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1 Introduction

In finance one faces often the situation that not all quantities that appear in mar-
ket models are fully observable. Examples for such models with partial observa-
tion can be found, for instance, in Lakner (1995), Elliott, Lahaie & Madan (1997),
Elliott, Fischer & Platen (1999), Babbs & Nowman (1999), Frey & Runggaldier
(1999, 2001), Karatzas & Zhao (2001), Pham & Quenez (2001), Nagai & Peng
(2002), Bhar, Chiarella & Runggaldier (2004), Haussmann & Sass (2004), Kirch
& Runggaldier (2004), Landen (2000), Runggaldier (2004), Gombani, Jaschke &
Runggaldier (2005), Cvitanić, Rozovskii & Zaliapin (2006) and Bäuerle & Rieder
(2007). For instance, of particular interest are the market prices of risk, which are
important hidden quantities that the investors need for portfolio optimization.

In Platen & Runggaldier (2005) a benchmark approach to filtering in finance
for the pricing and hedging in incomplete markets has been proposed using the
framework presented in Platen & Heath (2006). It turns out that these results
are useful also in the context of portfolio optimization under partial information.
The current paper describes a general methodology for applying filtering methods
to portfolio optimization when some of the factors are hidden. The level of infor-
mation is given by the number of observed quantities that are here supposed to
be the primary securities and empirical log-price covariations. For a given level of
information we determine the growth optimal portfolio using filtered values of the
hidden factors. As it should be, the expected optimal growth rate under full in-
formation turns out to be larger than that under partial information. The family
of locally optimal portfolios is identified under partial information, whereby one
invests only in the growth optimal portfolio and in the savings account. Its mem-
bers have all the same Sharpe ratio and are located on a corresponding Markowitz
efficient frontier. Furthermore, we present a general approach to expected util-
ity maximization under partial information that results in an optimal strategy,
yielding locally optimal portfolios.

Finally we present an expected utility indifference pricing approach for the pric-
ing of nonreplicable contracts under partial information that is consistent with
both portfolio optimization and derivative pricing under complete information.
It results in a real world pricing formula under partial information that turns
out to be independent of the subjective utility of the investor and for which an
equivalent risk neutral probability measure need not exist.

The paper is organized as follows: Section 2 describes the market model in form
of a system of stochastic differential equations for the factors. Section 3 clarifies
the roles of the observable and hidden factors. In Section 4 the GOP will be
constructed for a given level of information. Locally optimal portfolios will be
studied in Section 5. The maximization of expected utility under partial obser-
vation will be performed in Section 6. Finally, in Section 7 we consider utility
indifference pricing under partial information.
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2 The Market Model

We consider a market with d + 1 primary securities that we shall describe with a
factor model as follows:
Let there be given a filtered probability space (Ω,A,A, P ) with A = (At)t∈<+

denoting its filtration that satisfies the usual conditions. Consider d independent
(A, P )-Wiener processes vi = {vi

t, t ∈ <+}, i ∈ {1, 2, . . . , d}, that model the
traded uncertainty. Let X t = (X1

t , X2
t , . . . , Xm

t )> ∈ <m be the vector of hidden
factors. We assume the hidden factors to be neither fully known nor fully observ-
able. Furthermore, let θj

t be the j-th, j ∈ {1, 2, . . . , d}, market price of risk that
is supposed to be of the form θj

t = θj(t, X t). We assume that the total market

price of risk |θt| = (
∑d

j=1(θ
j
t )

2)
1
2 is strictly positive and finite, almost surely for

all t ∈ <+.

Let Y = {Y t, t ∈ <} be a k-dimensional vector process, k ≥ d, of observable
factors, which we will specify later. The vector of global factors is then obtained
as

Zt =
(
Z1

t , . . . , Z
m+k
t

)>
=

(
X1

t , . . . , Xm
t , Y 1

t , . . . , Y k
t

)>
. (1)

The value of the savings account at time t ∈ < is denoted by S0
t , where

S0
t = exp

{∫ t

0

rs ds

}
(2)

with r = {rt, t ∈ <+} denoting the observed adapted short rate process.

The discounted, with respect to S0
t , values of the d risky primary security accounts

are assumed to satisfy the SDE

dS̄j
t = d

(
Sj

t

S0
t

)
= S̄j

t

(
d∑

i=1

bj,i(t, Y t) (θi(t, X t) dt + dvi
t)

)
(3)

for j ∈ {1, 2, . . . , d} and t ∈ <+. These primary security accounts are typically
stocks with all dividends reinvested. Without further mentioning we make the
following standing assumption:

Assumption 1 We assume that the volatility matrix bt = b(t,Y t) =
[bj,i(t,Y t)]

d
j,i=1 is invertible for all t ∈ <+.

