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Abstract

We consider the portfolio optimization problem for the criterion of maximization of ex-
pected terminal log-utility. The underlying market model is a regime-switching diffusion
model where the regime is determined by an unobservable factor process forming a finite
state Markov process. The main novelty is due to the fact that prices are observed and the
portfolio is rebalanced only at random times corresponding to a Cox process where the in-
tensity is driven by the unobserved Markovian factor process as well. This leads to a more
realistic modeling for many practical situations, like in markets with liquidity restrictions; on
the other hand it considerably complicates the problem to the point that traditional method-
ologies cannot be directly applied. The approach presented here is specific to the log-utility.
For power utilities a different approach is presented in the companion paper [11].
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1 Introduction

Among the optimization problems in finance, portfolio optimization is one of the first and most
important problems. A classical formulation for this problem is the maximization of expected
utility from terminal wealth and here we shall consider the case of a log-utility. What is novel
in our paper is the market model, where we assume that the dynamics of the prices, in which
one invests, are of the usual diffusion type having however the following two peculiarities:

• the coefficients in the dynamics depend on an unobservable finite-state Markovian factor
process θt (regime-switching model);

• the prices Sit of the risky assets, or equivalently their log-values, are observed only at doubly
stochastic random times τ0, τ1, · · · , for which the associated counting process forms a Cox
process (see e.g. [4], [15]) with an intensity n(θt) that depends on the same unobservable
factor process θt.

Such models are relevant in financial applications for various reasons: regime switching models,
which are relevant also in various other applied areas, have been extensively used in the financial
literature, because they account for various stylized facts, such as e.g. the volatility clustering. On
the other hand, random discrete time observations are more realistic in comparison to diffusion-
type models since, especially on small time scales, prices do not vary continuously, but rather
change and are observed only at random times in reaction to trading or the arrival of significant
new information and it is reasonable to assume that the intensity of the price changes depends
on the same factors that specify the regime for the price evolution (see e.g. [10], [7]).

The partial observation setup, due to the non direct observability of the Markovian factors
and their consequent updating on the basis of the actual observations, allows for a continuous
updating of the underlying model and there is a huge literature on hidden Markov factor/regime-
switching models (for a monograph see e.g. [9]). Concerning hidden Markov factors in portfolio
optimization we limit ourselves to mention only some of the most recent ones that also summarize
previous work in the area, more precisely [3], [20], [25] as well as the recent monograph [2] and,
for the case when also defaultable securities are included, [5].

Due to the fact that the prices of the assets in which one invests are only observed at the
random times τk, we shall restrict our investment strategies to be rebalanced only at those
same time points. Although slightly less general from a theoretical point of view, restricting
trading to discrete, in particular random times, is quite realistic in finance, where in practice
one cannot rebalance a portfolio continuously: think of the case with transaction costs or with
liquidity restrictions (in this latter context see e.g. [12], [13], [18], [22], [23], [24] where the authors
consider illiquid markets, partly also with regime switching models as in this paper, but under
complete information).

Our problem belongs thus to the class of stochastic control problems under incomplete in-
formation with the objective given by the maximization of expected log-utility, but it has the
peculiarity that the observations are given by a Cox process with intensity depending on the un-
observed factor process. Log-optimal investment problems have by now been studied extremely
well in the literature and it is generally known that the log-optimal portfolio is myopic, i.e. it
depends only on the local dynamics of the tradable assets. A recent rather complete account can
be found in [14], where the asset prices are supposed to be general semimartingales, but there
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is complete information on the underlying market model and the asset price observations take
place continuously in time. The conclusions of [14] cannot be extended directly to the setup of
this paper (see more in the next paragraph) and one of the objectives here is to show that, also
in our context, one can obtain similar results. Maximization of expected log-and power-utility
of terminal wealth has in particular been studied also in [6], but for a simpler model than the
present one, where the prices follow a pure jump process, the coefficients in the model are de-
terministically given, and only the jump intensity is unobserved. It is shown in [6] that, in the
partial information case, the approach used for log-utility cannot be carried over straightfor-
wardly to the power utility case, even if there are close analogies, and so for the latter case a
different approach is presented. This happens also in our situation and, in fact, for the same
model as in the present paper, we treat the power utility case in the companion paper [11] by a
different approach.

The standard approach to incomplete observation stochastic control problems is to transform
them into the so-called ”separated problem”, where the unobservable quantities are replaced by
their conditional distributions. This requires to

• solve the associated filtering problem;

• formulate the separated problem so that its solution is indeed a solution of the original in-
complete observation problem.

The filtering part of our problem has been studied in [7] (see also [8]), where it was found that
(see Abstract in [7]) ”the given problem does not fit into the standard diffusion or simple point
process filtering framework and requires more technical tools”. Indeed, for a given function f(θ)
defined on the state space E = {e1, e2, . . . , eN} of our hidden Markov process {θt}, the filtering
equation is given as in (3.6) according to [7]. However, since our observations take place only
along a sequence of random times τ0, τ1, τ2, . . . up to a given time horizon T , useful information
arrives in a discrete way, namely via πit ≡ πt(1ei(θt)) evaluated at the indicator functions 1ei(·),
i = 1, . . . , N along the sequence τ0, τ1, τ2, . . .. The corresponding dynamics are:

πiτk+1
=M i(τk+1 − τk, X̃τk+1

− X̃τk , πτk)

with the discounted log prices X̃τk , as it is seen in (3.13), whereM = (M1, . . . ,MN ) is a function
taking its values on theN−1- dimensional simplex (2.2) and defined by (3.10)-(3.11). This follows
from the filtering results. Thus we obtain the Markov process {τk, πτk , X̃τk}∞k=1, with respect to
the filtration Gk defined in (2.11), forming the state variable process of our reduced control
problem with full information. Further, our portfolio strategies hit on the interval [τk, τk+1) are
determined by X̃t, X̃τk and the Gk measurable random variable hk as is seen in (2.16). Note that
once we choose a strategy hk at a time instant τk, then the portfolio strategy on [τk, τk+1) is
determined by the dynamics of the securities prices. Therefore we take as the set of admissible
strategies the totality of the sequences of Gk measurable random variables taking their values
in the m dimensional simplex H̄m defined in (2.14), where m is the number of risky assets.
Then, our original criterion defined by (4.4) and (4.5) can be reformulated by a function Ĉ of
(τk, πτk , hk) as is shown in (4.7) in Lemma 4.1. This part of our results has a crucial meaning
since, even if we choose our strategy hk only at the time instants τk, the portfolio proportion ht
depends on the evolution of the securities prices that, on each time interval (τk, τk+1) between
the observation points τk and τk+1 is unobservable and our original criterion depends on them
as well as on the unobservable state process θt.
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Next, we note that the sum appearing in the right hand side of (4.7) is infinite since, although
the number of observation times τk up to T is finite a.s., it depends on ω. Therefore, the myopic
strategy maximizing each Ĉ(τk, πτk , h) on H̄m cannot be shown directly to be the optimal one.
We thus proceeded to obtain

• an approximation result leading to a ”value iteration-type” algorithm;

• a general dynamic programming principle.

