapes of the value functions are similar to the one at time t = 0 in
Figure 3. Again, it is hard to see it from Figure 4, but the value functions do not always decrease monotonically
for each exchange rate. We can clearly see it from Figure 8 below.
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6.2 Maturity T = 1: Case 2

In this subsection we present analogous diagrams to the previous subsection by using different parameter values
as shown in Table 2 for which the conditions (45) and (46) in Theorem 1 are again satisfied.

Table 2: parameters (case 2)

parameter notation size

drift µ 0.05
target interest rate r̄ 0.04
coefficient of continuous control K −0.2
volatility σ 0.2
level of exchange rate ρ 1.3
coefficient of running cost k 0.24
penalty of impulse (fixed cost for lower bound) C 1.5
penalty of impulse (proportional cost for lower bound) c 1
penalty of impulse (fixed cost for upper bound) D 1.1
penalty of impulse (proportional cost for upper bound) d 1.2
coefficient of terminal condition ℓ 5
discount factor λ 0.01
maturity T 1

From Figure 5, we can see the behavior of the functions a(t), b(t), α(t) and β(t) in the case of Table 2. The
strength of the penalty with respect to the terminal condition of the exchange rate, namely the size of ℓ = 5,
is larger than the one with respect to the running cost, that is the coefficient 1 of the first term in f(x, u).
This situation denotes that, as a policy, the Central Bank wants strongly to reach its target exchange rate ρ
at the maturity T = 1, so it narrows the exercise boundaries to the level of the target exchange rate ρ towards
maturity. For this reason, in Figure 5, a(t) is increasing and b(t) is decreasing. These features are the opposite
of those in the previous subsection. On the other hand, α(t) and β(t) are both increasing. Furthermore, here
the fixed cost for the intervention at the upper boundary, namely D = 1.1, is less than the one in the previous
subsection (before it was D = 5), so the upper exercise boundary b(t) is closer to the target exchange rate ρ
than before. For the lower boundary the cost C = 1.5 is now larger than the one in the previous subsection
(before it was C = 0.24), so at first the lower exercise boundary a(t) is farther away from ρ than before, but
towards maturity it becomes closer to the target than before due to the strength of the penalty with respect to
the terminal condition of the exchange rate, namely ℓ = 5. The proportional costs with respect to intervention
c = 1 and d = 1.2 are both smaller than those in the previous subsection (before c = 1.5 and d = 4). If the
proportional cost is small, then the Central Bank tries to push the exchange rate closer to the target exchange
rate ρ. Therefore, α(t) and β(t) are now closer to ρ than those in the previous subsection.

In Table 2, the strength of the penalty with respect to the running cost of the interest rate, namely k = 0.24,
is smaller than before. Thus the Central Bank uses the interest rate to control the exchange market even if the
interest rate is far away from the target value. We can see it from Figure 6 and the ranges of the optimal interest
rate on [a(t), b(t)] are [3.78×10−3, 0.347] at time t = 0, [3.33×10−3, 0.387] at time t = 0.5 and [2.84×10−3, 0.444]
at time t = 0.9. In contrast with the previous subsection, the gradients of the optimal interest rate are becoming
large around the upper boundary and small around the lower boundary as the residual time is decreasing because
of the opposite goals. Now the Central Bank wants to strongly reach its target exchange rate ρ at the maturity
T = 1, so the Central Bank strongly intensifies the market control by using the interest rate up to the limit
values towards the maturity. It is also one of the purposes of this example to show that, even if the parameters
satisfy the requirements of Theorem 1, due to the balance between the intervention costs one might end up
with unrealistically large values of the interest rate. In fact, for small values of the penalty due to using control
values of the interest rate that deviate from the target value, the Central Bank might be induced to use the
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interest rate up to the limit values in order to push the exchange rate to its goal even if the interest rate itself
differs considerably from its target value.
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From Figure 7 we can find that the value function is quadratic in (a(0), b(0)), is linear outside of (a(0), b(0)),
and not smooth at the exercise boundaries a(0) and b(0). This figure shows the same behavior as Figure 3 in
the previous subsection. From Figure 8 we see again that our value function varies with t, that is, it depends on
time since our problem is a finite horizon problem. The minimizers of the value functions tend again to the level
of the target exchange rate ρ. This tendency is analogous to that in Figure 4 in the previous subsection. Finally,
from Figure 8 we can find that the value functions do not always decrease monotonically for each exchange rate.
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2)

6.3 Long Maturity T = 5

In this subsection we show behavior of the functions a(t), b(t), α(t) and β(t), as well as the shapes of the value
function and of the optimal interest rate at the time points t = 0, 2.5, 4 using the parameters in Table 1
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except for the maturity T = 5. Again, for those parameter values the conditions (45) and (46) in Theorem 1
are satisfied.

