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A B S T R A C T

A typical approach to tackle stochastic control problems with partial observation is to separate the control
and estimation tasks. However, it is well known that this separation generally fails to deliver an actual
optimal solution for risk-sensitive control problems. This paper investigates the separability of a general class
of risk-sensitive investment management problems when a finite-dimensional filter exists. We show that the
corresponding separated problem, where instead of the unobserved quantities, one considers their conditional
filter distribution given the observations, is strictly equivalent to the original control problem. We widen the
applicability of the so-called Modified Zakai Equation (MZE) for the study of the separated problem and prove
that the MZE simplifies to a PDE in our approach. Furthermore, we derive criteria for separability. We do not
solve the separated control problem but note that the existence of a finite-dimensional filter leads to a finite
state space for the separated problem. Hence, the difficulty is equivalent to solving a complete observation
risk-sensitive problem. Our results have implications for existing risk-sensitive investment management models
with partial observations in that they establish their separability. Their implications for future research on new
applications is mainly to provide conditions to ensure separability.
1. Introduction

Stochastic control problems with partial observation require a joint
estimation of the unobservable state of the system and an optimiza-
tion of the state-dependent control criterion. This joint estimation–
optimization problem is particularly challenging. The go-to solution is
to separate the problems into two sequential steps: estimate the state
variable via filtering and optimize the criterion with the unobservable
state replaced by its estimate (Davis, 1977; Fleming & Rishel, 1975;
Lindquist, 1973; Wonham, 1968). However, in so doing, one may
lose full optimality. For instance, the class of risk-sensitive control
problems is not separable in general (Bensoussan, 1992; Bensoussan &
van Schuppen, 1985). If one still achieves full optimality we say that
a (strict) separation property holds. For example, a few risk-sensitive
control problems are separable (Nagai, 2001; Nagai & Peng, 2002) or
appear separable (Davis & Lleo, 2013, 2020, 2021).

A more complete approach is to pass to the so-called separated
problem where, in place of the unobserved state variable, one considers
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its conditional or filter distribution, given the available observations.
Yet, little care is usually given to showing that, on the basis of the
information provided by the available observations, the so-obtained
separated problem is indeed equivalent to the original one under partial
observations. In this paper, we deal with this issue as one of our objec-
tives. Even if equivalence holds, there is also the problem that whereas
the unobserved state is typically finite-dimensional, the filter distribu-
tion is, in general, infinite-dimensional. In a wider sense, one can then
consider a separation property to hold if, in the separated problem, the
filter distribution can be parametrized by a finite-dimensional parame-
ter process. This is particularly relevant in view of solving the control
part of the problem because then these parameters become a finite-
dimensional state variable process that can be considered observable
because it can be computed on the basis of the observations. Such state
variables typically satisfy stochastic dynamic equations. So the control
part of the problem can be approached by standard methods for full
observation problems, such as an HJB approach.
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An alternative approach to solve partially observed control prob-
lems, in particular of the risk-sensitive type, results from the work of
Nagai and Peng (see Nagai, 2001; Nagai & Peng, 2002). They introduce
what they call a Modified Zakai Equation (MZE). This MZE turns out to
e a useful tool since the objective function of the control problem can
e expressed in terms of the solution to the MZE. However, this MZE is
stochastic PDE, so obtaining an explicit solution is generally difficult.
agai and Peng succeed in deriving an explicit solution for the case
f a linear-Gaussian model, thereby also obtaining strict separability.
e shall show that in our situation, the MZE reduces to a deterministic

DE.
In the given context, and inspired by the work of Nagai and Peng,

he objective of our study is to consider more general nonlinear models
or which a finite-dimensional filter exists, characterized by a filter
arameter process 𝜁𝑡. The best-known finite-dimensional filters exist
or linear-Gaussian models (Kalman–Bucy filter) and for finite-state
arkov processes (for general results, in this case, see Elliott, 1993).
ther classical finite-dimensional filters are those in Beneš (1981)
nd Daum (1986). Since exact finite-dimensional filters are difficult
o obtain, finite-dimensional approximations have been extensively
tudied, starting from the Extended Kalman Filter [EKF] obtained via a
inearization approach. Other approaches rely on Markov chain approx-
mations (Kushner & Dupuis, 2001), projections on a finite-dimensional
anifold (Brigo et al., 1999), and Fourier expansions (Mikulevicius
Pragarauskas, 1993). The finite-dimensionality of filters has been

tudied in particular in discrete-time models; such a model may also
esult from a time discretization of a continuous-time model (actual
bservations are naturally mostly in discrete time), see Section 2.3.
n Runggaldier and Stettner (1994) and Runggaldier and Spizzichino
2001).

Our aim, which also represents our contribution with respect to the
iterature, in particular Nagai (2001) and Nagai and Peng (2002), is to:

(i) show the equivalence of the original and separated problems;
(ii) find a criterion to analyze under which conditions and in what

form a separation property holds between estimation and con-
trol; and

(iii) widen the applicability of the MZE approach by deriving an MZE
that applies whenever a finite-dimensional filter exists.

urthermore, we derive a generalized Kallianpur–Striebel formula for
he problem in its original version, and we also establish the separabil-
ty of existing risk-sensitive investment management models.

Concerning the separated problem, given our assumption on the
xistence of a finite-dimensional filter process 𝜁𝑡, we shall consider
his process 𝜁𝑡 as the state variable process for the separated problem.

e then perform a measure change in the spirit of Kuroda and Nagai
2002) to express the thus obtained separated risk-sensitive control
roblem in standard form.

As in the work of Nagai and Peng, our paper considers a partially
bserved stochastic control problem of the risk-sensitive type that arises
rom investment in financial markets. A peculiarity of such problems
ith respect to more engineering-type control problems under partial
bservation is that the control, which is given by the investment strat-
gy, does not affect the observations. This has an implication also for
he issue of separability (in this context see e.g. Georgiou & Lindquist,
013). While the issue of separability for investment problems with
risk-sensitive criterion also appears in Nagai (2001) and Nagai and

eng (2002), those studies consider only linear-Gaussian models. Our
ork generalizes such a setting by allowing for more general mod-
ls for which we assume the existence of a finite-dimensional filter,
arametrized by 𝜁𝑡.

Specifically, the set of risk-sensitive control problems we consider
n this paper generalizes the setup in Davis and Lleo (2021). This setup
rovides a convenient starting point because it already includes most
2

isk-sensitive asset management models (Bielecki & Pliska, 1999; Davis v
& Lleo, 2008; Kuroda & Nagai, 2002; Nagai, 2001), contains a sub-
class of Linear-Exponential-Gaussian (LEG) models (Bensoussan, 1992;
Jacobson, 1973), and because it also connects to the recent literature
on optimal investment with expert opinions (Davis & Lleo, 2013, 2020;
Frey et al., 2012; Gabih et al., 2014; Sass et al., 2017, 2020) which
relies extensively on filtering. We extend this setup in two main ways.
We remove the linearity assumption to consider general nonlinear
dynamics and introduce a mix of observable and unobservable state
variables. The reader will find a detailed correspondence between our
approach and existing risk-sensitive investment management models in
Appendix A.

Concerning the MZE in our setup, it will be a deterministic PDE,
contrary to Nagai and Peng’s stochastic PDE. Its solution allows us to
determine the value of the objective function of the control problem
for each given strategy. We do not discuss how to obtain its solution,
but it is a deterministic PDE, so one ends up with the same degree of
difficulty as when solving an HJB equation for a complete observation
stochastic control problem.

Our paper is organized as follows. Section 2 describes the model
setup. Section 3 introduces the finite-dimensional filter, and Section 4
presents the setup of our risk-sensitive stochastic control problem. Sec-
tion 4.1 recalls the main features of the problem in the pre-filter setting
with the unobserved state/factor process 𝑋𝑡. Section 4.2 then presents
the setup of the separated problem based on the filter parameter process
𝜁𝑡 and in Section 4.3 we prove the equivalence of the two problem
settings, the original one of Section 4.1, and the separated one of
Section 4.2; the proof itself can be found in Appendix B. Section 5 then
concerns the modified Zakai equation (MZE) for the separated problem.
We also propose a generalized Kallianpur–Striebel formula, with the
proof in Appendix D, and establish a relation between the original and
separated problems. With this last objective in mind, we summarize the
key aspects of the MZE for the problem in its original form, due to Nagai
and Peng, in Appendix C. Section 6 outlines criteria for separability.
Finally, Section 7 provides examples of implementation.

2. Model setting

Let
(

𝛺, , ( )𝑇𝑡=0 ,P
)

be a filtered complete probability space. We
consider on this space a R𝑑 -valued 𝑡-Wiener process 𝑊𝑡 with compo-
nents 𝑊 𝑖

𝑡 , 𝑖 = 1,… , 𝑑, and where, for 𝑘,𝓁 ≥ 0, 𝑛, 𝑚 ≥ 1 to be specified
elow, 𝑑 ∶= 𝓁 + 𝑛 + 𝑚 + 𝑘 + 1.

.1. Factor process

In our model, asset and benchmark drifts are nonlinear functions of
𝑛+𝓁) factors. These factors can be macroeconomic variables (GDP, in-
lation, interest rates, . . . ). They can also be returns driven by empirical
sset pricing factors (market risk premium, value premium, momen-
um, . . . ). Finally, these factors can be latent variables (obtained, for
xample, from a principal component analysis).

Similarly to Platen and Runggaldier (2004, 2007), we assume that
≥ 1 factors are unobservable while 𝓁 ≥ 0 factors are observable. The
nobservable factors 𝑋 and observable factors 𝐹 have the following
ynamics:
𝑑𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡, 𝐹𝑡)𝑑𝑡 + 𝛬(𝑡, 𝑋𝑡, 𝐹𝑡)𝑑𝑊𝑡, 𝑋0 ∼ (𝜇) (2.

𝑑𝐹𝑡 = 𝑏𝑓 (𝑡, 𝑋𝑡, 𝐹𝑡)𝑑𝑡 + 𝛬𝑓 (𝑡, 𝐹𝑡)𝑑𝑊𝑡, 𝐹0 = 𝑓0, (2.

where 𝑏 ∶ [0, 𝑇 ] × R𝑛 × R𝓁 → R𝑛, 𝑏𝑓 ∶ [0, 𝑇 ] × R𝑛 × R𝓁 → R𝓁 ,
nd the matrix-valued functions 𝛬 ∶ [0, 𝑇 ] × R𝑛 × R𝓁 → R𝑛×𝑑 , and
𝑓 ∶ [0, 𝑇 ] ×R𝓁 → R𝓁×𝑑 are suitable 𝐶1,1,1

𝑏 or 𝐶1,1
𝑏 functions that ensure

he existence of a strong solution to (2.1)–(2.2). The random initial
alue of the unobservable factors, 𝑋0 follows a known distribution

with parameters 𝜇. The initial value 𝑋0 is also independent of the
iener process 𝑊𝑡.

emark 1. As customary in filtering, the diffusion coefficient of
n observation process cannot depend on the unobservable variable.
uch dependence generates a noise-free observation via the quadratic

ariation of the process and thus causes the filter to degenerate.
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2.2. Financial assets and benchmark

The financial market consists of 𝑚 risky financial assets. Their
discounted prices follow a geometric dynamics:

𝑑𝑆 𝑖
𝑡

𝑆 𝑖
𝑡

= 𝑎𝑖(𝑡, 𝑋𝑡, 𝐹𝑡)𝑑𝑡 +
𝑑
∑

𝑗=1
𝜎𝑖𝑗

(

𝑡, 𝐹𝑡
)

𝑑𝑊 𝑗
𝑡 , 𝑆𝑖(0) = 𝑠𝑖, 𝑖 = 1,… , 𝑚, (2.3)

where 𝑎 ∶ [0, 𝑇 ] × R𝑛 × R𝓁 → R𝑚 and 𝛴 ∶ [0, 𝑇 ] × R𝓁 → R𝑚×𝑑 are
suitable 𝐶1,1,1

𝑏 or 𝐶1,1
𝑏 functions that ensure the existence of a strong

solution to (2.3), and where we denoted the elements of 𝛴 (𝑡, 𝑓 ) as
𝜎𝑖𝑗 (𝑡, 𝑓 ) , 𝑖 = 1,… , 𝑚; 𝑗 = 1,… , 𝑑. We also assume that no two assets
ave an identical risk profile:

ssumption 2.1. The matrix 𝛴𝛴′ (𝑡, 𝐹𝑡
)

is positive definite.

To tidy the notation in Assumption 2.1, we denoted the matrix mul-
iplication 𝛴

(

𝑡, 𝐹𝑡
)

𝛴′ (𝑡, 𝐹𝑡
)

by 𝛴𝛴′ (𝑡, 𝐹𝑡
)

. We adopt similar notational
shortcuts throughout the paper.

As in Davis and Lleo (2020, 2021), we distinguish between tradable
and non-tradable assets. The investor is allowed to trade an investment
universe of 0 < 𝑚1 ≤ 𝑚 assets, but not the remaining 𝑚2 = 𝑚 − 𝑚1 ≥ 0
assets. Accordingly, we express the securities price vector as 𝑆𝑡 ∶=
(

𝑆(1)′
𝑡 𝑆(2)′

𝑡

)′
, where 𝑆(1)

𝑡 is the 𝑚1-vector process of tradable securities
prices and 𝑆(2) is the 𝑚2-vector process of untradable, but observable,
securities prices. We perform a similar decomposition for the vector-
and matrix-valued functions 𝑎 and 𝛴 and introduce the following

Notation 1. Denote by 𝑎(1) and 𝛴(1) the subvector and submatrix
corresponding to the 𝑚1 tradable assets, with an analogous definition for
𝑎(2) and 𝛴(2).

The distinction between tradable and non-tradable assets introduces
a constraint in the stochastic control problem, but it does not affect the
filtering problem. Investors observe the price trajectory of all the assets
to estimate the unobservable factors.

The investor manages a portfolio of financial assets against a bench-
mark index, typically a financial index or a custom-built passive port-
folio. We model the benchmark’s discounted level as:
𝑑𝐿𝑡
𝐿𝑡

= 𝑐(𝑡, 𝑋𝑡, 𝐹𝑡)𝑑𝑡 + 𝛯
(

𝑡, 𝐹𝑡
)

𝑑𝑊𝑡, 𝐿(0) = 𝑙, (2.4)

where 𝑐 ∶ [0, 𝑇 ] × R𝑛 × R𝓁 → R and 𝛯 ∶ [0, 𝑇 ] × R𝓁 → R𝑑 are suitable
𝐶1,1,1
𝑏 or 𝐶1,1

𝑏 functions that ensure the existence of a strong solution.

2.3. Observation process

The investor infers the value of the 𝑛 unobservable factors 𝑋𝑡
from information contained in the observable factors, financial asset
prices, benchmark value, and in non-market observations such as expert
forecasts and alternative data. We model these observations as the
R𝑚𝑌 -valued process 𝑌𝑡 ∶=

(

𝐹 ′
𝑡 , ln𝑆

′
𝑡 , ln𝐿

′
𝑡 , 𝐸

′
𝑡
)′, where

(i) ln𝑆𝑡 is the R𝑚-valued vector with elements equal to the loga-
rithm of the discounted securities prices, that is ln𝑆𝑖

𝑡 , 𝑖 = 1,… , 𝑚.
This vector process solves the SDE

𝑑 ln𝑆𝑡 =
[

𝑎(𝑡, 𝑋𝑡, 𝐹𝑡) −
1
2
𝑑𝛴

(

𝑡, 𝐹𝑡
)

]

𝑑𝑡+𝛴
(

𝑡, 𝐹𝑡
)

𝑑𝑊𝑡, ln𝑆0 = ln 𝑠,

(2.5)

where 𝑑𝛴
(

𝑡, 𝐹𝑡
)

is the vector containing the elements on the
main diagonal of the square matrix 𝛴𝛴′ (𝑡, 𝐹𝑡

)

, that is,
𝑑𝛴 (𝑡, 𝑓 ) ∶=

((

𝛴𝛴′)
11 (𝑡, 𝑓 ) ,

(

𝛴𝛴′)
22 (𝑡, 𝑓 ) ,… ,

(

𝛴𝛴′)
𝑚𝑚 (𝑡, 𝑓 )

)′;
(ii) ln𝐿𝑡 is the logarithm of the discounted benchmark level, with

dynamics

𝑑 ln𝐿𝑡 =
[

𝑐(𝑡, 𝑋𝑡, 𝐹𝑡) −
1
2
𝛯𝛯′ (𝑡, 𝐹𝑡

)

]

𝑑𝑡+𝛯
(

𝑡, 𝐹𝑡
)

𝑑𝑊𝑡, ln𝐿0 = ln 𝑙;
3

(2.6) 
(iii) 𝐸𝑡 models 𝑘 expert forecasts. It solves the SDE:

𝑑𝐸𝑡 = 𝑎𝐸 (𝑡, 𝑋𝑡, 𝐹𝑡)𝑑𝑡 + 𝛴𝐸 (

𝑡, 𝐹𝑡
)

𝑑𝑊𝑡, 𝐸0 = 𝑒0, (2.7)

where 𝑎𝐸 ∶ [0, 𝑇 ] × R𝑛 × R𝓁 → R𝑘 and 𝛴𝐸 ∶ [0, 𝑇 ] × R𝓁 → R𝑘×𝑑

are suitable 𝐶1,1,1
𝑏 and 𝐶1,1

𝑏 functions that ensure the existence of
a strong solution.

ence, 𝑚𝑌 ∶= 𝓁 + 𝑚 + 𝑘 + 1. This also justifies the fact of having put
= 𝓁 + 𝑛 + 𝑚 + 𝑘 + 1 at the beginning of this section. We express the

ynamics of 𝑌𝑡 succinctly as:

𝑌𝑡 = 𝑎𝑌 (𝑡, 𝑋𝑡, 𝐹𝑡)𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝐹𝑡
)

𝑑𝑊𝑡, 𝑌0 = 𝑦0, (2.8)

here
𝑌 (𝑡, 𝑋𝑡, 𝐹𝑡) ∶=

(

𝑏𝑓 (𝑡, 𝑋𝑡, 𝐹𝑡)′, 𝑎(𝑡, 𝑋𝑡, 𝐹𝑡)′ −
1
2
𝑑𝛴

(

𝑡, 𝐹𝑡
)

, 𝑐(𝑡, 𝑋𝑡, 𝐹𝑡)′

− 1
2
𝛯𝛯′ (𝑡, 𝐹𝑡

)

, 𝑎𝐸 (𝑡, 𝑋𝑡, 𝐹𝑡)′
)

′, (2.9)

𝛴𝑌 (

𝑡, 𝐹𝑡
)

∶=
(

𝛬𝑓 (

𝑡, 𝐹𝑡
)′ , 𝛴

(

𝑡, 𝐹𝑡
)′ , 𝛯

(

𝑡, 𝐹𝑡
)′ , 𝛴𝐸 (

𝑡, 𝐹𝑡
)′
)′

.