At this point one might observe that our problem setup is analogous to a discrete time, infinite
horizon problem with discounting because, in fact, the trading times are discrete in nature and
may be infinite in number as we mentioned above. Furthermore, as we shall show below, the
operator that is implicit in the dynamic programming principle is a contraction operator. We
want however to point out that our results are obtained by an approach that is specific to our
problem as described above and they cannot just be obtained on the basis of the apparent
analogy with the discrete time infinite horizon problem with discounting. On the other hand,
concerning the optimal strategy we show that also in our setup it turns out to be of the myopic
type.

Our results for the control part of the problem concern both the value function and the
optimal control/strategy. Many studies in stochastic control concern only the value function
and those deriving also the optimal control obtain it generally on the basis of the value function
for which the latter has to be sufficiently regular. Since, as we show also for our setup, the
optimal strategy can be derived directly on the basis of the local dynamics of the asset prices,
the value function is derived here for its own interest (one may in fact want to know what is the
best that one can achieve with a given problem formulation).

The paper is structured as follows. In Section 2 we give a more precise definition of the
model and the investment strategy and specify the objective function. In Section 3 we recall the
relevant filtering results from the literature and, on the basis of these results, we introduce an
operator that is important for the control results. The control part is then studied in section 4
with the main result stated in Theorem 4.1. In view of proving this theorem, Section 4 contains
various preliminary results with the more technical proofs deferred to the Appendix.

2 Market model and objective

2.1 Introductory remarks

As mentioned in the general Introduction, we consider here the problem of maximization of
expected log-utility from terminal wealth, when the dynamics of the prices of the risky assets
in which one invests are of the usual diffusion type but with the coefficients in the dynamics
depending on an unobservable finite-state Markovian factor process (regime-switching model).
In addition it is assumed that the risky asset prices Sit , or equivalently their logarithmic values
Xi
t := logSit , are observed only at random times τ0, τ1, · · · for which the associated counting

process forms a Cox process with an intensity n(θt) that also depends on the unobservable factor
process θt.
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2.2 The market model and preliminary notations

Let θt be the hidden finite state Markovian factor process. With Q denoting its transition
intensity matrix (Q−matrix) its dynamics are given by

dθt = Q∗θtdt+ dMt, θ0 = ξ, (2.1)

where Mt is a jump-martingale on a given filtered probability space
(Ω,F ,Ft, P ). If N is the number of possible values of θt, we may without loss of generality
take as its state space the set E = {e1, . . . , eN}, where ei is a unit vector for each i = 1, . . . , N
(see [9]).

The evolution of θt may also be characterized by the process πt given by the state probability
vector that takes values in the set

SN := {π ∈ RN |
N∑
i=1

πi = 1, 0 ≤ πi ≤ 1, i = 1, 2, . . . , N} (2.2)

namely the set of all probability measures on E and we have πi0 = P (ξ = ei). Denoting by M(E)
the set of all finite nonnegative measures on E, it follows that SN ⊂ M(E). In our study it will
be convenient to consider on M(E) the Hilbert metric dH(π, π̄) defined (see [1] [16] [17]) by

dH(π, π̄) := log( sup
π̄(A)>0,A⊂E

π(A)

π̄(A)
sup

π(A)>0,A⊂E

π̄(A)

π(A)
). (2.3)

Notice that, while dH is only a pseudo-metric on M(E), it is a metric on SN ([1]).

In our market we consider m risky assets, for which the price processes Si = (Sit)t≥0, i =
1, . . . ,m are supposed to satisfy

dSit = Sit{ri(θt)dt+
∑
j

σij(θt)dB
j
t }, (2.4)

for given coefficients ri(θ) and σij(θ) and with Bj
t (j = 1, · · · ,m) independent (Ft, P )−Wiener

processes. Letting Xi
t = logSit , by Itô’s formula we have, in vector notation,

Xt = X0 +

∫ t

0
r(θs)− d(σσ∗(θs))ds+

∫ t

0
σ(θs)dBs, (2.5)

where by d(σσ∗(θ)) we denote the column vector (12(σσ
∗)11(θ), . . . , 12(σσ

∗)mm(θ)). As usual there
is also a locally non-risky asset (bond) with price S0

t satisfying

dS0
t = r0S

0
t dt (2.6)

where r0 stands for the short rate of interest. We shall also make use of discounted asset prices,
namely

S̃it :=
Sit
S0
t

, with X̃i
t := log S̃it (2.7)

for which, by Itô’s formula

dS̃it = S̃it{(ri(θt)− r0)dt+
∑
j

σij(θt)dB
j
t }, (2.8)
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dX̃i
t = {ri(θt)− r0 − d(σσ∗(θt))

i}dt+
m∑
j=1

σij(θt)dB
j
t . (2.9)

As already mentioned, the asset prices and thus also their logarithms are observed only at
random times τ0, τ1, τ2, . . .. The observations are thus given by the sequence (τk, X̃τk)k∈N that
forms a multivariate marked point process with counting measure

µ(dt, dx) =
∑
k

1{τk<∞}δ{τk,X̃τk
}(t, x)dtdx. (2.10)

The corresponding counting process Λt :=
∫ t
0

∫
Rm µ(dt, dx) is supposed to be a Cox process with

intensity n(θt), i.e. Λt −
∫ t
0 n(θs)ds is an (Ft, P )− martingale. We consider two sub-filtrations

related to (τk, X̃τk)k∈N namely

Gt := F0 ∨ σ{µ((0, s]×B) : s ≤ t, B ∈ B(Rm)},

Gk := F0 ∨ σ{τ0, X̃τ0 , τ1, X̃τ1 , τ2, X̃τ2 , . . . , τk, X̃τk}.
(2.11)

where, again for simplicity, Gk stands for Gτk .
In our development below we shall often make use of the following notations. For the condi-

tional (on Fθ) mean and variance of X̃t − X̃τk we set

mθ
k(t) =

∫ t
τk
[r(θs)− r01− d(σσ∗(θs))]ds,

σθk(t) =
∫ t
τk
σσ∗(θs)ds

(2.12)

and, for z ∈ Rm, we set
ρθτk,t(z) ∼ N(z;mθ

k(t), σ
θ
k(t)) (2.13)

namely the joint conditional (on Fθ) m-dimensional normal density function with mean vector
mθ
k(t) and covariance matrix σθk(t). In (2.13) the symbol ∼ stands for ”distributed according

to”.

2.3 Investment strategies, portfolios, objective

As mentioned in the Introduction, since observations take place at random time points τk, we
shall consider investment strategies that are rebalanced only at those same time points τk.

LetN i
t be the number of assets of type i held in the portfolio at time t, N i

t =
∑

k 1[τk,τk+1)(t)N
i
k.

The wealth process is defined by

Vt :=
m∑
i=0

N i
tS

i
t .

