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Abstract

We consider the problem of maximization of expected terminal power utility (risk sensitive
criterion). The underlying market model is a regime-switching diffusion model where the
regime is determined by an unobservable factor process forming a finite state Markov process.
The main novelty is due to the fact that prices are observed and the portfolio is rebalanced
only at random times corresponding to a Cox process where the intensity is driven by the
unobserved Markovian factor process as well. This leads to a more realistic modeling for
many practical situations, like in markets with liquidity restrictions; on the other hand it
considerably complicates the problem to the point that traditional methodologies cannot be
directly applied. The approach presented here is specific to the power-utility. For log-utilities
a different approach is presented in the companion paper [8].

Mathematics Subject Classification : Primary 93E20; Secondary 91B28, 93E11, 60J75.

Keywords : Portfolio optimization, Stochastic control, Incomplete information, Regime-switching
models, Cox-process observations, Random trading times.

∗The opinions expressed are those of the author and not those of The Bank of Tokyo-Mitsubishi UFJ.

1



1 Introduction

In this paper we consider a classical portfolio optimization problem, namely the maximization
of expected utility from terminal wealth. As criterion we take a variant of expected power utility
maximization (the log utility function is studied in the companion paper [8]). More precisely we
consider a risk-sensitive type criterion of the form

sup
1
µ
E

{
V µ
T

}
where we restrict ourselves to the case of µ < 0 (concave utility). While the problem as such is
a classical one, the novelty in this paper is given by a more realistic underlying market model,
which implies that standard approaches such as Dynamic Programming and convex duality
cannot be applied directly and a novel approach is required. Our market model is first of all of
the regime-switching type where the factor process that specifies the regime may not be fully
observable. This is still a relatively classical situation, for which one may use techniques from
stochastic control under incomplete information. In fact, various papers have appeared in such
a context and here we just mention some of the most recent ones that also summarize previous
work in the area, more precisely [2], [16], [20]. The main novelty of our model is however given
by the fact that the prices Sit , or equivalently their logarithmic values Xi

t := logSit , of the risky
assets in which one invests are supposed to be observable only at discrete random points in
time τ0, τ1, τ2, · · · , where the associated counting process is a Cox process (see e.g. [3], [11])
with intensity that depends on the same factor process that specifies the regime for the price
evolution model. Such models are in fact relevant in financial applications since (see e.g. [7], [4],
[17], [18]), especially on small time scales, prices do not vary continuously, but rather change
and are observed only at discrete random points in time that correspond to the time instants
when significant new information is absorbed by the market and/or market makers update their
quotes. This setting leads to a stochastic control problem with incomplete information and
observations given by a Cox process.

A classical approach to incomplete observation control problems is to first transform the
problem into a so-called separated problem, where the unobservable part of the state is replaced
by its conditional distribution. This requires to solve first the associated filtering problem, which
already is non-standard and has been solved recently in [4] (see also [5]). Our major contribution
here is on the control part of the separated problem that is approached in a non classical way.
In particular we shall restrict the investment strategies to be rebalanced only at the random
times τk where prices change. Although slightly less general from a theoretical point of view,
restricting trading to discrete, in particular random times, is quite realistic in finance, where in
practice one cannot rebalance a portfolio continuously: think of the case with transaction costs
or with liquidity restrictions (in this latter context see e.g. [9], [10], [14], [17], [18], [19] where
the authors consider illiquid markets, partly also with regime switching models as in this paper,
but under complete information).

In the companion paper [8] we study the case of a log utility, for the solution of which one
cannot simply carry over the approach that we develop here for the power-utility case, even if
there are close analogies between the two approaches. In other words, for our nonclassical setup
the approach that one has to use may depend on the specific case.

In section 2 we give a more precise definition of the model and of the investment strategy and,
after recalling some of the main filtering results from [4], we also specify the objective function
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and the purpose of the study. Section 3 is intended to prepare for the main result of the paper
stated in section 4. More precisely, subsection 3.1 consists mainly in estimation results and in
establishing continuity properties, while subsections 3.2 and 3.3 contain results that will be used
to obtain an approximation, of the type of “value iteration”, of the optimal value function and a
Dynamic Programming principle that is specific to the given problem setting. These results serve
also the purpose of obtaining a methodology to determine an optimal strategy. An Appendix
contains auxiliary technical results.

2 Market model, basic tools and objective

2.1 Introductory remarks

As mentioned in the general Introduction, we consider here the problem of maximization of
expected power-utility from terminal wealth, when the dynamics of the prices of the risky assets
in which one invests are of the usual diffusion type but with the coefficients in the dynamics
depending on an unobservable finite-state Markovian factor process (regime-switching model).
In addition it is assumed that the risky asset prices Sit , or equivalently their logarithmic values
Xi
t := logSit , are observed only at random times τ0, τ1, · · · for which the associated counting

process forms a Cox process with an intensity n(θt) that also depends on the unobservable factor
process θt.

2.2 The market model

Let θt be the hidden finite state Markovian factor process. With Q denoting its transition
intensity matrix (Q−matrix) its dynamics are given by

dθt = Q∗θtdt+ dMt, θ0 = ξ, (2.1)

where Mt is a jump-martingale on a given filtered probability space
(Ω,F ,Ft, P ). If N is the number of possible values of θt, we may without loss of generality
take as its state space the set E = {e1, . . . , eN}, where ei is a unit vector for each i = 1, . . . , N
(see [6]).

The evolution of θt may also be characterized by the process πt given by the state probability
vector that takes values in the set

SN := {π ∈ RN |
N∑
i=1

πi = 1, 0 ≤ πi ≤ 1, i = 1, 2, . . . , N} (2.2)

namely the set of all probability measures on E and we have πi0 = P (ξ = ei). Denoting by M(E)
the set of all finite nonnegative measures on E, it follows that SN ⊂M(E). In our study it will
be convenient to consider on M(E) the Hilbert metric dH(π, π̄) defined (see [1] [12] [13]) by

dH(π, π̄) := log( sup
π̄(A)>0,A⊂E

π(A)
π̄(A)

sup
π(A)>0,A⊂E

π̄(A)
π(A)

). (2.3)
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Notice that, while dH is only a pseudo-metric on M(E), it is a metric on SN ([1]). Furthermore,
see Lemma 3.4 in [12] , for ∀π, π̄ ∈ SN we also have

‖π − π̄‖TV ≤
2

log 3
dH(π, π̄), (2.4)

where ‖ · ‖TV is the total variation on SN .

