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Abstract—We consider the problem of investing non traded asset like the inflation or the exchange

in a portfolio in order to track or “beat” a given  rate. Typically we shall assume that the investor may
benchmark. We study this problem from the point of

view of almost sure/pathwise optimality. We first obtain

a control that is optimal in the mean and this control _ _ _
is then shown to be also pathwise optimal. The stan- Wealth at time¢ corresponding to an investment

dard Merton model leads to lognormality of the value strategyw. The benchmark process will be denoted

process so that it does not possess the required ergodichy v, and we shall make the realistic assumption
properties. We obtain ergodicity by transforming the
process so that it remains bounded thereby using a
method that can be related to a random time change.
We furthermore describe a general approach to solve CONtrol his risk (the market is incomplete).

the HJB equation corresponding to the given problem This portfolio problem, that is sometimes also

setup. called active portfolio managemeritas been studied
Keywords: Optimal portfolios, benchmark by various authors and here we refer in particular to
tracking, optimal stochastic control, pathwise opl2l- As in [2] we shall consider as relevant state vari-

timality, solutions of HJB equations, random timeble the ratiaZ7 := X7Y,~" of the investor's wealth
change. to the benchmark. A natural way to proceed (see

again [2]) is then to consider the procéss up to the
|. INTRODUCTION exit from a bounded domain and choose as objective
We consider a problem from institutionalthe minimization of the discounted expected loss that
money management, where the objective of the ipenalizes the deviation df] from the constant in
vestor/money manager is that of tracking or, bettethe case of “benchmark tracking” and the amount by
outperforming a given stochastic benchmark; thehich ZT falls below1 in the case when the objective
benchmark may be an index process such as tisethat of “beating the benchmark”.
S&P 500 index, it may however also represent other  While the classical criteria such as the one
economic quantities such as the value process ofdascribed above are criteria in the mean, namely they

invest in a certain number of risky assets in addition
to a non risky one and leX] denote the investor's

that it is not perfectly correlated with the investment
opportunities so that the investor cannot completely



involve expected values of costs/losses, in this papehere[-]* denotes the positive part of its argument.
we aim at a stronger form of criterion, more precisely =~ The standard way of approaching a problem
that of a.s.-optimality (see e.g. [8], [7], [6], [9]) with the criterion of a.sg—optimality is (see [9])
that may in fact be quite appropriate for benchmarto consider a corresponding criterion of optimality
tracking/beating. The a.s.-optimality criteria in usén the mean, which in our case becomes

concern an infinite horizon, which may still make 1 T

sense in economic/financial applications every time\” = 11;11_121) 7E" {/0 c(Z7) dt} — min (3)

an investor makes his plans over a long horizon. To

keep matters simple in this first attempt to appl)"imd to investigate when the mean-optimal control is

an a.s.criterion to an investment problem, we shaffljso a.s./pathwise optimal and this will also be our

consider here only symmetric cost functions, i.e. W%pproach here.
For the standard market models, namely those

thereby penalizing symmetrically both over- and unt—hat that go back to Merton ([5]), the price pro-

dershoots ofZ7 with respect tol. An economically cesses are geometric Brownian motions (lognormal

more meaningful asymmetric cost function that p

shall only consider théenchmark trackingroblem,

égrocesses) so that already for simple strategies

. oo
nalizes only undershoots/shortfalls and corresponHée value ofA™ in (3) above becomes infinite. Here

to the typical benchmark beating/outperformiragn comes now our main methodological contribution in
still be dealt with in our approach, but at the expenstg"S paper : we modify the dynamics of the process
ZT so that it becomes a.s. bounded (in a large
gomain) and still maintains the main characteris-
strategy 7* such that for the corresponding ratigics corresponding to lognormal models. Given our
ergodic criterion, this cannot be accomplished by
- simply stopping the process upon exit from a given
Jr(m) ::/ c(Z])dt (1) compact set. Here we change instead suitably the
0

) o ) ~_drift and diffusion coefficients, which under certain
where, using a penalization by the quadratic deviation

assumptions can also be interpreted as a random
of ZT from 1, one would take:(z) = (» — 1)2. De- . _ ,
] ] . time change and by which the controlled process is
noting by P™ the measure induced by the investment , .
o ) oo ) Increasingly slowed down as it gets closer and closer
strategyw (being interested in an infinite horizon,

o to a given boundary. An interesting aspect that turns
we shall not make explicit the dependence on the . ) ) i
o o out in this context is that the optimal control and
initial value of Z[), the criterion of almost sure

optimality/pathwise optimality is roughly as follows

of less analytical tractability.
More precisely, the aim is to find an investmen

process we hav&]" ~ 1. Define

the solution of the Hamilton-Jacobi-Bellman (HJB)

] ) ] i equation do not depend on the particular choice of the

(for a more detailed discussion see subsection II-B . . o
. ] . random time change. With the thus modified process

below). Given strategieg and 7*, let P™ '™ be a

_ . ] ZT we shall not only obtain the right ergodic behav-

measure having®™ and P™ as marginals and let . . o L
. _ior in order to make the mean-optimality criterion (3)

g : [0,00) — [0,00) be a nondecreasing function

with limr_. g(T)) = 0. The control strategyr* is

then said to be a.g;—optimal if, for all admissible

7 and all coupling measureB™ '™, one has that

meaningful, but it will furthermore allow us to show
that the mean-optimal control is also gs-optimal.