There exists then a growth optimal portfolio (GOP) Sδ∗ , obtained from investing
in the d+1 primary security accounts according to a self-financing strategy δ∗. It
is known, see Platen (2005), Platen & Heath (2006) and (30) in Section 4 below,
that its discounted value S̄δ∗

t at time t satisfies under full information the SDE

dS̄δ∗
t = S̄δ∗

t

(
d∑

i=1

θi(t, X t)(θ
i(t, X t) dt + dvi

t)

)
(4)
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for t ∈ <+. The dynamics of the GOP depends on the market prices of risk
and, thus, also on the hidden factor process X = {X t = (X1

t , . . . , Xm
t )>, t ∈

<+}. While the assets that make up the GOP will be given by the primary
security accounts, the value of the GOP depends also on the fractions invested
in these securities. These fractions depend in turn on the actually available
level of information with respect to the hidden factor process X. According to
the available level of information we shall determine in Section 3 the fractions
invested in the individual primary securities for the GOP. Once these fractions
are obtained, the GOP can be constructed using these weights.

Concerning the available level of information we consider, for illustration, the
following situation, where other cases can be treated similarly :
In addition to the observed primary security account prices there are other observ-
ables that provide information about hidden factors. Here we shall, in particular,
consider empirical log-price covariations between primary security accounts and
the GOP. These are essential for portfolio optimization since they contain infor-
mation about the hidden market prices of risk. We make the assumption that
the observed empirical log-price covariations represent approximations of the ac-
tual, but hidden, theoretical covariations. The approximative, perturbed nature
of empirical log-price covariations derives from the fact that these are determined
over an equidistant discrete time grid with step size ∆ by summing products
of log-price increments. Other observed quantities that may depend on hidden
processes can be treated similarly.

Let now

zj
t =

[
ln(S̄j), ln(S̄δ∗)

]
∆,t

=

[ t
∆

]∑

`=1

(
ln

(
S̄j

t`

)− ln
(
S̄j

t`−1

)) (
ln

(
S̄δ∗

t`

)− ln
(
S̄δ∗

t`−1

))

(5)
for j ∈ {1, 2, . . . , d} denote the empirical covariation of the logarithm of the jth
primary security account with the logarithm of the GOP up to time t ∈ <, with
t` = `∆, ` ∈ {1, 2, . . .}. Here [a] denotes the largest integer not greater than or
equal to a.

Define

Bj(t, Zt) =
d∑

i=1

bj,i(t, Y t) θi(t,X t) (6)

then, given the SDEs (3) and (4) for the discounted primary security accounts
and the GOP, the hidden theoretical values corresponding to the empirical co-
variations zj

t can be expressed as

[
ln(S̄j), ln(S̄δ∗)

]
t
=

∫ t

0

Bj(s, Zs) ds (7)

for j ∈ {1, 2, . . . , d}, t ∈ <.
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The evolution of the observed empirical covariations are now modeled with some
simple perturbation as follows:

dzj
t = Bj(t, Zt) dt + dηj

t (8)

for j ∈ {1, 2, . . . , d}. Here ηj = {ηj
t , t ∈ <+}, j ∈ {1, 2, . . . , d}, are independent

standard (A, P )-Wiener processes on (Ω,A,A, P ), independent among them-
selves and from the Wiener processes v1, v2, . . . , vd. Note that in the SDE (8)
we introduce some noise into the empirical covariations but can also create some
feedback into the market prices of risk θi(t, X t) in (3), as will become clear later.
Of course, alternative ways for modeling the observed empirical covariations in
relation to their hidden counterparts can be pursued. The aim of this paper, how-
ever, is to describe in a simple manner for a basic example the main steps and
results that allow such kind of modeling in the context of portfolio optimization.
Note that this is highly relevant for portfolio selection since it demonstrates how
to gain access to estimates for the market prices of risk.

3 Observable and Hidden Factors

The process X = {X t, t ∈ <+} is assumed to be the unobservable vector process
component of the factors, while the discounted primary security account values
and the empirical covariations are observable.

Let then
Y t =

(
S̄1

t , . . . , S̄
d
t , z

1
t , . . . , z

d
t

)>
(9)

denote the vector of observable factors at time t. Introduce the d-vectors

θ(t, X t) = (θ1(t, X t), . . . , θ
d(t, X t))

> (10)

and
B(t, Zt) = (B1(t,Zt), . . . , B

d(t, Zt))
>. (11)

Finally, we define the k = 2 d-dimensional (A, P )-Wiener process

W =
{

Wt =
(
v1

t , . . . , v
d
t , η

1
t , . . . , η

d
t

)>
, t ∈ <+

}
. (12)

On the basis of (9), (3) and (8) we can write the dynamics of Y t as

dY t =

(
diag(S̄t) b(t, Y t) θ(t, X t)

B(t, Zt)

)
dt +

(
diag(S̄t) b(t,Y t) 0

0 I

)
dWt

= F (t, Zt) dt + G(t, Y t) dWt, (13)

defining implicitly the functions F (·) and G(·), where I is the unit matrix. The
vector of global factors equals by (1) Zt = (X1

t , . . . , Xm
t , Y 1

t , . . . , Y k
t )> having
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dimension m + k, of which the first m components are not observable while the
remaining k are fully observable. The level of information can be characterized
by the integer k that amounts in our specific case to k = 2d, parameterized by
the number d of risky primary security accounts.