From Figure 9 we can see the behavior of a(t), b(t), α(t) and β(t). Their features are similar to those in Section
6.1, but here the boundaries a(t) and α(t) are not monotonic functions. Note how the shape of the boundaries
between times 4 and 5 in Figure 9 is completely analogous to that from time 0 to 1 in Figure 1 because of the
time homogeneous coefficients in our model.

Figure 10 shows the relationship between the exchange rate and the optimal interest rate at the time points
t = 0, 2.5, 4. Again, their behavior is similar to that in Section 6.1 and the optimal strategy of the exchange
rate at time t = 4 is completely analogous to that at time t = 0 in Figure 2.
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Figure 10: Optimal interest rate at time t = 1, 2.5, 4
(case T = 5)

From Figure 11, we can see that the value function is quadratic in (a(0), b(0)), is linear outside of (a(0), b(0)),
and not smooth at the exercise boundaries a(0) and b(0). This figure is similar to Figure 3 and Figure 7 in the
previous subsections.

From Figure 12 we can again see that the value function changes over time because of the finite horizon and
shifts their minimizers towards the target exchange rate ρ as before. Note also that the value function at time
4 is completely analogous to the one in Figure 3 owing to the time homogeneous coefficients as above.

7 Appendix

In this Appendix we derive the solutions of the ODEs (35) and (36).

7.1 The solution of equation (35)

Consider the Riccati equation

p′(t)− K2

k

(
p(t)

)2
+
(
− λ+ 2µ+ σ2

)
p(t) + 1 = 0, (50)

with the corresponding terminal condition p(T ) = ℓ.
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We shall use two general results on ODEs, which can be found in sections 1.2.2-2(24) and 2.1.2-2(11) of [10].

Given an ODE y′(t) + a
(
y(t)

)2
+ b y(t) + c = 0, by the transformation y(t) = ω′(t)

aω(t) we obtain a linear second

order equation of the form ω′′(t) + b ω′(t) + ac ω(t) = 0.

The second general result is the following: given an ODE ω′′(t)+aω′(t)+b ω(t) = 0 such that Λ2 .
= a2−4b > 0,

we have the solution
ω(t) = e−

1
2at
(
L1e

1
2Λt + L2e

− 1
2Λt
)
.

Put now

p(t) = − k

K2

ω′(t)

ω(t)
,

for a function ω ∈ C2([0, T ];R). The derivative p′ is

p′(t) =
k

K2

(
ω′(t)

)2(
ω(t)

)2 − k

K2

ω′′(t)

ω(t)
.

Substituting p and p′ in (50) we obtain

k

K2

(
ω′(t)

)2(
ω(t)

)2 − k

K2

ω′′(t)

ω(t)
− K2

k

k2

K4

(
ω′(t)

)2(
ω(t)

)2 −
(
− λ+ 2µ+ σ2

) k

K2

ω′(t)

ω(t)
+ 1 = 0

⇐⇒ ω′′(t) +
(
− λ+ 2µ+ σ2

)
ω′(t)− K2

k
ω(t) = 0.

Putting

∆ =

√(
− λ+ 2µ+ σ2

)2
+ 4

K2

k
,

the solution of the latter equation is

ω(t) = e
1
2 (λ−2µ−σ2)t

(
L1 e

1
2∆t + L2 e

− 1
2∆t
)

∀L1, L2 ∈ R,

from which we obtain for the first order derivative

ω′(t) =
λ− 2µ− σ2

2
ω(t) + e

1
2 (λ−2µ−σ2)t

(
L1

2
∆ e

1
2∆t − L2

2
∆ e−

1
2∆t

)
.

20



We have thus the following solution for (50):

p(t) = − k

K2

ω′(t)

ω(t)
=

k

K2

(
−λ+ 2µ+ σ2

2
−

L1

2 ∆ e
1
2∆t − L2

2 ∆ e−
1
2∆t

L1 e
1
2∆t + L2 e−

1
2∆t

)

=
k

K2

(
−λ+ 2µ+ σ2 −∆

2
+

L2∆ e−
1
2∆t

L1 e
1
2∆t + L2 e−

1
2∆t

)

=
k

K2

(
−λ+ 2µ+ σ2 −∆

2
+

∆

C1 e∆t + 1

)
.

where the constant C1 is determined by the terminal condition p(T ) = ℓ. It follows that

∆

C1 e∆T + 1
=

K2

k
ℓ+

λ− 2µ− σ2 +∆

2

⇐⇒ C1 =

(
2∆

2K2

k ℓ+ λ− 2µ− σ2 +∆
− 1

)
e−∆T .