In our market we consider m risky assets, for which the price processes Si = (Sit)t≥0, i =
1, . . . ,m are supposed to satisfy

dSit = Sit{ri(θt)dt+
∑
j

σij(θt)dB
j
t }, (2.5)

for given coefficients ri(θ) and σij(θ) and with Bj
t (j = 1, · · · ,m) independent (Ft, P )−Wiener

processes. Letting Xt := logSt, by Itô’s formula we have

Xt = X0 +
∫ t

0
r(θs)− d(σσ∗(θs))ds+

∫ t

0
σ(θs)dBs, (2.6)

where by d(σσ∗(θ)) we denote the diagonal matrix d(σσ∗(θ)) :=
(1
2(σσ∗)11(θ), . . . , 1

2(σσ∗)mm(θ)). As usual there is also a locally non-risky asset (bond) with
price S0

t satisfying
dS0

t = r0S
0
t dt (2.7)

where r0 stands for the short rate of interest.

As already mentioned, the asset prices and thus also their logarithms are observed only
at random times τ0, τ1, τ2, . . . and we shall put Xk = (X1

k , . . . , X
m
k ) with Xi

k := Xi
τk
, (i =

1, · · · ,m; k ∈ N). The observations are thus given by the sequence (τk, Xk)k∈N that forms a
multivariate marked point process with counting measure

µ(dt, dx) =
∑
k

1{τk<∞}δ{τk,Xk}(t, x)dtdx. (2.8)

The corresponding counting process Λt :=
∫ t
0

∫
Rm µ(dt, dx) is supposed to be a Cox process with

intensity n(θt), i.e. Λt −
∫ t
0 n(θs)ds is an (Ft, P )− martingale. We consider two sub-filtrations

related to (τk, Xk)k∈N namely

Gt := F0 ∨ σ{µ((0, s]×B) : s ≤ t, B ∈ B(Rm)},

Gk := F0 ∨ σ{τ0, X0, τ1, X1, τ2, X2, . . . , τk, Xk}.
(2.9)

In our development below we shall often make use of the following notations. Let

m0(θ) := r0, σ0(θ) := 0

mi(θ) := ri(θ)− 1
2(σσ∗)ii(θ) for i = 1, . . . ,m

σi(θ) :=
√

(σσ∗)ii(θ) for i = 1, . . . ,m

(2.10)
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and put m(θ) := {m1(θ), · · · ,mm(θ)}. For the conditional (on Fθ) mean and variance of Xs −
Xt = {Xi

s −Xi
t}i=1,...,m with t < s ≤ T we then have

mθ
t,s =

∫ s

t
m(θu)du , σθt,s =

∫ s

t
σσ∗(θu)du (2.11)

and, for z ∈ Rm and t < s ≤ T , we set

ρθt,s(z) ∼ N(z;mθ
t,s, σ

θ
t,s) (2.12)

namely the joint conditional (on Fθ) m-dimensional normal density function of Xs − Xt with
mean vector mθ

t,s and covariance matrix σθt,s. Notice that, although here and in the companion
paper [8] we use the same symbol ρθ· (z), the corresponding quantities are different in the two
papers due to a different mean value which is a consequence of the fact that here we base
ourselves on the process Xt = logSt while in [8] it is X̃t = log S̃t.

2.3 Investment strategies and portfolios

As mentioned in the Introduction, since observations take place at random time points τk, we
shall consider investment strategies that are rebalanced only at those same time points τk.

LetN i
t be the number of assets of type i held in the portfolio at time t, N i

t =
∑

k 1[τk,τk+1)(t)N i
τk

.
The wealth process is defined by

Vt :=
m∑
i=0

N i
tS

i
t .

Consider then the investment ratios

hit :=
N i
tS

i
t

Vt
, i = 1, · · · ,m

and set hik := hiτk . The set of admissible investment ratios is given by

H̄m := {(h1, . . . , hm);h1 + h2 + . . .+ hm ≤ 1, 0 ≤ hi, i = 1, 2, . . . ,m}, (2.13)

i.e. shortselling is not allowed and notice that H̄m is bounded and closed. Put h = (h1, · · · , hm).
Analogously to [15] define next a function γ : Rm × H̄m → H̄m by

γi(z, h) :=
hi exp(zi)

1 +
m∑
i=1

hi(exp(zi)− 1)
i = 1, , . . . ,m. (2.14)

Putting X̃i
t := log S̃it with S̃it := Si

t

S0
t

(discounted asset prices) and noticing that Nt is constant
on [τk, τk+1), for i = 1, . . . ,m, and t ∈ [τk, τk+1), let

hit = N i
tS

i
tPm

i=0N
i
tS

i
t

= N i
kS

i
tPm

i=0N
i
kS

i
t

= N i
kS

i
kS

i
t/S

i
kPm

i=0N
i
kS

i
kS

i
t/S

i
k

= hi
kS

i
t/S

i
kPm

i=0 h
i
kS

i
t/S

i
k

= hi
kS

0
k/S

0
t S

i
t/S

i
kPm

i=0 h
i
kS

0
k/S

0
t S

i
t/S

i
k

= hi
k exp(X̃i

t−X̃i
k)

h0
k+

mP
i=1

hi
k exp(X̃i

t−X̃i
k)

= hi
k exp(X̃i

t−X̃i
k)

1+
mP

i=1
hi

k(exp(X̃i
t−X̃i

k)−1)

= γi(X̃t − X̃k, hk).

(2.15)
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The set of admissible strategies A is defined by

A := {{hk}∞k=0|hk ∈ H̄m, Gk m’ble for all k ≥ 0}. (2.16)

Furthermore, for n > 0, we let

An := {h ∈ A|hn+i = hτn+i− for all i ≥ 1}. (2.17)

Notice that, by the definition of An, for all k ≥ 1, h ∈ An we have

hin+k = hiτn+k−

⇔
N i
n+kS

i
n+k∑m

i=0N
i
n+kS

i
n+k

=
N i
n+k−1S

i
n+k∑m

i=0N
i
n+kS

i
n+k

⇔ Nn+k = Nn+k−1.

Therefore, for k ≥ 1
Nn+k = Nn,

and
A0 ⊂ A1 ⊂ · · ·An ⊂ An+1 · · · ⊂ A. (2.18)

Remark 2.1. Notice that, for a given finite sequence of investment ratios h0, h1, · · · , hn such
that hk is an Gk−measurable, H̄m−valued random variable for k ≤ n, there exists h(n) ∈ An

such that h(n)
k = hk, k = 0, · · · , n. Indeed, if Nt is constant on [τn, T ), then for ht we have

ht = γ(X̃t − X̃n, hn), ∀t ≥ τn. Therefore, by setting h
(n)
` = h`, ` = 0, · · · , n, and h

(n)
n+k =

hτn+k, k = 1, 2, · · · , since the vector process St and the vector function γ(·, hn) are continuous,
we see that h(n)

n+k = hτn+k− , k = 1, 2, · · · .