2.4. Summary of the model

Table 1 presents the essential information related to the variables
used in our model.

3. Filter setup

Let 𝑌
𝑡 = 𝜎{𝑌 (𝑢), 0 ≤ 𝑢 ≤ 𝑡} be the filtration generated by the

observation process1. We embed our partial observation problem in
a slightly more general class, where the coefficients may depend on
the entire observation process 𝑌𝑡. Now we express 𝑏, 𝑎𝑌 , 𝛬, and 𝛴𝑌 as
unctions of 𝑌𝑡 instead of just 𝐹𝑡, with a slight abuse of notation. Thus,
e have

⎧

⎪

⎨

⎪

⎩

𝑑𝑋𝑡 = 𝑏(𝑡, 𝑋𝑡, 𝑌𝑡)𝑑𝑡 + 𝛬(𝑡, 𝑋𝑡, 𝑌𝑡)𝑑𝑊𝑡, 𝑋0 ∼ 𝐷(𝜇)

𝑑𝑌𝑡 = 𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡)𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑𝑊𝑡, 𝑌0 = 𝑦0.
(3.1)

We shall base ourselves on the following:

ssumption 3.1. There exists a finite-dimensional filter of 𝑋𝑡 given
𝑌
𝑡 , parametrized by 𝜁 =

(

𝜁1, 𝜁2,… , 𝜁𝑞
)

for some 𝑞 ∈ N, i.e.

𝑝𝑋𝑡 ∣𝑌
𝑡
(𝑋) ∼ 𝑝 (𝑋; 𝜁 ) . (3.2)

Let 𝑍 ∶=
(

𝑌1,… , 𝑌𝑚𝑌 , 𝜁1,… , 𝜁𝑞
)′. Since our model is a diffusion-type

model, analogously to what is the case with the Kalman–Bucy filter,
we may reasonably assume that 𝜁 can be represented as a R𝑞-valued
diffusion process with dynamics

𝑑𝜁𝑡 = 𝐺(𝑡, 𝑍𝑡)𝑑𝑡 +𝐻(𝑡, 𝑍𝑡)𝑑𝑌𝑡, (3.3)

with initial value 𝜁0, and for suitable functions 𝐺 and 𝐻 such that a
solution exists.

Remark 2. The dynamics at (3.3) includes the known finite-
dimensional filter dynamics for those cases where the not directly
observable process 𝑋𝑡 follows a diffusion dynamics as in (3.1). It
includes also the classical Wonham filter (see Wonham, 1964), where
𝑋𝑡 is a finite-state Markov process with states 𝑋𝑡 ∈ {𝑥1,… , 𝑥𝑘} for some
𝑘 ∈ N rather than a diffusion. This process 𝑋𝑡, or a function thereof,
is assumed to be observed in additive Gaussian noise. More precisely

1 By a slight abuse of notation, we refer to 𝑌
𝑡 as the filtration to identify

he filtration
(

𝑌 )𝑇
𝑡=0 – by contrast with ( )𝑇𝑡=0 – and point to the 𝜎-algebra

𝑌 which tracks the information available at time 𝑡.
𝑡
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Table 1
Summary of the model.
Variable Interpretation Dimension Observable? Traded by

the investor?

𝑋𝑡 Factors (hidden) 𝑛 ≥ 1 No No

𝐹𝑡 Factors (observable) 𝓁 ≥ 0 Yes No

𝑆𝑡 =
(

𝑆 (1)′
𝑡 𝑆 (2)′

𝑡

)

Securities 𝑚 = 𝑚1 + 𝑚2 Yes See below
𝑆(1)′
𝑡 Tradable securities 𝑚1 ≥ 1 Yes Yes

𝑆(2)′
𝑡 Untradable securities 𝑚2 ≥ 0 Yes No

𝐿𝑡 Investment benchmark 1 Yes No

𝐸𝑡 Expert forecasts 𝑘 ≥ 0 Yes No
t
a
f

R

⎛

⎜

⎜

⎜

⎜

⎜

⎝

I

𝛴

𝛯

W
c
i

⎧

⎪

⎨

⎪

⎩

)

)

let, for a measurable function 𝑓 (⋅) and a constant 𝜎, the observations
be given by 𝑌𝑡 with

𝑑𝑌𝑡 = 𝑓 (𝑋𝑡) 𝑑𝑡 + 𝜎 𝑑𝛽𝑡

where 𝛽𝑡 is a Wiener process. In this case the filter parameters 𝜁𝑡
correspond to the conditional state probabilities 𝑝𝑡 = (𝑝1𝑡 ,… , 𝑝𝑘𝑡 ) with
𝑝𝑖𝑡 = 𝑃 {𝑋𝑡 = 𝑥𝑖 ∣ 𝑌

𝑡 } that evolve on a simplex. Even so, recalling that
𝑍 = (𝑌 , 𝜁) and denoting by 𝑄 = (𝑞𝑖𝑗 ) ∈ R𝑘×𝑘 the generator of 𝑋𝑡, they
satisfy a dynamics of the form (3.3) given by (see e.g. Eq. (2) in Zhang
et al., 2007)

𝑑𝑝𝑡 = 𝑝𝑡𝑄𝑑𝑡 − 1
𝜎2

𝑓𝑡𝑝𝑡𝐹𝑡𝑑𝑡 +
1
𝜎2

𝑝𝑡𝐹𝑡𝑑𝑌𝑡

here 𝑓𝑡 =
∑𝑘

𝑖=1 𝑓 (𝑖)𝑝
𝑖
𝑡 and 𝐹𝑡 = diag(𝑓 (1),… , 𝑓 (𝑘)) − 𝑓𝑡𝐼 with 𝐼 the

identity matrix.

Next, for a generic integrable function 𝑓 (𝑡, 𝑋, 𝑌 ), define

𝑓 (𝑡, 𝑍) ∶= ∫ 𝑓 (𝑡, 𝑥, 𝑌 ) 𝑑𝑝 (𝑥; 𝜁 ) (3.4)

In particular, we let

�̂�𝑌 (𝑡, 𝑍) ∶= ∫ 𝑎𝑌 (𝑡, 𝑋, 𝑌 ) 𝑑𝑝 (𝑋; 𝜁 ) . (3.5)

Based on (2.9) we decompose �̂�𝑌 as

̂𝑌 (𝑡, 𝑍𝑡) ∶=
(

�̂�𝑓 (𝑡, 𝑍𝑡)′, �̂�(𝑡, 𝑍𝑡)′ −
1
2
𝑑𝛴

(

𝑡, 𝑌𝑡
)

, 𝑐(𝑡, 𝑍𝑡) −
1
2
𝛯𝛯 ′ (𝑡, 𝑌𝑡

)

, �̂�𝐸 (𝑡, 𝑍𝑡)′
)′

(3.6)

and consider the further decomposition �̂�(𝑡, 𝑍𝑡) =
(

�̂�(1)′ (𝑡, 𝑍𝑡) �̂�(2)′ (𝑡, 𝑍𝑡)
)′.

Since the accessible filtration is the subfiltration 𝑌
𝑡 ⊊ 𝑡, we shall

consider dynamics restricted to 𝑌
𝑡 .

Lemma 3.2 (‘‘Innovations Lemma’’).
There exists a

(

P,𝑌
𝑡
)

𝑑-dimensional standard Wiener process �̃�𝑡 such
that

𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃�𝑡 =
(

𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡) − �̂�𝑌 (𝑡, 𝑍𝑡)
)

𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑𝑊𝑡. (3.7)

For the proof, see Theorem 7.12 in Liptser and Shiryaev (2004) or
the Appendix in Platen and Runggaldier (2004).

Remark 3. Notice that the 𝑑-dimensional (𝑑 = 𝑚𝑌 +𝑛) Wiener process
�̃�𝑡 in the above lemma is closely related but not equal to the traditional
innovations process 𝑈𝑡 as it appears in the Kalman–Bucy filter setup and
where it should have dimension 𝑚𝑌 . Following from Eq. (3.7), we have

𝑑𝑈𝑡 ∶=
(

𝛴𝑌𝛴𝑌 ′ (
𝑡, 𝑌𝑡

)

)− 1
2 (𝑑𝑌𝑡 − �̂�𝑌 (𝑡, 𝑍𝑡)𝑑𝑡

)

=
(

𝛴𝑌𝛴𝑌 ′ (
𝑡, 𝑌𝑡

)

)− 1
2 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃�𝑡,

(3.8)

where all the quantities are on 𝑌
𝑡 . We nevertheless called the lemma

‘‘innovations lemma’’ since our �̃�𝑡 serves the same purpose as the
traditional innovations process, namely to standardize the difference
4

between the actual observation drift 𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡) which, contrary to the
Kalman filter setting, is here in general nonlinear, and its expectation
is �̂�𝑌 (𝑡, 𝑍𝑡). Furthermore, although �̃�𝑡 is a translation of 𝑊𝑡, it is not a
ranslation coming from a Girsanov measure transformation. Both 𝑊𝑡
nd �̃�𝑡 are Wiener processes under P. However, 𝑊𝑡 is defined on the
iltration 𝑡, while �̃�𝑡 is defined on 𝑌

𝑡 ⊊ 𝑡.

emark 4. In block matrix form, Eq. (3.7) reads

𝛬𝑓 (

𝑡, 𝑌𝑡
)

𝛴
(

𝑡, 𝑌𝑡
)

𝛯
(

𝑡, 𝑌𝑡
)

𝛴𝐸 (

𝑡, 𝑌𝑡
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑑�̃�𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑏𝑓 (𝑡, 𝑌𝑡)

𝑎(𝑡, 𝑌𝑡) −
1
2𝑑𝛴

(

𝑡, 𝑌𝑡
)

𝑐(𝑡, 𝑍𝑡) −
1
2𝛯𝛯′ (𝑡, 𝑌𝑡

)

𝑎𝐸 (𝑡, 𝑌𝑡)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�̂�𝑓 (𝑡, 𝑌𝑡)

�̂�(𝑡, 𝑌𝑡) −
1
2𝑑𝛴

(

𝑡, 𝑌𝑡
)

𝑐(𝑡, 𝑌𝑡) −
1
2𝛯𝛯′ (𝑡, 𝑌𝑡

)

�̂�𝐸 (𝑡, 𝑌𝑡)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑑𝑡

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛬𝑓 (

𝑡, 𝑌𝑡
)

𝛴
(

𝑡, 𝑌𝑡
)

𝛯
(

𝑡, 𝑌𝑡
)

𝛴𝐸 (

𝑡, 𝑌𝑡
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑑𝑊𝑡.

(3.9)

n particular, the second and third rows of the block matrix imply that
(

𝑡, 𝑌𝑡
)

𝑑�̃�𝑡 =
(

𝑎(𝑡, 𝑌𝑡) − �̂�(𝑡, 𝑌𝑡)
)

+ 𝛴
(

𝑡, 𝑌𝑡
)

𝑑𝑊𝑡,
(

𝑡, 𝑌𝑡
)

𝑑�̃�𝑡 =
(

𝑐(𝑡, 𝑌𝑡) − 𝑐(𝑡, 𝑌𝑡)
)

+ 𝛯
(

𝑡, 𝑌𝑡
)

𝑑𝑊𝑡.

e use these relations throughout the paper to ensure that individual
omponent processes 𝐹𝑡, 𝑆𝑡, 𝐿𝑡, 𝐸𝑡 of the observation 𝑌𝑡 are well defined
n terms of subvectors of 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃�𝑡.

Applying Lemma 3.2, we express (2.8) and (3.3) as:

𝑑𝑌𝑡 = �̂�𝑌 (𝑡, 𝑍𝑡)𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃�𝑡, 𝑋0 ∼ (𝜇) (3.10

𝑑𝜁𝑡 = �̂�(𝑡, 𝑍𝑡)𝑑𝑡 +𝐻(𝑡, 𝑍𝑡)𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃�𝑡, (3.11

where �̂�(𝑡, 𝑍𝑡) ∶= 𝐺(𝑡, 𝑍𝑡) +𝐻(𝑡, 𝑍𝑡)�̂�𝑌 (𝑡, 𝑍𝑡).
Furthermore, using the definition of 𝑌𝑡 and the decomposition (3.6),

we have

𝑑𝑆 𝑖
𝑡

𝑆𝑖
𝑡

= �̂�𝑖(𝑡, 𝑍𝑡)𝑑𝑡 +
𝑑
∑

𝑗=1
𝜎𝑖𝑗

(

𝑡, 𝑌𝑡
)

𝑑�̃�𝑗 (𝑡),
𝑑𝐿𝑡
𝐿𝑡

= 𝑐(𝑡, 𝑍𝑡)𝑑𝑡 + 𝛯
(

𝑡, 𝑌𝑡
)

𝑑�̃�𝑡.

(3.12)

4. Risk-sensitive control problem

The control problem that we consider is a partial observation con-
trol problem, where the information to an agent is represented by
the observation filtration 𝑌

𝑡 . It becomes thus natural to look at a
problem formulation that is restricted to 𝑌

𝑡 by using the filter for
the unobserved process 𝑋𝑡. Still, in line with Nagai (2001) and Nagai
and Peng (2002), and in view also of later comparisons, we shall
first present the risk-sensitive control problem expressed in terms of
the unobserved factor process 𝑋 , i.e. before applying the filter. We
𝑡
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shall call this problem the original problem. We shall then describe
he problem in its so-called separated form, expressed in terms of the

parameters of the filter that, according to Assumption 3.1, are supposed
to be finite-dimensional. We shall mainly concentrate on this second
version of the problem as it is where we make our novel contribution.

The investment strategy is a main ingredient for both versions of the
problem. More precisely, we let the investment strategy ℎ𝑡 be the 𝑚1-
lement vector process representing the proportion of wealth invested
n the 𝑚1 tradable financial securities. The investment strategy has to
e based on the available information that is given by the observations
𝑡, and so we shall consider it to be 𝑌

𝑡 -adapted for both versions of
he problem in Sections 4.1 and 4.2.

.1. The problem expressed in terms of the unobserved factor process 𝑋𝑡

The discounted wealth process 𝑉𝑡 is the market value of the self-
inancing investment portfolio subject to the investment strategy ℎ𝑡. It
olves the SDE:

𝑑𝑉𝑡
𝑉𝑡

=
𝑚1
∑

𝑖=1
ℎ𝑖𝑡

𝑑𝑆 𝑖
𝑡

𝑆𝑖
𝑡

= ℎ′𝑡𝑎
(1)(𝑡, 𝑋𝑡, 𝑌𝑡)𝑑𝑡 + ℎ′𝑡𝛴

(1) (𝑡, 𝑌𝑡
)

𝑑𝑊𝑡, 𝑉0 = 𝑣. (4.1)

where 𝑎(1) and 𝛴(1) refer to the drift and diffusion of the tradable assets,
as introduced in Notation 1. The log excess return 𝑅𝑡 ∶= ln 𝑉𝑡

𝐿𝑡
tracks the

ortfolio’s performance relative to its benchmark. Its dynamics is:

𝑅𝑡 =
[(

−1
2
ℎ′
𝑡𝛴

(1)𝛴(1)′ (𝑡, 𝑌𝑡
)

ℎ𝑡 + ℎ′
𝑡𝑎

(1)(𝑡, 𝑋𝑡, 𝑌𝑡) +
1
2
𝛯𝛯 ′ (𝑡, 𝑌𝑡

)

− 𝑐𝑡, 𝑋𝑡, 𝑌𝑡
)]

𝑑𝑡

+
(

ℎ′
𝑡𝛴

(1) (𝑡, 𝑌𝑡
)

− 𝛯
(

𝑡, 𝑌𝑡
))

𝑑𝑊𝑡, 𝑅0 = ln 𝑣
𝑙
=∶ 𝑟0. (4.2)

The risk-sensitive benchmarked criterion 𝐽 is then

(ℎ; 𝑇 , 𝜃, 𝑟0) ∶= −1
𝜃
ln𝐄

[

𝑟−𝜃0 𝑒−𝜃𝑅𝑇
]

= −1
𝜃
ln𝐄

[

𝑟−𝜃0 exp
{

𝜃 ∫

𝑇

0
𝑔(𝑡, 𝑋𝑡, 𝑌𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}

𝜒ℎ
𝑇

]

,
(4.3)

where 𝜃 ∈ (−1, 0) ∪ (0,∞) is the risk sensitivity parameter, 𝑇 < ∞ is a
fixed time horizon,

𝑔(𝑡, 𝑥, 𝑦, ℎ; 𝜃) ∶= 𝜃 + 1
2

ℎ′𝛴(1)𝛴(1)′ (𝑡, 𝑦)ℎ − ℎ′𝑎(1)(𝑡, 𝑥, 𝑦)

− 𝜃ℎ′𝛴(1)𝛯′ (𝑡, 𝑦) + 𝑐(𝑡, 𝑥, 𝑦) + 𝜃 − 1
2

𝛯𝛯′ (𝑡, 𝑦) , (4.4)

and the Doléans-Dade exponential 𝜒ℎ
𝑡 , 𝑡 ∈ [0, 𝑇 ] is defined via

ℎ
𝑡 ∶= exp

{

−𝜃 ∫

𝑡

0

(

ℎ′
𝑠𝛴

(1) (𝑠, 𝑌𝑠
)

− 𝛯
(

𝑠, 𝑌𝑠
))

𝑑𝑊𝑠

− 1
2
𝜃2 ∫

𝑡

0

(

ℎ′
𝑠𝛴

(1) (𝑠, 𝑌𝑠
)

− 𝛯
(

𝑠, 𝑌𝑠
))

(

𝛴(1)′ (𝑠, 𝑌𝑠
)

ℎ𝑠 − 𝛯 ′ (𝑠, 𝑌𝑠
)

)

𝑑𝑠
}

.