Whatever the situation, for given k we shall denote by Ak = (Ak
t )t∈<+ with

Ak
t = σ {Y s, s ≤ t} ⊆ At (14)

for t ∈ <+, the subfiltration corresponding to the available information level.

To better model the market at a given level of information k we shall, by analogy
to Platen & Runggaldier (2005), assume that the conditional filter distribution

p(X t

∣∣Ak
t ) = p(X t

∣∣ σ{Y s, s ≤ t})

is parameterized by a fixed, finite number of parameter processes

ξt = (ξ1
t , . . . , ξ

q
t )
> (15)

obtained from a finite dimensional filter. This allows us to consider a new (k+q)-
dimensional vector of global factors

Z̃t =
(
Y 1

t , . . . , Y k
t , ξ1

t , . . . , ξ
q
t

)>
(16)

of which all components are observable or computable from observables. Further-
more, we shall assume that the filter state ξt = (ξ1

t , . . . , ξ
q
t )
> at time t satisfies

the vector SDE
dξt = H(t, Z̃t) dt + K(t, Z̃t) dY t. (17)

We refer to Platen & Runggaldier (2005) for examples and a discussion of this
assumption.

The possibility of finding a finite dimensional filter, evidently requires the ex-
istence of a regular solution of the corresponding filtering problem, i.e. that of
determining the conditional distribution p(X t

∣∣Ak
t ).

We can readily adapt the results of Proposition 2.3 in Platen & Runggaldier
(2005) to our case. Consequently, there exists a k-dimensional, Ak-adapted
(Ak, P )-Wiener process W̃ = {W̃t, t ∈ <+} such that the process Y of ob-
servable factors satisfies the SDE

dY t = F̃ (t, Z̃t) dt + G̃(t, Z̃t) dW̃t, (18)

where
F̃ (t, Z̃t) = E

(
F (t,Zt)

∣∣Ak
t

)
(19)

and
G̃(t, Z̃t) = E

(
G(t, Y t)

∣∣Ak
t

)
= G(t, Y t). (20)
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We refer to (13) for the definition of F (·) and G(·). Replacing the expression of
dY t from (18) in (17) we obtain

dξt = H̃(t, Z̃t) dt + K̃(t, Z̃t) dW̃t (21)

with
H̃(t, Z̃t) = H(t, Z̃t) + K(t, Z̃t) F̃ (t, Z̃t)

and
K̃(t, Z̃t) = K(t, Z̃t) G(t, Y t).

Combining (18) and (21) we see that the observable factor vector Z̃t given in
(16) forms a Markov process satisfying an SDE of the form

dZ̃j
t = αj(t, Z̃t) dt +

k∑
i=1

βj,i(t, Z̃t) dW̃ i
t (22)

for j ∈ {1, 2, . . . , k + q}.
We remark that the first d components Z̃j

t , j ∈ {1, 2, . . . , d}, of Z̃t coincide with
the discounted primary security account prices S̄j

t and, given the particular block-
diagonal structure of the matrix G(t, Y t) in (13), these first d primary security
accounts are driven only by the first d components of W̃ , the traded noise, so
that

βj,i(t, Z̃t) = 0

for j ≤ d and i > d. Actually, it follows from (13) and the adaptation of the proof
of Proposition 2.3 in Platen & Runggaldier (2005) to our case that for Y j

t = S̄j
t

we have

dS̄j
t = S̄j

t

(
B̃j(t, Z̃t) dt +

d∑
i=1

b̃j,i(t, Z̃t) dW̃ i
t

)
(23)

where, for j ≤ d,
B̃j(t, Z̃t) = E

(
Bj(t, Zt)

∣∣Ak
t

)
(24)

with Bj(t,Zt) as in (6) and

b̃j,i(t, Z̃t) = E
(
bj,i(t, Y t)

∣∣Ak
t

)
= bj,i(t, Y t) (25)

with the volatility bj,i(t, Y t) appearing in (3). It is important to note that in (23)
the risk premia are Ak-adapted while in (3) this is not the case.

4 Maximizing the Growth Rate

We first recall the situation under full information. Since under full informa-
tion the discounted values of the primary security account prices S̄j

t satisfy (3),
the discounted value of a self-financing portfolio corresponding to an investment
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strategy δ = {δt = (δ0
t , δ

1
t , . . . , δ

d
t )
>, t ∈ <+} expressing the respective numbers

of units invested in the various assets, satisfies the SDE

dS̄δ
t =

d∑
j=1

δj
t S̄j

t

d∑
i=1

bj,i(t,Y t) (θi(t, X t) dt + dvi
t) (26)

or, when using the fraction πj
δ,t =

δj
t S̄j

t

S̄δ
t

the equivalent SDE

dS̄δ
t = S̄δ

t

d∑
j=1

πj
δ,t

d∑
i=1

bj,i(t, Y t) (θi(t, X t) dt + dvi
t). (27)

From here it follows, see, e.g. Platen & Heath (2006), that the corresponding
growth rate under full information equals

ḡδ
t =

d∑
i=1




d∑
j=1

πj
δ,t b

j,i(t,Y t) θi(t, X t)− 1

2

(
d∑

`=1

π`
δ,t b

`,i(t, Y t)

)2

 . (28)

We have now the following result.