A final methodological aspect of this paper
concerns the problem of solving the HIB equation
Jim g(T) [Jp(x*) — Jr(m)]T =0, P7™ " —as. associated to the given (infinite-horizon) stochastic

(2) control problem with the criterion of optimality in the



mean. More precisely, denoting i the generator HJB equation.

of the processZ] that is controlled by the strategy

7 and lettinge(z) be our instantaneous cost function ||, M ODEL AND PROBLEM FORMULATION
that we assume to be bounded from below (e.%
c(z) = (2 — 1)?), the infinite-horizon criterion of
optimality in the mean leads to solving (see section ~ YVe consider a market with a nonrisky asset and
1-A below) a number of risky assets. The priBe of the nonrisky

. The basic setup

. asset evolves according to
N=inf[L76(2) + e(2)] = L7 6(2) + e(2)  (4)

for 7*,¢(-) and A. Assuming that an optimal min- dB; = rBdt ®)

imizing =* can be found, the remaining problemyhere; is a fixed spot rate of interest. Létdenote
is then to find, for givenl™ and ¢, the pair A the number of risky assets. Given a filtered and
and ¢(z). The traditional way is to guess (make aomplete probability space, F, 7, P) with P the
“Ansatz” for) a possible functioms(-) which works «a51 world probability measure”, the prices, i =
only in specific cases. Since a same objective may... k of the risky assets are supposed to evolve

functions, we shall generalize the problem of solving x

the HJB equation (4) by considering a class‘(z)  dS! = ' Sidt + Z oI Sidw!  (i,j=1,-- k)
of possible cost functions and, given the dynamics J=1 ©)

f th trolled it 6 o . .- , . o
of the controlled process, 1.e. given its generatoy with given drift coefficientsu® and a given volatility

H e, K ..
search for a tripld A, ¢, ¢=*) such that (4) holds. matrix o = {09}, j_1.... , that is supposed to be an

The paper is structured as follows. In the next . . .
pap invertible matrix and wherev; = (w},--- ,wF) is a

section Il we describe more precisely our problem .
) o p ) y P (P, F;)—Wiener process.
setup with the criteria of optimality in the mean

and almost sure/pathwise optimality (subsection II-,
] ) dictable process
A). In subsection 1I-B we then present in more

detail the criterion of pathwise optimality recalling 0r = (@2, 0L, -, oF) (7)

a result that shows under what conditions a control

: . . . where ¢ denotes the number of units of the non-
that is optimal in the mean is also almost surely

optimal. Subsection II-C concerns the bounding Or#sky asset that are kept in the portfolio at time

the controlled state process by a method that cgr?d’ analogouslyy; is the number of units of the

be related to a random time change. Section llI iZsfth asset. Thevalue procesgorresponding to this

Consider as investment strategy #&h— pre-

mainly dedicated to determine explicitly a CoerFtrategy 's then
that is optimal in the mean (subsection Ill-A) and for
which in subsection IlI-B it is then shown that it is

k
X{ =@Bi+ > iS; ®)
i=1
also almost sure/pathwise optimal. Subsection III-%nd the strategy,
is divided further into subsubsections. In particular, in

k
[1I-A.1 we solve an auxiliary HIB equation without dX¢ = o0dB, + Z@ids} 9)

is said to beself financingif

the time change and for polynomia(z). In Ill-A.2 i=1
it is then shown how the solution for the auxiliarylt is convenient to represent investment strategies in
HJB can be transformed into a solution of the actuérms of the fraction of wealth that is invested in the



individual assets rather than in terms of number of7 := X7Y, ' that, given (12), (13) satisfies by
units. Putting then Ito’s rule

= S‘?{? =1,k 1_;7Tz‘ _ @By dZ] = Z] (i + i) dt
= (10) + ZF (mpo = V') dwy — Z] Bdvy - (14)

the wealth process of a self financing strategy, whiGljhere we have put
we now indicate byX[, can then be represented as

] f=r—a+bb+p3 , p=p—rl—ob (15)
dX{ = X7 (T + Y mpt - 7’)) dt The problem is now to choose’ so that, possibly,

=t ™" ~ 1. One may take as natural instantaneous cost
function (see Proposition 3.8 and Remark 3.9 below
for comments of this choice)

ko k
+ X7 ZZﬂiaijdwz (11)

i=1 j=1
With obvious meaning of the symbols we may c(ze,m) = c(z) = (2 — 1)2 (16)

rewrite (11) in vector notation as
(1) and let Jp(w) be as in (1). Givere and K with

dXT = X[ [(r + m(p —rl))dt + mjodw,]. (12) 0 < € < K < oo, consider as acceptable values
for Z[ those for whichZ] € [¢, K] (to this effect
so0 also Remark 2.1) and, given a controldefine
such that (12) has a weak, non-exploding solution. ¢\ —inf{t > 0: Z7 ¢ [, K]}. Then, one aims at

. _ ﬁ‘iinimizing the cost functional
however, a further discussion that we postpone to

subsection 2.3. p" = E"{J(m)}. 17)
Next we consider denchmark (index) processThis optimal control problem has been solved in [2];

that we shall view as the value process of a theorgt,ns out that the optimal contrai* is a nonlinear

ical portfolio consisting of a large number of asset$gedpack inZ, and, as will be seen below, it does

Denoting this value process hby¥;, a standard way ot depend on the choice efand K.

to model its evolution is, by analogy to (12), the One purpose of this paper is to show that the

following optimal controlr* has stronger optimality properties

In what follows we restrict ourselves to strategies

precise definition of admissible strategies require

dY; = Y [adt + b'dw, + Bdv] (13) than justoptimality in the meanTo this end we
use the theory opathwise optimalityas developed
wherev, is a scalar(P, 7;)—Wiener process, inde- in [9], and that we will briefly summarize in next

pendent ofw;. Since the portfolioY; includes also subsection. This theory applies to models for which
assets beyond those with pricésthat make up the the ergodic cost functional

actual portfolio with valueX[, thisv; synthetizes the [y 1 20 18
Wiener processes that drive these additional assets B lﬁfipf {Jr(m)} (18)
and are not included ;. is finite for a reasonable class of strategies. A glance

The benchmark tracking problem now consistat equation (14) shows that this is not the case in our
in choosing 7} such that, possiblyX7 =~ Y;. model. If we choose e.g. a constant strategy=
Problems of this kind have to some extent alreadyonst., thenZ, is a lognormal process; the second
been studied in the literature and here we refer imoment of Z; grows exponentially fast in time, and
particular to [2]. As in [2] define theatio process thereforeA™ = +o0.