(4.5)

Remark 5. The only case of practical interest is 𝜃 ∈ (0,∞). It
corresponds to investors with a higher risk aversion than the Kelly/log-
utility investor. The case 𝜃 ∈ (−1, 0) leads to overbetting strategies that
leverage the Kelly portfolio. These strategies effectively trade expected
returns for more volatility (Davis & Lleo, 2021). So one should avoid
these strategies strictly. Additionally, the choice of model parameters
is crucial when 𝜃 ∈ (−1, 0) to ensure the investment problem is well-
posed. Kim and Omberg (1996) showed that in some extreme cases,
investors could achieve unbounded utility in a finite time. However,
they also noted that this situation does not arise in practice.

We also introduce the exponentially-transformed criterion 𝐼(ℎ; 𝑇 , 𝜃, 𝑟
𝑒−𝜃𝐽 (ℎ;𝑇 ,𝜃,𝑟0) such that:

𝐼(ℎ; 𝑇 , 𝜃, 𝑟0) = 𝑟−𝜃0 𝐄
[

𝑒−𝜃𝑅𝑇
]

= 𝑟−𝜃0 𝐄
[

exp
{

𝜃 ∫

𝑇

0
𝑔(𝑡, 𝑋𝑡, 𝑌𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}

𝜒ℎ
𝑇

]

5

(4.6)
Hence, for 𝜃 > 0, maximizing 𝐽 (ℎ; 𝑇 , 𝜃, 𝑟0) is equivalent to minimizing
𝐼(ℎ; 𝑇 , 𝜃, 𝑟0). The maximization and minimization are reversed for 𝜃 <
0.

Remark 6. The risk-sensitive criteria 𝐽 and 𝐼 are consistent with
utility maximization. Specifically, rescaling 𝐼 by the constant −

𝑟𝜃0
𝜃 yields

𝑟𝜃0
𝜃 𝐼(ℎ; 𝑇 , 𝜃, 𝑟0) = − 1

𝜃𝐄
[

(

𝑉𝑇
𝐿𝑇

)−𝜃
]

, which is the power utility function
with risk aversion parameter 𝜗 = −𝜃, for the investor’s wealth relative
to the benchmark. This observation connects our research with the
rich literature on utility maximization, which started with Merton
(1969). Davis and Lleo (Section 2.2 in 2014) discusses this and other
advantageous properties of the risk-sensitive criterion.

Following Nagai (2001), we want 𝜒ℎ
𝑡 in (4.5) to be an exponential

martingale so that it can be used to define a new measure Pℎ via the
adon–Nikodym derivative

𝑑Pℎ

𝑑P
|

|

|𝑡
= 𝜒ℎ

𝑡 , 𝑡 ∈ [0, 𝑇 ], (4.7)

and an associated standard
(

𝑡,Pℎ)-Wiener process

𝑊 ℎ
𝑡 ∶= 𝑊𝑡 + 𝜃 ∫

𝑡

0

(

𝛴(1)′ (𝑠, 𝑌𝑠
)

ℎ𝑠 − 𝛯′ (𝑠, 𝑌𝑠
)

)

𝑑𝑠. (4.8)

For this purpose, in this subsection, we consider as admissible those
strategies that correspond to the following

Definition 4.1 (Class 𝑋 (𝑇 )). A R𝑚1 -valued control process ℎ𝑡 is in
class 𝑋 (𝑇 ) if the following conditions are satisfied:

(i) ℎ𝑡 is progressively measurable with respect to
{

([0, 𝑡])⊗ 𝑌
𝑡
}

𝑡≥0
and is càdlàg;

(ii) 𝑃
(

∫ 𝑇
0 |ℎ𝑠|2𝑑𝑠 < +∞

)

= 1;

(iii) The following Kazamaki conditions (Kazamaki, 1977) hold:

𝐄
[

exp
{

− 𝜃
2 ∫

𝑡

0

(

ℎ′
𝑠𝛴

(1) (𝑠, 𝑌𝑠
)

− 𝛯
(

𝑠, 𝑌𝑠
))

𝑑𝑊𝑠

}]

< ∞; (4.9)

𝐄ℎ
[

exp
{

−1
2 ∫

𝑡

0
𝑎†(𝑠,𝑋𝑠, 𝑌𝑠;ℎ𝑠)′

(

𝛴𝑌𝛴𝑌 ′ (𝑠, 𝑌𝑠)
)−1

𝛴𝑌 (

𝑠, 𝑌𝑠
)

𝑑𝑊 ℎ
𝑠

}]

< ∞,

(4.10)

where 𝐄ℎ[⋅] denotes the expectation with respect to the measure
Pℎ and

𝑎†(𝑡, 𝑋𝑡, 𝑌𝑡;ℎ𝑡) ∶= 𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡)−𝜃𝛴𝑌 (

𝑡, 𝑌𝑡
)

(

𝛴(1)′ (𝑡, 𝑌𝑡
)

ℎ𝑡 − 𝛯′ (𝑡, 𝑌𝑡
)

)

,

(4.11)

emark 7. Like the well-known Novikov condition, the Kazamaki
ondition provides a sufficient condition for Doléans exponentials to be
xponential martingales. The main difference between the two is that
hile Novikov introduces an assumption on the quadratic variation,
azamaki sets a slightly stronger condition directly on the Brownian
otion — see II.5 in Ikeda and Watanabe (1981) or III.8 in Protter

2005). Hence, the Kazamaki condition is better suited for our inves-
igation into the relation between Brownian motions under various
hanges of measure.

emark 8. Under the Kazamaki condition (4.9), the Doléans-Dade
xponential 𝜒ℎ

𝑡 defined at (4.5) is an exponential martingale on (P,𝑡)
or 𝑡 ∈ [0, 𝑇 ]. The Kazamaki condition (4.10) guarantees that we
an define a new measure 𝑃 for which the observation process is a
artingale. This is an essential ingredient in nonlinear filtering and a

ornerstone of Nagai and Peng’s approach.
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The dynamics of (𝑋𝑡, 𝑌𝑡) becomes, always under Pℎ,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝑋𝑡 =
[

𝑏(𝑡, 𝑋𝑡, 𝑌𝑡)𝑑𝑡 − 𝜃𝛬(𝑡, 𝑋𝑡, 𝑌𝑡)
(

𝛴(1)′ (𝑡, 𝑌𝑡)ℎ𝑡 − 𝛯′(𝑡, 𝑌𝑡)
)]

𝑑𝑡

+ 𝛬(𝑡, 𝑋𝑡, 𝑌𝑡)𝑑𝑊 ℎ
𝑡 (4.12

𝑑𝑌𝑡 =
[

𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡) − 𝜃𝛴𝑌 (𝑡, 𝑌𝑡)
(

𝛴(1)′ (𝑡, 𝑌𝑡)ℎ𝑡 − 𝛯′(𝑡, 𝑌𝑡)
)]

𝑑𝑡

+ 𝛴𝑌 (𝑡, 𝑌𝑡)𝑑𝑊 ℎ
𝑡 (4.13

with 𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡) according to (2.9) and the risk-sensitive criterion is

𝐽ℎ(ℎ; 𝑇 , 𝜃, 𝑟0) = −1
𝜃
ln𝐄ℎ

[

𝑟−𝜃0 exp
{

𝜃 ∫

𝑇

0
𝑔(𝑡, 𝑋𝑡, 𝑌𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}]

(4.14)

Analogously to criterion 𝐼 at (4.6), here as well, we can define an
exponentially transformed criterion 𝐼ℎ in connection with 𝐽ℎ.

4.2. The separated control problem for a finitely parametrized filter

We come now to describe the problem in terms of the filter,
parametrized by the vector 𝜁 according to Assumption 3.1. Recalling
the definition of �̂�𝑌 (𝑡, 𝑍𝑡) at (3.5) and the ensuing decomposition
̂(𝑡, 𝑍𝑡) =

(

�̂�(1)′ (𝑡, 𝑍𝑡) �̂�(2)′ (𝑡, 𝑍𝑡)
)′ as well as Lemma 3.2, and paral-

leling the description in Section 4.1, we introduce now what we call
the separated problem with dynamics for 𝑍𝑡 = (𝑌𝑡, 𝜁𝑡)′ given by (3.10)
and (3.11).

Recall also that the risk-sensitive criterion was introduced in (4.3) in
terms of the excess return 𝑅𝑡 that satisfies (4.2) in the full filtration 𝑡.
We shall next consider it in the observation subfiltration 𝑌

𝑡 . For this
purpose we shall start from the dynamics of 𝑉𝑡 and 𝑅𝑡 given at (4.1) and
(4.2) respectively and express them in terms of 𝑌

𝑡 -adapted quantities.
The tool to this effect is given by Lemma 3.2 that concerns the entire
observation vector 𝑌𝑡 and that extends beyond the market assets. This
has to be taken into account when considering the investment strategy
in view of the dynamics of 𝑉𝑡 as it concerns only the assets in the
market. For this purpose, we shall introduce the following

Notation 2. Given an 𝑚1−dimensional investment strategy ℎ𝑡 as in
Section 4.1, let ℎ̃𝑡 be the 𝑚𝑌 -element vector process defined as ℎ̃𝑡 =
(

0′𝓁 ℎ′𝑡 0′𝑚2+𝑘+1

)′
where 0𝑝 denotes the zero column vector with 𝑝

elements for some 𝑝 ∈ N, and note that ℎ̃′𝑡𝛴𝑌
𝑡 = ℎ𝑡𝛴

(1)
𝑡 .

Starting from (4.1) and using Lemma 3.2 we then obtain for the
same 𝑉𝑡, but in the filtration 𝑌

𝑡 , the following

𝑑𝑉𝑡 =𝑉𝑡ℎ′𝑡𝑎
(1) (𝑡, 𝑋𝑡, 𝑌𝑡

)

𝑑𝑡 + 𝑉𝑡ℎ
′
𝑡𝛴

(1) (𝑡, 𝑌𝑡
)

𝑑𝑊𝑡

=𝑉𝑡ℎ′𝑡𝑎
(1) (𝑡, 𝑋𝑡, 𝑌𝑡

)

𝑑𝑡 + 𝑉𝑡ℎ̃
′
𝑡
[(

�̂�𝑌 (𝑡, 𝑍𝑡)

−𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡)
)

𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃�𝑡
]

=𝑉𝑡ℎ′𝑡𝑎
(1) (𝑡, 𝑋𝑡, 𝑌𝑡

)

𝑑𝑡

+ 𝑉𝑡ℎ
′
𝑡

[(

�̂�(1)(𝑡, 𝑍𝑡) −
1
2
𝑑𝛴(1) (𝑡, 𝑌𝑡)

)

−
(

𝑎(1)(𝑡, 𝑋𝑡, 𝑌𝑡) −
1
2
𝑑𝛴(1) (𝑡, 𝑌𝑡)

)]

𝑑𝑡 + 𝑉𝑡ℎ
′
𝑡𝛴

(1) (𝑡, 𝑌𝑡
)

𝑑�̃�𝑡

=𝑉𝑡ℎ′𝑡 �̂�
(1)(𝑡, 𝑍𝑡)𝑑𝑡 + 𝑉𝑡ℎ

′
𝑡𝛴

(1) (𝑡, 𝑌𝑡
)

𝑑�̃�𝑡, (4.15)

In full analogy, for 𝑅𝑡 in (4.2), we obtain in the filtration 𝑌
𝑡 ,

𝑑𝑅𝑡 =
[

−1
2
ℎ′𝑡𝛴

(1)𝛴(1)′ (𝑡, 𝑌𝑡
)

ℎ𝑡 + ℎ′𝑡 �̂�
(1)(𝑡, 𝑍𝑡) +

1
2
𝛯𝛯′ (𝑡, 𝑌𝑡

)

− 𝑐(𝑡, 𝑍𝑡)
]

𝑑𝑡

+
(

ℎ′𝑡𝛴
(1) (𝑡, 𝑌𝑡

)

− 𝛯
(

𝑡, 𝑌𝑡
))

𝑑�̃�𝑡, 𝑅0 = ln 𝑣
𝑙
= 𝑟0. (4.16)

The risk-sensitive benchmarked criterion is now

̂(ℎ; 𝑇 , 𝜃, 𝑟0) ∶= −1
𝜃
ln𝐄

[

𝑟−𝜃0 𝑒−𝜃𝑅𝑇
]

= −1 ln𝐄
[

𝑟−𝜃 exp
{

𝜃
𝑇
�̂�(𝑡, 𝑍𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}

�̂�ℎ
]

,
(4.17)
6

𝜃 0 ∫0 𝑇 a
where, again, 𝜃 ∈ (−1, 0)∪(0,∞) is the risk sensitivity parameter, 𝑇 < ∞
is a fixed time horizon,

�̂�(𝑡, 𝑧, ℎ; 𝜃) ∶= 𝜃 + 1
2

ℎ′𝛴(1)𝛴(1)′ (𝑡, 𝑦)ℎ − ℎ′�̂�(1)(𝑡, 𝑧) − 𝜃ℎ′𝛴(1)𝛯 ′ (𝑡, 𝑦) + 𝑐(𝑡, 𝑧)

+ 𝜃 − 1
2

𝛯𝛯 ′ (𝑡, 𝑦) , (4.18)

the vector 𝑦 contains the first 𝑚𝑌 components of the vector 𝑧, and the
oléans-Dade exponential �̂�ℎ

𝑡 , 𝑡 ∈ [0, 𝑇 ] is defined via

�̂�ℎ
𝑡 ∶= exp

{

−𝜃 ∫

𝑡

0

(

ℎ′
𝑠𝛴

(1) (𝑠, 𝑌𝑠
)

− 𝛯
(

𝑠, 𝑌𝑠
))

𝑑�̃�𝑠

− 1
2
𝜃2 ∫

𝑡

0

(

ℎ′
𝑠𝛴

(1) (𝑠, 𝑌𝑠
)

− 𝛯
(

𝑠, 𝑌𝑠
))

(

𝛴(1)′ (𝑠, 𝑌𝑠
)

ℎ𝑠 − 𝛯 ′ (𝑠, 𝑌𝑠
)

)

𝑑𝑠
}

.

(4.19)

The exponentially-transformed criterion is 𝐼(ℎ; 𝑇 , 𝜃, 𝑟0) = 𝑒−𝜃𝐽 (ℎ;𝑇 ,𝜃,𝑟0).
As in the previous Section 4.1, we want �̂�ℎ

𝑡 in (4.19) to be an
exponential martingale so that it can be used to define a new measure
P̂ℎ via the Radon–Nikodym derivative

𝑑P̂ℎ

𝑑P
|

|

|𝑌
𝑡
= �̂�ℎ

𝑡 , 𝑡 ∈ [0, 𝑇 ], (4.20)

with associated standard (P̂ℎ,𝑌
𝑡 )-Wiener process

�̃� ℎ
𝑡 ∶= �̃�𝑡 + 𝜃 ∫

𝑡

0

(

𝛴(1)′ (𝑠, 𝑌𝑠
)

ℎ𝑠 − 𝛯′ (𝑠, 𝑌𝑠
)

)

𝑑𝑠. (4.21)

For this purpose, this time we consider as admissible strategies those
in a class that we denote by 𝑍 (𝑇 ) and that is given by the following

Definition 4.2 (Class 𝑍 (𝑇 )). A R𝑚1 -valued control process ℎ𝑡 is in
class 𝑍 (𝑇 ) if the following conditions are satisfied:

(i) ℎ𝑡 is progressively measurable with respect to
{

([0, 𝑡])⊗ 𝑌
𝑡
}

𝑡≥0
and is càdlàg;

(ii) 𝑃
(

∫ 𝑇
0 |ℎ𝑠|2𝑑𝑠 < +∞

)

= 1;

(iii) The following Kazamaki conditions hold:

𝐄
[

exp
{

− 𝜃
2 ∫

𝑡

0

(

ℎ′
𝑠𝛴

(1) (𝑠, 𝑌𝑠
)

− 𝛯
(

𝑠, 𝑌𝑠
))

𝑑�̃�𝑠

}]

< ∞; (4.22)

�̂�ℎ
[

exp
{

−1
2 ∫

𝑡

0
�̌�𝑌 ′ (𝑠,𝑍𝑠;ℎ𝑠)

(

𝛴𝑌𝛴𝑌 ′ (𝑠, 𝑌𝑠)
)−1

𝛴𝑌 (

𝑠, 𝑌𝑠
)

𝑑�̃� ℎ
𝑠

}]

< ∞,

(4.23)

where �̂�ℎ[⋅] denotes the expectation with respect to the measure
P̂ℎ and

�̌�𝑌 (𝑡, 𝑍𝑡;ℎ𝑡) ∶= �̂�𝑌 (𝑡, 𝑍𝑡) − 𝜃𝛴𝑌 (

𝑡, 𝑌𝑡
)

(

𝛴(1)′ (𝑡, 𝑌𝑡
)

ℎ𝑡 − 𝛯′ (𝑡, 𝑌𝑡
)

)

.

(4.24)

emark 9. As already seen in Remark 8, the Kazamaki conditions
ive a sufficient condition for the Doléans-Dade exponential to be an
xponential martingale. Under condition (4.22), �̂�ℎ

𝑡 defined at (4.19)
s an exponential martingale on

(

P,𝑌
𝑡
)

for 𝑡 ∈ [0, 𝑇 ]. Under condi-
ion (4.23), �̄�𝑍

𝑡 defined at (5.2) below is an exponential martingale on
P̂ℎ,𝑌

𝑡
)

for 𝑡 ∈ [0, 𝑇 ].

emark 10. The class 𝑍 (𝑇 ) is appropriate for existing risk-sensitive
nvestment management models. Conditions i) and ii) are standard.
he first condition in iii) comes from Kuroda and Nagai’s solution
echnique, which articulates around a change of measures (Kuroda &
agai, 2002). The optimal control satisfies this condition in diffusion
odels (Davis & Lleo, 2008, 2013, 2020, 2021; Kuroda & Nagai, 2002).
s long as we have diffusion-type models, the control is a function
f 𝑋𝑡, a diffusion, so the first condition in iii) holds under standard
ssumptions on the coefficients. The second condition in iii) is required
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at (5.2) to perform a change of measure and derive the Modified Zakai
Equation below in Section 5. The only difference with the first part of
condition iii) is that 𝑎 plays a role via the estimate �̂�𝑌 .