Consider then the investment ratios

hit :=
N i
tS

i
t

Vt
,

and set, for simplicity of notation, hik := hiτk . The set of admissible investment ratios is given by

H̄m := {(h1, . . . , hm);h1 + h2 + . . .+ hm ≤ 1, 0 ≤ hi, i = 1, 2, . . . ,m}, (2.14)
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i.e. no shortselling is allowed and notice that H̄m is bounded and closed. Put h = (h1, · · · , hm).
Analogously to [19] define next a function γ : Rm × H̄m → H̄m by

γi(z, h) :=
hi exp(zi)

1 +
m∑
i=1

hi(exp(zi)− 1)

, i = 1, , . . . ,m. (2.15)

Noticing that Nt is constant on [τk, τk+1), for i = 1, . . . ,m, and t ∈ [τk, τk+1) let

hit =
N i

tS
i
t∑m

i=0N
i
tS

i
t
=

N i
kS

i
t∑m

i=0N
i
kS

i
t

=
N i

kS
i
τk
Si
t/S

i
τk∑m

i=0N
i
kS

i
τk
Si
t/S

i
τk

=
hikS

i
t/S

i
τk∑m

i=0 h
i
kS

i
t/S

i
τk

=
hikS

0
τk
/S0

t S
i
t/S

i
τk∑m

i=0 h
i
kS

0
τk
/S0

t S
i
t/S

i
τk

=
hik exp(X̃i

t−X̃i
τk

)

h0k+
m∑
i=1

hik exp(X̃i
t−X̃i

τk
)
=

hik exp(X̃i
t−X̃i

τk
)

1+
m∑
i=1

hik(exp(X̃
i
t−X̃i

τk
)−1)

= γi(X̃t − X̃τk , hk).

(2.16)

The set of admissible strategies A is defined by

A := {{hk}∞k=0|hk ∈ H̄m, Gk measurable for all k ≥ 0}. (2.17)

Furthermore, for n > 0, we let

An := {h ∈ A|hn+i = hτn+i− for all i ≥ 1}. (2.18)

Notice that, by the definition of An, for all k ≥ 1, h ∈ An we have

hin+k = hiτn+k−

⇔
N i
n+kS

i
τn+k∑m

i=0N
i
n+kS

i
τn+k

=
N i
n+k−1S

i
τn+k∑m

i=0N
i
n+kS

i
τn+k

⇔ Nn+k = Nn+k−1.

Therefore, for k ≥ 1
Nn+k = Nn,

and
A0 ⊂ A1 ⊂ · · ·An ⊂ An+1 · · · ⊂ A. (2.19)

Remark 2.1. Notice that, for a given finite sequence of investment ratios h0, h1, · · · , hn such
that hk is an Gk−measurable, H̄m−valued random variable for k ≤ n, there exists h(n) ∈ An

such that h
(n)
k = hk, k = 0, · · · , n. Indeed, if Nt is constant on [τn, T ), then for ht we have

ht = γ(X̃t − X̃τn , hn), ∀t ≥ τn. Therefore, by setting h
(n)
ℓ = hℓ, ℓ = 0, · · · , n, and h

(n)
n+k =

hτn+k
, k = 1, 2, · · · , since the vector process St and the vector function γ(·, hn) are continuous,

we see that h
(n)
n+k = hτn+k−, k = 1, 2, · · · .
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Finally, considering only self-financing portfolios, for their value process we have the dynam-
ics

dVt
Vt

= [r0 + h∗t {r(θt)− r01}]dt+ h∗tσ(θt)dBt. (2.20)

Problem: Given a finite planning horizon T > 0, our problem of maximization of expected
terminal log-utility consists in determining

sup
h∈A

E[log VT |τ0 = 0, πτ0 = π]

as well as an optimal maximizing strategy ĥ ∈ A.

3 Filtering

As mentioned in the Introduction, the standard approach to stochastic control problems under
incomplete information is to first transform them into a so-called separated problem, where the
unobservable part of the state is replaced by its conditional (filter) distribution. This implies
that we first have to study this conditional distribution and its (Markovian) dynamics, i.e. we
have to study the associated filtering problem.

The filtering problem for our specific case, where the observations are given by a Cox process
with intensity expressed as a function of the unobserved state, has been studied in [7] (see also
[8]). In the first subsection 3.1 we therefore summarize the main results from [7] in view of their
use in our control problem in section 4. Related to the filter, in subsection 3.2 we shall then
introduce a contraction operator that will play a major role in obtaining the results in section
4, in particular for the approximation result in the main Theorem 4.1.

3.1 General Filtering Equation

Recalling the definition of ρθ(z) in (2.13) and putting

ϕθ(τk, t) = n(θt) exp(−
∫ t

τk

n(θs)ds), (3.1)

for a given function f(θ) we let

ψk(f ; t, x) := E[f(θt)ρ
θ
τk,t

(x− X̃k)ϕ
θ(τk, t)|σ{θτk} ∨ Gk] (3.2)

ψ̄k(f ; t) :=

∫
ψk(f ; t, x)dx = E[f(θt)ϕ

θ(τk, t)|σ{θτk} ∨ Gk] (3.3)

πt(f) = E[f(θt)|Gt] (3.4)

with ensuing obvious meanings of πτk(ψk(f ; t, x)) and πτk(ψ̄k(f ; t)) where we consider ψk(f ; t, x)
and ψ̄k(f ; t) as functions of θτk . The process πt(f) is called the filter process for f(θt).

We have the following lemma (see Lemma 4.1 in [7]), where by P(G) we denote the predictable
σ -algebra on Ω× [0,∞) with respect to G and set P̃(G) = P(G)⊗ B(Rm).
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Lemma 3.1. The compensator of the random measure µ(dt, dx) in (2.10) with respect to P̃(G)
is given by the following nonnegative random measure

ν(dt, dx) =
∑
k

1(τk,τk+1](t)
πτk(ψk(1, t, x))∫∞
t πτk(ψ̄k(1, s))ds

dtdx. (3.5)

The main filtering result is the following (see Theorem 4.1 in [7]).

Theorem 3.1. For any bounded function f(θ), the differential of the filter πt(f) is given by

dπt(f) = πt(Lf)dt

+
∫ ∑

k 1(τk,τk+1](t)[
πτk (ψk(f ;t,x))

πτk (ψk(1;t,x))
− πt−(f)](µ− ν)(dt, dx),

(3.6)

where L is the generator of the Markov process θt(namely L = Q).

Corollary 3.1. We have

πτk+1
(f) =

πτk(ψk(f ; t, x))

πτk(ψk(1; t, x))

∣∣∣∣
t=τk+1,x=X̃τk+1

. (3.7)

Recall that in our setting θt is an N -state Markov chain with state space E = {e1, . . . , eN},
where ei is a unit vector for each i = 1, . . . , N . One may then write f(θt) =

∑N
i=1 f(ei)1ei(θt).

For i = 1, . . . , N let πit = πt(1ei(θt)) and

rji(t, z) := E[exp(

∫ t

0
−n(θs)ds)ρθ0,t(z)|θ0 = ej , θt = ei], (3.8)

pji(t) := P (θt = ei|θ0 = ej) (3.9)

and, noticing that πt ∈ SN , define the function M : [0,∞)× Rm × SN → SN by

M i(t, x, π) :=
∑

j n(ei)rji(t,x)pji(t)π
j∑

ij n(ei)rji(t,x)pji(t)π
j , (3.10)

M(t, x, π) := (M1(t, x, π),M2(t, x, π), . . . ,MN (t, x, π)). (3.11)

For A ⊂ E

M(t, x, π)(A) :=

N∑
i=1

M i(t, x, π)1{ei∈A}. (3.12)

The following corollary will be useful

Corollary 3.2. For the generic i-th state one has

πiτk+1
=M i(τk+1 − τk, X̃τk+1

− X̃τk , πτk) (3.13)

and the process {τk, πτk , X̃τk}∞k=1 is a Markov process with respect to Gk.
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Proof. The representation (3.13) and the fact that {τk, πτk , X̃τk} is a Gk−adapted discrete
stochastic processes on [0,∞)×SN×Rm follow immediately from Corollary 3.1 and the preceding
definitions. For the Markov property we calculate

P (τk+1 < t, X̃1
τk+1

< x1, . . . , X̃
m
τk+1

< xm|Gk)

= E[P (τk+1 < t, X̃1
τk+1

< x1, . . . , X̃
m
τk+1

< xm|Gk ∨ Fθ)|Gk]

= E[
∫ t
τk
P (X̃1

τk+1
< x1, . . . , X̃

m
τk+1

< xm|Gk ∨ Fθ)n(θs) exp(−
∫ s
τk
n(θu)du)ds|Gk]

= E[
∫ t
τk

∫ x1
−∞ . . .