4



Our approach may be considered as alternative depends on the magnitude of the benchmark,

to the one leading to the cost functional (17). Rather namely X € [eY;, KY;]. This is financially
than stopping the process when it reaches the bound- meaningful in the sense that no investment

ary of [¢, K], we perform a transformation that in manager will be allowed to choose a strategy

a sense is equivalent torandom time changeand that lets his portfolio deviate too far from the

whose effect is, roughly speaking, to speed up the benchmark; within this class of strategies he will

time scale (equivalent to slowing down the process) then choose the one that comes closest to the

as the process gets close to the boundarje oK. benchmark.
The controlled procesg; that is obtained via this We shall calloptimal in the meara solution of
transformation has the following features: the optimal control problem with the ergodic cost

« It takes values, with probability one and for al

i)

functional (18). A stronger form of optimality will

¢ > 0, in the intervale, k. The ergodic cost P€ introduced in the next section.
functional (18) is, therefore, finite. ~ B. Pathwise otimality
The optimal controlr*, as a feedback i, is

the same as for the cost functional (17). In par- . .
pathwise optimality.

ticular, at least at a formal level, all reasonable .
. o ead to th imal feedback Given a measurable spate measurable func-
time changes lead to the same optimal feedback. . '
ge pamalteedbadions f R x U - R*, o : R¥ x U — R**" and
In the new time scale the control, which is opti- , . . . : .
) o " ak’-dimensional Brownian motiom,, consider the
mal for the ergodic cost criterion (18), satisfies

] . R controlled stochastic differential equation
the assumptions for pathwise optimality.

In this section we give a short introduction to

dry = f(zg,ue)dt + o (2, ug)dwy,
Remark 2.1: 2o ~ 1 (19)
The above considerations show that, in Ord%hereu is a probability onlR. This equation is

to obtain a solution with the stronger property, .y ra|ly associated to the family of operators
of pathwise optimality, one has to restrict the k

: ) W 1 9> i 0
evolution of Z7" to a compact set and in such £ = .Zﬂ aij (T, u) 20, + zfi(xvu)%7
a way that this evolution has the required er- BT = (20)

godic properties. The choice of the compact sgf;, af
[e, K] is arbitrary. It does not affect the optimal

z,u) =o' (z,u)o(z,u).

Suppose we fix a nonnegative, measurable
strategy, but affects the cost criterion and thug,ction ¢ : RF x 7 — [0, +00). We also denote by
also the optimal value of the cost. The modifie¢: ihe function spac€([0, +00), R*), endowed with
cost criterion has however the same effect fe topology of uniform convergence on compact
the original criterion, namely to keep the wealthyeis and the associated Barefield. In this section,
process as close as possible to the benchmggk |t (F+)e0 be the natural filtration irc.

in the sense of the quadratic deviation (a same  pefinition 2.2: A progressively measurable
objective can in fact be achieved by means Gfinction : [0,4+00) x C — U is said to be aontrol
different cost functions). if the following conditions hold.

From the applied financial point of view the 1) There exists a probability measuf* on C

restriction of Z to [e, K] can be interpreted as such that for everyf € C2 the process

restricting the wealth process to a band around t
the benchmark, where the width of this band = flw) = /0 (L5 f) (s )ds



is a P“-local martingale, and®* o II;* = . Then the feedback* is g-optimal a.s.

2) For allt > 0 we have Remark 2.5:For systems whose state variable
t

takes values in a compact set, the boundedness
Ji(u) = c(xs,ug)ds < +00 a.s.

Depending of %he circumstances, one may ré:_ondltlon for ¢(x;) is easily satisfied. This is the

strict oneself to a suitable subdétof the set of all case for the model to which Theorem 2.4 will be

controls. Elements of/ will be called admissible applied. Boundedness g (v:)o (w, ut), in the case

. . . o(xz,u) depends onu, is more severe if one admits
controls Consider a nondecreasing functign :

[0, +00) — (0,+00) such thatllimy_. 4 g(T) = 0.
Definition 2.3: We say that a control* € U
is g-optimal a.s. (respectively, in probability) if for
all u € U and for all probability measureB**" on
C x C having marginals”* and P*" and such that

unbounded controls. This conditions can actually be
weakened (see [9]): the conclusions of Theorem 2.4
hold if we replace boundedness gf(xt)a(a:t,ut)

by

2

%i < Cle(zs,u) + D) a.s. (26)

(zt)o (e, ur)

PY {(z,y) € CxC: =0 21
{@y) %o 7 Yo} @1 for someC, D > 0. Condition (26), however, does

we have not help if the instantaneous cost, -) is indepen-
lim g(T)[Jr(u*) — Jr(u)]t =0 pwuigs. dent ofu, as it happens for the cost in (16). For this

T—+o0 ; P
(22) reason we will later assume that admissible controls

(respectively, in probability with respect t8*-%").  are a.s. bounded.
Consider the stationarjdamilton - Jacobi -
Bellman equatior(SHJB) C. Bounded controlled processes

,ing[C“¢(x) +e(z,u)] = A, (23) (random time change)

in the unknowns(é, }). We are now ready to state We now illustrate the method to transform the

the basic result on pathwise optimality (see [9]).