The P̂ℎ-dynamics of the filter parameters 𝜁𝑡 and the observations 𝑌𝑡
are then
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝜁𝑡 =
[

�̂�(𝑡, 𝑍𝑡) − 𝜃𝐻(𝑡, 𝑍𝑡)𝛴𝑌 (

𝑡, 𝑌𝑡
)

(

𝛴(1)′ (𝑡, 𝑌𝑡
)

ℎ𝑡 − 𝛯 ′ (𝑡, 𝑌𝑡
)

)]

𝑑𝑡

+𝐻(𝑡, 𝑍𝑡)𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃� ℎ
𝑡 , (4.25

𝑑𝑌𝑡 =�̌�𝑌 (𝑡, 𝑍𝑡;ℎ𝑡)𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃� ℎ
𝑡 , (4.26

nd �̌�𝑌 (𝑡, 𝑍𝑡;ℎ𝑡) is as defined at (4.24) Moreover, the risk-sensitive
ontrol criterion becomes

̂ℎ(ℎ; 𝑇 , 𝜃, 𝑟0) ∶= −1
𝜃
ln �̂�ℎ

[

𝑟−𝜃0 exp
{

𝜃 ∫

𝑇

0
�̂�(𝑡, 𝑍𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}]

=∶ −1
𝜃
ln 𝐼ℎ(ℎ; 𝑇 , 𝜃, 𝑟0)

(4.27)

4.3. Equivalence of the original and the separated problems

The criterion (4.27) for the separated problem was obtained directly
from the corresponding criterion (4.14) in the original problem using
the crucial Lemma 3.2. Nevertheless, to obtain the full equivalence of
the two problem formulations under the information structure given by
the filtration 𝑌

𝑡 , we still have to show first that the measure Pℎ defined
at (4.7) is identical to P̂ℎ defined at (4.20) and that, since ℎ𝑡 has to be

𝑌
𝑡 -adapted in both cases, the admissible class of strategies 𝑋 (𝑇 ) in

the original problem (see Definition 4.1) coincides with 𝑍 (𝑇 ) given
in Definition 4.2. To this effect, we show the following

Proposition 4.3.

(i) The Kazamaki conditions (4.9), (4.10) in Definition 4.1 and (4.22),
(4.23) in Definition 4.2 are equivalent.

(ii) The relation between the Wiener process 𝑊 ℎ
𝑡 on (Pℎ,𝑡) and the

Wiener process �̃� ℎ
𝑡 on (P̂ℎ,𝑌

𝑡 ) is

𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃� ℎ
𝑡 =

(

𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡) − �̂�𝑌 (𝑡, 𝑍𝑡)
)

𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑𝑊 ℎ
𝑡 .

(4.28)

and the measures Pℎ defined via (4.7) and P̂ℎ defined via (4.20) are
identical, that is, P̂ℎ = Pℎ.

Proof. See Appendix B. □

Remark 11. Although the measure Pℎ is the same, the filtrations 𝑡
for (𝑊𝑡,𝑊 ℎ

𝑡 ) and 𝑌
𝑡 for (�̃�𝑡, �̃� ℎ

𝑡 ) differ.

As an immediate corollary to this Proposition 4.3 we have

Corollary 4.4. The admissible classes 𝑋 (𝑇 ) in Definition 4.1 and 𝑍 (𝑇 )
in Definition 4.2 are strictly equivalent.

With the help of Proposition 4.3 and Corollary 4.4 we can now
obtain the main result of this subsection regarding the equivalence of
the original and the separated control problems when the information
structure is given by the filtration 𝑌

𝑡 , namely

Theorem 4.5. Under Assumption 3.1, for an admissible control ℎ𝑡
satisfying conditions (i), (ii), and (4.9) in Definition 4.1 (or equivalently
conditions (i), (ii), and (4.22) in Definition 4.2), we have 𝐽ℎ(ℎ; 𝑇 , 𝜃, 𝑟0) =
𝐽ℎ(ℎ; 𝑇 , 𝜃, 𝑟0) and therefore also 𝐼ℎ(ℎ; 𝑇 , 𝜃, 𝑟0) = 𝐼ℎ(ℎ; 𝑇 , 𝜃, 𝑟0).

Finally, as a further corollary to Proposition 4.3 we obtain also the
following property for the change of Brownian motion, namely

Corollary 4.6. The translations of the Brownian motion induced by
ℎ

7

Lemma 3.2 and by the change of measure from P to P are commutative. P
Said otherwise, it does not matter whether we apply Lemma 3.2 before or
after performing the change of measure; we will get to the same Brownian
motion �̃� ℎ

𝑡 .

5. Modified Zakai equation

The so-called modified Zakai equation (MZE) was introduced in Na-
gai (2001) and Nagai and Peng (2002) as a useful tool in view of the
solution of stochastic control problems under partial observation, in
particular for the solution of risk-sensitive problems of the type consid-
ered in this paper. Appendix C summarizes this approach and its main
results. In this section, we derive an MZE in the more general setting
where, according to Assumption 3.1 a finite-dimensional filter process
𝜁𝑡 exists. We adapt the approach by Nagai and Peng to this setting,
more precisely to the separated problem with a finite-dimensional filter
as formulated in Section 4.2. A major difference exists between our
setting and that of Nagai and Peng. In Nagai and Peng’s case, the filter
enters only at the level of the solution of the MZE, whereas in our
case, the filter intervenes right from the beginning in the formulation
of the problem in its separated form. This difference implies that the
approach of Nagai and Peng results in a stochastic partial differential
equation for a certain operator. This SPDE is intricate to formalize and
challenging to solve in general. Nevertheless, Nagai and Peng show that
in the linear-Gaussian case, one obtains an explicit analytic solution
that exploits the specificity of the Kalman Filter. As a byproduct, they
also show that a separation of estimation and control holds in this
case. In fact, one could adapt their result to the more general case of
nonlinear, but Gaussian, dynamics where the filter is the Kalman filter
applied after linearizing the nonlinear coefficients (Extended Kalman
Filter).

The fact that we let the filter intervene right from the beginning
in the formulation of the problem in its separated form leads to a
deterministic PDE given in Theorem 5.3 below that concerns the MZE
for the separated problem relating to a corresponding operator 𝑞ℎ𝑍 (𝑡)
given in Definition 5.2 below. Also this equation is not easy to formalize
in a standard way but, by its very derivation, it is satisfied by the
operator 𝑞ℎ𝑍 (𝑡) (see Definition 5.2 below) that, applied to the test
function 𝜑𝑡 = 1, yields the value function of the separated problem
which was derived directly via our approach without passing through
the MZE. This allows us to investigate better when and in what form
a separation of estimation and control holds by using either an exact
or an approximate finite-dimensional filter (see Section 6 and the
examples in Section 7).

Before coming to derive the equation corresponding to the MZE
approach for the separated problem, we also state and prove a result
that extends the existing Kallianpur–Striebel formula to our setting.
This generalized Kallianpur–Striebel formula relates the risk-sensitive
criterion 𝐼ℎ under the control measure Pℎ with that evaluated under
the filtering measure P̄:

Proposition 5.1 (Generalized Kallianpur–Striebel Formula). Assume 𝜑 ∈
𝐶1,2
𝑏 , then

𝐄ℎ
[

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠 ,𝑌𝑠 ,ℎ𝑠;𝜃)𝑑𝑠 ∣ 𝑌

𝑡

]

=
�̄�
[

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠 ,𝑌𝑠 ,ℎ𝑠;𝜃)𝑑𝑠𝛹𝑋

𝑡 ∣ 𝑌
𝑡

]

�̄�
[

𝛹𝑋
𝑡 ∣ 𝑌

𝑡
]

=
𝑞ℎ𝑋 (𝑡)(𝜑𝑡)

�̄�
[

𝛹𝑋
𝑡 ∣ 𝑌

𝑡
] , (5.1)

where 𝐄ℎ [⋅] is the expectation with respect to the measure Pℎ, �̄� [⋅] is the
xpectation with respect to the measure P̄, and 𝛹𝑍

𝑡 ∶=
(

�̄�𝑍
𝑡
)−1.

roof of Proposition 5.1. See Appendix D. □
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We come now to the problem formulation as described in Sec-
tion 4.2, namely the separated problem formulated in terms of the filter
that is characterized by a finite-dimensional parameter vector 𝜁𝑡.

Analogously to Nagai (2001), it is convenient to turn 𝑌𝑡 into a
martingale by passing to a new measure. We denote this measure by
P̄. Assuming that ℎ𝑡 ∈ 𝑍 (𝑇 ) (see Definition 4.2) let

�̄�𝑍
𝑡 ∶= exp

{

−∫

𝑡

0
�̌�𝑌 (𝑠,𝑍𝑠;ℎ𝑠)′

(

𝛴𝑌𝛴𝑌 ′ (𝑠, 𝑌𝑠)
)−1

𝛴𝑌 (

𝑠, 𝑌𝑠
)

𝑑�̃� ℎ
𝑠

−1
2 ∫

𝑡

0
�̌�𝑌 (𝑠,𝑍𝑠;ℎ𝑠)′

(

𝛴𝑌𝛴𝑌 ′ (𝑠, 𝑌𝑠
)

)−1
�̌�𝑌 (𝑠,𝑍𝑠;ℎ𝑠)𝑑𝑠

}

(5.2)

for 𝑡 ∈ [0, 𝑇 ] and with �̌�𝑌 (𝑡, 𝑍𝑡;ℎ𝑡) as in (4.24). It is a martingale on
(P̄,𝑌

𝑡 ) corresponding to the Radon–Nikodym derivative 𝑑P̄
𝑑P̂ℎ

|

|

|𝑌
𝑡

. The
process

�̌�𝑡 ∶= �̃� ℎ
𝑡 + ∫

𝑡

0
𝛴𝑌 ′ (

𝑠, 𝑌𝑠
)

(

𝛴𝑌𝛴𝑌 ′ (
𝑠, 𝑌𝑠

)

)−1
�̌�𝑌 (𝑠,𝑍𝑠;ℎ𝑠)𝑑𝑠 (5.3)

is then a standard (P̄,𝑌
𝑡 )− Wiener process and the P̄-dynamics of the

filter parameter 𝜁𝑡 and of the observation 𝑌𝑡 are

{𝑑𝜁𝑡 =𝐺(𝑡, 𝑍𝑡)𝑑𝑡 +𝐻(𝑡, 𝑍𝑡)𝑑𝑌𝑡, (5.

𝑑𝑌𝑡 =𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̌�𝑡. (5.

The corresponding risk-sensitive criterion 𝐽 (ℎ; 𝑇 , 𝜃, 𝑟0) and
exponentially-transformed criterion 𝐼(ℎ; 𝑇 , 𝜃, 𝑟0) are

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐽 (ℎ; 𝑇 , 𝜃, 𝑟0) = −1
𝜃
ln �̄�

[

𝑟−𝜃0 exp
{

𝜃 ∫

𝑇

0
�̂�(𝑡, 𝑍𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}

𝛹𝑍
𝑇

]

. (5.6

𝐼(ℎ; 𝑇 , 𝜃, 𝑟0) = 𝑟−𝜃0 �̄�
[

exp
{

𝜃 ∫

𝑇

0
�̂�(𝑡, 𝑍𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}

𝛹𝑍
𝑇

]

. (5.7

where �̂� is as defined at (4.18).
Inspired by Nagai (2001), we introduce the following

Definition 5.2. For ℎ𝑡 ∈ 𝑍 (𝑇 ) and 𝜑 ∶ [0, 𝑇 ] ×R𝑞 ×R𝑚𝑌
→ R a 𝐶1,2

𝑏
est function indexed by 𝑦, set

ℎ
𝑍 (𝑡)(𝜑𝑡) ∶= �̄�

[

𝑒𝜃 ∫
𝑡
0 �̂�(𝑠,𝑍𝑠 ,ℎ𝑠;𝜃)𝑑𝑠𝛹𝑍

𝑡 𝜑(𝑡, 𝜁𝑡; 𝑌𝑡)
]

, (5.8)

so that 𝐼(ℎ; 𝑇 , 𝜃, 𝑟0) = 𝑟−𝜃0
[

𝑞ℎ𝑍 (𝑇 )(1)
]

.

Remark 12. Contrary to Nagai (2001), here 𝑞ℎ𝑍 (𝑡)(𝜑𝑡) is deterministic
and has therefore to satisfy a deterministic PDE which will be given in
the next Theorem 5.3 and which concerns the MZE for the separated
problem.

In view of this theorem let �̂�ℎ be the generator of the process 𝜁𝑡
under the measure P̂ℎ, with 𝑦 treated as a fixed parameter. We have
now

Theorem 5.3. 𝑞ℎ𝑍 (𝑡)(𝜑𝑡) from Definition 5.2 satisfies the following PDE

𝑞ℎ𝑍 (𝑡)(𝜑𝑡) − 𝑞ℎ𝑍 (0)(𝜑0)

= ∫

𝑡

0
𝑞ℎ𝑍 (𝑠)

(

𝜕𝜑
𝜕𝑡

(𝑠, 𝜁𝑠; 𝑌𝑠) + �̂�ℎ𝜑(𝑠, 𝜁𝑠, 𝑌𝑠) + 𝜃�̂�(𝑠,𝑍𝑠, ℎ𝑠; 𝜃)𝜑(𝑠, 𝜁𝑠; 𝑌𝑠)
)

𝑑𝑠.

(5.9)

where

�̂�ℎ𝜑(𝑡, 𝜁 ; 𝑦) ∶= 1
2

tr
{

𝐻(𝑡, 𝜁 ; 𝑦)𝛴𝑌 (𝑡; 𝑦)𝛴𝑌 ′ (𝑡; 𝑦)𝐻 ′(𝑡, 𝜁 ; 𝑦)𝐷2𝜑
}

+
[

�̂�(𝑡, 𝜁 ; 𝑦) − 𝜃𝐻(𝑡, 𝜁 ; 𝑦)𝛴𝑌 (𝑡; 𝑦)
(

𝛴(1)′ (𝑡; 𝑦)ℎ − 𝛯 ′ (𝑡; 𝑦)
)]

𝐷𝜑

=1
2

𝑞
∑

𝑖,𝑗=1

{

𝐻(𝑡, 𝜁 ; 𝑦)𝛴𝑌 (𝑡; 𝑦)𝛴𝑌 ′ (𝑡; 𝑦)𝐻 ′(𝑡, 𝜁 ; 𝑦)
}

𝑖𝑗
𝜕2𝜑
𝜕𝜁𝑖𝜕𝜁𝑗

+
𝑞
∑

𝑖=1

{

�̂�(𝑡, 𝜁 ; 𝑦) − 𝜃𝐻(𝑡, 𝜁 ; 𝑦)𝛴𝑌 (𝑡; 𝑦)
(

𝛴(1)′ (𝑡; 𝑦)ℎ − 𝛯 ′ (𝑡; 𝑦)
)}

𝑖
𝜕𝜑
𝜕𝜁𝑖

(5.10)
8

is the P̂ℎ-generator related to the process 𝜁𝑡, 𝐷𝜑 =
( 𝜕𝜑
𝜕𝜁1

… 𝜕𝜑
𝜕𝜁𝑖

… 𝜕𝜑
𝜕𝜁𝑞

)

and 𝐷2𝜑 =
[

𝜕2𝜑
𝜕𝜁𝑖𝜁𝑗

]

, 𝑖, 𝑗 = 1,… , 𝑞.

Proof of Theorem 5.3. See Appendix E. □

Remark 13. Note that although 𝑞ℎ𝑍 (𝑡)(𝜑𝑡) is defined under the mea-
sure P̄, the drift in (5.9) depends on �̂�ℎ. How did we get there?
The derivation starts with the P̄-operator of 𝜁𝑡. This operator then
acquires an extra term through the cross variation 𝑑⟨𝛹𝑍 , 𝜑⟩𝑡, yielding
the P̂ℎ-operator �̂�ℎ.

Remark 14. The quantity 𝑞ℎ𝑍 (𝑡)(𝜑𝑡) can be seen as a conditional
probability that can be expressed in terms of its conditional density
𝑞ℎ𝑍 (𝑡) ∶= 𝑞ℎ𝑍 (𝑡, 𝜁 ; 𝑦) as

ℎ
𝑍 (𝑡) (𝜑(𝑡)) = ∫ 𝑞ℎ𝑍 (𝑡, 𝜁 ; 𝑦)𝑒

𝜃 ∫ 𝑡
0 𝑔(𝑠,𝑦,𝜁 ,ℎ;𝜃)𝑑𝑠𝜑(𝑡, 𝜁 ; 𝑦)𝑑𝜁, (5.11)

here the density 𝑞ℎ𝑍 (𝑡, 𝜁 ; 𝑦) is with respect to the Lebesgue measure. By
tandard PDE argument (see for instance Chapter 1 in Friedman, 1964),
e can show that the conditional density 𝑞ℎ𝑍 (𝑡) satisfies the parabolic
DE:
𝜕𝑞ℎ𝑍 (𝑡)
𝜕𝑡

− �̂�ℎ∗𝑞ℎ𝑍 (𝑡) = 0 (5.12)

here the operator �̂�ℎ∗ is the adjoint of the operator �̂�ℎ and is thus
given by

�̂�ℎ∗𝑓 (𝑡, 𝜁 ; 𝑦)

∶= 1
2

𝑞
∑

𝑖,𝑗=1

𝜕2

𝜕𝜁𝑖𝜕𝜁𝑗

(

{

𝐻(𝑡, 𝜁 ; 𝑦)𝛴𝑌 (𝑡; 𝑦)𝛴𝑌 ′ (𝑡; 𝑦)𝐻 ′(𝑡, 𝜁 ; 𝑦)
}

𝑖𝑗
𝑓 (𝑡, 𝜁 ; 𝑦)

)

−
𝑞
∑

𝑖=1

𝜕
𝜕𝜁𝑖

({

�̂�(𝑡, 𝜁 ; 𝑦) − 𝜃𝐻(𝑡, 𝜁 ; 𝑦)𝛴𝑌 (𝑡; 𝑦)
(

𝛴(1)′ (𝑡; 𝑦)ℎ − 𝛯 ′ (𝑡; 𝑦)
)}

𝑖𝑓 (𝑡, 𝜁 ; 𝑦)
)

(5.13)

his parabolic PDE is the forward Kolmogorov or Fokker–Planck equa-
ion for the filter parametrized by 𝜁𝑡 under the measure P̂ℎ. The

existence and uniqueness of a solution are tied to the properties of
the drift and diffusion functions 𝐺(𝑡, 𝑌𝑡, 𝜁𝑡), 𝐻(𝑡, 𝑌𝑡, 𝜁𝑡), �̂�𝑌 (𝑡, 𝑌𝑡, 𝜁𝑡), and

𝑌 (

𝑡, 𝑌𝑡
)

. When it exists, this solution is the filter process’ density.