Proposition 2 The investment strategy of a GOP is under full information
given by the fractions

πj
δ∗,t =

d∑
i=1

θi(t, X t)
(
b−1

)j,i
(t, Y t), (29)

where by (b−1)j,i(t, Y t) we denote the (j, i)th component of the inverse of the
volatility matrix bt = b(t, Y t). Furthermore, the discounted value of the GOP
satisfies

dS̄δ∗
t = S̄δ∗

t

(
d∑

i=1

θi(t, X t)(θ
i(t,X t) dt + dvi

t)

)
. (30)

Finally, the benchmarked portfolio value
Sδ

t

Sδ∗
t

corresponding to a self-financing

strategy δ is an (A, P )-local martingale satisfying

d

(
Sδ

t

Sδ∗
t

)
=

Sδ
t

Sδ∗
t

d∑
j=1

δj
t

d∑
i=1

(bj,i(t, Y t)− θi(t, X t)) dvi
t

=
Sδ

t

Sδ∗
t

d∑
j=1

πj
δ,t

d∑
i=1

(bj,i(t,Y t)− θi(t, X t)) dvi
t. (31)
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Proof: Relation (29) is an immediate consequence of the first order conditions
applied to (28). Relation (30) then results by combining (27) and (29). Finally,
relation (31) is obtained from (27) and (30) by Itô’s formula. ¤

We are now interested in obtaining corresponding results for the case under partial
information characterized by the filtration Ak. Recall that, to be practicable, the
strategies have to be adapted to Ak since, in practice, they can depend only on
available information.

Notice first that for j ≤ d it holds S̄j
t = Y j

t so that, under the information level
corresponding to Ak

t , we have the SDE (23). For an investment strategy δ the
corresponding discounted portfolio value S̄δ

t satisfies then by (25) the SDE

dS̄δ
t = S̄δ

t

d∑
j=1

πj,k
δ,t

(
B̃j(t, Z̃t) dt +

d∑
i=1

bj,i(t, Y t) dW̃ i
t

)
(32)

leading to an Ak-adapted growth rate

ḡδ,k
t =

d∑
j=1

πj,k
δ,t B̃j(t, Z̃t)− 1

2

d∑
i=1

(
d∑

`=1

π`,k
δ,t b`,i(t, Y t)

)2

. (33)

To obtain the GOP strategy under Ak let

Aj,i(t, Y t) =
d∑

`=1

bj,`(t, Y t) bi,`(t, Y t) (34)

for j, i ∈ {1, 2, . . . , d}. Using again the first order conditions, this time on (33),
we immediately obtain the following result:

Proposition 3 The investment strategy of the GOP S̄δ∗,k
t is, under the partial

information corresponding to Ak given by the fractions

πj,k
δ∗,t =

d∑
i=1

B̃i(t, Z̃t) (A−1)j,i(t, Y t), (35)

where (A−1)j,i is the (j, i)th element of the inverse of the matrix with elements
Aj,i as in (34) and B̃i is as in (24).

The situation is, thus, somewhat different from the case of full information. We
still have reasonably simple formulas like those in (30) and (31) for the GOP and
the benchmarked portfolio values, as will be shown below. Notice that by (32)
and (35) the discounted value of the growth optimal portfolio S̄δ∗,k

t under Ak is
completely determined by the evolution of the observed factor process Z̃, which
includes the characterization of the filtered values of the hidden factors. Since
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the latter process is Markov, see (22), it follows from Corollary 2.5 in Platen &
Runggaldier (2005) that for a given function g : <m+k → < there exists a suitable
function u : [0, T ]×<k+q → < such that

u(t, Z̃t) = E
(
g(ZT )

∣∣∣Ak
t

)
(36)

for t ≤ T < ∞.