7.2 The solution of equation (36)

Consider the ordinary differential equation

q′(t) +

(
−K2

k
p(t) + µ− λ

)
q(t)− 2ρ = 0, (51)

with the terminal condition
q(T ) = −2ℓρ.

Let us use the following general result: for an ODE

y′(t) + a(t) y(t)− b(t) = 0,

we have the following solution

y(t) = e−
∫ t
0
a(s) ds

[ ∫ t

0

b(s) e
∫ s
0
a(η) dηds+ C

]
.

The solution of (51) is then of the form

q(t) = exp

(
(λ− µ)t+

K2

k

∫ t

0

p(s) ds

)[
2ρ

∫ t

0

exp

(
(µ− λ)s− K2

k

∫ s

0

p(η) dη

)
ds + C2

]
. (52)

Let us first of all compute
∫ t

0
p(s) ds:∫ t

0

p(s) ds =
k

K2

(
−λ+ 2µ+ σ2 −∆

2
t+∆

∫ t

0

1

C1 e∆s + 1
ds

)
. (53)

To compute explicitly the integral in (53), we perform the change of variable e∆s = η:∫ t

0

1

C1 e∆s + 1
ds =

∫ e∆t

1

1

(C1 η + 1)

1

∆η
dη

=
1

∆

∫ e∆t

1

(
−C1

C1η + 1
+

1

η

)
dη

=
1

∆

[
∆t+ log

(
C1 + 1

C1e∆t + 1

)]
.
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Observe that the argument of the logarithm is always positive. In fact, C1e
∆t +1 ≥ C1 +1 > 0. To see the last

inequality, it suffices to notice that, if

2∆

2K2

k ℓ+ λ− 2µ− σ2 +∆
− 1 ≥ 0,

then obviously C1 + 1 > 0 for each t ∈ [0, T ]. On the other hand if

2∆

2K2

k ℓ+ λ− 2µ− σ2 +∆
− 1 < 0

we obtain

C1 + 1 =

(
2∆

2K2

k ℓ+ λ− 2µ− σ2 +∆
− 1

)
e−∆T + 1

≥ 2∆

2K2

k ℓ+ λ− 2µ− σ2 +∆
,

and this quantity is positive since

2
K2

k
ℓ+ λ− 2µ− σ2 +∆ = 2

K2

k
ℓ+ λ− 2µ− σ2 +

√(
− λ+ 2µ+ σ2

)2
+ 4

K2

k
> 0.

We may thus write ∫ t

0

p(s) ds =
k

K2

[
−λ+ 2µ+ σ2 +∆

2
t+ log

(
C1 + 1

C1e∆t + 1

)]
.

At this point we have an explicit expression for the first factor in (52), namely

exp

(
(λ− µ)t+

K2

k

∫ t

0

p(s) ds

)
=

C1 + 1

C1e∆t + 1
e

1
2 (λ+σ2+∆)t. (54)

Next we compute the integral in the second factor in (52),∫ t

0

exp

(
(µ− λ)s− K2

k

∫ s

0

p(η) dη

)
ds

=

∫ t

0

C1e
∆s + 1

C1 + 1
e

1
2 (−λ−σ2−∆)s ds

=
2

C1 + 1

[
C1

e
1
2 (−λ−σ2+∆)t − 1

−λ− σ2 +∆
+

e
1
2 (−λ−σ2−∆)t − 1

−λ− σ2 −∆

]
.

We thus obtained

q(t) =
C1 + 1

C1e∆t + 1
e

1
2 (λ+σ2+∆)t

{
4ρ

C1 + 1

[
C1

e
1
2 (−λ−σ2+∆)t − 1

−λ− σ2 +∆
+

e
1
2 (−λ−σ2−∆)t − 1

−λ− σ2 −∆

]
+ C2

}
.

Finally we determine the constant C2 on the basis of the terminal condition q(T ) = −2ℓρ, namely

4ρ

C1 + 1

[
C1

e
1
2 (−λ−σ2+∆)T − 1

−λ− σ2 +∆
+

e
1
2 (−λ−σ2−∆)T − 1

−λ− σ2 −∆

]
+ C2 = −2ℓρ

C1e
∆T + 1

C1 + 1
e−

1
2 (λ+σ2+∆)T

from which

C2 = − 2ρ

C1 + 1

{
2

[
C1

e
1
2 (−λ−σ2+∆)T − 1

−λ− σ2 +∆
+

e
1
2 (−λ−σ2−∆)T − 1

−λ− σ2 −∆

]
+ ℓ

(
C1e

∆T + 1
)
e−

1
2 (λ+σ2+∆)T

}
.
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