Finally, considering only self-financing portfolios, for their value process we have the dynam-
ics

dVt
Vt

= [r0 + h∗t {r(θt)− r01}]dt+ h∗tσ(θt)dBt. (2.19)

2.4 Filtering

As mentioned in the Introduction, the usual approach to stochastic control problems under
incomplete information is to first transform them into a so-called separated problem, where the
unobservable part of the state is replaced by its conditional (filter) distribution. This implies
that we first have to study this conditional distribution and its (Markovian) dynamics, i.e. we
have to study the associated filtering problem.

The filtering problem for our specific case, where the observations are given by a Cox process
with intensity expressed as a function of the unobserved state, has been studied in [4] (see also
[5]). Here we briefly summarize the main results from [4] in view of their use in our control
problem.

Recalling the definition of ρθ(z) in (2.12) and putting

φθ(τk, t) = n(θt) exp(−
∫ t

τk

n(θs)ds), (2.20)
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for a given function f(θ) we let

ψk(f ; t, x) := E[f(θt)ρθτk,t(x−Xk)φθ(τk, t)|σ{θτk} ∨ Gk] (2.21)

ψ̄k(f ; t) :=
∫
ψk(f ; t, x)dx = E[f(θt)φθ(τk, t)|σ{θτk} ∨ Gk] (2.22)

πt(f) = E[f(θt)|Gt] (2.23)

with ensuing obvious meanings of πτk(ψk(f ; t, y)) and πτk(ψ̄k(f ; t)) where we consider ψk(f ; t, y)
and ψ̄k(f ; t) as functions of θτk . The process πt(f) is called the filter process for f(θt).

We have (see Lemma 4.1 in [4])

Lemma 2.1. The compensator of the random measure µ(dt, dy) in (2.8) on the σ -algebra
P̃(G) = P(G) ⊗ B(Rm) with P(G) the predictable σ -algebra on Ω × [0,∞), is given by the
following nonnegative random measure

ν(dt, dy) =
∑
k

1(τk,τk+1](t)
πτk(ψk(1, t, y))∫∞
t πτk(ψ̄k(1, s))ds

dtdy. (2.24)

The main filtering result is the following (see Theorem 4.1 in [4]).

Theorem 2.1. For any bounded function f(θ), the differential of the optimal filter πt(f) is
given by

dπt(f) = πt(Lf)dt

+
∫ ∑

k 1(τk,τk+1](t)[
πτk

(ψk(f ;t,y))

πτk
(ψk(1;t,y)) − πt−(f)](µ− ν)(dt, dy),

(2.25)

where L is the generator of the Markov process θt(namely L = Q).

Corollary 2.1. We have

πτk+1
(f) =

πτk(ψk(f ; t, x))
πτk(ψk(1; t, x))

|t=τk+1,x=Xk+1
. (2.26)

Recall that in our setting θt is an N -state Markov chain with state space E = {e1, . . . , eN},
where ei is a unit vector for each i = 1, . . . , N . One may then write f(θt) = f(ei)1ei(θt).
For i = 1, . . . , N let πit = πt(1ei(θt)) and

rji(t, z) := E[exp(
∫ t

0
−n(θs)ds)ρθ0,t(z)|θ0 = ej , θt = ei], (2.27)

pji(t) := P (θt = ei|θ0 = ej) (2.28)

and, noticing that πt ∈ SN , define the function M : [0,∞)× Rm × SN → SN by

M i(t, x, π) :=
P

j n(ei)rji(t,x)pji(t)π
jP

ij n(ei)rji(t,x)pji(t)πj , (2.29)

M(t, x, π) := (M1(t, x, π),M2(t, x, π), . . . ,MN (t, x, π)). (2.30)
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For A ⊂ E

M(t, x, π)(A) :=
N∑
i=1

M i(t, x, π)1{ei∈A}. (2.31)

The following corollary, for the proof of which we refer to the companion paper [8] (see also
[4]), describes the dynamics of the filter process.

Corollary 2.2. For the generic i-th state one has

πik+1 = M i(τk+1 − τk, Xk+1 −Xk, πk) (2.32)

and the process {τk, πk, Xk}∞k=1 is a Markov process with respect to Gk.

Finally from results in [1], [12] and [13] it follows (see again the companion paper [8]) that

dH(M(t, x, π),M(t, x, π̄)) ≤ dH(π, π̄). (2.33)

2.5 Objective and purpose of the study

Given a finite planning horizon T > 0, our problem of maximization of expected terminal power
utility consists in determining

sup
h∈A

1
µ

logE[V µ
T |τ0 = 0, π0 = π]

= log v0 + suph∈A
1
µ logE[V

µ
T

V µ
0
|τ0 = 0, π0 = π],

(2.34)

for µ < 0 as well as an optimal maximizing strategy ĥ ∈ A.
Notice that, in order to study the optimization problem (2.34), it suffices to analyze the

criterion function

W (t, π, h.) :=
1
µ

logE[
V µ
T

V µ
t

|τ0 = t, π0 = π]. (2.35)

The optimal value function will then be defined as

W (t, π) := sup
h∈A

W (t, π, h.). (2.36)

The main result of this paper, stated and proved in Theorem 4.1 in section 4, consists
basically of two parts:

• An approximation theorem stating that a sequence W̄n(t, π) of value functions, obtained
by a value-iteration type algorithm (see (3.27) below), approximates arbitrarily closely the
optimal value function W (t, x). This then leads also to the optimal strategy.

• A Dynamic Programming type relation for the optimal value function.
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To prepare for the proof of the main result, in the next section 3 we shall introduce some
relevant notions and quantities and prove various preliminary results. More specifically, in sub-
section 3.1 we shall, in addition to giving some basic definitions, prove various estimates together
with continuity properties. In subsection 3.2 we then derive some approximation results that are
preliminary to the main approximation result in Theorem 4.1 and in subsection 3.3 we add some
limiting results that will allow us to complete the main approximation result and to prepare also
for the second result, namely the Dynamic Programming relation.

3 Preliminary analysis

As already mentioned, in this section we shall introduce relevant notions and quantities and
prove various preliminary results, divided into three subsections.