This yields the following result:

Corollary 4 The SDE (3) for the discounted primary security accounts can
be written in the form

dS̄j
t = S̄j

t

(
d∑

i=1

bj,i(t, Y t)
(
θ̃i(t, Z̃t) dt + dW̃ i

t

))
(37)

with
θ̃i(t, Z̃t) = E(θi(t, X t)

∣∣Ak
t ). (38)

Consequently, in correspondence to (27)–(31) we obtain in this case for a dis-
counted portfolio S̄δ the SDE

dS̄δ
t = S̄δ

t

d∑
j=1

πj,k
δ,t

d∑
i=1

bj,i(t, Y t)
(
θ̃i(t, Z̃t) dt + dW̃ i

t

)
, (39)

the growth rate

ḡδ,k
t =

d∑
i=1




d∑
j=1

πj,k
δ,t bj,i(t,Y t) θ̃i(t, Z̃t)− 1

2

(
d∑

`=1

π`,k
δ,t b`,i(t, Y t)

)2

 , (40)

the fractions for the GOP Sδ∗,k
t

πj,k
δ∗,t =

d∑
i=1

θ̃i(t, Z̃t) (b−1)j,i(t, Y t), (41)

the SDE for the discounted value S̄δ∗,k
t =

Sδ∗,k
t

S0
t

of the GOP

dS̄δ∗,k
t = S̄δ∗,k

t

d∑
i=1

θ̃i(t, Z̃t)
(
θ̃i(t, Z̃t) dt + dW̃ i

t

)
(42)

and the SDE for a benchmarked portfolio

d

(
Sδ

t

Sδ∗,k
t

)
=

Sδ
t

Sδ∗,k
t

d∑
j=1

πj,k
δ,t

d∑
i=1

(
bj,i(t,Y t)− θ̃i(t, Z̃t)

)
dW̃ i

t . (43)

Finally, it follows for the optimal fractions of the GOP under partial information
that

πj,k
δ∗,t = E

(
πj

δ∗,t

∣∣∣Ak
t

)
. (44)
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This provides a rather intuitive relationship between the GOP Sδ∗ under full
information and the GOP Sδ∗,k under partial information.

By using equality (38) and Jensen’s inequality we obtain the following result:

Corollary 5 The optimal growth rates under full and partial information sat-
isfy the inequality

E
(
ḡδ∗

t

)
=

1

2

d∑
i=1

E
(
E

(
(θi(t, X t))

2
∣∣Ak

t

)) ≥ 1

2

d∑
i=1

E
(
(θ̃i(t, Z̃t))

2
)

= E
(
ḡδ∗,k

t

)

(45)
for all t ∈ <+.

This shows that the expected squared total market price of risk under full in-
formation is larger than that under partial information. This is an intuitive and
rather important observation, which says that more information leads to higher
expected growth rates in the corresponding GOP. For the following we assume
that π0,k

δ∗,t 6= 0 for all t ∈ <+, which excludes the trivial case where the GOP Sδ∗,k

equals the savings account.

5 Locally Optimal Portfolios

As denoted in Platen & Heath (2006), most of the classical portfolio optimization
criteria lead to locally optimal portfolios. The corresponding theory has so far
been developed for the case of full information. Here we want to investigate how
locally optimal strategies vary in the case of partial information. As described
in Platen (2005), most of the classical setups can be synthesized in the basic
problem of maximizing the discounted drift under a fixed level for the value of
the aggregate diffusion coefficient.

To deal now with this issue in the case of partial information corresponding to
Ak, we start from the dynamics (32) that we rewrite equivalently in terms of the
Ak-adapted strategy δ, namely

dS̄δ
t =

d∑
j=1

δj
t S̄j

t

(
B̃j(t, Z̃t) +

d∑
i=1

bj,i(t, Y t) dW̃ i
t

)
. (46)

Notice that both δj
t and S̄j

t are adapted to Ak and W̃ i
t forms an (Ak, P )-Wiener

process.

Following Platen (2005), the aggregate diffusion coefficient is

γδ
t =

√√√√
d∑

i=1

(
d∑

j=1

δj
t S̄j

t bj,i(t, Y t)

)2

, (47)
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while the discounted drift is simply

αδ
t =

d∑
j=1

δj
t S̄j

t B̃j(t, Z̃t). (48)

The local portfolio optimization now consists in solving, for each time t and a
given value γ̄t of the aggregate diffusion coefficient, the

Problem A: {
maxδ αδ

t

(γδ
t )

2 = γ̄2
t > 0.

(49)

Typically, this problem can be solved by using the method of Lagrange multipli-
ers, namely

max
δt,λt

E

(
d∑

j=1

δj
t S̄j

t B̃j(t, Z̃t)− λt

(
d∑

j=1

d∑

`=1

δj
t δ`

t S̄j
t S̄`

t Aj,`(t, Y t)− γ̄2
t

))
. (50)

For each λt the expression in (50) is a concave function of the vector δt =
(δ0

t , . . . , δ
d
t )
> so that the locally optimal strategy is obtained by solving a sys-

tem of d linear equations in the d unknowns δj
t under the condition that

d∑

j,`=1

δj
t δ`

t S̄j
t S̄`

t Aj,`(t, Y t) = γ̄2
t . (51)

Let θ̃(t, Z̃t) = (θ̃1(t, Z̃t), . . . , θ̃
d(t, Z̃t))

> denote the vector of filtered market
prices of risk, see (38). This allows us to formulate the following portfolio se-
lection theorem.