∫ xm
−∞ ρτk,s(z − X̃τk)n(θs) exp(−

∫ s
τk
n(θu)du)dsdz|Gk]

=
∫ t
τk

∫ x1
−∞ . . .

∫ xm
−∞

∑
ij
n(ei)rji(s− τk, z − X̃τk)pji(s− τk)π

j
τkdsdz,

and for any bounded measurable function g on [0,∞)× SN × Rm it then follows that

E[g(τk+1, πτk+1
, X̃τk+1

)|Gk]

= E[g(τk+1,M(τk+1 − τk, X̃τk+1
− X̃τk , πτk), X̃τk+1

)|Gk]

= E[E[g(τk+1,M(τk+1 − τk, X̃τk+1
− X̃τk , πτk), X̃τk+1

)|G(k) ∨ Fθ]|Gk]

= E[
∫∞
τk
E[g(t,M(t− τk, X̃t − X̃τk , πτk), X̃t)n(θt) exp(−

∫ t
τk
n(θs)ds)|Gk ∨ Fθ]dt|Gk]

=
∫∞
τk

∫
Rm g(t,M(t− τk, x− X̃τk , πτk), x)

∑
ij n(ei)rji(t− τk, x− X̃τk)pji(t− τk)π

j
τkdxdt,

where the last equation depends only on {τk, πτk , X̃τk} thus implying the Markov property.

3.2 A contraction operator

In this subsection we define a contraction operator (see Definition 3.1 below) that will be relevant
for deriving the results on the value function. In view of its definition and in order to derive its
properties, we need first to introduce some additional notions.

We start by defining an operator on M(E) as follows

Ki(t, x)π :=
∑
j

n(ei)rji(t, x)pji(t)π
j , (3.14)

K(t, x)π := (K1(t, x)π,K2(t, x)π, . . . ,KN (t, x)π). (3.15)

For t ∈ [0,∞), x ∈ Rm, Ki(t, x) is a positive linear operator on M(E). For A ⊂ E set

K(t, x)π(A) :=
N∑
i=1

Ki(t, x)π1{ei∈A}. (3.16)

By the definition of M i(t, x, π) and Ki(t, x)π, setting κ(t, x, π) :=
∑

iK
i(t, x)π, for t ∈

[0,∞), x ∈ Rm, π ∈ M(E) we have

M i(t, x, π) =
1

κ(t, x, π)
Ki(t, x)π . (3.17)
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By the definition of the Hilbert metric dH(·, ·), for t ∈ [0,∞), x ∈ Rm, π, π̄ ∈ M(E) we then
have

dH(M(t, x, π),M(t, x, π̄)) = log(sup M(t,x,π)(A)
M(t,x,π̄)(A) sup

M(t,x,π̄)(A)
M(t,x,π)(A))

= log(sup
1

κ(t,x,π)
K(t,x)π(A)

1
κ(t,x,π̄)

K(t,x)π̄(A)
sup

1
κ(t,x,π̄)

K(t,x)π̄(A)
1

κ(t,x,π)
K(t,x)π(A)

)

= log(sup K(t,x)π(A)
K(t,x)π̄(A) sup

K(t,x)π̄(A)
K(t,x)π(A))

= dH(K(t, x)π,K(t, x)π̄).

(3.18)

Applying [1], Lemma 3.4 in [16] and Theorem 1.1 in [17] , for the positive linear operator K on
M(E) it then follows that

dH(M(t, x, π),M(t, x, π̄)) = dH(K(t, x)π,K(t, x)π̄) ≤ dH(π, π̄) (3.19)

for t ∈ [0,∞), x ∈ Rm, π, π̄ ∈ SN . By Lemma 3.4 in [16] , for ∀π, π̄ ∈ SN we also have

∥π − π̄∥TV ≤ 2

log 3
dH(π, π̄), (3.20)

where ∥ · ∥TV is the total variation on SN .
We finally introduce a metric on [0,∞)× SN × H̄m by

|t− t̄|+ dH(π, π̄) +

m∑
i=1

|hi − h̄i| (3.21)

for (t, π, h), (t̄, π̄, h̄) ∈ [0,∞)× SN × H̄m and considering the state space

Σ := [0,∞)× SN , (3.22)

let Cb(Σ) be the set of bounded continuous functions g : Σ → R with norm

∥g∥ := max
x∈Σ

| g(x) | . (3.23)

Definition 3.1. Let the operator J : Cb(Σ) → Cb(Σ) be given as follows

Jg(τ, π)

:=
∫ T
τ

∫
Rm g(t,M(t− τ, z, π))

∑
ij n(ei)rji(t− τ, z)pji(t− τ)πjdzdt

= E[g(τ1, πτ1)1{τ1<T}|τ0 = τ, πτ0 = π],

(3.24)

where M is defined in (3.10)-(3.11).

First we have

Lemma 3.2. J is a contraction operator on Cb(Σ) with contraction constant c := 1−e−n̄T < 1,
where n̄ := maxn(θ) = maxi n(ei).
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Proof. For ∀g ∈ Cb(Σ)

| Jg(t, π) | = | E[g(τ1, π1)1{τ1<T}|τ0 = t, πτ0 = π] |

≤ ∥g∥P (τ1 < T |τ0 = t)

= ∥g∥E[(1− exp(−
∫ T
t n(θt)dt))]

≤ ∥g∥(1− exp(−n̄(T − t)))

and so
∥Jg∥ ≤ c∥g∥ (3.25)

with c as specified in the statement.

Let Cb,lip(Σ) be the set of bounded and Lipschitz continuous functions g : Σ → R and set
for g ∈ Cb,lip(Σ),

1

Nλ(g) := λ∥g∥+ [g]lip (3.26)

where,

[g]lip := sup
τ,τ̄∈[0,T ] π,π̄∈SN

|g(τ, π)− g(τ̄ , π̄)|
|τ − τ̄ |+ dH(π, π̄)

. (3.27)

Note that Cb,lip(Σ) is a Banach space with the norm Nλ(g), for each λ > 0.
Take a sufficiently large constant λ such that

c′ := (c+max(n̄,
2

log 3
)
1

λ
) < 1. (3.28)

Proposition 3.1. The operator J in Definition 3.1 is a contraction operator

J : Cb,lip(Σ) → Cb,lip(Σ)

with contraction constant c′.