. Criteria for separability

In this section, we shall derive a criterion according to which one
an conclude whether and to what extent a separation property holds
or a given risk-sensitive control problem under partial observations,
s we consider it in this paper concerning an investment problem. We
ecall that we consider a separation property to hold if the separated
roblem, namely the problem where instead of the unobserved factor
rocess 𝑋𝑡 one considers its filter distribution, can be expressed in
erms of the filter parameters or, equivalently, by one or more synthetic
alues of the filter distribution.

For this purpose, recalling the definition at (3.5) and making explicit
𝑡 = (𝑌𝑡, 𝜁𝑡), we have

�̂�(𝑡, 𝑌𝑡, 𝜁𝑡) = ∫ 𝑎(𝑡, 𝑥, 𝑌𝑡) 𝑑𝑝(𝑥, 𝜁𝑡), 𝑐(𝑡, 𝑌𝑡, 𝜁𝑡) = ∫ 𝑐(𝑡, 𝑥, 𝑌𝑡) 𝑑𝑝(𝑥, 𝜁𝑡) (6.1)

e can state the following

roposition 6.1. The separation property hinges upon how 𝑥 and 𝜁 relate
o each other via (6.1)

roof. Recall first that the objective criterion in the exponentially
ransformed form is, for the separated problem, given at (5.7), namely

̄(ℎ; 𝑇 , 𝜃, 𝑟0) = 𝑟−𝜃�̄�
[

exp
{

𝜃
𝑇
�̂�(𝑡, 𝑍𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}

𝛹𝑍
]

(6.2)
0 ∫0 𝑇
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w

w

where, see (4.18),

�̂�(𝑡, 𝑧, ℎ; 𝜃) = 𝜃 + 1
2

ℎ′𝛴(1)𝛴(1)′ (𝑡, 𝑦)ℎ − ℎ′�̂�(1)(𝑡, 𝑧) − 𝜃ℎ′𝛴(1)𝛯 ′ (𝑡, 𝑦) + 𝑐(𝑡, 𝑧)

+ 𝜃 − 1
2

𝛯𝛯 ′ (𝑡, 𝑦) (6.3)

and, see (5.2),

𝛹𝑍
𝑡 =

(

�̄�𝑍
𝑡

)−1 = exp
{

∫

𝑡

0
�̌�𝑌 (𝑠,𝑍𝑠;ℎ𝑠)′

(

𝛴𝑌𝛴𝑌 ′ (𝑠, 𝑌𝑠)
)−1

𝛴𝑌 (

𝑠, 𝑌𝑠
)

𝑑�̃� ℎ
𝑠

+1
2 ∫

𝑡

0
�̌�𝑌 (𝑠,𝑍𝑠;ℎ𝑠)′

(

𝛴𝑌𝛴𝑌 ′ (𝑠, 𝑌𝑠
)

)−1
�̌�𝑌 (𝑠,𝑍𝑠;ℎ𝑠)𝑑𝑠

}

(6.4)

The function �̌�𝑌 (𝑡, 𝑍𝑡;ℎ𝑡) in (6.4) is, see (4.24), given at

�̌�𝑌 (𝑡, 𝑍𝑡;ℎ𝑡) = �̂�𝑌 (𝑡, 𝑍𝑡) − 𝜃𝛴𝑌 (

𝑡, 𝑌𝑡
)

(

𝛴(1)′ (𝑡, 𝑌𝑡
)

ℎ𝑡 − 𝛯′ (𝑡, 𝑌𝑡
)

)

(6.5)

It follows that the two ingredients of the objective criterion in the
separated problem depend on 𝑍𝑡 only via �̂�𝑌 (𝑡, 𝑍𝑡) and 𝑐𝑌 (𝑡, 𝑍𝑡). The
conclusion then follows. □

6.1. Separation properties

We examine the implications of Proposition 6.1 in four prominent
cases. In the following, we discuss only properties relating to 𝑎(𝑡, 𝑥, 𝑌𝑡)
since they apply analogously to 𝑐(𝑡, 𝑥, 𝑌𝑡).

1. In the linear case with 𝑎(𝑡, 𝑥, 𝑦) = 𝑎(𝑡, 𝑦) + 𝐴(𝑡, 𝑦) 𝑥 one has

�̂�(𝑡, 𝜁𝑡, 𝑌𝑡) = 𝑎(𝑡, 𝑌𝑡) + 𝐴(𝑡, 𝑌𝑡)𝑚𝑡 with 𝑚𝑡 = 𝐸
[

𝑋𝑡 ∣ 𝑌
𝑡
]

, (6.6)

where we made explicit 𝑍𝑡 = (𝑌𝑡, 𝜁𝑡). Thus, it follows from
Proposition 6.1 that the linear case 𝑎(𝑡, 𝑥, 𝑦) = 𝑎(𝑡, 𝑦) + 𝐴(𝑡, 𝑦) 𝑥
is essentially the only case where a strict separation property
holds for our Gaussian model (2.3), (2.4). This finding is in
line with the literature, in particular, Nagai and Peng (2002)
who obtained an explicit analytic solution to the Modified Zakai
Equation in the linear-Gaussian case with the use of the Kalman
filter (KF). It also aligns with Davis and Lleo (2013, 2020, 2021).

2. In the quadratic case, 𝑎(𝑡, 𝑥, 𝑦) = 𝑎(𝑡, 𝑦) 𝑥2 + 𝑏(𝑡, 𝑥) 𝑥 + 𝑐(𝑡, 𝑦). De-
noting the filter mean and co-variance by 𝑚𝑡 and 𝑃𝑡 respectively,
we have

�̂�(𝑡, 𝜁𝑡, 𝑌𝑡) = 𝑎(𝑡, 𝑌𝑡) [𝑚2
𝑡 + 𝑃𝑡] + 𝑏(𝑡, 𝑌𝑡)𝑚𝑡 + 𝑐(𝑡, 𝑌𝑡). (6.7)

As is natural for the quadratic case, we have the additional
additive term 𝑎(𝑡, 𝑌𝑡)𝑃𝑡. From Proposition 6.1, we see that we
cannot achieve strict separation by replacing 𝑋𝑡 by 𝑚𝑡 in the
dynamics of the wealth process 𝑉𝑡 and excess return process
𝑅𝑡. However, we can express the separated problem with two
synthetic values of the filter distribution, namely mean and
covariance. Thus, the separation property holds in a wider sense.

3. By extension, the Extended Kalman filter (EKF) performs a
quadratic expansion of a nonlinear 𝑎(𝑡, 𝑥, 𝑦) around the most
recent estimate mean 𝑚𝑡 ∶= 𝐄

[

𝑋𝑡 ∣ 𝑌
𝑡
]

, i.e.

𝑎(𝑡, 𝑋𝑡, 𝑌𝑡) = 𝑎(𝑡, 𝑚𝑡, 𝑌𝑡) + 𝑎𝑥(𝑡, 𝑚𝑡, 𝑌𝑡)′ (𝑋𝑡 − 𝑚𝑡)

+ 1
2
(𝑋𝑡 − 𝑚𝑡)′ 𝑎𝑥𝑥(𝑡, 𝑚𝑡, 𝑌𝑡) (𝑋𝑡 − 𝑚𝑡) (6.8)

where 𝑎𝑥 and 𝑎𝑥𝑥 denote partial derivatives, we have

�̂�(𝑡, 𝜁𝑡, 𝑌𝑡) = 𝑎(𝑡, 𝑚𝑡, 𝑌𝑡) +
1
2

tr(𝑎𝑥𝑥(𝑡, 𝑚𝑡, 𝑌𝑡)𝑃𝑡). (6.9)

4. Finally, the case 𝑎(𝑡, 𝑥, 𝑦) = exp[𝜂(𝑡, 𝑦) 𝑥] subsumes a variety of
nonlinear cases. Here, �̂�(𝑡, 𝜁𝑡, 𝑌𝑡) is the moment generating function
of the filter distribution 𝑝(𝑥, 𝜁𝑡), provided it exists. In the case
when one can apply the KF or, more generally, the EKF, the
filter distribution is Gaussian and thus determined by the first
two moments. One obtains

�̂�(𝑡, 𝜁 , 𝑌 ) = exp
[

𝜂(𝑡, 𝑌 )𝑚
]

exp
[ 1 𝜂2(𝑡, 𝑌 )𝑃

]

. (6.10)
9

𝑡 𝑡 𝑡 𝑡 2 𝑡 𝑡
In the simpler KF case, 𝑃𝑡 can be precomputed. So, the second
term in (6.10) is simply a multiplicative factor. In the EKF
case, 𝑃𝑡 is adapted to the observation filtration, inducing a more
significant difference than in the KF. Thus, in both cases, we can
express the separated problem with two synthetic values of the
filter distribution and achieve separation in a wider sense.

7. Implementation examples

We discuss some examples on how to use the results from Sec-
tions 5 and 6. We consider a general nonlinear Gaussian model as in
Section 2 where, according to Assumption 3.1, we assume that a finite-
dimensional filter exists or can be derived via an approximation. To
be concrete, we assume that such an approximation is obtained via
the Extended Kalman Filter (EKF). The possibility then of obtaining an
explicit analytic solution of the separated control problem, including
an explicit expression for the candidate optimal control strategy, hinges
upon the possibility of obtaining an, exact or approximate, analytic so-
lution of a resulting HJB equation. As expected, this is certainly possible
in the linear-Gaussian case for which an explicit solution is e.g. derived
in Section 3.2 of Davis and Lleo (2021). In this latter reference, the
authors simply postulate a separation of estimation and control by
stating that, since the investors cannot observe the value of certain
factors 𝑋𝑡, they use a modified risk-sensitive benchmarked criterion
based on the Kalman filter estimate �̂�𝑡. With our results, we know now
that such a separation holds indeed in the linear-Gaussian case, and we
are also able to draw some further conclusions, as mentioned below in
this section.

7.1. Approximate solution via an extended Kalman filter

Recall the partial observation model constructed in Section 2:

⎧

⎪

⎨

⎪

⎩

𝑑𝑋𝑡 = 𝑏
(

𝑡, 𝑋𝑡, 𝐹𝑡
)

𝑑𝑡 + 𝛬
(

𝑡, 𝑋𝑡, 𝐹𝑡
)

𝑑𝑊𝑡, 𝑋0 ∼ 𝑁
(

𝜇0, 𝑃0
)

𝑑𝑌𝑡 = 𝑎𝑌
(

𝑡, 𝑋𝑡, 𝐹𝑡
)

𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝐹𝑡
)

𝑑𝑊𝑡, 𝑌0 = 𝑦0,
(7.1)

where the distribution of the initial state value 𝑋0 is Gaussian with
mean 𝜇 and covariance 𝑃0.

To set up the extended Kalman filter, we linearize the nonlin-
ear functions of 𝑋𝑡 around their most recent estimates, i.e 𝑚𝑡 ∶=
𝐄
[

𝑋𝑡 ∣ 𝑌
𝑡
]

, namely

𝑏
(

𝑡, 𝑋𝑡, 𝐹𝑡
)

≈ 𝑏
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

+ 𝜕𝑏
𝜕𝑋

|

|

|(𝑡,𝑚𝑡 ,𝐹𝑡)
(

𝑋𝑡 − 𝑚𝑡
)

=
[

𝑏(𝑡, 𝑚𝑡, 𝐹𝑡) −
𝜕𝑏
𝜕𝑋

|

|

|(𝑡,𝑚𝑡 ,𝐹𝑡)
𝑚𝑡

]

+ 𝜕𝑏
𝜕𝑋

|

|

|(𝑡,𝑚𝑡 ,𝐹𝑡)
𝑋𝑡

=∶ �̄�
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

+ 𝐵
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

𝑋𝑡, (7.2)

where we defined implicitly �̄�(𝑡, 𝑚𝑡, 𝐹𝑡) ∶= 𝑏(𝑡, 𝑚𝑡, 𝐹𝑡) −
𝜕𝑏
𝜕𝑋

|

|

|(𝑡,𝑚𝑡 ,𝐹𝑡)
𝑚𝑡 and

𝐵(𝑡, 𝑚𝑡, 𝐹𝑡) ∶=
𝜕𝑏
𝜕𝑋

|

|

|(𝑡,𝑚𝑡 ,𝐹𝑡)
. Similarly,

𝑎𝑌
(

𝑡, 𝑋𝑡, 𝐹𝑡
)

≈ 𝑎𝑌
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

+ 𝜕𝑎𝑌

𝜕𝑋
|

|

|(𝑡,𝑚𝑡 ,𝐹𝑡)
(

𝑋𝑡 − 𝑚𝑡
)

=
[

𝑎𝑌 (𝑡, 𝑚𝑡, 𝐹𝑡) −
𝜕𝑎𝑌

𝜕𝑋
|

|

|(𝑡,𝑚𝑡 ,𝐹𝑡)
𝑚𝑡

]

+ 𝜕𝑎𝑌

𝜕𝑋
|

|

|(𝑡,𝑚𝑡 ,𝐹𝑡)
𝑋𝑡

=∶ �̄�𝑌
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

+ 𝐴𝑌 (

𝑡, 𝑚𝑡, 𝐹𝑡
)

𝑋𝑡, (7.3)

here we defined implicitly �̄�𝑌
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

∶= 𝑎𝑌 (𝑡, 𝑚𝑡, 𝐹𝑡) −
𝜕𝑎𝑌

𝜕𝑋
|

|

|(𝑡,𝑚𝑡 ,𝐹𝑡)
𝑚𝑡

and 𝐴𝑌 (

𝑡, 𝑚𝑡, 𝐹𝑡
)

∶= 𝜕𝑎𝑌

𝜕𝑋
|

|

|(𝑡,𝑚𝑡 ,𝐹𝑡)
. Taking also 𝛬

(

𝑡, 𝑋𝑡, 𝐹𝑡
)

≈ 𝛬
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

,
e have the following filter model:

⎧

⎪

⎨

⎪

⎩

𝑑𝑋𝑡 =
[

�̄�
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

+ 𝐵
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

𝑋𝑡
]

𝑑𝑡 + 𝛬
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

𝑑𝑊𝑡, 𝑋0 ∼ 𝑁
(

𝜇0, 𝑃0
)

𝑑𝑌𝑡 =
[

�̄�𝑌
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

+ 𝐴𝑌 (

𝑡, 𝑚𝑡, 𝐹𝑡
)

𝑋𝑡
]

𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝐹𝑡
)

𝑑𝑊𝑡, 𝑌0 = 𝑦0.
(7.4)
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The approximate filter distribution is Gaussian, with mean vector
𝑚𝑡 ∈ R𝑛 and covariance matrix 𝛱𝑡 ∈ R𝑛×𝑛, so 𝜁𝑡 = (𝑚𝑡,𝛱𝑡). The filter
mean

𝑚𝑡 ∶= 𝐄
[

𝑋𝑡 ∣ 𝑌
𝑡
]

(7.5)

satisfies the SDE

𝑑𝑚𝑡 =
[

�̄�
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

+ 𝐵
(

𝑡, 𝑚𝑡, 𝐹
)

𝑚𝑡
]

𝑑𝑡

+
[

𝛱𝑡𝐴
𝑌 ′ (

𝑡, 𝑚𝑡, 𝐹𝑡
)

+ 𝛬
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

𝛴𝑌 ′ (
𝑡, 𝐹𝑡

)

] (

𝛴𝑌𝛴𝑌 ′ (
𝑡, 𝐹𝑡

)

)−1

×
[

𝑑𝑌𝑡 −
(

�̄�𝑌
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

− 𝐴𝑌 (

𝑡, 𝑚𝑡, 𝐹𝑡
)

𝑚𝑡
)

𝑑𝑡
]

=
[

�̄�
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

+ 𝐵
(

𝑡, 𝑚𝑡, 𝐹
)

𝑚𝑡
]

𝑑𝑡 + �̂�
(

𝑡, 𝑚𝑡,𝛱𝑡, 𝐹𝑡
)

𝑑𝑈𝑡

𝑚0 =𝜇0, (7.6)

where

�̂�
(

𝑡, 𝑚𝑡,𝛱𝑡, 𝐹𝑡
)

∶=
[

𝛱𝑡𝐴
𝑌 ′ (𝑡, 𝑚𝑡, 𝐹𝑡

)

+ 𝛬
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

𝛴𝑌 ′ (𝑡, 𝐹𝑡
)] (

𝛴𝑌𝛴𝑌 ′ (𝑡, 𝐹𝑡)
)− 1

2 ,

he process 𝑈𝑡, defined via

𝑈𝑡 =
(

𝛴𝑌𝛴𝑌 ′ (
𝑡, 𝐹𝑡

)

)− 1
2 [𝑑𝑌𝑡 −

(

�̄�𝑌
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

− 𝐴𝑌 (

𝑡, 𝑚𝑡, 𝐹𝑡
)

𝑚𝑡
)

𝑑𝑡
]

,

(7.7)

is a
(

P,𝑌
𝑡
)

-Brownian motion corresponding to the Kalman innovation.