Theorem 6 Under partial information corresponding to Ak, the discounted
locally optimal portfolio S̄ δ̃,k that solves the above Problem A satisfies the SDE

dS̄ δ̃,k
t = S̄ δ̃,k

t

(
J δ̃

t

)−1
d∑

i=1

θ̃i(t, Z̃t)
(
θ̃i(t, Z̃t) dt + dW̃ i

t

)
(52)

with fractions

πj,k

δ̃,t
=

πj,k
δ∗,t

J δ̃
t

, (53)

j ∈ {1, 2, . . . , d}, and a corresponding Ak-adapted risk aversion coefficient

J δ̃
t =

|θ̃(t, Z̃t)|
γ̄t

> 0, (54)

t ∈ <+.
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The proof of this theorem is similar to that for the case of full information, as
given in Platen & Heath (2006), and is therefore omitted.

Remark 7 The Problem A becomes analogous to that for the case of full in-
formation provided that θ(t, X t) is replaced by θ̃(t, Z̃t) = E(θ(t, X t)

∣∣Ak
t ). In

particular, a risky locally optimal portfolio invests always a fraction in the GOP
Sδ∗,k and holds the remainder in the savings account.

Once this basic locally optimal portfolio problem has been solved, its solution
can be used to study classical questions in portfolio selection, now under partial
information. For risky locally optimal portfolios the Sharpe ratio at time t turns
out to equal the total market price of risk |θ̃(t, Z̃t)|, which follows as in Platen
(2005). Similar as in Platen & Heath (2006), under partial observation the cap-
ital market line has its slope at time t given by the Sharpe ratio. Finally, the
Markowitz efficient frontier is formed, as in Platen (2005), by the above family
of locally optimal portfolios obtained under partial information. According to
Theorem 6 the given value γ̄t of the diffusion coefficient of the locally optimal
portfolio determines at time t the fraction invested in the GOP. The inverse of
this fraction can be interpreted as risk aversion coefficient, see Pratt (1964) and
Arrow (1965).

These results confirm that also under partial information the classical statements
of portfolio theory can be derived.

6 Expected Utility Maximization under Partial

Information

As described in Platen (2005), it can be shown that expected utility maximization
of discounted terminal wealth can be brought into a relationship with the GOP.
This results in the corresponding optimal portfolio being also locally optimal. To
determine, under the information given by Ak, the expected utility maximizing
strategy δ̃ we proceed as in the, so-called, martingale approach to portfolio op-
timization, see, e.g. Karatzas & Shreve (1998). Here one first determines the
terminal portfolio value that maximizes the expected utility and then calculates
the strategy that replicates this value. To this effect the notion of a fair port-
folio plays a significant role. This is a portfolio that, when expressed in units
of the GOP, forms a martingale. It can be shown that, although there may be
various nonnegative portfolios that replicate a given future payoff, the minimal
portfolio that does so is the fair portfolio. This fact allows for a mathematical
characterization in that a generic nonnegative replicating portfolio with strategy
δ, when benchmarked by the GOP, is a supermartingale. The fair portfolio, when
benchmarked by the GOP is, however, a martingale and, therefore, requires the
smallest initial wealth to reach a given target.
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Definition 8 Under partial information, as expressed by the filtration Ak, a
price process S = {St, t ∈ <+} is called fair when its benchmarked value Ŝt = St

Sδ∗,k
t

forms an (Ak, P )-martingale.

Given a utility function U(·) which is strictly increasing, strictly concave, satisfies
U ′(0) = ∞ and U ′(∞) = 0 in addition to being twice differentiable and given
a situation of partial information as expressed by the filtration Ak, our problem
here is the following

Problem B: Maximize E(U(S̄δ
T )

∣∣Ak
0) over all Ak-adapted strategies δ, where

S̄δ
T denotes the discounted terminal value of a fair portfolio corresponding to an
Ak-adapted strategy δ with budget constraint Sδ

0 = S0 > 0.

This leads to the following result:

Proposition 9 Assuming that the benchmarked savings account Ŝ0,k
t =

S0
t

Sδ∗,k
t

under partial information is a scalar Markov process, the Ak-adapted discounted

portfolio S̄ δ̃,k
t that solves Problem B is given by the SDE

dS̄ δ̃,k
t

S̄ δ̃,k
t

=
(
J δ̃

t

)−1 dS̄δ∗,k
t

S̄δ∗,k
t

(55)

for t ∈ <+ with risk aversion coefficient

J δ̃
t =

(
1− Ŝ0,k

t

û(t, Ŝ0,k
t )

∂û(t, Ŝ0,k
t )

∂Ŝ0,k

)−1

(56)

and benchmarked portfolio value

ûλ(t, Ŝ
0,k
t ) =

S̄ δ̃
t

S̄δ∗,k
t

= E

(
(U ′)−1

(
λ

S̄δ∗,k
T

)
1

S̄δ∗,k
T

∣∣∣∣Ak
t

)
(57)

where λ is such that S δ̃
0 = S0.