Theorem 2.4:Suppose the following condi-[
to a random time change, and its justification was

processZ; in (14) into a process that takes values in
¢, K] at all positive times. This method corresponds

tions hold:

(i) There exists a solutioiip, A) of (SHJIB), with
¢ € C2(IRY). The “inf” in (SHJB) is attained
at v = k(z), and the feedback; = k(z:)
is an admissible control. Moreover, for eac
admissible control:, the processes(z;) and
99 (4)0(x¢, ue) are boundedP*-a.s.

(i) There exists a constait > 0 andm > 0 such
that

discussed in Remark 2.1.
Actually, we shall start out by defining directly

a suitable random time change. For this purpose,
rgiven a strategyr, let ZI* be the process according to
(14). Fix an intervale, K] and a continuous function
v : R — [0, +00) such thaty(z) > 0 for z € (¢, K),
andv(z) = 0 for z ¢ (¢, K) (for a specific choice
of such a functiony(-) see Theorem 3.6 below). As

i T m in section II-A we let, for givenr, 7 = inf{t > 0 :
E”" { [ /0 (e, ur) dt} } <CT™ (24) Zr ¢ |e, K]}. Assuming that, with probability one,

for all T > 0. ZF € (¢, K), define, fort < 7

(iii) Defining q(t) = t*/2¢(t), and lettingm be the at) = /t . 1Z7T ds. 27)
same constant as in (ii), one has o 72(Z5)
« is a (random), continuous, strictly increasing func-

400
/1 ¢ (t)dt < +oo. (25) " tion on [0,7), thus it admits a continuous inverse



a~ 1. The crucial point consists in choosingso that suitably restricting the class of admissible controls as
specified in the following Definition. In what follows,

lima(t) = +o0 as., (28)
tr the time scaling functiory is assumed to be fixed.
which implies that the domain af " is [0, +00). Definition 2.6: A strategyr is said to bead-
Under condition (28), the process missibleif the following conditions hold:
AR 271(” (29) 1) There exists a nonexploding solution to the

martingale problem associated with (30), and

is defined for allt > 0, and takes values i, K). the resulting process takes values (i K)

Moreover, it is not hard to show (see e.qg. [1], Chapter
almost surely.

5) that :
) 2) The processr is bounded almost surely.
dz7" = N ZINZEY (F + mp) dt 3) JJ(m) < +oo almost surely.
+(ZENZ (e — V) dwy We shall denote byd the set of admissible controls.
—(ZFNZT Bdvg (30) Our purpose is to find an admissible strategy

) ) 7* that minimizes the ergodic cost function
In terms of formal computations, this means that,

. 1
under the time change — o '(¢), we have AT = 1%mi1m TE{J;%(W)}, (32)
dt — ~F*(Z]7)dt, dwy — y(Z77)dwy, dvy — . . .
. ) ) i.e. that it is optimal in the mean and at the same
v(Z77)dv,. The associated cost functional must be ) ] i
. . time is also pathwise optimal in the sense of Theorem
modified accordingly: ) )
" 2.4. We shall see, in particular, that the structure of
Jr(m) = / o(ZF)dt — J(m) the HJB equation makes the optimal feedback inde-
OT pendent of the choice of. Moreover, for a special
= /O Y(ZI")e(Z77)dt. - (31)  choice ofy, we shall see (see Theorem 3.6 below)
that the optimal feedback is indeed an admissible
strategy in the sense of the above Definition 2.6 and

that it has all desired optimality properties.

For reasons that will become clear in sectio
[lI-A.2 below, it will be convenient to consider,
instead of a fixed instantaneous cost functign),
the entire family of its translates(z) — A. Here
we simply point out that this translation of the
instantaneous cost produces a simple translation &f Solution for the criterion of optimality in the mean

I1l. OPTIMAL SOLUTION

Jr, but Jz is not transformed in a simple way. Consider the cost functional in (3) or (32) that

Thus, after the time change, the control problem Wit‘% of the form of the general infinite-horizon average
the translated instantaneous cost is not necessa%(St functional

equivalent to the one without translation (the optimal i T
control law will however be seen to be independentA” (2) = limsup - £™* {/ C(erth)dt} (33)
0

T—o0
of this translation) .
. I . .
Condition (28), that is essential for the randorr\INhere 2 Is the initial value of Z" and = is an

. . . admissible control i.e. such that

time change to make sense, is a rather delicate one. -

It involves relations between the behavior-phear / (27, m)dt < o a.s.VT (34)
the boundary of[e, K] and the local time ofZ] o 0

(see [3], Section 5.5 for a discussion in a simple'?eflnlng

setting). We prefer here to avoid this problem by A= inf {AT(2), Yz} (35)



the general problem is to fing* such that\™ (z) = control. A more complete discussion on this point
A* for all z. is given in Proposition 3.8.

The main tool for solving this problem is based Assume then also, for the moment, that
on the stationary HIB equation, namely on the fofor a given function v(z) there exists a triple
lowing verification theorem. Its simple proof follows(¢(z), A, ¢(z)), where ¢(z) € C?, is bounded and
the argument sketched in [4], Sections 11.2.5 ardwhs¢,..(z) > 0, that satisfies, for € (e, K),

11.3.4. All steps are rigorously justified by the fact E(z) = —m2(2) $2(2) 4 85272(2).(2)

that the value functiow is uniformly bounded along n lﬁgz%g(z)i;(z)z) Fe(z)=A=0
2 zZz -

the trajectories ofZ] (by definition of admissible . )
Generalizing a procedure followed in [2], put

strategy).