Proof. Let us first prove that Jg(t, π) is Lipschitz continuous with respect to t. By assumption,
for all g ∈ Cb,lip(Σ),

|g(τ, π)− g(τ̄ , π)| ≤ [g]lip|τ − τ̄ |, (3.29)

|g(τ, π)− g(τ, π̄)| ≤ [g]lipdH(π, π̄). (3.30)

We change variables from t to t+ τ ,

Jg(τ, π) =

∫ T−τ

0

∫
Rm

g(t+ τ,M(t, z, π))
∑
ij

n(ei)rji(t, z)pji(t)π
jdzdt. (3.31)

1We are grateful for an anonymous suggestion of this useful norm
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We then have

|Jg(τ, π)− Jg(τ̄ , π)|

= |
∫ T−τ
T−τ̄

∫
Rm g(t+ τ,M(t, z, π))

∑
ij n(ei)rji(t, z)pji(t)π

jdzdt|

+|
∫ T−τ
0

∫
Rm{g(t+ τ,M(t, z, π))− g(t+ τ̄ ,M(t, z, π))}

·
∑

ij n(ei)rji(t, z)pji(t)π
jdzdt|

≤ n̄∥g∥|τ − τ̄ |+ [g]lip|τ − τ̄ | |
∫ T−τ
0

∫
Rm

∑
ij n(ei)rji(t, z)pji(t)π

jdzdt|

= n̄∥g∥|τ − τ̄ |+ [g]lip|τ − τ̄ |P (τ1 < T |τ0 = τ, πτ0 = π)

≤ (n̄∥g∥+ c[g]lip)|τ − τ̄ |.

(3.32)

Next, let us prove that Jg(t, π) is Lipschitz continuous with respect to π.

|Jg(τ, π)− Jg(τ, π̄)|

≤ |
∫ T−τ
0

∫
Rm{g(t,M(t, z, π))− g(t,M(t, z, π̄))}

∑
ij n(ei)rji(t, z)pji(t)π

jdzdt|

+ |
∫ T−τ
0

∫
Rm g(t,M(t, z, π̄))

∑
ij n(ei)rji(t, z)pji(t)(π

j − π̄j)dzdt|

≤ |
∫ T−τ
0

∫
Rm [g]lipdH(M(t, z, π),M(t, z, π̄))

∑
ij n(ei)rji(t, z)pji(t)π

jdzdt|

+ ∥g∥ 2
log 3dH(π, π̄)P (τ1 < T |τ0 = τ)

≤ ( 2
log 3∥g∥+ c[g]lip)dH(π, π̄).

(3.33)

Therefore,

[Jg]lip = sup
τ,τ̄∈[0,T ] π,π̄∈SN

|Jg(τ, π)− Jg(τ̄ , π̄)|
|τ − τ̄ |+ dH(π, π̄)

≤ sup
τ,τ̄∈[0,T ] π,π̄∈SN

|Jg(τ, π)− Jg(τ̄ , π)|+ |Jg(τ̄ , π)− Jg(τ̄ , π̄)|
|τ − τ̄ |+ dH(π, π̄)

≤ sup
τ,τ̄∈[0,T ] π,π̄∈SN

(n̄∥g∥+ c[g]lip)|τ − τ̄ |+ ( 2
log 3∥g∥+ c[g]lip)dH(π, π̄)

|τ − τ̄ |+ dH(π, π̄)

≤ max(n̄, 2
log 3)∥g∥+ c[g]lip.

(3.34)

Finally, we obtain
Nλ(Jg) = λ∥Jg∥+ [Jg]lip

≤ cλ∥g∥+max(n̄, 2
log 3)∥g∥+ c[g]lip

≤ c′λ∥g∥+ c[g]lip

≤ c′Nλ(g).

(3.35)
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4 The Control Problem/Log-utility

Recall from (2.20) that the value process of a self financing portfolio satisfies

dVt
Vt

= [r0 + h∗t {r(θt)− r01}]dt+ h∗tσ(θt)dBt. (4.1)

We have by Itô’s formula

log VT = log v0 +
∫ T
0 h∗tσ(θt)dBt

+
∫ T
0 [r0 + h∗t {r(θt)− r01} − 1

2h
∗
tσσ

∗(θt)ht]dt.
(4.2)

Put

f(θ, h) := r0 + h∗{r(θ)− r01} −
1

2
h∗σσ∗(θ)h (4.3)

and notice that this function f(·) is bounded under our assumptions. The expected log-utility
of terminal wealth then becomes

E[log VT |τ0 = 0, πτ0 = π] = log v0 + E[

∫ T

0
f(θt, ht)dt|τ0 = 0, πτ0 = π] (4.4)

and, as mentioned in section 2.3, we want to consider the problem of maximization of expected
terminal log-utility, namely

sup
h∈A

E[log VT |τ0 = 0, πτ0 = π]. (4.5)

The results that we shall derive for the control part of the problem, and that we synthesize in
Theorem 4.1, concern both the optimal control that we shall show to be also here of the myopic
type, as well as the optimal value function, for which we shall derive an approximation result
(value iteration) as well as a Dynamic Programming principle. In subsection 4.1 we shall present
preliminary results, mainly in view of the optimal strategy, while in subsection 4.2 we shall
introduce the value function W (·) in the standard way and show some first properties related
to W (·). Using only the standard value function W (·) it turns out to be very difficult to obtain
the results that we are after and so in the further subsection 4.3 we introduce an auxiliary value
function W̄ (·) that not only will be instrumental in obtaining our results, but is also the value
function that enters explicitly into the approximation result in Theorem 4.1 below (it is in fact
the value function that can be computed by value iteration).

4.1 Preliminary results in view of the optimal strategy

Definition 4.1. Let Ĉ(τ, π, h) be defined by

Ĉ(τ, π, h) := E[
∫ T∧τ1
τ f(θs, hs)ds|τ0 = τ, πτ0 = π]

=
∫ T
τ

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(t− τ, x)pji(t− τ)πjdxdt,

(4.6)

where γ(x, h) = [γ1(x1, h), · · · , γm(xm, h)].
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Lemma 4.1.

(i) For the function defined by (4.3), we have the following equation

E[

∫ T

t
f(θs, hs)ds|τ0 = t, πτ0 = π] = E[

∑
k

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π]. (4.7)

(ii) Ĉ is a bounded and continuous function on [0, T ]× SN × H̄m.

For the proof see the Appendix.

Corollary 4.1.

(i) There exists a Borel function ĥ(τ, π) such that suph∈H̄m
Ĉ(τ, π, h) = Ĉ(τ, π, ĥ(τ, π)).

(ii) The function
C(t, π) := sup

h∈H̄m

Ĉ(t, π, h). (4.8)

is Lipschitz continuous with respect to t, π in the metric introduced in (3.21).

Proof. H̄m is compact and Ĉ(τ, π, h) is a bounded continuous function on [0, T ]×SN×H̄m; there
exists then a Borel function ĥ(τ, π) such that (4.8) holds. Furthermore, Ĉ(t, π, h) is uniformly
Lipschitz continuous with respect to t, π.

4.2 Value function and first properties

We start with the following basic definition

Definition 4.2. For given initial data (τ0 = t, πτ0 = π), where we now start at a generic time
t, consider the following value function for h ∈ A

W (t, π, h.) := E[
∫ T
t f(θs, hs)ds|τ0 = t, πτ0 = π]

= E[

∞∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π],
(4.9)

and define
W (t, π) := sup

h∈A
W (t, π, h.)