Remark 15. The implicit definition of the Kalman innovation 𝑈𝑡 at
(7.7) performs two actions simultaneously. It defines a new

(

P,𝑌
𝑡
)

-
Brownian motion 𝑈𝑡 in terms of the

(

P,𝑡
)

-Brownian motion 𝑊𝑡,
and it also ensures that the new Brownian motion has the same di-
mension as the observation process 𝑌𝑡. Therefore, this implicit defini-
tion is tantamount to applying Lemma 3.2 and performing the matrix
transformation at (3.8) in Remark 3.

The filter covariance

𝛱𝑡 ∶= 𝐄
[

(

𝑋𝑡 − 𝑚𝑡
) (

𝑋𝑡 − 𝑚𝑡
)′ ∣ 𝑌

𝑡

]

(7.8)

satisfies the Riccati equation

�̇�𝑡 = 𝛬𝛬′ (𝑡, 𝑚𝑡, 𝐹𝑡
)

+ 𝐵
(

𝑡, 𝑚𝑡, 𝐹𝑡
)

𝛱𝑡 +𝛱𝑡𝐵
′ (𝑡, 𝑚𝑡, 𝐹𝑡

)

− �̂�
(

𝑡, 𝑚𝑡,𝛱𝑡, 𝐹𝑡
)

�̂�′ (𝑡, 𝑚𝑡,𝛱𝑡, 𝐹𝑡
)

,

𝛱0 = 𝑃0. (7.9)

We introduced the linear approximation solely for the purpose of
deriving an approximate filter. The rest of the model remains nonlinear.
Consequently, �̂�𝑌 at (3.5) becomes

̂𝑌 (𝑡, 𝑍) = �̂�𝑌 (𝑡, 𝑚𝑡,𝛱𝑡, 𝐹 ) ∶= ∫ 𝑎𝑌 (𝑡, 𝑋, 𝐹 )𝑑𝑝(𝑋;𝑚𝑡,𝛱𝑡) (7.10)

which, when decomposed, provides an expression for the securities’
drift coefficient �̂� and the benchmark’s drift coefficient 𝑐.

We mirror the development at (4.16), tayloring it to the situation
at hand. Applying Lemma 3.2, and using the dynamics of 𝑌𝑡 at (7.1),
the definition of �̂� at (7.10), and the block matrix decomposition in
Remark 4, we express 𝑅𝑡 in the filtration 𝑌

𝑡 , in terms of the filter mean
𝑚𝑡 and Wiener process �̃�𝑡. Eq. (4.16) for the log return of the portfolio
over its benchmark, 𝑅𝑡 = ln 𝑉𝑡

𝐿𝑡
, becomes:

𝑑𝑅𝑡 =
[(

−1
2
ℎ′𝑡𝛴

(1)𝛴(1)′ (𝑡, 𝐹𝑡
)

ℎ𝑡 + ℎ′𝑡 �̂�
(1)(𝑡, 𝑚𝑡,𝛱𝑡, 𝐹𝑡) +

1
2
𝛯𝛯′ (𝑡, 𝐹𝑡

)

− 𝑐(𝑡, 𝑚𝑡,𝛱𝑡, 𝐹𝑡)
)]

𝑑𝑡 +
(

ℎ′𝑡𝛴
(1) (𝑡, 𝐹𝑡

)

− 𝛯
(

𝑡, 𝐹𝑡
))

𝑑�̃�𝑡, (7.11)

with 𝑅0 = ln 𝑣
𝑙 =∶ 𝑟0.

For completeness, we also express 𝑅𝑡 in terms of the Kalman inno-
ation 𝑈𝑡. Eq. (3.8) implies that

𝑌 (

𝑡, 𝐹
)

𝑑�̃� =
(

𝛴𝑌𝛴𝑌 ′ (
𝑡, 𝐹

)

)
1
2 𝑑𝑈 . (7.12)
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We use the block matrix definition of 𝛴𝑌 to decompose the left-hand
side of this expression as

𝛴𝑌 (

𝑡, 𝐹𝑡
)

𝑑�̃�𝑡 =
)

𝛬𝑓 (𝑡, 𝐹𝑡
)′ , 𝛴

(

𝑡, 𝐹𝑡
)′ , 𝛯

(

𝑡, 𝐹𝑡
)′ , 𝛴𝐸 (

𝑡, 𝐹𝑡
)′
)′

𝑑�̃�𝑡.

On the right-hand side of (7.12) we decompose the 𝑚𝑌 × 𝑚𝑌 matrix
(

𝛴𝑌𝛴𝑌 ′ (𝑡, 𝐹𝑡
)

)1∕2
as

(

𝛴𝑌𝛴𝑌 ′ (𝑡, 𝐹𝑡
)

)1∕2
∶=

(

�̂�𝑓 (𝑡, 𝐹𝑡
)′ , �̂�

(

𝑡, 𝐹𝑡
)′ , �̂�

(

𝑡, 𝐹𝑡
)′ , �̂�𝑍

(

𝑡, 𝐹𝑡
)′
)′

,

where �̂�𝑓 (⋅), �̂�(⋅), �̂�(⋅), and �̂�𝑍 (⋅) are respectively a 𝓁 × 𝑚𝑌 matrix,
a 𝑚 × 𝑚𝑌 matrix, a 𝑚𝑌 -element column vector, and a 𝑘 × 𝑚𝑌 matrix
such that �̂�𝑓 �̂�𝑓 ′ (⋅) = 𝛬𝑓𝛬𝑓 ′ (⋅), �̂��̂�′(⋅) = 𝛴𝛴′(⋅), �̂��̂�′(⋅) = 𝛯𝛯′(⋅), and
�̂�𝑍 �̂� ′

𝑍 (⋅) = 𝛹𝑍𝛹 ′
𝑍 (⋅). Using these decompositions, we restate (7.12) as

(

𝛬𝑓 (

𝑡, 𝐹𝑡
)′ , 𝛴

(

𝑡, 𝐹𝑡
)′ , 𝛯

(

𝑡, 𝐹𝑡
)′ , 𝛴𝐸 (

𝑡, 𝐹𝑡
)′
)′

𝑑�̃�𝑡

=
(

�̂�𝑓 (

𝑡, 𝐹𝑡
)′ , �̂�

(

𝑡, 𝐹𝑡
)′ , �̂�

(

𝑡, 𝐹𝑡
)′ , �̂�𝑍

(

𝑡, 𝐹𝑡
)′
)′

𝑑𝑈𝑡, (7.13)

which implies in particular that 𝛴
(

𝑡, 𝐹𝑡
)

𝑑�̃�𝑡 = �̂�
(

𝑡, 𝐹𝑡
)

𝑑𝑈𝑡 and
𝛯
(

𝑡, 𝐹𝑡
)

𝑑�̃�𝑡 = �̂�
(

𝑡, 𝐹𝑡
)

𝑑𝑈𝑡. We use these two equations and a fur-
ther decomposition of 𝛴 and �̂� distinguishing between tradable and
nontradable assets to rewrite (7.11) as

𝑑𝑅𝑡 =
[(

−1
2
ℎ′𝑡𝛴

(1)𝛴(1)′ (𝑡, 𝐹𝑡
)

ℎ𝑡 + ℎ′𝑡 �̂�
(1)(𝑡, 𝑚𝑡,𝛱𝑡, 𝑌𝑡)

+ 1
2
𝛯𝛯′ (𝑡, 𝐹𝑡

)

− 𝑐(𝑡, 𝑚𝑡,𝛱𝑡, 𝐹𝑡)
)]

𝑑𝑡

+
(

ℎ′𝑡�̂�
(1) (𝑡, 𝐹𝑡

)

− �̂�
(

𝑡, 𝐹𝑡
))

𝑑𝑈𝑡. (7.14)

Then, the risk-sensitive benchmarked criterion at (4.17) becomes

̂(ℎ; 𝑇 , 𝜃, 𝑟0) ∶= −1
𝜃
ln𝐄

[

𝑟−𝜃0 𝑒−𝜃𝑅𝑇
]

= −1
𝜃
ln𝐄

[

𝑟−𝜃0 exp
{

𝜃 ∫

𝑇

0
�̂�(𝑡, 𝑚𝑡,𝛱𝑡, 𝐹𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}

�̂�ℎ
𝑇

]

,

(7.15)

where

�̂�(𝑡, 𝑚,𝛱, 𝑓 , ℎ; 𝜃) ∶=1
2
(𝜃 + 1)ℎ′𝛴(1)𝛴(1)′ (𝑡, 𝑓 )ℎ

− ℎ′�̂�(1) (𝑡, 𝑚,𝛱, 𝑓 ) − 𝜃ℎ′𝛴(1)𝛯′(𝑡, 𝑓 )

+ 𝑐 (𝑡, 𝑚,𝛱, 𝑓 ) + 1
2
(𝜃 − 1)𝛯𝛯′(𝑡, 𝑓 ), (7.16)

and �̂�ℎ
𝑇 is defined via (4.19).

Remark 16. As expected,

�̂�(𝑡, 𝑚𝑡,𝛱𝑡, 𝑓 , ℎ; 𝜃) = ∫ 𝑔(𝑡, 𝑋, 𝐹 , ℎ; 𝜃)𝑑𝑝(𝑋;𝑚𝑡,𝛱𝑡). (7.17)

Theorem 4.5 guarantees that, for a given admissible control policy
𝑡 ∈ 𝑍 (𝑇 ), the separated criterion 𝐽 (ℎ; 𝑇 , 𝜃, 𝑟0) at (7.15) yields the
ame value as the original criterion. Thus, we have reformulated the
ontrol problem with a possible approximation in the derivation of
he finite-dimensional filter, using only the properties of the finite-
imensional filter, without needing to derive and solve the Zakai
quation.

.2. Linear-Gaussian model

The linear-Gaussian model is a corollary to the EKF approxima-
ion described above. Here, the drift functions 𝑏(𝑡, 𝑋𝑡, 𝐹𝑡), 𝑏𝑓 (𝑡, 𝑋𝑡, 𝐹𝑡),
(𝑡, 𝑋𝑡, 𝐹𝑡), 𝑐(𝑡, 𝑋𝑡, 𝐹𝑡), 𝑎𝐸 (𝑡, 𝑋𝑡, 𝐹𝑡) are all affine in the factor processes
𝑡 and 𝐹𝑡, and the diffusion coefficients 𝛬, 𝛴, 𝛯, and 𝛴𝐸 are determin-

stic functions of time. Specifically, 𝑏(𝑡, 𝑋𝑡, 𝐹𝑡) = 𝑏𝑡 + 𝐵𝑡

(

𝑋𝑡
𝐹𝑡

)

, where

the time-dependent coefficients 𝑏 ∶ [0, 𝑇 ] → R𝑛, 𝐵 ∶ [0, 𝑇 ] → R𝑚×(𝑛+𝓁),
are 𝐶1, with similar assumptions for 𝑏𝑓 (𝑡, 𝑋𝑡, 𝐹𝑡), 𝑎(𝑡, 𝑋𝑡, 𝐹𝑡), 𝑐(𝑡, 𝑋𝑡, 𝐹𝑡),
and 𝑎𝐸 (𝑡, 𝑋 , 𝐹 ). Additionally, 𝑋 ∼ 𝑁(𝜇 , 𝑃 ) for some known vector
𝑡 𝑡 0 0 0
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𝑌

𝑑

t

=

p

e

𝜇0 ∈ R𝑛 and matrix 𝑃0 ∈ R𝑛×𝑛. The dynamics of the observation process
𝑡 = (𝐹 ′

𝑡 , ln𝑆
′
𝑡 , ln𝐿

′
𝑡 , 𝐸

′
𝑡 )
′ is:

𝑌𝑡 =

(

𝑎𝑌𝑡 + 𝐴𝑌
𝑡

(

𝑋𝑡

𝐹𝑡

))

𝑑𝑡 + 𝛴𝑌
𝑡 𝑑𝑊𝑡, 𝑌0 = 𝑦0, (7.18)

Hence, the filter model (7.4) holds exactly.
Then,

�̂�𝑌 (𝑡, 𝑍) = ∫ 𝑎𝑌 (𝑡, 𝑋, 𝑌 )𝑑𝑝(𝑋;𝑚𝑡,𝛱𝑡) = 𝑎𝑌𝑡 + 𝐴𝑌
𝑡

(

𝑚𝑡

𝐹𝑡

)

. (7.19)

The risk-sensitive benchmarked criterion at (4.17) becomes

𝐽 (ℎ; 𝑇 , 𝜃, 𝑟0) ∶= −1
𝜃
ln𝐄

[

𝑟−𝜃0 𝑒−𝜃𝑅𝑇
]

= −1
𝜃
ln𝐄

[

𝑟−𝜃0 exp
{

𝜃 ∫

𝑇

0
�̂�(𝑡, 𝑚𝑡, 𝐹𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}

�̂�ℎ
𝑇

]

,
(7.20)

where

�̂�(𝑡, 𝑚, 𝑓 , ℎ; 𝜃) ∶= 𝜃 + 1
2

ℎ′𝛴(1)
𝑡 𝛴(1)′

𝑡 ℎ − ℎ′
[

𝑎(1)𝑡 + 𝐴(1)
𝑡

(

𝑚

𝐹

)]

− 𝜃ℎ′𝛴(1)
𝑡 𝛯′

𝑡

+

[

𝑐𝑡 + 𝐶𝑡

(

𝑚

𝐹

)]

+ 𝜃 − 1
2

𝛯𝑡𝛯
′
𝑡 (7.21)

and �̂�ℎ
𝑇 is defined via (4.19), as before.

Theorem 4.5 guarantees that the separated criterion 𝐽 (ℎ; 𝑇 , 𝜃, 𝑟0)
at (7.20) is identical to the original criterion for the linear-Gaussian
control problem. Therefore, we have already achieved the same result
as Theorem 2.1 in Nagai (2001), without deriving and solving a Zakai
equation. All that is left is to solve the control problem as in Davis and
Lleo (2021).

8. Conclusion

This paper investigated stochastic control problems, in particular
of the risk-sensitive type, under incomplete observation. We were
mainly inspired by Nagai and Peng (Nagai, 2001; Nagai & Peng,
2002) whose approach, based on a so-called Modified Zakai Equation
(MZE), solves the incomplete observation stochastic control problem
in the linear-Gaussian case. We considered a general nonlinear model
inspired by the risk-sensitive benchmarked asset management model
(RSBAM) in Davis and Lleo (2021) for which we assumed the existence
of a finite-dimensional filter described by a vector-parameter process
𝜁𝑡. The original problem with the unobserved state process 𝑋𝑡 was
then transformed into the so-called separated problem with the state
variable process given by 𝜁𝑡.

Our contribution can be seen as follows:

(a) Theorem 4.5 proves the equivalence of the given problem in its
original and separated versions, a fact that is generally over-
looked in the literature;

(b) Proposition 6.1 provides a criterion allowing us to identify sit-
uations where a separation property holds, perhaps in a wider
sense, namely when the separated problem can be expressed in
terms of just a finite number of synthetic values of the filter
distribution such as the mean and some higher order moments.
The state variable process in the separated problem is then finite-
dimensional. Therefore, the solution to the separated problem
can be obtained by standard methods of completely observed
stochastic control problems;

(c) Our derivation of the MZE, given in Theorem 5.3, aligns with
Nagai and Peng, but with one crucial difference. While Nagai
and Peng let the filter intervene only at the level of the solution
of the MZE, we take the filter into account from the very begin-
ning thanks to Lemma 3.2. Consequently, the MZE in Nagai and
Peng is a stochastic PDE, which is difficult to solve in general. In
fact, they obtain an explicit solution only in the linear-Gaussian
11
case thereby implicitly establishing a separation property for
this special case. However, in our situation, the MZE reduces
to a deterministic PDE. Therefore, when solving the partially
observed stochastic control problem by solving this deterministic
PDE, one ends up with the same degree of difficulty as when
solving an HJB equation for a complete observation stochastic
control problem. Furthermore, our approach works for general
incomplete observation stochastic control problems, provided
there exists a finite-dimensional filter.

Appendix A. Relation to existing risk-sensitive investment man-
agement problems

Our approach applies directly to various existing models such as
those by Davis and Lleo (2013, 2016, 2020, 2021), Nagai (2001),
and Nagai and Peng (2002). Table A.2 details the parametrization of
these models in our general setup. Therefore, the approach described
in our paper establishes the separability of these models, and confirms
that the asset allocation derived in Davis and Lleo (2013, 2016, 2020,
2021) is optimal.

Appendix B. Proof of Proposition 4.3

Proof of (𝑖). We start by proving that condition (4.22) in Defini-
ion 4.2 implies condition (4.9) in Definition 4.1.