Theorem 3.1:Given Z] satisfying (30),7 € Q(m; 2) = 507 2°7%(2)22(2) (38)
A, and an instantaneous cost functiefx, 7), let +272(2):(2) (7'l + 7) + e(2) — A
(¢, \) with ¢ € C? be such that where we use the shorthand notation

inf [L7¢(2) + e(z, )] = A (36) " = [(o'm=b)(c'T—b)+57].  (39)

where £™ is the generator ofZ7. Then, with We then have immediately
Jp(n) = /T o(ZF, m)dt Lemma 3.4:For the model of section Il the sta-
T t Nt ’
0

) tionary Hamilton-Jacobi-Bellman (SHJB) equation
i) lim sup T E™{Jr(m)} > A

N T—oo inf [L7® + ] = A (40)
ii) if 7(2) := argming [L™¢(z) + ¢(z, )] de- TEA
fines an admissible contrat; = m(z), IS equivalentto
then inf [Q(m;2)] =0 (41)
A = limsup %E”* {Jr(7*)} ie. We also have
T=o0 Lemma 3.5:Under the above assumptions on
N — min{limsup %Eﬂ {JT(W)}} ¢(z) i.e. ¢(z) € C? bounded and convex and sat-
0 T—o0

isfying (38), we have that, for fixed, the function
We shall now apply the above Theorem 3.1 to obta@(m =) in (38) is a non-negative definite quadratic
a solution, optimal in the mean, for the specific CaSRm in r. Eurthermore letting

¢=(2)
2¢.2(2)

of our problem as described in the previous section
1. ﬂ*:—(aa')_lﬂ(

For this purpose put

) + (b (42)
one has
A~/ NnN—1~ N /) _—1~ « 5 z
A e s (<z)>72<z> +629%(2)8:(2)
We shall make the following assumption 1, -
Assumption 3.2: i) B2 —2n+26<0 * 56 $::(2)2"77(2) +c(2) = A =0 (43)
ii) 2n—90#0 Proof: For z fixed, Q(-,z) is by definition
Remark 3.3:The somewhat restrictive condi-a quadratic form inr. Furthermore, sinc&),, =
tion i) above is introduced to make sure that, for?y2(2)¢..(2)(co’) with oo’ positive definite and

the coste(z) = (2 — 1)2, the corresponding solution ¢ convex, one hag) > 0.
(¢, A) of (36) is such that is a convex polynomial, To verify the second part of the statement, compute

’[7:

1
2

which allows explicit computation of the optimalfirst the coefficientss™ and (7’1 + 7) for 7 = 7*.



Putting for simplicitya = 4= one obtains’m
—ao~ '+ b from which

[o'n* = b [o'n* —b] = &2/ (00") " i = 207y
and thus
5" =2a%n+ 32
Furthermore,
(T i+i = —aj(o0’) V(07 + 7

—2an+46
Substituting these expressions in (38) one obtains

50:22°7220°0 + 56..2°7* 37
+ ¢.272(0 — 2am) + ¢ — A

= 22426, [(Z? 712} N+ 16..22928 + 6,296
— ¢z (%%n) +c—A
namely
2
. 2(z
Qri2) = —n P 4 000

5072 (2)62x(2) + ) — A

By the assumption that the paip, \) satisfies (38)
this then leads to

Q(r*;2)=0, Vze (¢ K)

function¢(z), bounded from below. Then the control
7* in (42) has the property that

a) it is admissible in the sense of Definition
2.6
b) it satisfies

7% = arginf [L7D + ¢ (45)

and is optimal in the mean for the prob-
lem with state variableZ;”” and with the
ergodic cost functional (32).

Remark 3.7:The optimal controlz* in (42)
does not depend directly on the chosgn); it does
not even depend indirectly om since the solution
¢ of (38) as well will be shown in Ill-A.2 to be
independent ofy.

Proof of the Theorem To prove a) it suffices
to show that, for the given choice of(z) in (44)
and form = 7*, equation (30) has a nonexploding
solution Z[ " € [e, K]. For this purpose assume for
the moment thaZ[ 7 € (¢, K) and define

Zi— € >
K -7,
If, after applying Ito’s formula, it can be shown that

U, = U(Z,) = log < (46)

¥, is the unique strong solution of the corresponding

equation, then one has shown that, indeed,

Ke%t +e
1+4e¥:

To this effect replacer by 7* from (42) in (30).

Zt = Z(‘I’t> = S (G,K) (47)

In the next Theorem we make a special ChOICSecalling the definitions ofy andé in (37) one then

for the functiony(z) and assume thaf(z) is a sec-
ond order convex polynomial; suchgawill in fact be

shown below (see Proposition 3.8 and Corollary 3.12)dZt

to be a solution to (38) whed(z) is a second-order

| (520 - n5 4 ) 22de
Jr(fg A B 1 )det 757dvt}

(e

polynomial and this independently of the choice of

v(2).
Theorem 3.6:Put
(K—2z)(z—¢)

(K —¢)z (44)

V(z) =

and assume that(z) = Az? + Bz + C is, for
suitable constantst > 0, B,C, a solution of (38)
corresponding to the given(z) and a chosen cost

o 2A 7,
Zt|:(cl + C'zz%) y2dt
+(C3 + 042%) ydwy — 6'7‘11)1‘}
(48)
with obvious meaning of the shorthand symbols
Cy,---,Cy. Putting