Proof of Proposition 9: Notice first that the discounted terminal value S̄ δ̃
T

of a fair portfolio corresponding to an Ak−adapted strategy δ̃ that maximizes
E(U(S̄δ

T )
∣∣Ak

t ) among all Ak−adapted strategies can be obtained, similarly as in
Platen & Heath (2006), as

S̄ δ̃
T = (U ′)−1

(
λ

S̄δ∗,k
T

)
, (58)

where (U ′)−1 is the inverse of the first derivative of U and T > 0, the maturity.
Here the parameter λ is chosen so as to satisfy the budget constraint given by
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the initial wealth S δ̃
0 = S0. Recall that by S̄δ∗,k

t we denote the discounted, with
respect to S0

t , value of the GOP corresponding to the partial information Ak

and set Ak
0 = A0. Since S δ̃ shall be fair, the condition on the parameter λ can,

therefore, be expressed by requiring that

E

(
(U ′)−1

(
λ

S̄δ∗,k
T

)
1

S̄δ∗,k
T

∣∣∣∣Ak
0

)
=

S δ̃
0

Sδ∗,k
0

=
S0

Sδ∗,k
0

. (59)

This explains the (Ak, P )-martingale ûλ(t, Ŝ
0,k
t ) in (57), which is a function of t

and the scalar Markov process Ŝ0,k
t . The budget constraint then becomes

ûλ(0, Ŝ
0,k
0 ) =

S0

Sδ∗,k
0

.

The requested strategy δ̃ is now the strategy that hedges the payoff under the
conditional expectation on the right hand side of (57). To this effect we use the
dynamics of the Markovian benchmarked savings account to form a benchmarked
self-financing portfolio and then identify the diffusion coefficient which yields the
risk aversion coefficient in (56). The remainder of the proof is similar to that in
Platen & Heath (2006) for the case of full information. ¤

We remark that when dropping the assumption on the Markovianity of Ŝ0,k one
still obtains the benchmarked portfolio value as in (57). However, the strategy is
more complex.

7 Utility Indifference Pricing under Partial

Information

The combination of portfolio optimization and hedging under partial information,
which we presented in the previous section and for which we required a portfolio
to be fair, allows us to deal also with the pricing of nonreplicable contingent
claims under partial information. For this purpose we will apply the concept of
utility indifference pricing, see Davis (1997). The utility indifference price is the
price at which the investor is indifferent between adding a small part of a contract
to his or her portfolio or continuing the investment strategy that maximizes his
or her expected utility. This approach acknowledges the fact that the pricing of
a contract is, in principle, an investment decision.

To be precise, we consider now a contingent claim with discounted payoff H̄ at
time T ∈ <+. Let us denote by V k

t the hypothetical purchasing price for the
claim at time t ∈ [0, T ] under the partial information corresponding to Ak. We
assume that the investor buys a vanishing fraction ε > 0 of the contract at time
t for the small total amount εV k

t . Beyond this purchase, the investor continues
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to invest the major part of her or his wealth according to the expected utility
maximizing strategy δ̃ described in the previous section.

Similarly as in Platen & Heath (2006) we introduce for ε ≥ 0 the following
expected utility

vδ̃,k

ε,V k
t

= E

(
U

(
(
St − ε V k

t

) S̄ δ̃
T

St

+ ε H̄

) ∣∣∣∣Ak
t

)
. (60)

Here St denotes the total wealth of the investor at time t, which provides the
budget constraint. The amount St − εV k

t is then at time t invested according
to the expected utility maximizing strategy δ̃. Therefore, at the maturity date
T the discounted payoff εH̄ is obtained additionally to the discounted portfolio

value (St − εV k
t )

S̄δ̃
T

St
resulting from the investment using the strategy δ̃.

Definition 10 The value V k
t is called utility indifference price for H̄ at time

t if

lim
ε→0

vδ̃,k

ε,V k
t
− vδ̃,k

0,V k
t

ε
= 0 (61)

almost surely.

According to this definition, the expected utility of the investor does not change
much if the price at time t for the payoff H̄ is chosen to be V k

t . In this sense the
utility indifference price is consistent with the overall expected utility maximizing
investment strategy.

It is now of interest to clarify what formula results for the utility indifference
price. In principle, this depends on the underlying model, the utility function,
the information level and also the payoff. However, by letting ε tend to zero we
will see that a simple general pricing rule, the real world pricing formula under
partial information, emerges rather generally for nonreplicable payoffs H = H̄ S0

T .

Proposition 11 Under appropriate technical assumptions on the payoff, util-
ity function and the model, the utility indifference price V k

t at time t for a claim
H = H̄ S0

T is given by the real world pricing formula under partial information

V k
t = Sδ∗,k

t E

(
H

Sδ∗,k
T

∣∣∣Ak
t

)
. (62)

Recall that the payoff H in (62) may be nonreplicable. The formula (62) is here
called the real world pricing formula under partial information since it general-
izes the real world pricing formula under full information in the sense of Platen
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& Heath (2006). Only the real world probability P is used to calculate the ex-
pectation (62). This is a satisfying result since it states the independence of the
pricing concept from the subjective utility functions of investors.