By Lemma 3.2, 𝑑�̃�𝑡 = 𝛴𝑌 ′ (𝑡, 𝑌𝑡
)

(

𝛴𝑌𝛴𝑌 ′ (𝑡, 𝑌𝑡
)

)−1
[

𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑𝑊𝑡+
(

𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡) − �̂�𝑌 (𝑡, 𝑍𝑡)
)

𝑑𝑡
]

, thus, condition (4.22) implies that

𝐄
[

exp
{

− 𝜃
2 ∫

𝑡

0

(

ℎ′𝑠𝛴
(1) (𝑠, 𝑌𝑠

)

− 𝛯
(

𝑠, 𝑌𝑠
))

𝑑�̃�𝑠

}]

=𝐄
[

exp
{

− 𝜃
2 ∫

𝑡

0

(

ℎ′𝑠𝛴
(1) (𝑠, 𝑌𝑠

)

− 𝛯
(

𝑠, 𝑌𝑠
))

× 𝛴𝑌 ′ (
𝑠, 𝑌𝑠

)

(

𝛴𝑌𝛴𝑌 ′ (
𝑠, 𝑌𝑠

)

)−1
(

𝛴𝑌 (

𝑠, 𝑌𝑠
)

𝑑𝑊𝑠

+
(

𝑎𝑌 (𝑠,𝑋𝑠, 𝑌𝑠) − �̂�𝑌 (𝑠,𝑍𝑠)
)

𝑑𝑠
)}]

< ∞. (B.1)

Next, we simplify the expression inside the expectation at (B.1). Let
ℎ̃𝑡 be the 𝑚𝑌 -element vector process according to Notation 2. Define
also the 𝑚𝑌 -element column indicator vector 𝟏𝛯 =

(

0𝓁+𝑚 1 0𝑘,
)′,

that is, 𝟏𝛯 is a vector with entry (𝓁+𝑚+1) set to 1 and all other entries
set to 0. Note that 𝟏′𝛯𝛴

𝑌
𝑡 = 𝛯𝑡. Then, we express (B.1) as:

𝐄
[

exp
{

− 𝜃
2 ∫

𝑡

0

(

ℎ̃′
𝑠𝛴

𝑌 (

𝑠, 𝑌𝑠
)

− 𝟏′𝛯𝛴
𝑌 (

𝑠, 𝑌𝑠
))

×
(

𝛴𝑌 ′ (𝑠, 𝑌𝑠
) (

𝛴𝑌𝛴𝑌 ′ (𝑠, 𝑌𝑠
))−1 (

𝛴𝑌 (

𝑠, 𝑌𝑠
)

𝑑𝑊𝑡 + 𝑎𝑌 (𝑠,𝑋𝑠, 𝑌𝑠) − �̂�𝑌 (𝑠,𝑍𝑠)𝑑𝑠
)

)}]

𝐄
[

exp
{

− 𝜃
2 ∫

𝑡

0

(

ℎ̃′𝑠 − 𝟏′𝛯
)

������(

𝛴𝑌𝛴𝑌 ′ (
𝑠, 𝑌𝑠

)

)

�������(

𝛴𝑌𝛴𝑌 ′ (
𝑠, 𝑌𝑠

)

)−1

×
(

𝛴𝑌 (

𝑠, 𝑌𝑠
)

𝑑𝑊𝑡 + 𝑎𝑌 (𝑠,𝑋𝑠, 𝑌𝑠) − �̂�𝑌 (𝑠,𝑍𝑠)𝑑𝑠
)}]

=𝐄
[

exp
{

− 𝜃
2 ∫

𝑡

0

(

ℎ′𝑠𝛴
(1) (𝑠, 𝑌𝑠

)

− 𝛯
(

𝑠, 𝑌𝑠
))

𝑑𝑊𝑠

}

× exp
{

− 𝜃
2 ∫

𝑡

0

(

ℎ̃′𝑠 − 𝟏′𝛯
) (

𝑎𝑌 (𝑠,𝑋𝑠, 𝑌𝑠) − �̂�𝑌 (𝑠,𝑍𝑠)𝑑𝑠
)

}]

< ∞.

The first exponential is finite as long as the second exponential is strictly
ositive. Recall that 𝑎𝑌 is 𝐶1,1,1

𝑏 on [0, 𝑇 ] ×R𝑛 ×R𝑚
𝑌 , so the conditional expectation

�̂� is also bounded, and

xp
{

− 𝜃
2 ∫

𝑡

0

(

ℎ′
𝑠 − 𝟏′𝛯

) (

𝑎𝑌 (𝑠,𝑋𝑠, 𝑌𝑠) − �̂�𝑌 (𝑠,𝑍𝑠)𝑑𝑠
)

}

> 0 ∀(𝑠, 𝑥, 𝑦) a.s.

(B.2)

Consequently, 𝐄
[

exp
{

− 𝜃
2 ∫

𝑡
0
(

ℎ′𝑠𝛴
(1) (𝑠, 𝑌𝑠

)

− 𝛯
(

𝑠, 𝑌𝑠
))

𝑑𝑊𝑠

}]

< ∞,
and the Kazamaki condition (4.9) in Definition 4.1 holds. Similar
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Table A.2
Correspondence between our model and existing risk-sensitive investment models with partial observation.

In this paper Nagai (2001) and Nagai and
Peng (2002)

Davis and Lleo (2013, 2016,
2020)

Davis and Lleo (2021)

Type of criterion Benchmark outperformance Wealth-based Wealth-based Benchmark outperformance

Unobservable factor 𝑋𝑡 𝑏(𝑡, 𝑋𝑡 , 𝐹𝑡) 𝑏 + 𝐵𝑋𝑡 𝑏 + 𝐵𝑋𝑡 𝑏𝑡 + 𝐵𝑡𝑋𝑡
𝛬(𝑡, 𝑋𝑡 , 𝐹𝑡) 𝛬 𝛬 𝛬𝑡

Observable factor 𝐹𝑡 𝑏𝑓 (𝑡, 𝑋𝑡 , 𝐹𝑡), - - –
𝛬𝑓 (𝑡, 𝐹𝑡) - - –

Financial assets 𝑆𝑡 𝑎(𝑡, 𝑋𝑡 , 𝐹𝑡) 𝑎 + 𝐴𝑋𝑡 𝑎 + 𝐴𝑋𝑡 𝑎𝑡 + 𝐴𝑡𝑋𝑡
𝛴(𝑡, 𝐹𝑡) 𝛴 𝛴 𝛴𝑡

Benchmark 𝐿𝑡 𝑐(𝑡, 𝑋𝑡 , 𝐹𝑡) - - 𝑐𝑡 + 𝐶𝑡𝑋𝑡
𝛯(𝑡, 𝐹𝑡) - - 𝛯𝑡

Expert forecasts 𝐿𝑡 𝑎𝐸 (𝑡, 𝑋𝑡 , 𝐹𝑡) - 𝑎𝐸𝑡 + 𝐴𝐸
𝑡 𝑋𝑡 𝑎𝐸𝑡 + 𝐴𝐸

𝑡 𝑋𝑡
𝛴𝐸 (𝑡, 𝐹𝑡) - 𝛴𝐸

𝑡 𝛴𝐸
𝑡

Sources of observations Financial assets Financial assets Financial assets Financial assets
Benchmark Expert forecasts Benchmark
Expert forecasts Expert forecasts
Observable factors

Observation process 𝑌𝑡 𝑎𝑌 (𝑡, 𝑋𝑡 , 𝐹𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑏𝑓 (𝑡, 𝑋𝑡 , 𝐹𝑡)
𝑎(𝑡, 𝑋𝑡 , 𝐹𝑡) −

1
2
𝑑𝛴 (𝑡, 𝐹𝑡)

𝑐𝑡 −
1
2
𝛯𝛯 ′

𝑡
𝑎𝐸𝑡

⎞

⎟

⎟

⎟

⎟

⎠

𝑎 − 1
2
𝑑𝛴 + 𝐴𝑋𝑡

(

𝑎 − 1
2
𝑑𝛴

𝑎𝐸𝑡

)

+
(

𝐴
𝐴𝐸

𝑡

)

𝑋𝑡

⎛

⎜

⎜

⎜

⎝

𝑎𝑡 −
1
2
𝑑𝛴 (𝑡)

𝑐𝑡 −
1
2
𝛯𝛯 ′

𝑡
𝑎𝐸𝑡

⎞

⎟

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝐴𝑡
𝐶𝑡
𝐴𝐸

𝑡

⎞

⎟

⎟

⎠

𝑋𝑡

𝛴𝑌 (𝑡, 𝐹𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝛬𝑓 (𝑡, 𝐹𝑡)
𝛴(𝑡, 𝐹𝑡)
𝛯(𝑡, 𝐹𝑡)

𝛴𝐸 (𝑡, 𝐹𝑡))

⎞

⎟

⎟

⎟

⎟

⎠

𝛴
(

𝛴
𝛴𝐸

𝑡

)

⎛

⎜

⎜

⎝

𝛴𝑡
𝛯𝑡
𝛴𝐸

𝑡 )

⎞

⎟

⎟

⎠

w
(

𝑊

i
c

𝐽

R

[

T
g
e

=

reasoning, starting from condition (4.9) in Definition 4.1 and apply-
ing Lemma 3.2 shows that the converse is true. Therefore, we have
proved the equivalence of conditions (4.9) and (4.22). The proof of the
equivalence of conditions (4.10) and (4.23) proceeds analogously.

Proof of (𝑖𝑖). Under the measure Pℎ defined at (4.7), the 𝑡-standard
Wiener process is (see (4.8))

𝑊 ℎ
𝑡 ∶= 𝑊𝑡 + 𝜃 ∫

𝑡

0

(

𝛴(1)′ (𝑠, 𝑌𝑠
)

ℎ𝑠 − 𝛯′ (𝑠, 𝑌𝑠
)

)

𝑑𝑠,

or ℎ𝑡 ∈ 𝑋 (𝑇 ). By Lemma 3.2, there exists a
(

Pℎ,𝑌
𝑡
)

𝑑-dimensional
standard Wiener process �̃� 𝑋

𝑡 such that 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃� 𝑋
𝑡 =

(

𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡)
−�̂�𝑌 (𝑡, 𝑍𝑡)

)

𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑𝑊 ℎ
𝑡 . Hence,

𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃� 𝑋
𝑡 =

(

𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡) − �̂�𝑌 (𝑡, 𝑍𝑡)
)

𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑𝑊𝑡

+ 𝜃𝛴𝑌 (

𝑡, 𝑌𝑡
) (

𝛴(1) (𝑡, 𝑌𝑡
)

ℎ𝑡 − 𝛯
(

𝑡, 𝑌𝑡
))′ . (B.3)

However, applying Lemma 3.2 under the measure P also tells us that

𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑𝑊𝑡 =
(

�̂�𝑌 (𝑡, 𝑍𝑡) − 𝑎𝑌 (𝑡, 𝑋𝑡, 𝑌𝑡)
)

𝑑𝑡 + 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃�𝑡,

so (B.3) becomes

𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃� 𝑋
𝑡 = 𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̃�𝑡 + 𝜃𝛴𝑌 (

𝑡, 𝑌𝑡
)

(

𝛴(1)′ (𝑡, 𝑌𝑡
)

ℎ𝑡 − 𝛯 ′ (𝑡, 𝑌𝑡
)

)

,

(B.4)

which is the definition of the standard (P̂ℎ,𝑌
𝑡 )-Wiener process �̃� ℎ

𝑡 at
(4.21). Hence, �̃� 𝑋

𝑡 = �̃� ℎ
𝑡 , so �̃� ℎ

𝑡 is also the restriction of the standard
(Pℎ,𝑡)-Wiener process 𝑊 ℎ

𝑡 to the filtration 𝑌
𝑡 . As Lemma 3.2, affects

only the filtration but not the measure, we conclude that the measures
Pℎ defined via (4.7) and P̂ℎ defined via (4.20) are identical.

Appendix C. The MZE approach by Nagai and Peng

To recall the approach by Nagai and Peng we have to start from
the problem formulation as in Section 4.1 with the unobserved factor
process 𝑋𝑡. Nagai (2001) finds it convenient to turn 𝑌𝑡 into a martingale
by passing to a new measure P̄. Assuming ℎ𝑡 ∈ 𝑋 (𝑇 ), define P̄ via the
Radon–Nikodym derivative �̄�𝑋

𝑡 = 𝑑P̄
𝑑Pℎ

|

|

|𝑡
, where

̄𝑋 ∶= exp
{

−
𝑡
𝑎†(𝑠,𝑋𝑠, 𝑌𝑠;ℎ𝑠)′

(

𝛴𝑌𝛴𝑌 ′ (𝑠, 𝑌𝑠)
)−1

𝛴𝑌 (

𝑠, 𝑌𝑠
)

𝑑𝑊 ℎ
12

𝑡 ∫0
𝑠

−1
2 ∫

𝑡

0
𝑎†(𝑠,𝑋𝑠, 𝑌𝑠;ℎ𝑠)′

(

𝛴𝑌𝛴𝑌 ′ (𝑠, 𝑌𝑠
))−1

𝑎†(𝑠,𝑋𝑠, 𝑌𝑠;ℎ𝑠)𝑑𝑠
}

(C.1)

ith 𝑎† defined at (4.11), and for 𝑡 ∈ [0, 𝑇 ] so that the standard
P̄,𝑡)-Wiener process is

̄ 𝑡 ∶= 𝑊 ℎ
𝑡 + ∫

𝑡

0
𝛴𝑌 ′ (

𝑠, 𝑌𝑠
)

(

𝛴𝑌𝛴𝑌 ′ (
𝑠, 𝑌𝑠

)

)−1
𝑎†(𝑠,𝑋𝑠, 𝑌𝑠;ℎ𝑠)𝑑𝑠 (C.2)

mplying a corresponding P̄-dynamics for (𝑋𝑡, 𝑌𝑡). The risk-sensitive
riterion is then

̄(ℎ; 𝑇 , 𝜃, 𝑟0) = −1
𝜃
ln �̄�

[

𝑟−𝜃0 exp
{

𝜃 ∫

𝑇

0
𝑔(𝑡, 𝑋𝑡, 𝑌𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}

𝛹𝑋
𝑇

]

, (C.3)

where 𝛹𝑋
𝑡 ∶=

(

�̄�𝑋
𝑡
)−1 is a martingale on (P̄,𝑡), corresponding to the

adon–Nikodym derivative 𝛹𝑋
𝑡 = 𝑑Pℎ

𝑑P̄
|

|

|𝑡
. We also define the usual

exponentially transformed criterion 𝐼(ℎ; 𝑇 , 𝜃, 𝑟0) ∶= 𝑒−𝜃𝐽 (ℎ;𝑇 ,𝜃,𝑟0).
By the Tower Property,

𝐼(ℎ; 𝑇 , 𝜃, 𝑟0) = 𝑟−𝜃0 �̄�
[

�̄�
[

exp
{

𝜃 ∫

𝑇

0
𝑔(𝑡, 𝑋𝑡, 𝑌𝑡, ℎ𝑡; 𝜃)𝑑𝑡

}

𝛹𝑋
𝑇 ∣ 𝑌

𝑇

]]

,

(C.4)

where 𝑔(⋅) is as in (4.4).

Definition C.1. For ℎ𝑡 ∈ 𝑋 (𝑇 ), and 𝜑 ∶ [0, 𝑇 ] ×R𝑛 ×R𝑚𝑌
→ R a 𝐶1,2

𝑏
test function indexed by 𝑦, set

𝑞ℎ𝑋 (𝑡)(𝜑𝑡) ∶= �̄�
[

𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠 ,𝑌𝑠 ,ℎ𝑠;𝜃)𝑑𝑠𝛹𝑋

𝑡 𝜑(𝑡, 𝑋𝑡; 𝑌𝑡) ∣ 𝑌
𝑡

]

. (C.5)

From this definition, we immediately see that 𝐼(ℎ; 𝑇 , 𝜃, 𝑟0) = 𝑟−𝜃0 �̄�
𝑞ℎ𝑋 (𝑇 )(1)

]

. Nagai (2001) now proves the following

heorem C.2 (Classical formulation of the Modified Zakai Equation (Na-
ai 2001)). 𝑞ℎ𝑋 (𝑡)(𝜑𝑡) in Definition C.1 satisfies the stochastic partial differ-
ntial equation (SPDE)

𝑞ℎ𝑋 (𝑡) (𝜑(𝑡))

𝑞ℎ𝑋 (0) (𝜑(0))

+
𝑡
𝑞ℎ (𝑠)

(

𝜕𝜑
(𝑠,𝑋𝑠; 𝑌𝑠) + 𝐿ℎ 𝜑(𝑠,𝑋𝑠; 𝑌𝑠) + 𝜃𝑔(𝑠,𝑋𝑠, 𝑌𝑠, ℎ𝑠; 𝜃)𝜑(𝑠,𝑋𝑠; 𝑌𝑠)

)

𝑑𝑠
∫0
𝑋 𝜕𝑡 𝑋
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w

𝐿

i

𝐄
w

𝐄

f

𝐄

p

𝐄

+ ∫

𝑡

0
𝑞ℎ𝑋 (𝑠)

(

𝐿ℎ
𝑌 𝜑(𝑠,𝑋𝑠; 𝑌𝑠)

)

𝑑𝑌𝑠, (C.6)

here
ℎ
𝑋𝜑(𝑡, 𝑥; 𝑦) ∶=

1
2

tr
{

𝛬𝛬′(𝑡, 𝑥; 𝑦)𝐷2𝜑
}

+ [𝑏(𝑡, 𝑥; 𝑦) − 𝜃𝛬(𝑡, 𝑥; 𝑦)

×
(

𝛴(1)′ (𝑡, 𝑦)ℎ − 𝛯′ (𝑡, 𝑦)
)]′

𝐷𝜑

=1
2

𝑛
∑

𝑖,𝑗=1

{

𝛬𝛬′(𝑡, 𝑥; 𝑦)
}

𝑖𝑗
𝜕2𝜑

𝜕𝑥𝑖𝜕𝑥𝑗

+
𝑛
∑

𝑖=1

[

𝑏(𝑡, 𝑥; 𝑦) − 𝜃𝛬(𝑡, 𝑥; 𝑦)
(

𝛴(1)′ (𝑡, 𝑦)ℎ − 𝛯′ (𝑡, 𝑦)
)]

𝑖

𝜕𝜑
𝜕𝑥𝑖

(C.7)

s the Pℎ-generator related to the process 𝑋𝑡, 𝐷𝜑 =
(

𝜕𝜑
𝜕𝑥1

,… , 𝜕𝜑
𝜕𝑥𝑖

,… , 𝜕𝜑
𝜕𝑥𝑛

)

and 𝐷2𝜑 =
[

𝜕2𝜑
𝜕𝑥𝑖𝑥𝑗

]

, 𝑖, 𝑗 = 1,… , 𝑛. The operator 𝐿ℎ
𝑌 𝜑(𝑡, 𝑥; 𝑦) is defined in

vector form as

𝐿ℎ
𝑌 𝜑(𝑡, 𝑥; 𝑦) ∶=

[

𝑎𝑌 (𝑡, 𝑥; 𝑦) − 𝜃𝛴𝑌 (𝑡; 𝑦)
(

𝛴(1)′ (𝑡; 𝑦)ℎ − 𝛯′ (𝑡; 𝑦)
)]′

×
(

𝛴𝑌𝛴𝑌 ′
(𝑡, 𝑦)

)−1
𝜑(𝑡, 𝑥; 𝑦)

+ 𝐷′𝜑(𝑡, 𝑥; 𝑦)𝛬(𝑡, 𝑥; 𝑦)𝛴𝑌 ′
(𝑡; 𝑦)

(

𝛴𝑌𝛴𝑌 ′
(𝑡, 𝑦)

)−1
, (C.8)

or element-by-element as:
{

𝐿ℎ
𝑌 𝜑(𝑡, 𝑥; 𝑦)

}

𝑖 ∶=
{

[

𝑎𝑌 (𝑡, 𝑥; 𝑦) − 𝜃𝛴𝑌 (𝑡; 𝑦)
(

𝛴(1)′ (𝑡; 𝑦)ℎ − 𝛯 ′ (𝑡; 𝑦)
)]′

×
(

𝛴𝑌𝛴𝑌 ′ (𝑡, 𝑦)
)−1

}

𝑖𝜑(𝑡, 𝑥; 𝑦)

+
𝑛
∑

𝑗=1

𝜕𝜑(𝑡, 𝑥; 𝑦)
𝜕𝑥𝑗

{

𝛬(𝑡, 𝑥; 𝑦)𝛴𝑌 ′ (𝑡; 𝑦)
(

𝛴𝑌𝛴𝑌 ′ (𝑡, 𝑦)
)−1

}

𝑗𝑖

𝑖 = 1,… , 𝑚𝑌 . (C.9)

Remark 17. Note that although 𝑞ℎ𝑋 is defined as an expectation under
the measure P̄, the drift in the SPDE of Theorem C.2 depends on the
Pℎ-operator 𝐿ℎ

𝑋 . How did we get there? The derivation starts with the
P̄-operator of 𝑋𝑡. This operator then acquires an extra term through the
cross variation 𝑑⟨𝛹𝑋 , 𝜑⟩𝑡, yielding the Pℎ-operator 𝐿ℎ

𝑋 .