1 2
o3 = Z%y* <Cs + C‘*z) + 5 (49)




and noticing that Coming to b) notice that by Lemma 3.4 the

7 (SHJB) can be written as
7w = N .
o K—e 1 inf [Q(ms )] = 0
0z (Z-e(K-Z) 1Z By Lemma 3.5Q > 0 and, in particularQ(7*; z) =
0% (K—¢)(2Z - K —¢)
- = 0, so one has
072 (Z —e)?(K - Z)?
_ 2Z2-K-e 1 Q(r*;2) =inf [Q(m;2)] =0
K—e (v2)? "
by applying Ito’s rule we obtain fow, the following and thereforer” = arg inf. [Q(r; 2)]
equation Furthermore, as will be shown below (see in particu-

lar Corollary 3.17) the triplé(¢, 0); ¢|] solves (SHJB)

dav ={((C; +C
{[( ' ° Z) (2) for ¢ = ¢>¥ given in (69) below and so the feedback

+3((Cs+Cad)? 4+ 82) 22E=<| at (50 R
2( 3+ Cag) ﬁ) } ®0) 1w 7+ is optimal in the mean.

+ (Cs +Cy Z) dw — 5dvt}z Z(v) -
Since We have now obtained a control that is optimal
K —¢ eV in the mean for the problem of section Il under the
1 D)lz=z00) = Ke¥ e 1+e¥ assumption that there exists a trigle(z), A, ¢(2)),
(51) with ¢(z) of the form ¢(z) = Az? + Bz + C,
2Z-K-c _e 1l that satisfies (38). The latter is a nonlinear PDE of
K—ce¢ Z=7(%) e +1

the kind arising in continuous-time stochastic control
we finally obtain

problems.
U - { (K —e)e? Next we shall thus study this equation (38) and
1
(Ke? +e)(1+e") for this purpose we shall associate with it a simpler
v
+02@ equation, obtained from (38) by puttingz) = 1,
(Ke¥ +¢€)? :
C2h 3 v 1 ie.
L 1 ®2) ¢2( ) 1
oV E(z):=—- + 62, (2) + =322%¢..(2)
—1 76..(2) 2
+ 0304 ]
Ke +e +c(z)—A=0 (53)
Ci(1+e")(e” 1)

] dt+

2 (KeY +¢)2 that we shall call theauxiliary equation we shall

1+e

Cg+C4 - }dwt—ﬂdvt look for solutions for allz € IR. Below, when

studying equations (38) and (53) we shall consider
To verify the existence of a strong solution of this lasas solution an entire triple(¢, A, ¢). In subsection
equation (52), it suffices to show that the drift andll-A.2 we shall show that a solutiorig, A, ¢) for
volatility coefficients have a bounded derivative. Fo(38) can be obtained rather straightforwardly, once a
this purpose it suffices to notice that the derivativesolution (¢, A, ¢) for (53) has been found and so we
of all the coefficients are ratios of polynomials instudy first the auxiliary equation (53).

e¥. All denominators are different from zero and so In general, the instantaneous cost functiggn)
these functions are continuous. In addition it can ks given and in our case, where the purpose is that of
verified that the limits for|¥| — oo are bounded controlling Z] such that it stays close to 1, a natural
implying that the functions themselves are boundedhoice could be(z) = (z—1)2. Notice however that
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the same purpose can be achieved also with other cost
functions provided that they have a minimal value in

z = 1. In fact, as will be shown in subsection IlI- b)

A.2 below, a convenient cost function that allows to
obtain a solution(¢, A, ¢) of (38) is more complex
than the simple:(z) = (2 — 1)2.

Coming then to (53), notice that it becomes
a polynomial equation whenever(z) and ¢(z) are
polynomials. In the next subsection Ill-A.1 we shall
thus study solutionge, \, &) of (53) under the as-
sumption that is a polynomial, bounded from below
and of which we shall then also require that it has
minimal value inz = 1. It turns out (see Proposition
3.8 and its Corollary 3.12) that the only such poly-
nomial isé(z) = (z — 1)2 (the corresponding(z)
to obtain a solution to (38) will however be different
from (z — 1)? as can be seen from Corollary 3.17
below).

1) Solution of the nonlinear PDE in the poly-
nomial case:We have the following

Proposition 3.8:Let ¢(z) be a pol};gnomial

function in z of positive degree, i.ex(z) = Y _ ¢;2/
7=0

with cx > 0.

a) If ¢ is of degree 2 then, modulo a constan&he minimum value at
a corresponding solutiofw(z), A) of (53) with ¢(z)

a convex polynomial.

factor, there exists one solutigm(z), \) of
(53) with ¢(z) a polynomial if and only if
either Assumption 3.2 ii) is satisfied =
0. If Assumption 3.2 is satisfied then the
solution is unique, and is given by

casesp is convex if and only if assumption
3.2i) hold

If ¢ is of degree larger than 2, then there
exists a solution(¢(z),\) of (53), with
¢(z) a polynomial, for an open set of values
for the triple of parameter§, ¢, 8) if and
only if ¢(z) has the form

c(z) = cx 2™ + cp. (56)

In this case the solution is unique and it is
given by

$e) = g

2
B K(K—1)+6K—n&5

(57)
A= Co

Moreover ¢ is convex if and only ifK is
even and the condition, that strengthen 3.2

i),
BHEK —1)24+20(K —1)—2n <0

holds.