= sup
h∈A

E[

∫ T

t
f(θs, hs)ds|τ0 = t, πτ0 = π]

= sup
h∈A

E[

∞∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π],

(4.10)
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Wn(t, π) := sup
h∈An

W (t, π, h.)

= sup
h∈An

E[

∫ T

t
f(θs, hs)ds|τ0 = t, πτ0 = π]

= sup
h∈An

E[

∞∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π],

(4.11)

where An was defined in (2.18).

Lemma 4.2. For all n ≥ 0 and h ∈ An, we have the following equation

W (t, π, h.) = E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}

+
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π].

(4.12)

For the proof see the Appendix.

Corollary 4.2. For n ≥ 0, t ∈ [0, T ], π ∈ SN we have the following equation

Wn(t, π) = sup
h∈An

E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}

+
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π].

(4.13)

4.3 An auxiliary value function

Recall the function C(t, π) defined in Corollary 4.1 as well as the operator J from Definition 3.1.
By Proposition 3.1 we have that J is a contraction operator on the Banach space Cb,lip with its
norm Nλ(·). Therefore, limn→∞

∑n
k=0 J

kC exists and so we introduce the

Definition 4.3. Define the auxiliary value function W̄ (t, π) as

W̄ :=

∞∑
k=0

JkC

The following lemma then holds

Lemma 4.3. We have W̄ ∈ Cb,lip and it satisfies

W̄ (t, π) = C(t, π) + JW̄ (t, π). (4.14)

Proof. Due always to the fact that (see Proposition 3.1) J is a contraction operator on the
Banach space Cb,lip with its norm Nλ(·), in addition to the existence of limn→∞

∑n
k=0 J

kC we
also have

(I − J)−1C =
∞∑
k=0

JkC,

from which the result follows.
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In view of deriving a recursion related to W̄ (t, x) (value iteration), we start with the

Definition 4.4. Define, for h ∈ H̄m,

W̄ 0(t, π, h) := E[

∫ T

t
f(θs, γ(X̃s − X̃t, h))ds|τ0 = t, πτ0 = π]. (4.15)

Furthermore, let
W̄ 0(t, π) := max

h∈H̄m

W̄ 0(t, π, h), (4.16)

and, for n ≥ 1
W̄n(t, π) := C(t, π) + JW̄n−1(t, π)

=

n−1∑
k=0

JkC(t, π) + JnW̄ 0(t, π).
(4.17)

Remark 4.1. The function W̄ 0(t, π, h) in (4.15) is bounded and continuous with respect to
t, π, h. This follows by an analogous proof as in Lemma 4.1(ii).

We first state and prove the following lemma (later we need a relation from the proof)

Lemma 4.4.

(i) We have the equation

W̄n(t, π) = E[

n−1∑
k=0

C(τk, πτk)1{τk<T} + W̄ 0(τn, πτn)1{τn<T}|τ0 = t, πτ0 = π]. (4.18)

(ii) For any ϵ > 0, we set nϵ := (log(1− c′) + log ε− logNλ(W̄ 1 − W̄ 0))/ log c′, where c′ is the
contraction constant defined in (3.28). For all n > nϵ,

Nλ(W̄ − W̄n) < ϵ. (4.19)

Proof. We prove (i). For n ≥ 1

{τn−1 < T} ⊃ {τn < T}. (4.20)

Therefore,
1{τn−1<T}1{τn<T} = 1{τn<T}. (4.21)

For all g ∈ Cb([0, T ]× SN ) and n ≥ 0, we have

E[g(τn, πτn)1{τn<T}|τ0 = t, πτ0 = π]

= E[E[g(τn, πτn)1{τn<T}|Gn−1]1{τn−1<T}|τ0 = t, πτ0 = π].
(4.22)

because 1{τn−1<T}E[1{τn<T}|Gn−1] = E[1{τn<T}|Gn−1]. Then, since (see (3.24))

E[g(τn, πτn)1{τn<T}|Gn−1]

=
∫ T
τn−1

∫
Rm g(t,M(t− τn−1, z, πτn−1))

∑
ij

n(ei)rji(t− τn−1, z)pji(t− τn−1)π
j
τn−1

dzdt

= Jg(τn−1, πτn−1),
(4.23)

17



we have (see always (3.24))

E[g(τn, πτn)1{τn<T}|τ0 = t, πτ0 = π] = E[Jg(τn−1, πτn−1)1{τn−1<T}|τ0 = t, πτ0 = π]

= Jng(t, π).
(4.24)

We thus obtain

W̄n(t, π) =
n−1∑
k=0

JkC(t, π) + JnW̄ 0(t, π)

= E[
∑n−1

k=0 C(τk, πτk)1{τk<T} + W̄ 0(τn, πτn)1{τn<T}|τ0 = t, πτ0 = π].

(4.25)

Next, we prove (ii). For any n,

Nλ(W̄ − W̄n) = Nλ( lim
k→∞

W̄n+k − W̄n) = lim
k→∞

Nλ(W̄n+k − W̄n)

≤ lim
k→∞

k−1∑
i=0

Nλ(W̄n+i+1 − W̄n+i) ≤ Nλ(W̄n+1 − W̄n)
∞∑
i=0

(c′)i

≤ Nλ(W̄ 1 − W̄ 0)(c′)n
∞∑
i=0

(c′)i =
(c′)n

1− c′
Nλ(W̄ 1 − W̄ 0).

(4.26)

We close this subsection with three crucial lemmas. The first one, Lemma 4.5, establishes
the relationship between the actual and the auxiliary value functions. It is preliminary to the
following two lemmas 4.6 and 4.7 that are the main ingredients for the approximation result
in Theorem 4.1. Furthermore, Lemma 4.5 and its proof are also relevant in order to obtain the
optimal strategy (point iii) in Theorem 4.1).

Lemma 4.5. For all n ≥ 0, we have the equality

Wn(t, π) = W̄n(t, π). (4.27)

Proof. By Corollary 4.2, for all n ≥ 0

Wn(t, π) = sup
h∈An

E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}

+
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π].

(4.28)

Since H̄m is compact and W̄ 0(τ, π, h) is a bounded continuous function on [0, T ] × SN × H̄m,
there exists a Borel function w(τ, π) such that suph∈H̄m

W̄ 0(τ, π, h) = W̄ 0(τ, π, w(τ, π)) . Fur-

thermore, by Corollary 4.1(i) there exists a Borel function ĥ(τ, π) such that suph∈H̄m
Ĉ(τ, π, h) =

Ĉ(τ, π, ĥ(τ, π)) holds. For n ≥ 0, we define the strategy

h̃k := ĥ(τk, πτk), 0 ≤ k ≤ n− 1

h̃k := w(τn, πτn), k = n

h̃k := γ(X̃τk − X̃τn , h̃n), k > n.

(4.29)
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By definition of {h̃k}k∈N, we have {h̃k}k∈N ∈ An. Using Lemma 4.4(i) and Lemma 4.2, for
n ≥ 0, t ∈ [0, T ], π ∈ SN

W̄n(t, π) = E[

n−1∑
k=0

Ĉ(τk, πτk , h̃k)1{τk<T}

+
∫ T
τn
f(θs, γ(X̃s − X̃τn , h̃n))ds1{τn<T}|τ0 = t, πτ0 = π]

≤ Wn(t, π).