In the sequel we shall for simplicity use mostly the shorthand notation

Et,π[·] ≡ E[· |τ0 = t, π0 = π]

and also use the following notations

m̄ := max0≤i≤m max1≤j≤N mi(ej),

m := min0≤i≤m min1≤j≤N mi(ej) ∧ 0 implying that m ≤ 0,

σ̄ := max0≤i≤m max1≤j≤N σi(ej),

l(t) := E[|1− exp(µ|Xt −X0|)|],

c := E[1{τ1≤T}],

n := minn(θ) = mini n(ei),

n̄ := maxn(θ) = maxi n(ei).

(3.1)

3.1 Basic estimates

We start from the following representation of the criterion function.

Lemma 3.1. For t ∈ [0, T ], π ∈ SN

W (t, π, h.)

= 1
µ logEt,π[exp(µ

∞∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T})],

(3.2)

where,

D(h, x) := log(
m∑
i=0

hi exp(xi)). (3.3)
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Proof. Since
m∑
i=0

hi = 1,

D(h, 0) = log(
m∑
i=0

hi) = 0 (3.4)

for h ∈ H̄m. For k ≥ 0, T ∈ [τk, τk+1]

V µ
T

V µ
k

= (
m∑
i=0

N i
TS

i
T

Vk
)µ = (

m∑
i=0

N i
kS

i
k

Vk

SiT
Sik

)µ = (
m∑
i=0

hik
SiT
Sik

)µ

= (
m∑
i=0

hik exp(Xi
T −Xi

k))
µ

= exp(µD(hk, XT −Xk)).

(3.5)

For k ≥ 1, T < τk
V µ
T∧τk+1

V µ
T∧τk

=
V µ
T

V µ
T

= 1, (3.6)

and
exp(µD(hk, XT∧τk+1

−XT∧τk)) = exp(µD(hk, XT −XT )) = 1. (3.7)

Therefore, we obtain

Et,π[(VT /Vt)µ] = Et,π[
∞∏
k=1

V µ
T∧τk

V µ
T∧τk−1

]

= Et,π[exp(µ
∞∑
k=1

D(hk−1, XT∧τk −XT∧τk−1
))]

= Et,π[exp(µ
∞∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T})].

(3.8)

The representation of W (t, π, h.) in Lemma 3.1 leads us to define a function that will play a
crucial role in the sequel, namely

Definition 3.1. Let the function W̄ 0(t, π, h) be defined as

W̄ 0(t, π, h) :=
1
µ

logEt,π[exp(µD(h,XT −Xt))]. (3.9)

For the function W̄ 0(t, π, h) in the above Definition 3.1 we now obtain estimation and con-
tinuity results as stated in the following proposition.

Proposition 3.1. For t ∈ [0, T ], h ∈ H̄m, we have the estimate:

exp((µm̄+
µσ̄2

2
)(T − t)) ≤ Et,π[exp(µD(h,XT −Xt))] ≤ exp((µm+

(µσ̄)2

2
)(T − t)), (3.10)
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from which it immediately follows that

(m+
µσ̄2

2
)(T − t) ≤ W̄ 0(t, π, h) ≤ (m̄+

σ̄2

2
)(T − t). (3.11)

Furthermore, W̄ 0(t, π, h) is a continuous function on [0, T ]×SN×H̄m and the following estimates
hold:

| exp(µW̄ 0(t, π, h))− exp(µW̄ 0(t, π̄, h))| ≤ exp((µm+
(µσ̄)2

2
)(T − t))

2
log 3

dH(π, π̄), (3.12)

| exp(µW̄ 0(t, π, h))− exp(µW̄ 0(t̄, π, h))| ≤ exp((µm+
(µσ̄)2

2
)(T − t))l(t− t̄) for t̄ < t, (3.13)

where dH was defined in (2.3).

Proof. See the Appendix.

We shall now introduce basic quantities that we shall use systematically throughout. The
first one concerns useful function spaces, namely

Definition 3.2. By G we denote the function space

G := {g ∈ C([0, T ]× SN ) | (m+
µσ̄2

2
)(T − t) ≤ g(t, π) ≤ (m̄+

σ̄2

2
)(T − t))}. (3.14)

Furthermore, we let G1 ⊂ G be the subspace

G1 :=
{
g ∈ G | | exp(µg(t, π))− exp(µg(t, π̄))| ≤ 2

log 3
dH(π, π̄) exp((µm+

(µσ̄)2

2
)(T − t))

}
(3.15)

and G2 ⊂ G be the subspace of functions g ∈ G satisfying, for t̄ < t,

| exp(µg(t, π))− exp(µg(t̄, π))| ≤ k(t− t̄) exp((µm+
(µσ̄)2

2
)(T − t)), (3.16)

where k(t) is some nonnegative function on R such that k(0) = 0 and continuous at 0.

The second one concerns a crucial auxiliary quantity that will play a major role in the proofs
to follow, namely

Definition 3.3. For each g ∈ G let ξ̂ : [0, T ]× SN × H̄m → R be the function defined by

ξ̂(t, π, h; g) :=
1
µ

logEt,π[exp(µD(h,XT∧τ1 −Xt) + µ1{τ1<T}g(τ1, π1))]. (3.17)

We can now state and prove the following estimation result

Proposition 3.2. For each g ∈ G, we have the three estimates (c is as in (3.1))
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(i)

c exp((µm̄+ µ(σ̄)2

2 )(T − t)) ≤ Et,π[exp
(
µD(h,Xτ1 −Xt) + µg(τ1, π1)

)
1{τ1≤T}]

≤ c exp((µm+ (µσ̄)2

2 )(T − t)),
(3.18)

(ii)

(1− c) exp((µm̄+ µ(σ̄)2

2 )(T − t)) ≤ Et,π[exp
(
µD(h,XT −Xt)

)
1{τ1>T}]

≤ (1− c) exp((µm+ (µσ̄)2

2 )(T − t))
(3.19)

and

(iii)

(m+
µσ̄2

2
)(T − t) ≤ ξ̂(t, π, h; g) ≤ (m̄+

σ̄2

2
)(T − t). (3.20)

Furthermore, for all g ∈ G, the function exp(µξ̂(t, π, h; g)) is continuous with respect to h and
for each g ∈ G1 we have

| exp(µξ̂(t, π, h; g)− exp(µξ̂(t, π̄, h; g))|

≤ 2
log 3dH(π, π̄) exp((µm+ (µσ̄)2

2 )(T − t))(1 + c),
(3.21)

while for each g ∈ G2 we have

| exp(µξ̂(t, π, h; g)− exp(µξ̂(t̄, π, h; g))|

≤ exp((µm+ (µσ̄)2

2 )(T − t))(2 n̄n(en(t−t̄) − 1) + l(t− t̄) + ck(t− t̄)).
(3.22)

Proof. See the Appendix

3.2 Basic approximation results

This section is intended to prepare for one of the two main results in Theorem 4.1 below, namely
the approximation of the optimal value function, which involves a kind of “value iteration”. We
start by giving two definitions.