Remark 3.9:The main consequence of Propo-
sition 3.8 is that polynomials of the form(z) =
c1(z — 1)? + ¢, are the only polynomials attaining

= 1 and such that there exists

Remark 3.10:We obtained a solution where
#(z) is a convex polynomial. No claim is made
that this is the only possible solution. We were

aiming at obtaining a computable solution and for

#(z) = A(z+B)?* ; A= -24AnB*+¢p

this purpose we did not fix a priori a cost function

(54) c(z). Since a same objective can be achieved with

where

A= ———
B2 +26 — 2
B— C1 (55)
-~ 2A(2n—6)

different cost functions, we were rather looking for a
—ca suitable triple(c(z), ¢(z), A) with a meaningfuk(z)
that leads to a solution independently of the choice
of the time transformation. In so doing, it turned out

that a second order polynomialz) with ensuing

If Assumption 3.2 is not satisfied ang =
0 then the solutions are still given by (54),

polynomial¢(z) allowed us to achieve this objective.
Remark 3.11:The requirement that a polyno-

with A as in (55) andB generic. In both mial solution exists for an open set of values for
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the triple of parametergn,d, 3) is rather natural. It is easily seen that with suchg@of generic degree
Indeed, in real application, model parameters are only > 2, the first term in (53) is a polynomial of
approximately identified, so that one seeks for resultiegreeK and therefore, necessaribgg(c) = K (A
that holds for "generic” values of the parameters. is a constant). This implies

Proof of Proposition 3.8:Since we consider
only polynomial ¢(z), its degree must not be less deg(¢) = deg(c)

than 2 in order for the denominator in (53) to be  After these preliminary considerations we can

different from zero. Assuming than that there existgow analyze individually the two casesdfy(c) = 2
a solution to (53) withdeg(¢) > 2, all the terms anddeg(c) > 2.
after the first one in (53) are polynomials implying i

i . . Case a) :With
that also the first term (i) has to be a polynomial,
which is equivalent to requiring that,. divides¢?.  ¢(z2) = c22®> +c12+¢o and ¢(z) = A(z + B)?
This is immediately seen to be true ¢f(z) is of

the simple form¢’(z) = k(z — 3)*. Putting f(z) := equation (53) becomes

¢'(z) let us then consider general polynomials —2An(24B)?+622A(24B)+ 222 A+¢(z) -\ = 0.
- v o (59)
z) = z — D; @i s i ; |f 7 5 A ) .
I) };[1( B) bi# by 7 This expression has to vanish for all valueszcdnd
2 o)
where thes; are possibly complex. The rati’éy can A+ 26A+ B2A 4o =0
be written as% where —4nAB +26AB +¢1 =0
(log f) —2AB% + ¢y —A=0
log f =1log »  a;log(z — Bi). from where all claims concerning the cagey(c) =
=t 2 easily follow.
Therefore,
Dlog f — Z @ S Hj;éi(z - B)) Case b) :With
— >~ 0 IL(z—5) Ko .
and so c(z) = Z_:cjzj and ¢ = A(z+ B)
2 ILG-B)~! =0
Y aills(z = 5)) equation (53) becomes
It is immediately seen that, singg # 3;, none of X K1
the zeroes of the numerator, namgly, j = 1, ..., 7, Az (= 4+ B)T +0AKz(2 + B)
causes the denominator to vanish , but tiffiénannot n BPAK(K —1) 2+ B)E 24 c—A=0
divide f2. 2
The only possibility that remains is therefofe= It holds only if all the coefficients vanish.
k(z— pB)°. Consider first this condition for the coefficient
In this case, modulo additive constants that are irredf the term with highest degree
evant for equation (53), K 2
6(z) = ——(z = /)™ (58) | |
o+ from which we obtain
In other words,¢ must be of the form
A= K
¢(z) = A(z + B)¥. PK(K —1)+ 6K —n&s
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Concerning the other terms, consider the condi- Remark 3.13:The result of Corollary 3.12,
tion for the coefficient of the generic—th term with  combined with Lemma 3.16 below, justifies the as-
j>0 sumption made in Theorem 3.6 that there exigts)

_ _ ~ of the form¢(z) = A2* + Bz+ C that satisfies (38).
- UA% (f) BY + 64K (K 1) BE 2) Methodology for determining a control that
n ;AK(K 3 1)(K 22> BX=i 4 ¢ =0 is optimal in the mean:The main purpose of this

subsection is to show how from a solution of (53)
Since we know already the value of, from this one obtains a solution of (38) with(z) = Az% +
equation we obtain fol3 Bz + C for suitable values ofA > 0, B, C' and that

_ corresponds to an instantaneous cost functi
p= (o= (G) - (G20 "

K7

J j—1 having minimal value iz = 1.
32 K_29 ~1\ % We start with the following immediate
+—K(K-1)( . (60) . . g
2 j—2 Lemma 3.14:If the triple (¢, )\, ¢) satisfies

foreveryj =1, ..., K—1. Note that if onez; = 0, the (38), the same is true fam, A, ¢) with X = A+, ¢ =

B = 0. Otherwise the right hand side of (60) musf + ¢ for any real value.

be independent of. This fact can be expressed by a ~ Remark 3.15:This Lemma allows us to trans-

system of polynomial equations fen, 5, 3) that are late the values of which in turn allows one to obtain

not identities, and that, therefore, cannot be satisfid€ Most convenient problem setup. In particular, one

in an open set. Thus, the only possibility is tHat= May choosé = c¢—\ so thatA = 0 for which (SHJB)

0ande; =0forj=1,...,K —1. in (40) becomes

Finally, for the constant term there remains the

cauation. -\ inf [£7® 47 = 0 63)
guationcy — A = 0. TEA

To conclude, for the case wheag(c) > 2 one Next we prove

can find a solution of (53) and thus of (SHJB) only ~ Lémma 3.16:Given the dynamics oZ" as in
if c(2) = cxzX + ¢ and the corresponding solution(30), wherey(z) is any sufficiently regular function
is given by the pail(¢, \) in (57). of z, let the instantaneous cost functiofr) have the