(4.30)

Using again Lemma 4.2, (4.15) and Lemma 4.4(i), for all n ≥ 0, h ∈ An, t ∈ [0, T ], π ∈ SN

W (t, π, h.) = E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}

+
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π]

= E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T} + W̄ 0(τn, πτn , hn)1{τn<T}|τ0 = t, πτ0 = π]

≤ E[

n−1∑
k=0

C(τk, πτk)1{τk<T} + W̄ 0(τn, πτn)1{τn<T}|τ0 = t, πτ0 = π]

= W̄n(t, π).
(4.31)

Therefore, we have
Wn(t, π) = sup

h∈An
W (t, π, h.) ≤ W̄n(t, π), (4.32)

and so we obtain for all n ≥ 0
Wn(t, π) = W̄n(t, π). (4.33)

Lemma 4.6. For n ≥ 0, we have the estimate

W̄n(t, π) ≤ W̄n+1(t, π) ≤ W̄ (t, π) ≤W (t, π). (4.34)

For the proof see the Appendix.

Lemma 4.7. The following estimate holds

W (t, π) ≤ W̄ (t, π) (4.35)

for t ∈ [0, T ], ∀π ∈ SN .

For the proof see the Appendix.
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4.4 Main result

Based on the previous subsections we obtain now the main result of this section

Theorem 4.1.

(i) Approximation theorem :
For any ϵ > 0, n > nϵ,

Nλ(W − W̄n) < ϵ, (4.36)

where nϵ is the constant defined in Lemma 4.4(ii) and, modulo the additive term log v0,
the function W = W (t, π) is the optimal value function (see (4.4), (4.9), (4.10)), Nλ is
the norm introduced in (3.26), and W̄n are computed recursively according to (4.16) and
(4.17).

(ii) Dynamic programming principle : for any n > 0

W (t, π) = sup
h∈An

E[

n∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}

+W (τn+1, πτn+1)1{τn+1<T}|τ0 = t, πτ0 = π].

(4.37)

.

(iii) Optimal value and optimal strategy for the Log Utility Maximization Problem : for the
utility maximization under the initial conditions V0 = v0, τ0 = 0, πτ0 = π we have

sup
h∈A

E[log VT |τ0 = 0, πτ0 = π] = log v0 + sup
h∈A

E[

∫ T

0
f(θt, ht)dt|τ0 = 0, πτ0 = π]

= log v0 + C(0, π) +
∑∞

k=1E[Ĉ(τk, πτk , ĥk)1{τk<T}|τ0 = 0, πτ0 = π],

(4.38)

with ĥk defined in Corollary 4.1, namely suph∈H̄m
Ĉ(τ, π, h) = Ĉ(τ, π, ĥ(τ, π)) and ĥk =

ĥ(τk, πτk) and
ĥit = γi(X̃t − X̃τk , ĥk), τk ≤ t < τk+1 (4.39)

Proof. Let us first prove (i). By Lemma 4.6 and Lemma 4.7,

W (t, π) = W̄ (t, π). (4.40)

Therefore, applying Lemma 4.4(ii) one obtains

Nλ(W − W̄n) < ϵ. (4.41)

Next, let us prove (ii). By (4.40), Lemma 4.3, (4.24) and by Corollary 4.1

W (t, π) = W̄ (t, π) =

n∑
k=0

JkC + Jn+1W (t, π)

= E[

n∑
k=0

C(τk, πτk)1{τk<T} +W (τn+1, πτn+1)1{τn+1<T}|τ0 = t, πτ0 = π]

= sup
h∈An

E[

n∑
k=0

Ĉ(τk, πτk , hk)1{τk<T} +W (τn+1, πτn+1)1{τn+1<T}|τ0 = t, πτ0 = π].

(4.42)
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Finally, (iii) is an immediate consequence of (4.4), Lemma 4.1 and Lemma 4.5 and its proof.

5 Appendix

Proof of Lemma 4.1.

Proof of statement (i). It follows from the two lemmas shown below.

Lemma 5.1. We have the following representation,

E[f(θt, ht)|Gt] =
∑
k≥0

1]τk,τk+1](t)
E[f(θt, γ(X̃t − X̃τk , hk))1{t≤τk+1}|Gk]

E[1{t≤τk+1}|Gk]
. (5.1)

Proof. It suffices to prove that for any Gt−adapted process Zt

E[E[f(θt, ht)|Gt]Zt] = E[
∑
k≥0

1]τk,τk+1](t)
E[f(θt, γ(X̃t − X̃τk , hk))1{t≤τk+1}|Gk]

E[1{t≤τk+1}|Gk]
Zt]. (5.2)

First notice that any Gt−adapted process Zt has the representation (see [4])

Zt =
∑
k≥0

1]τk,τk+1](t)Zk(t) + Z∞1]τ∞,∞[(t), (5.3)

with the process Zk(t) being Gk ⊗B(R+)-measurable. Furthermore, under our assumptions, for
all t > 0, limn→∞ 1{τn<t} = 0 and thus

Zt =
∑
k≥0

1]τk,τk+1](t)Zk(t). (5.4)

Note, finally, that E[1{τk<t≤τk+1}|Gk] = 1]τk,∞)(t)E[1{t≤τk+1}|Gk]]. We then have

E[E[f(θt, ht)|Gt]Zt] = E[f(θt, ht)
∑
k≥0

1]τk,τk+1](t)Zk(t)]

=
∑
k≥0

E[E[f(θt, ht)1{t≤τk+1}|Gk]1{τk<t}Zk(t)]

=
∑
k≥0

E[
E[f(θt, ht)1{t≤τk+1}|Gk]

E[1{t≤τk+1}|Gk]
E[1]τk,τk+1](t)Zk(t)|Gk]]

= E[
∑
k≥0

1]τk,τk+1](t)
E[f(θt, ht)1{t≤τk+1}|Gk]

E[1{t≤τk+1}|Gk]
Zt],

and thus we obtain (5.2) since

f(θt, ht) =

∞∑
k=0

1[τk,τk+1)(t)f(θt, γ(X̃t − X̃τk , hk)),

which follows from (2.16).
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Lemma 5.2. We have the following equation

E[
∫ T
t f(θs, hs)ds|τ0 = t, πτ0 = π] = E[

∑
k≥0

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π] (5.5)

with Ĉ(t, π, h) defined by (4.6) in Definition 4.1.