Definition 3.4. Defining the operator Jµ on C([0, T ]× SN ) by

Jµg(t, π) := sup
h∈H̄m

ξ̂(t, π, h; g) (3.23)

let, for g ∈ G,
J0
µg(t, π) := g(t, π) (3.24)

and, for n ≥ 1,
Jnµ g(t, π) := Jµ(Jn−1

µ g(t, π)). (3.25)

12



Definition 3.5. Put

W̄ 0(t, π) := sup
h∈H̄m

W̄ 0(t, π, h) = sup
h∈H̄m

1
µ

logE[eµD(h,XT−Xt)], (3.26)

and let (“value iteration”)
W̄n(t, π) := Jnµ W̄

0(t, π). (3.27)

Then, we have the following proposition as a direct consequence of Proposition 3.1.

Proposition 3.3. For W̄ 0(t, π) defined above we have that W̄ 0(t, π) ∈ G1 ∩G2 by setting k(t) =
l(t).

Proof. By (3.11) in Proposition 3.1 we see that W̄ 0(t, π) ∈ G and, by (3.12) and (3.13) in
Proposition 3.1 we also see that it belongs to G1 ∩ G2 with k(t) = l(t).

We have now

Lemma 3.2. For g ∈ G1∩G2 one has that Jµg(t, π) is continuous with respect to t, π and Jµg ∈ G.

Proof. For a, b ≥ γ > 0, |a− b| < ε, ε > 0, one has

log a− log b = log(a/b) = log(1 + (a− b)/b) ≤ ε/γ
log b− log a = log(b/a) = log(1 + (b− a)/a) ≤ ε/γ
⇒ | log a− log b| ≤ ε/γ,

(3.28)

where we have used the inequality log(1 + x) ≤ x for x ≥ 0. We set a = exp(µξ̂(t, π, h; g)),
b = exp(µξ̂(t, π̄, h; g)) and use Proposition 3.2(iii), setting γ = exp({µm̄ + µσ̄2

2 }(T − t)). From
(3.21) in Proposition 3.2 it then follows that

|ξ̂(t, π, h; g)− ξ̂(t, π̄, h; g)|

≤ 1
|µ|

2
log 3dH(π, π̄) exp((µ(m− m̄) + µ(µ−1)(σ̄)2

2 )(T − t))(1 + c)

≤ 1
|µ|

2
log 3dH(π, π̄) exp((µ(m− m̄) + µ(µ−1)(σ̄)2

2 )T )(1 + c).

(3.29)

On the other hand, by analogous reasoning, from (3.22) in Proposition 3.2 it follows that

|ξ̂(t, π, h; g)− ξ̂(t̄, π, h; g)| ≤ 1
|µ| exp((µ(m− m̄) + µ(µ−1)(σ̄)2

2 )(T − t))

×(2
(
n̄
n

)
(en(t−t̄) − 1) + l(t− t̄) + ck(t− t̄))

≤ 1
|µ| exp((µ(m− m̄) + µ(µ−1)(σ̄)2

2 )T )

×(2
(
n̄
n

)
(en(t−t̄) − 1) + l(t− t̄) + ck(t− t̄)),

(3.30)

namely ξ̂(t, π, h; g) is continuous with respect to (t, π), uniformly with respect to h, and hence
Jµg(t, π) is continuous. Further, because of Proposition 3.2 (iii) we see that Jµg ∈ G.
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Corollary 3.1. Under the assumptions of Lemma 3.2, Jnµ g ∈ G for n ≥ 0. Furthermore, there
exists a Borel function ĥ(n)(t, π) such that

sup
h∈H̄m

ξ̂(t, π, h;Jnµ g) = ξ̂(t, π, ĥ(n)(t, π);Jnµ g), n ≥ 0. (3.31)

Proof. Similar arguments to the proof of Lemma 3.2 apply to see that Jnµ g ∈ G. Moreover, since
H̄m is compact and ξ̂(t, π, h; g) is a bounded continuous function on [0, T ] × SN × H̄m, there
exists a Borel function ĥ(0)(t, π) such that suph∈H̄m

ξ̂(t, π, h; g) = ξ̂(t, π, ĥ(0)(t, π); g). By the
same reasoning we have (3.31) for general n ≥ 1.

In what follows we denote by ‖g‖ the norm of a function g ∈ C([0, T ]× SN ), namely

‖g‖ := sup
(t,π)∈[0,T ]×SN

|g(t, π)|. (3.32)

Lemma 3.3. For each g ∈ G and n ≥ 1, we have the following estimate

‖Jn+1
µ g(t, π)− Jnµ g(t, π)‖

≤ cn

|µ| exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T )|1− exp(µ‖Jµg(t, π)− g(t, π)‖)|
(3.33)

where, recall (3.1), c ∈ (0, 1).

Proof. Let us first prove that, for n ≥ 1,

| exp{µJn+1
µ g(t, π)} − exp{µJnµ g(t, π)}| ≤ cne(µm+

(µσ̄)2

2
)(T−t)|1− eµ‖Jµg−g‖|. (3.34)

To prove it for n = 1, using Proposition 3.2 (i), we see that

| exp(µξ̂(t, π, h;Jµg))− exp(µξ̂(t, π, h; g))|

≤ Et,π[eµD(h,Xτ1−Xt)|eµJµg(τ1,π1) − eµg(τ1,π1)|1{τ1≤T}]

= Et,π[eµD(h,Xτ1−Xt)+µJµg(τ1,π1)|1− eµ(g(τ1,π1)−Jµg(τ1,π1))|1{τ1≤T}]

≤ |1− eµ‖Jµg−g‖|Et,π[eµD(h,Xτ1−Xt)+µJµg(τ1,π1)1{τ1≤T}]

≤ ceµm(T−t)+ (µσ̄)2

2
(T−t)|1− eµ‖Jµg−g‖|.