From (62) follows then the martingale relation

Vt

Sδ∗,k
t

= E

(
H

Sδ∗,k
T

∣∣∣Ak
t

)
(63)

for t ∈ [0, T ]. Therefore, the benchmarked price Vt

Sδ∗,k
t

is obtained as an expec-

tation under the real world probability measure P of the benchmarked payoff
H

Sδ∗,k
T

conditional on the partial information Ak
t available at time t ∈ [0, T ]. To

be precise, Vt

Sδ∗,k
t

forms an (Ak, P )-martingale and is, thus, a fair price process

with respect to the partial information structure given by the filtration Ak. The
numeraire is here the GOP under partial information Sδ∗,k. Note that the ex-
istence of an equivalent risk neutral probability measure is not required under
the above benchmark approach. When trying to deal with partial information
in a classical risk neutral setting one soon realizes that this becomes technically
extremely demanding and finally remains less general than what we obtain in a
straightforward manner under the benchmark approach.

Proof of Proposition 11 The proof of the real world pricing formula (62)
requires to satisfy a number of technical conditions that are straightforward but
best formulated for particular models, payoffs and utilities. Therefore, we outline
in the following only the essential steps that lead to formula (62). For simplicity of

notation we shall drop the superscripts k in V k
t and vδ̃,k

ε,V k
t
. First let us expand the

utility function under the expectation in (60) by the Taylor formula. Neglecting
higher order terms in ε yields:

vδ̃
ε,Vt

≈ E

(
U

(
S̄ δ̃

T

)
+ U ′

(
S̄ δ̃

T

)
ε

(
H̄ − Vt

S̄ δ̃
T

St

) ∣∣∣∣Ak
t

)

= vδ̃
0,Vt

+ εE

(
U ′

(
S̄ δ̃

T

) (
H̄ − Vt

S̄ δ̃
T

St

) ∣∣∣∣Ak
t

)
. (64)

Using the asymptotic condition (61) together with (64), allows us to identify the
utility indifference price via the relation

0 = lim
ε→0

vδ̃
ε,Vt

− vδ̃
0,Vt

ε
= E

(
U ′

(
S̄ δ̃

T

) (
H̄ − Vt

S̄ δ̃
T

St

) ∣∣∣∣Ak
t

)
.

By solving this equation for Vt we obtain

Vt =
E

(
U ′

(
S̄ δ̃

T

)
H̄

∣∣Ak
t

)

E
(
U ′

(
S̄ δ̃

T

)
S̄δ̃

T

St

∣∣∣Ak
t

) . (65)
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Exploiting the fact that at maturity T the discounted expected utility maximizing
portfolio value S̄ δ̃

T equals by (58) the random variable (U ′)−1( λ

S̄δ∗,k
T

), in formula

(65) the factors U ′(·) and (U ′)−1(·) offset each other in the numerator as well
as in the denominator. Consequently, the formula turns out to be independent
of the subjective utility function of the investor. More precisely, we obtain from
(65)

Vt =
E

(
λ

S̄δ∗,k
T

H̄
∣∣∣Ak

t

)

E
(

λ

S̄δ∗,k
T

S̄δ̃
T

St

∣∣∣Ak
t

) =
Sδ∗,k

t E
(

H

Sδ∗,k
T

∣∣∣Ak
t

)

Sδ∗,k
t

St
E

(
Sδ̃

T

Sδ∗,k
T

∣∣∣Ak
t

) . (66)

Since S δ̃ has to be a fair portfolio with initial value St at time t, the denominator
on the right hand side of the last equation yields the value one. Therefore, one
obtains for the given nonreplicable payoff under partial observation the utility
indifference pricing formula (62). Of course, appropriate technical conditions
need to be satisfied for the considered particular case that allow us to perform
the above steps. For instance, for the Black-Scholes model, see Black & Scholes
(1973), and the Minimal Market Model, see Platen (2001), as models for the
discounted GOP in combination with some power utility function, such conditions
are satisfied. ¤

Conclusions

The paper has demonstrated that portfolio optimization can be efficiently per-
formed under the benchmark approach when only partial information is available.
The particular study of locally optimal portfolios allowed us to relate the results
to the classical theory of portfolio selection. Furthermore, in this context the op-
timal strategy for maximizing expected utility from discounted terminal wealth
under partial information requires investing only in the growth optimal portfolio
and in the savings account. In addition it turns out that nonreplicable payoffs can
be consistently evaluated via expected utility indifference pricing under partial
information, yielding a real world pricing formula under partial information. Here
the GOP is the numeraire and the pricing measure is the real world probability
measure. The existence of an equivalent risk neutral probability measure is not
required.
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Hahnsson Foundation.

Babbs, S. H. & K. B. Nowman (1999). Kalman filtering of generalized Vasicek
term structure models. J. Financial and Quantitative Analysis 34, 115–130.
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