- form

This Proposition leads immediately to c(z) =72(2) [C(2) — A] (64)
Corollary 3.12: Given the instantaneous cost
functionc(z) = (2—1)2, under Assumption 3.2 therewhereC(z) is a given function ot andA a suitable
exists one and only one solutidi, \) to (53) with costant. Then the triple
¢(z) a polynomial function. More precisely one has

b(z) = (pz + q)2 with [(¢(2),0); c(2)] (65)
p= \/_ (82 +26 — 277)‘1 solves (38) if and only if the triple
—(BZ+ 20 —2n) (61)
=Y 27— 3 [(#, 4); C(2)] (66)
Furthermore, solves the auxiliary equation (53).
N 27752 +26—2n 024 2np? 62) Proof: “only if” Suppose that[(¢(z),0); c(2)]
(2n —96)? (6 —2n)? solves (38); it means that we may rewrite this equa-
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tion as : (53) . By Lemma 3.16 the triplg(¢(z), 0); =¥ (z)]

2 then solves (38).
2 93 (2) 2
- z + 027°(2)0, (2
m()%z(z) 7 (2)6:(2) -
+ }522272@”) (2) +7%2[C(z) — A] = 0. (67) We come now to the main theorem concerning
2 zZZ *

o _ _ _ the control that is optimal in the mean.
Dividing by ~? it follows immediately that

[(¢,A); C(2)] solves the auxiliary equation (53).

The “if” part i letel I . if the tripl
© 11" part1s compietely analogous - It the rlpeaccording to (44), the criterion is the ergodic cost
[(¢,A); C(2)] solves

Theorem 3.18:Given the control problem with
controlled proces&T as in (30) wherey(z) is chosen

functional (32), and the instantaneous cost function is

2
_njz((i)) +02¢.(2) + %5222@2(2) +c(z) = A ac“¥(z) according to (69). Then, under assumption
= (68) 3.2, the control
then, bringingA = A on the left of the equal sign . o (2n—26— ) 1
and multiplying by~2, one obtains the statement. 7t = —(od') " p 2n—-0) =
" + (07— (o0 )i (7)

If for our control problem with controlled state
variable Z7 as in (30) we have an instantaneouts optimal in the mean.
cost function of the from as in (64), then Lemma  Proof: By Corollary 3.17 we have that a solu-
3.16 allows us to search for a tripie, A, c) that tion to (38) is(¢(z),0,c"*(z)), wherec*¥ (z) is as
solves (38), by solving (53), i.e. by puttingz) = 1. in (44) and¢(z) as in Corollary 3.12 namely of the
Notice that we are allowed to do this only at the leveform as required in Theorem 3.6 with
of the algorithm to obtain a solution to the given

A = p2 = (2n—26-p3*)"1
roblem. The problem itself looses its meaning for
P nep g B = 2pg = 2(2n—0)"" (72)
v(z) = 1 since then the process™ does not anymore ) M — 25 — 32
possess the required ergodic properties as pointed out ¢ = ¢ = (27— 0)2

In section [I-A. Since the form assumed here for the functidn) is

In what follows, we fix the time-scaling func- . ¢ me as that required in Theorem 3.6, we have

.tlon 7 according to (44)’. and, consequently, _th?hatw* in (42) is an optimal control where we can
instantaneous cost according to (64). More preC|seI|¥OW replaceé. (=) and ¢..(z) by their expression

the instantaneous cost for the time scaled processréséulting frome(z) = A=?+ Bz+C with A, B, C as

given by in (72). Notice that, by assumption 3.2, we hatve-
2 2
K (z) = (K —2) (22_26> [(z—1)2—A] (89) O as required. This then leads to (71) thus proving
(K — )z the Theorem.
where 52 1 op 3 -
A= T2 (70) . .
(6 —2n)? To conclude, notice that the triple, A, ¢) that
with n and¢ as given in (37). solves (38) in correspondence of = ¢“% and

Corollary 3.17: Given ¢ (z) as in (69), one ¢(z) = Az%2 + Bz + C has\ = 0. There is no
has that the paif¢,0), with ¢ as in Corollary 3.12, contradiction in the fact that the optimal value for the
solves (38). control problem is zero, since, with the translation by

Proof: By Corollary 3.12 we have thdt), A = A, the instantaneous cost function can take positive
A) with C(z) = (2—1)? solves the auxiliary equation as well as negative values.
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B. Solution for the criterion of pathwise optimality [9] P. Dai Pra, G.B. Di Masi, and B. TrivellatoPathwise

L . . ) optimality in stochastic contrplSIAM J. Control Optim. 39
In this final section, we show pathwise opi- (2000), no. 5, 1540-1557

mality of the controlz* given in (71). The explicit [10] M. Tolotti, Strategie di portafoglio ottimali per il “tracking”
knowledge of the solution of (SHIB) makes path- di un indice Laurea thesis, University of Padova, 2002.
wise optimality an almost immediate application of
Theorem 2.4.
Theorem 3.19:Under the assumptions of The-
orem 3.18, the control in (71) ig-optimal a.s. for
every g(-) satisfying condition (iii) in Theorem 2.4.
Proof: We have to verify that conditions (i)
and (ii) in Theorem 2.4 hold. For Condition (i),
observe thatp is a polynomial of degree two, and
the diffusion coefficient in the state equation (30) is

(V(2)z (x'o = '), 7(2)2).

Since both state and control are assumed to be
bounded, Condition (i) follows.
Similarly, Condition (ii) follows from the fact
that the instantaneous cost functigf(z)(c(z) — A)
is continuous inz.
|
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