(3.35)

Then, we have

|eµJ2
µg(t,π) − eµJµg(t,π)| = |eµ suph ξ̂(t,π,h;Jµg) − eµ suph ξ̂(t,π,h;g)|

= | infh eµξ̂(t,π,h;Jµg) − infh eµξ̂(t,π,h;g)|

≤ suph |eµξ̂(t,π,h;Jµg) − eµξ̂(t,π,h;g)|

≤ ceµm(T−t)+ (µσ̄2)
2

(T−t)|1− eµ‖Jµg−g‖|.
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Assuming that (3.34) holds for n− 1, we will prove it for n. Using again Proposition 3.2 (i)

|eµJ
n+1
µ g(t,π) − eµJ

n
µ g(t,π)| = |eµ suph ξ̂(t,π,h;J

n
µ g) − eµ suph ξ̂(t,π,h;J

n−1
µ g)|

= | infh eµξ̂(t,π,h;J
n
µ g) − infh eµξ̂(t,π,h;J

n−1
µ g)|

≤ suph |eµξ̂(t,π,h;J
n
µ g) − eµξ̂(t,π,h;J

n−1
µ g)|

≤ suphEt,π[eµD(h,Xτ1−Xt)|eµJn
µ g(τ1,π1) − eµJ

n−1
µ g(τ1,π1)|1{τ1≤T}]

≤ suphEt,π[eµD(h,Xτ1−Xt)cn−1e(µm+
(µσ̄)2

2
)(T−τ1)1{τ1≤T}|1− eµ‖Jµg−g‖|]

≤ cne(µm+
(µσ̄)2

2
)(T−t)|1− eµ‖Jµg−g‖|.

(3.36)

Thus, (3.34) has been proved. Now we can complete the proof. Indeed, by using (3.28), we have

|Jn+1
µ g(t, π)− Jnµ g(t, π)| = 1

|µ| |µJ
n+1
µ g(t, π)− µJnµ g(t, π)|

≤ 1
|µ|e

−µm̄(T−t)−µσ̄2

2
(T−t)|eµJ

n+1
µ g(t,π) − eµJ

n
µ g(t,π)|

≤ cn

|µ|e
µ(m−m̄)(T−t)+ (µ2−µ)σ̄2

2
(T−t)|1− eµ‖Jµg−g‖|

≤ cn

|µ|e
µ(m−m̄)T+

(µ2−µ)σ̄2

2
T |1− eµ‖Jµg−g‖|

(3.37)

and hence obtain the present lemma by taking supremum with respect to (t, π).

Corollary 3.2. For g ∈ G1 ∩ G2 we have that {Jnµ g(t, π)} is a Cauchy sequence in G and,
therefore, ∃ lim

n→∞
Jnµ g(t, π) ∈ G.

Furthermore, for each g1, g2 ∈ G, we have the estimates:

‖Jµg1 − Jµg2‖

≤ c
|µ| exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T )|1− exp(µ‖g1 − g2‖)|

≤ c exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T )‖g1 − g2‖.

(3.38)

Proof. By Corollary 3.1, {Jnµ g(t, π)} ⊂ G. Further, by using Lemma 3.3, we can see that
{Jnµ g(t, π)} is a Cauchy sequence in G. The proof of (3.38) is similar to that of Lemma 3.3.

Proposition 3.4. We have that {W̄n(t, π)} given by (3.27) is a Cauchy sequence in G and
therefore ∃ lim

n→∞
W̄n(t, π) ∈ G.

Proof. Thanks to Proposition 3.3, W̄ 0(t, π) belongs to G1 ∩ G2 with k(t) = l(t) and we see that
{W̄n(t, π)} is a Cauchy sequence in G by Corollary 3.2.

3.3 Limiting results

In this subsection we perform some passages to the limit, which will complete our preliminary
analysis in view of the main result in the next section.

We start by defining some relevant quantities.
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Definition 3.6. We set
W̄ (t, π) := lim

n→∞
W̄n(t, π), (3.39)

which is justified by the previous Proposition 3.4,

W (t, π) := sup
h∈A

W (t, π, h.), (3.40)

(this definition was already given in (2.36), but we iterate it here for convenience in the present
context), and

Wn(t, π) := sup
h∈An

W (t, π, h.), (3.41)

where W (t, π, h.) is the criterion function defined in (2.35).

The next lemma particularizes the representation result of Lemma 3.1.

Lemma 3.4. For all n ≥ 0 and h ∈ An, we have the following equation

W (t, π, h.) = 1
µ logEt,π[exp

(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+ µD(hn, XT −Xτn)1{τn<T}
)
]

= 1
µ logEt,π[exp

(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+ µW̄ 0(τn, πn, hn)1{τn≤T}
)
].

(3.42)

Proof. By Lemma 3.1 and the definition of W̄ 0(t, π, h) it suffices to prove the following equation
for all n > 0, k ≥ n+ 1, h ∈ An. For τk < T ≤ τk+1

exp(µ
k−1∑
i=n

D(hi, Xτi+1 −Xτi) + µD(hk, XT −Xτk))

= exp(µD(hn, XT −Xτn)).

(3.43)

It can be seen as follows.

exp(µ
k−1∑
i=n

D(hi, Xτi+1 −Xτi) + µD(hk, XT −Xτk))

=
k−1∏
i=n

(
m∑
j=0

hji
Sji+1

Sji
)µ(

m∑
j=0

hjk
SjT
Sjk

)µ =
k−1∏
i=n

(
m∑
j=0

N j
i S

j
i+1

Vi
)µ(

m∑
j=0

N j
kS

j
T

Vk
)µ

=
k−1∏
i=n

(
m∑
j=0

N j
i+1S

j
i+1

Vi
)µ(

m∑
j=0

N j
kS

j
T

Vk
)µ =

k−1∏
i=n

(
Vi+1

Vi
)µ(

m∑
j=0

N j
TS

j
T

Vk
)µ

= (NTST
Vn

)µ = (VT
Vn

)µ = exp(µD(hn, XT −Xτn)),

(3.44)

where we have used (3.5), the definition of An and the self financing property of the investment
strategy.
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Corollary 3.3. We have the following equation

Wn(t, π) = sup
h∈An

1
µ

logEt,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+ µW̄ 0(τn, πn, hn)1{τn≤T}
)
],

(3.45)

for n ≥ 0, t ∈ [0, T ], π ∈ SN .

Proposition 3.5. For each n ≥ 0, we have

W̄n(t, π) = Wn(t, π). (3.46)

Furthermore,
W̄ (t, π) = W (t, π). (3.47)

Proof. See the Appendix.