Proof. For simplicity, in the following formula we shall use the notation

Et,π[·] ≡ E[· |τ0 = t, πτ0 = π]

Using (5.1) we have similarly as above

Et,π[

∫ T

t
E[f(θs, hs)|Gs]ds] = Et,π[

∫ T

t

∑
k≥0

1]τk,τk+1](s)
E[f(θs, γ(X̃s − X̃τk , hk))1{s<τk+1}|Gk]

E[1{s≤τk+1}|Gk]
ds]

= Et,π[
∑
k≥0

∫ T

t
1]τk,∞)(s)E[f(θs, γ(X̃s − X̃τk , hk))1{s<τk+1}|Gk]ds]

= Et,π[
∑
k≥0

∫ T

t
1]τk,∞)(s)E[e

−
∫ s
τk
n(θu)duf(θs, γ(X̃s − X̃τk , hk))|Gk]ds]

= Et,π[
∑
k≥0

∫ T

t
1]τk,∞)(s)E[E[e

−
∫ s
τk
n(θu)duf(θs, γ(X̃s − X̃τk , hk))|Gk ∨ σ{θτk}]|Gk]ds]

(5.6)
Since (θt, X̃t) is a time homogeneous Markov process,

E[e
−

∫ s
τk
n(θu)duf(θs, γ(X̃s − X̃τk , hk))|Gk ∨ σ{θτk}]

= E[e−
∫ t
0 n(θu)duf(θt, γ(X̃t − x, h))|θ0 = θ, X̃0 = x]|t=s−τk,θ=θk,x=X̃τk

,h=hk

(5.7)

We now have, recalling the definition of rji(t, z) in (3.8),

E[e−
∫ t
0 n(θs)ds)f(θt, γ(X̃t − x, h))|θ0 = θ, X̃0 = x]

= E[e−
∫ t
0 n(θs)ds)E[f(θt, γ(X̃t − x, h))|Fθ

t ∨ {X̃0 = x}]|θ0 = θ, X̃0 = x]

= E[e−
∫ t
0 n(θs)ds)

∫
Rm f(θt, γ(z, h))ρ

θ
0,t(z)dz|θ0 = θ, X̃0 = x]

= E[
∫
Rm

∑
ij

1{θt=ei,θ0=ej}f(ei, γ(z, h))

×E[e−
∫ t
0 n(θs)dsρθ0,t(z)|θt = ei, θ0 = ej ]dz|θ0 = θ, X̃0 = x]

= E[
∫
Rm

∑
ij

1{θt=ei,θ0=ej}f(ei, γ(z, h))rji(t, z)dz|θ0 = θ, X̃0 = x]

=
∫
Rm

∑
ij
f(ei, γ(z, h))rji(t, z)pji(t)1{θ=ej}dz.

(5.8)
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We finally have

Et,π[

∫ T

t
f(θs, hs)ds] = Et,π[

∫ T

t
E[f(θs, hs)|Gs]ds]

= Et,π[
∑
k≥0

∫ T

t
1]τk,∞)(s)E[E[e

−
∫ s
τk
n(θu)duf(θs, γ(X̃s − X̃τk , hk))|Gk ∨ σ{θτk}]|Gk]ds]

= Et,π[
∑
k≥0

1{τk<T}

∫ T

τk

∫
Rm

∑
ij

f(ei, γ(z, hk))rji(s− τk, z)pji(s− τk)π
j
τk
dzds]

= Et,π[
∑
k≥0

Ĉ(τk, πτk , hk)1{τk<T}].

(5.9)

Proof of statement (ii) of Lemma 4.1.

We start by proving that Ĉ(t, π, h) is Lipschitz continuous with respect to t.

Ĉ(t, π, h) =
∫ T
t

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(s− t, x)pji(s− t)πjdxds

=
∫ T−t
0

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(s, x)pji(s)π

jdxds.
(5.10)

Thus

|Ĉ(t, π, h)− Ĉ(t̄, π, h)| = |
∫ T−t
T−t̄

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(s, x)pji(s)π

jdxds|

≤ ∥f∥|t− t̄|,
(5.11)

where ∥f∥ := supe∈E,h∈H̄m
∥f(e, h)∥. Next, let us prove that C(t, π, h) is Lipschitz continuous

with respect to π (in the metric introduced in (3.21)).

|Ĉ(t, π, h)− Ĉ(t, π̄, h)| = |
∫ T−t
0

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(s, x)pji(s)(π

j − π̄j)dxds|

≤ ∥f∥T |π − π̄| = ∥f∥T
∑N

i=1 |π(ei)− π̄(ei)|

≤ ∥f∥T∥π − π̄∥TV ≤ ∥f∥T 2
log 3dH(π, π̄),

(5.12)

where we have used (3.20).

Next, let us prove that C(t, π, h) is continuous with respect to h (always in the metric
introduced in (3.21)). The function f(ei, h) is bounded and continuous with respect to h for all
i. Furthermore, γ(x, h) is continuous with respect to h for all x ∈ Rm. Applying the dominated
convergence theorem, for hn ⊂ H̄m, s.t. lim

n→∞
hn = h ∈ H̄m

lim
n→∞

Ĉ(t, π, hn) =
∫ T−t
0

∫
Rm

∑
i,j

lim
n→∞

f(ei, γ(x, hn))rji(s, x)pji(s)π
jdxds

=
∫ T−t
0

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(s, x)pji(s)π

jdxds

= Ĉ(t, π, h).

(5.13)
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Ĉ(t, π, h) is thus continuous with respect to each of the variables t, π, h. However, continuity in
t, π is independent of the other variable. Hence, Ĉ(t, π, h) is a continuous function on [0, T ] ×
SN × H̄m.

Proof of Lemma 4.2

Fix n ≥ 0. Recall the definition of hin given in section 2.3. Since St is continuous and Vt
satisfies the self-financing condition, we obtain

hiτn− =
N i
n−1S

i
τn−

Vτn−
=
N i
n−1S

i
τn

Vτn
=

N i
n−1S

i
τn∑m

i=0N
i
nS

i
τn

.

Using (2.16), (2.18), for all k ≥ 1, h ∈ An, t ∈ [τn+k, T ], one furthermore has

hit = γi(X̃t − X̃τn+k
, hn+k) = γi(X̃t − X̃τn , hn).

Therefore, using lemma 4.1(i) for h ∈ An

W (t, π, h.) = E[
n−1∑
k=0

∫ T∧τk+1

τk

f(θs, γ(X̃s − X̃τk , hk))ds1{τk<T}

+

∞∑
k=n

∫ T∧τk+1

τk

f(θs, γ(X̃s − X̃τk , hk))ds1{τk<T}|τ0 = t, πτ0 = π]

= E[
n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T} +

∫ T

τn

f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π].

(5.14)

Proof of Lemma 4.6

By the definition of An, for n ≥ 0,An ⊂ An+1 ⊂ A, hence,

sup
h∈An

W (t, π, h.) ≤ sup
h∈An+1

W (t, π, h.) ≤ sup
h∈A

W (t, π, h.). (5.15)

By the definition of Wn(t, π) and W (t, π)

Wn(t, π) ≤Wn+1(t, π) ≤W (t, π). (5.16)

Using Lemma 4.5, for n,m ≥ 0

W̄n(t, π) ≤ W̄n+m(t, π) ≤W (t, π). (5.17)

Letting m→ ∞
W̄n(t, π) ≤ W̄ (t, π) ≤W (t, π). (5.18)
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Proof of Lemma 4.7

For h ∈ A, W (t, π, h) defined by (4.8) satisfies

W (t, π, h.) = E[
n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π]

+ E[

∞∑
k=n

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π]

= E[
n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T} +

∫ T

τn

f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}

−
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π]

+ E[W (τn, πτn , h.)1{τn<T}|τ0 = t, πτ0 = π].

≤ Wn(t, π) + |E[
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π]|

+ E[W (τn, πτn , h.)1{τn<T}|τ0 = t, πτ0 = π]

≤ W̄n(t, π) + 2∥f∥TP (τn < T |τ0 = t).

(5.19)

because of the representation of Wn(t, π) in Corollary 4.2 (equation (4.13)) and Lemma 4.5.
Thus, by letting n→ ∞, we obtain

W (t, π, h.) ≤ W̄ (t, π) (5.20)

for all h ∈ A .
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