Remark 18. The quantity 𝑞ℎ𝑋 (𝑡)(𝜑𝑡) can be seen as a conditional
probability that can be expressed in terms of its conditional density
𝑞ℎ𝑋 (𝑡) ∶= 𝑞ℎ𝑋 (𝑡, 𝜁 ; 𝑦) as

𝑞ℎ𝑋 (𝑡) (𝜑(𝑡)) = ∫ 𝑞ℎ𝑋 (𝑡, 𝑥; 𝑦)𝑒
𝜃 ∫ 𝑡

0 𝑔(𝑠,𝑥,𝑦,ℎ;𝜃)𝑑𝑠𝜑(𝑡, 𝑥; 𝑦)𝑑𝑥, (C.10)

where the 𝑞ℎ𝑋 (𝑡, 𝑥; 𝑦) density is with respect to the Lebesgue measure.
By standard arguments, we can show that the conditional density 𝑞ℎ𝑋 (𝑡)
satisfies the stochastic partial differential equation (SPDE):

𝑑𝑞ℎ𝑋 (𝑡) − 𝐿ℎ∗
𝑋 𝑞ℎ𝑋 (𝑡)𝑑𝑡 − 𝐿ℎ∗

𝑌 𝑞ℎ𝑋 (𝑡)𝑑𝑌𝑡 = 0 (C.11)

where the operators 𝐿ℎ∗
𝑋 and 𝐿ℎ∗

𝑌 are the adjoints of the operators 𝐿ℎ
𝑋

and 𝐿ℎ
𝑌 respectively, and thus defined elementwise as:

𝐿ℎ∗
𝑋 𝑓 (𝑡, 𝑥; 𝑦)

∶=1
2

𝑛
∑

𝑖,𝑗=1

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

(

{

𝛬𝛬′(𝑡, 𝑥; 𝑦)
}

𝑖𝑗 𝑓 (𝑡, 𝑥; 𝑦)
)

−
𝑛
∑

𝑖=1

𝜕
𝜕𝑥𝑖

({

𝑏(𝑡, 𝑥; 𝑦) − 𝜃𝛬(𝑡, 𝑥; 𝑦)
(

𝛴(1)′ (𝑡; 𝑦) ℎ − 𝛯′(𝑡; 𝑦)
)}

𝑖
𝑓 (𝑡, 𝑥; 𝑦)

)

(C.12)

and
{

𝐿ℎ∗𝑓 (𝑡, 𝑥; 𝑦)
}

13

𝑌 𝑖
∶=
{

[

𝑎𝑌 (𝑡, 𝑥; 𝑦) − 𝜃𝛴𝑌 (𝑡; 𝑦)
(

𝛴(1)′ (𝑡; 𝑦)ℎ − 𝛯′ (𝑡; 𝑦)
)]′

×
(

𝛴𝑌𝛴𝑌 ′
(𝑡, 𝑦)

)−1
}

𝑖𝑓 (𝑡, 𝑥; 𝑦)

−
𝑛
∑

𝑗=1

𝜕
𝜕𝑥𝑗

(

{

𝛬(𝑡, 𝑥; 𝑦)𝛴𝑌 ′
(𝑡; 𝑦)

(

𝛴𝑌𝛴𝑌 ′
(𝑡, 𝑦)

)−1
}

𝑗𝑖
𝑓 (𝑡, 𝑥; 𝑦)

)

,

𝑖 = 1,… , 𝑚𝑌 . (C.13)

Remark 19. (Nagai, 2001) addresses the important questions of the
existence and uniqueness of the solution in two short remarks, located
respectively after the proofs of Proposition 2.1 and Theorem 2.1. We
also refer the reader to Sections 4.5 and 4.2.2 in Bensoussan (1992) for
a thorough treatment of these questions. Section 4.2.2 therein formally
constructs the functional space in which a solution is sought. Theorem
4.2.1. then proves the existence and uniqueness of a solution in this
functional space under the assumption that the observation and factor
noise are uncorrelated. Section 4.5 extends these results to account for
correlation and is, therefore, particularly relevant to our treatment.

So far the filter for 𝑋𝑡 did not intervene. Nagai and Peng show
that in the linear-Gaussian case with the Kalman filter, one can obtain
an explicit analytic solution to the MZE in (C.6) that exploits the
specificity of the Kalman Filter. Their result can be adapted to the more
general case of nonlinear, but Gaussian, dynamics where the filter is
the Kalman filter applied after linearizing the nonlinear coefficients
(Extended Kalman Filter).

By an analogous proof to that of item ii) in Proposition 4.3 one
can also establish that the measures P̄ defined in Section 5 and in this
Appendix are in fact one and the same.

Proposition C.3. The Wiener process �̄�𝑡 on (P̄,𝑡) and the Wiener
process �̌�𝑡 on (P̄,𝑌

𝑡 ) are such that

𝛴𝑌 (

𝑡, 𝑌𝑡
)

𝑑�̄�𝑡 = 𝛴𝑌 (

𝑡, 𝑌𝑡
)

�̌�𝑡 = 𝑑𝑌𝑡. (C.14)

and the Radon–Nikodym derivatives (5.2) and (C.1) define the same
measure P̄.

Appendix D. Proof of Proposition 5.1

First, we show that �̄�
[

𝛹𝑋
𝑡 ∣ 𝑌

𝑡
]

≠ 0 P-a.s. so the right-hand
side of (5.1) is well-defined. To see this, notice that 𝛹𝑋

𝑡 ≥ 0 and
�̄�
[

1{𝛹𝑋
𝑡 =0

}𝛹𝑋
𝑡

]

= 0. Recall that 𝛹𝑋
𝑡 = 𝑑Pℎ

𝑑P̄
|

|

|𝑡
, then �̄�

[

1{𝛹𝑋
𝑡 =0

}𝛹𝑋
𝑡

]

=
ℎ
[

1{𝛹𝑋
𝑡 =0

}

]

= Pℎ [𝛹𝑋
𝑡 = 0

]

, so Pℎ [𝛹𝑋
𝑡 = 0

]

= 0. Hence, 𝛹𝑋
𝑡 > 0 Pℎ-a.s.

hich proves our assertion.
Next, we prove (5.1), or equivalently,

̄
⎡

⎢

⎢

⎣

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒
𝜃 ∫ 𝑡

0 𝐄ℎ
[

𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠,𝑌𝑠,ℎ𝑠 ;𝜃)𝑑𝑠 ∣𝑌

𝑡

]

𝑑𝑠
𝛹𝑋
𝑡 ∣ 𝑌

𝑡

⎤

⎥

⎥

⎦

= 𝐄ℎ
[

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠 ,𝑌𝑠 ,ℎ𝑠;𝜃)𝑑𝑠 ∣ 𝑌

𝑡

]

�̄�
[

𝛹𝑋
𝑡 ∣ 𝑌

𝑡
]

P̄ − 𝑎.𝑠.

Both sides are 𝑌
𝑡 -measurable, so this is equivalent to showing that

or any bounded, 𝑌
𝑡 -measurable random variable 𝜉𝑡,

̄
[

𝐄ℎ

[

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒
𝜃 ∫ 𝑡

0 𝐄ℎ
[

𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠 ,𝑌𝑠 ,ℎ𝑠 ;𝜃)𝑑𝑠 ∣𝑌

𝑡

]

𝑑𝑠
∣ 𝑌

𝑡

]

�̄�
[

𝛹𝑋
𝑡 ∣ 𝑌

𝑡

]

𝜉𝑡

]

= �̄�
[

�̄�
[

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒
𝜃 ∫ 𝑡

0 𝐄ℎ
[

𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠 ,𝑌𝑠 ,ℎ𝑠 ;𝜃)𝑑𝑠 ∣𝑌

𝑡

]

𝑑𝑠
𝛹𝑋
𝑡 ∣ 𝑌

𝑡

]

𝜉𝑡

]

To show this equality, we start under the measure Pℎ. By the Tower
roperty,

ℎ
⎡

⎢

⎢

𝐄ℎ
⎡

⎢

⎢

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒
𝜃 ∫ 𝑡

0 𝐄ℎ
[

𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠,𝑌𝑠,ℎ𝑠 ;𝜃)𝑑𝑠 ∣𝑌

𝑡

]

𝑑𝑠
∣ 𝑌

𝑡

⎤

⎥

⎥

𝜉𝑡
⎤

⎥

⎥

⎣ ⎣ ⎦ ⎦
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D

D

D

D

D

E

F

F

F
G

G

I

J

K

K

K

K

= 𝐄ℎ
⎡

⎢

⎢

⎣

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒
𝜃 ∫ 𝑡

0 𝐄ℎ
[

𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠,𝑌𝑠,ℎ𝑠 ;𝜃)𝑑𝑠 ∣𝑌

𝑡

]

𝑑𝑠
𝜉𝑡
⎤

⎥

⎥

⎦

Writing this relation under the measure P̄, we get

�̄�
⎡

⎢

⎢

⎣

𝐄ℎ
⎡

⎢

⎢

⎣

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒
𝜃 ∫ 𝑡

0 𝐄ℎ
[

𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠,𝑌𝑠,ℎ𝑠 ;𝜃)𝑑𝑠 ∣𝑌

𝑡

]

𝑑𝑠
∣ 𝑌

𝑡

⎤

⎥

⎥

⎦

𝜉𝑡𝛹
𝑋
𝑡

⎤

⎥

⎥

⎦

= �̄�
⎡

⎢

⎢

⎣

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒
𝜃 ∫ 𝑡

0 𝐄ℎ
[

𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠,𝑌𝑠,ℎ𝑠 ;𝜃)𝑑𝑠 ∣𝑌

𝑡

]

𝑑𝑠
𝜉𝑡𝛹

𝑋
𝑡

⎤

⎥

⎥

⎦

.

By the Tower Property and the assumption that 𝜉𝑡 is 𝑌
𝑡 -measurable,

we conclude that

�̄�
[

𝐄ℎ
[

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒
𝜃 ∫ 𝑡

0 𝐄ℎ
[

𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠 ,𝑌𝑠 ,ℎ𝑠 ;𝜃)𝑑𝑠 ∣𝑌

𝑡

]

𝑑𝑠 ∣ 𝑌
𝑡

]

�̄�
[

𝛹𝑋
𝑡 ∣ 𝑌

𝑡

]

𝜉𝑡

]

= �̄�
[

�̄�
[

𝜑(𝑡, 𝑋𝑡; 𝑌𝑡)𝑒
𝜃 ∫ 𝑡

0 𝐄ℎ
[

𝑒𝜃 ∫
𝑡
0 𝑔(𝑠,𝑋𝑠 ,𝑌𝑠 ,ℎ𝑠 ;𝜃)𝑑𝑠 ∣𝑌

𝑡

]

𝑑𝑠𝛹𝑋
𝑡 ∣ 𝑌

𝑡

]

𝜉𝑡

]

,

which proves the result P̄-a.s.

Appendix E. Proof of Theorem 5.3

Inspired by Nagai (2001) we start from the Ito differential

𝑑
(

𝑒𝜃 ∫
𝑡
0 �̂�𝑠𝑑𝑠𝛹𝑡𝜑(𝑡, 𝜁𝑡; 𝑌𝑡)

)

= 𝑑
(

𝑒𝜃 ∫
𝑡
0 �̂�𝑠𝑑𝑠

)

𝛹𝑡𝜑(𝑡, 𝜁𝑡; 𝑌𝑡) + 𝑒𝜃 ∫
𝑡
0 𝑔𝑠𝑑𝑠𝑑𝛹𝑡𝜑(𝑡, 𝜁𝑡; 𝑌𝑡)

+ 𝑒𝜃 ∫
𝑡
0 �̂�𝑠𝑑𝑠𝛹𝑡𝑑𝜑(𝑡, 𝜁𝑡; 𝑌𝑡) + 𝑒𝜃 ∫

𝑡
0 �̂�𝑠𝑑𝑠𝑑⟨𝛹,𝜑⟩𝑡

= 𝜃𝑒𝜃 ∫
𝑡
0 �̂�𝑠𝑑𝑠𝛹𝑡𝜑(𝑡, 𝜁𝑡; 𝑌𝑡) �̂�𝑡 𝑑𝑡 + 𝑒𝜃 ∫

𝑡
0 �̂�𝑠𝑑𝑠𝛹𝑡𝜑(𝑡, 𝜁𝑡; 𝑌𝑡)�̌�𝑌

′
(𝑡, 𝑍𝑡;ℎ𝑡)

×
(

𝛴𝑌𝛴𝑌 ′ (
𝑡, 𝑌𝑡

)

)−1
𝑑𝑌𝑡

+ 𝑒𝜃 ∫
𝑡
0 �̂�𝑠𝑑𝑠𝛹𝑡

(

𝜕𝜑
𝜕𝑡

(𝑡, 𝜁𝑡; 𝑌𝑡) + �̄�𝜑(𝑡, 𝜁𝑡; 𝑌𝑡)
)

𝑑𝑡 + 𝑒𝜃 ∫
𝑡
0 �̂�𝑠𝑑𝑠𝛹𝑡

× 𝐷′𝜑(𝑡, 𝜁𝑡; 𝑌𝑡)𝐻 ′(𝑡, 𝑍𝑡)𝑑𝑌𝑡

+ 𝑒𝜃 ∫
𝑡
0 �̂�𝑠𝑑𝑠𝛹𝑡�̌�

𝑌 ′
(𝑡, 𝑍𝑡;ℎ𝑡)𝐻 ′(𝑡, 𝑍𝑡)𝐷𝜑(𝑡, 𝜁𝑡; 𝑌𝑡)𝑑𝑡

where 𝐷𝜑 = 𝜕𝜑
𝜕𝜁 . Integrating and taking the expectation, we get

�̄�
[

𝑒𝜃 ∫
𝑡
0 𝑔𝑠𝑑𝑠𝛹𝑡𝜑(𝑡, 𝜁𝑡; 𝑌𝑡)

]

− 𝜑(0, 𝜁0; 𝑌0)

=�̄�
[

∫

𝑡

0
𝑒𝜃 ∫

𝑠
0 �̂�𝑢𝑑𝑢𝛹𝑠

(

𝜕𝜑
𝜕𝑠

(𝑠, 𝜁𝑠; 𝑌𝑠) + �̄�𝜑(𝑠, 𝜁𝑠; 𝑌𝑠)

+�̌�𝑌
′
(𝑠,𝑍𝑠;ℎ𝑠)𝐻 ′(𝑠,𝑍𝑠)𝐷𝜑(𝑡, 𝑍𝑠) + 𝜃�̂�𝑠𝜑(𝑠, 𝜁𝑠; 𝑌𝑠)

)

𝑑𝑠
]

.

Using Fubini, recalling the definitions of the operator �̂�ℎ, of �̌�, of 𝛹𝑡
as well as of 𝑞𝑍 (⋅), we end up with

𝑞ℎ𝑍 (𝑡)(𝜑𝑡) − 𝑞ℎ𝑍 (0)(𝜑0)

= �̄�
[

𝑒𝜃 ∫
𝑡
0 �̂�𝑠𝑑𝑠𝛹𝑡𝜑(𝑡, 𝜁𝑡; 𝑌𝑡)

]

− 𝜑(0, 𝜁0; 𝑌0)

= �̄�
[

∫

𝑡

0
𝑒𝜃 ∫

𝑠
0 �̂�𝑢𝑑𝑢𝛹𝑠

(

𝜕𝜑
𝜕𝑡

(𝑠, 𝜁𝑠; 𝑌𝑠) + �̂�ℎ𝜑(𝑠, 𝜁𝑠; 𝑌𝑠) + 𝜃�̂�𝑠𝜑(𝑠, 𝜁𝑠; 𝑌𝑠)
)

𝑑𝑠
]

= ∫

𝑡

0
�̄�
[

𝑒𝜃 ∫
𝑠
0 �̂�𝑢𝑑𝑢𝛹𝑠

(

𝜕𝜑
𝜕𝑡

(𝑠, 𝜁𝑠; 𝑌𝑠) + �̂�ℎ𝜑(𝑠, 𝜁𝑠; 𝑌𝑠) + 𝜃�̂�𝑠𝜑(𝑠, 𝜁𝑠; 𝑌𝑠)
)]

𝑑𝑠

= ∫

𝑡

0
𝑞ℎ𝑍 (𝑠)

(

𝜕𝜑
𝜕𝑡

(𝑠, 𝜁𝑠; 𝑌𝑠) + �̂�ℎ𝜑(𝑠, 𝜁𝑠; 𝑌𝑠) + 𝜃�̂�(𝑠,𝑍𝑠, ℎ𝑠; 𝜃)𝜑(𝑠, 𝜁𝑠; 𝑌𝑠)
)

𝑑𝑠.
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