The next proposition is in the spirit of a Dynamic Programming principle, namely

Proposition 3.6. We have W = JµW . Namely, W (t, π) satisfies the following equation

W (t, π)

= sup
h∈H̄m

1
µ

logEt,π[exp(µD(h,XT∧τ1 −Xt) + µW (τ1, π1)1{τ1≤T})].
(3.48)

Proof. We have, by using (3.38),

‖W − JµW‖ ≤ ‖W − JµW̄
n‖+ ‖JµW̄n − JµW‖

≤ ‖W − W̄n+1‖+ C1‖W̄n −W‖,

where C1 = c exp({µ(m−m̄)+ µ(µ−1)σ̄2

2 }T ). Hence, by sending n to∞, we see that ‖W−JµW‖ =
0.

4 Main Theorem

From the preliminary analysis in Section 3 we obtain now the main result of this paper, namely
an approximation result and a Dynamic Programming-type principle for the power-utility max-
imization problem.

Theorem 4.1.

(i) Approximation theorem
W̄n computed according to (3.27) in Definition 3.5 are approximations to the solution of
the original problem in the sense that, for any ε > 0, n > nε,

‖W − W̄n‖ < ε, (4.1)

where,

nε :=
log(1− c)|µ|+ log ε− log |1− exp(µ‖J1

µW̄
0 − J0

µW̄
0‖)| − {µ(m− m̄) + µ(µ−1)σ̄2

2 }T
log c

.
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(ii) Dynamic programming principle:
for n ≥ 0

W (t, π)

= sup
h∈An

1
µ

logEt,π[exp(µ
n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+µW (τn, πn)1{τn≤T})].

(4.2)

(iii) Optimal value and optimal strategy for the Power Utility Maximization Problem
For the utility maximization under initial condition V0 = v0, τ0 = 0, π0 = π we have

sup
h∈A

1
µ

logE0,π[V µ
T ] = log v0

+ 1
µ logE0,π[exp(µ

∞∑
k=1

D(ĥk−1, XT∧τk −Xτk−1
)1{τk−1<T})],

(4.3)

where the optimal strategy in the k -th period, namely ĥk, is given by

ĥk = ĥ(τk, πk) (4.4)

with ĥ(τ, π) defined by

sup
h∈H̄m

1
µ

logEt,π[exp(µD(h,XT∧τ1 −Xt) + µW (τ1, π1)1{τ1≤T})]

= 1
µ logEt,π[exp(µD(ĥ(t, π), XT∧τ1 −Xt) + µW (τ1, π1)1{τ1≤T})].

(4.5)

Proof. First, we prove (i). For any n

‖W̄ − W̄n‖ = ‖ lim
k→∞

W̄n+k − W̄n‖ = lim
k→∞

‖W̄n+k − W̄n‖

≤ lim
k→∞

k−1∑
i=0

‖W̄n+i+1 − W̄n+i‖ = lim
k→∞

k−1∑
i=0

‖Jn+i+1
µ W̄ 0 − Jn+i

µ W̄ 0‖

≤ 1
|µ| |1− exp(µ‖J1

µW̄
0 − J0

µW̄
0‖)| exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T )
∞∑
i=0

ci+n

= 1
|µ| |1− exp(µ‖J1

µW̄
0 − J0

µW̄
0‖)| exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T )cn
∞∑
i=0

ci

= cn

(1−c)|µ| |1− exp(µ‖J1
µW̄

0 − J0
µW̄

0‖)| exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T ),

(4.6)

where we have used Lemma 3.3.

Next, we prove (ii). Proceeding analogously to the proof of Lemma 5.5 in the Appendix, for
n,m ∈ N, we take a sequence of functions h̃n,k(t, π), k = 0, 1, . . . , n such that

sup
h∈Hm

ξ̂(t, π, h;Jn+m−k−1
µ W̄ 0) = ξ̂(t, π, h̃n,k(t, π);Jn+m−k−1

µ W̄ 0)
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and set
h̃n,kk := h̃n,k(τk, πk), k = 0, 1, . . . , n

and
h̃n,kk = γ(X̃τk − X̃τn , h̃

n,n
n ), k ≥ n+ 1.

Then, h̃(n) = {h̃n,kk }k ∈ An. Therefore, similarly to the proof of Lemma 5.5, it follows that

W̄n+m = 1
µ logEt,π[exp{µ

∑n
k=1D(h̃n,k−1(τk−1, πk−1), XT∧τk −Xτk−1

)1{τk−1≤T}

+µJmµ W̄
0(τn, πn)1{τn≤T}}].

(4.7)

Since Jmµ W̄
0 ≤W , we have

W̄n+m ≤ 1
µ logEt,π[exp{µ

∑n
k=1D(h̃n,k−1(τk−1, πk−1), XT∧τk −Xτk−1

)1{τk−1≤T}

+µW (τn, πn)1{τn≤T}}]

≤ suph∈An
1
µ logEt,π[exp{µ

∑n
k=1D(hk−1, XT∧τk −Xτk−1

)1{τk−1≤T}

+µW (τn, πn)1{τn≤T}}].

(4.8)

Therefore, we obtain

W (t, π) ≤ suph∈An
1
µ logEt,π[exp{µ

∑n
k=1D(hk−1, XT∧τk −Xτk−1

)1{τk−1≤T}

+µW (τn, πn)1{τn≤T}}],
(4.9)

by letting m→∞. On the other hand, for each h ∈ An, it follows that

W̄n+m(t, π) ≥ 1
µ logEt,π[exp{µ

∑n
k=1D(hk−1, XT∧τk −Xτk−1

)1{τk−1≤T}

+µJmµ W̄
0(τn, πn)1{τn≤T}}].

(4.10)

Then, by letting m→∞, we have

W (t, π) ≥ 1
µ logEt,π[exp{µ

∑n
k=1D(hk−1, XT∧τk −Xτk−1

)1{τk−1≤T}

+µW (τn, πn)1{τn≤T}}].
(4.11)

Hence,

W (t, π) ≥ suph∈An
1
µ logEt,π[exp{µ

∑n
k=1D(hk−1, XT∧τk −Xτk−1

)1{τk−1≤T}

+µW (τn, πn)1{τn≤T}}]
(4.12)

and thus we obtain (ii).

Part (iii) is an immediate consequence of the previous results in particular of the proof of
point (ii) of this same theorem.
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5 Appendix

Proof of Proposition 3.1. The proof is contained in the following two lemmas.

Lemma 5.1. For t ∈ [0, T ], h ∈ H̄m, we have the estimate (3.10).

Proof. Since xµ is convex, Jensen’s inequality applies and we obtain

Et,π[
( m∑
i=0

hi exp(Xi
T −Xi

t)
)µ

] ≤ Et,π[
m∑
i=0

hi exp(µ(Xi
T −Xi

t))]. (5.1)

For each i and t ∈ [0, T ],

m(T − t) ≤
∫ T
t mi(θs)ds ≤ m̄(T − t),∫ T

t σ2
i (θs)ds ≤ σ̄2(T − t).

(5.2)

Thus, we have

Et,π[exp(µ(Xi
T −Xi

t))] = Et,π[exp(µ
∫ T
t mi(θs)ds+ µ2

2

∫ T
t σ2

i (θs)ds)]

≤ exp((µm+ (µσ̄)2

2 )(T − t)),
(5.3)

and

Et,π[exp(µ(X0
T −X0

t ))] = exp(µr0(T − t)) ≤ exp((µm+
(µσ̄)2

2
)(T − t)). (5.4)

Therefore, from (5.1) it follows that

Et,π[
( m∑
i=0

hi exp(Xi
T −Xi

t)
)µ

] ≤
m∑
i=0

hi exp((µm+
(µσ̄)2

2
)(T − t))

= exp((µm+ (µσ̄)2

2 )(T − t)).

(5.5)

To obtain the lower estimate, applying Jensen’s inequality yields

(Et,π[
m∑
i=0

hi exp(Xi
T −Xi

t)])
µ ≤ Et,π[

( m∑
i=0

hi exp(Xi
T −Xi

t)
)µ

]. (5.6)

Since xµ is a decreasing function, we have( m∑
i=0

hiEt,π[exp(Xi
T −Xi

t)]
)µ

=
( m∑
i=0

hiEt,π[exp(
∫ T

t
mi(θs)ds+

1
2

∫ T

t
σ2
i (θs)ds)]

)µ
≥

( m∑
i=0

hi exp((m̄+
(σ̄)2

2
)(T − t))

)µ
= exp((µm̄+ µ(σ̄)2

2 )(T − t)).

(5.7)
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Lemma 5.2. W̄ 0(t, π, h) in Definition 3.1 (see (3.9)) is a continuous function on [0, T ]×SN ×
H̄m and the estimates (3.12), (3.13) hold.

Proof. Let us first prove the continuity of W̄ 0(t, π, h) with respect to π. Owing to (2.4) and
recalling pji(t) that was defined in (2.28), we have

| exp(µW̄ 0(t, π, h))− exp(µW̄ 0(t, π̄, h))|

= |
∫

Rm(h0 exp(r0(T − t)) +
m∑
i=1

hi exp(yi))µ

×
∑
ij

E[ρθ0,T−t(y)|θ0 = ej , θT−t = ei]pji(T − t)(πj − π̄j)dyds|

= |
∑
j

exp(µW̄ 0(t, ej , h))(πj − π̄j)|

≤ exp((µm+ (µσ̄)2

2 )(T − t))
∑
j

|πj − π̄j |

≤ exp((µm+ (µσ̄)2

2 )(T − t))‖πj − π̄j‖TV

≤ exp((µm+ (µσ̄)2

2 )(T − t)) 2
log 3dH(π, π̄).

(5.8)

Next, we show the continuity of W̄ 0(t, π, h) with respect to t. First notice that, due to the time
homogeneity of the process (Xt, θt),

exp(µW̄ 0(t, π, h)) = Et,π[exp(µD(h,XT −Xt))]

= E0,π[exp(µD(h,XT−t −X0))].
(5.9)

Notice furthermore that
|D(h, x)−D(h, y)| ≤ |x− y| (5.10)

holds because
|∇xD(h, x)| ≤ 1. (5.11)

Therefore,

| exp(µW̄ 0(t, π, h))− exp(µW̄ 0(t̄, π, h))|

= |E0,π[exp(µD(h,XT−t −X0))− exp(µD(h,XT−t̄ −X0))]|

= |E0,π[exp(µD(h,XT−t −X0))
(
1− exp

(
µ(D(h,XT−t̄ −X0)−D(h,XT−t −X0))

))
]

≤ E0,π[exp(µD(h,XT−t −X0))|1− exp(µ|XT−t̄ −XT−t|)|]

= E0,π[exp(µD(h,XT−t −X0))E[|1− exp(µ|XT−t̄ −XT−t|)||XT−t]]

= E0,π[exp(µD(h,XT−t −X0))]l(t− t̄)

≤ exp((µm+ (µσ̄)2

2 )(T − t))l(t− t̄).
(5.12)
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Finally, we prove the continuity with respect to h. By the definition of D(h, x) and Jensen’s
inequality,

exp(µD(h, x)) = (
m∑
i=0

hi exp(xi))µ ≤
m∑
i=0

hi exp(µxi) ≤
m∑
i=0

exp(µxi). (5.13)

Therefore, for m ≥ 1

exp(µD(h,XT −Xt)) ≤
m∑
i=0

exp(µ(Xi
T −Xi

t)). (5.14)

SinceXT−Xt = {Xi
T−Xi

t}i=1,...,m is, conditionally on Fθ,Gaussian with mean {
∫ T
t mi(θs)ds}i=1,...,m

and covariance {
∫ T
t (σσ∗)ij(θs)ds}i,j=1,...,m we have

Et,π[exp(µ(Xi
T −Xi

t))] <∞. (5.15)

Then, applying the dominated convergence theorem, for hj ⊂ H̄m, s.t. lim
j→∞

hj = h ∈ H̄m

lim
j→∞

W̄ 0(t, π, hj) = 1
µ logEt,π[ lim

j→∞
exp(µD(hj , XT −Xt))]

= 1
µ logEt,π[exp(µD(h,XT −Xt))]

= W̄ 0(t, π, h).

(5.16)

Proof of Proposition 3.2. Again, the proof is contained in the following two lemmas.

Lemma 5.3. For each g ∈ G, we have the three estimates (3.18), (3.19) and (3.20).

Proof. Let us first set

I1 = Et,π[exp
(
µD(h,Xτ1 −Xt) + µg(τ1, π1)

)
1{τ1≤T}]

and
I2 = Et,π[exp

(
µD(h,XT −Xt)

)
1{τ1>T}].

Recall also that n(θt) is the intensity of the Cox process describing the observations and that the
dynamics of the filter process πt was given in Corollary 2.2 in terms of the function M(t, x, π).

(i) (estimate (3.18)). Since g ∈ G, from the definition of ρθt,T (z) in (2.12) and from (5.2) we
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obtain

I1 = Et,π[
∫ T
t

∫
Rm(h0 exp(r0(s− t)) +

m∑
i=1

hi exp(zi))µ exp
(
µg(s,M(s− t, z, π))

)
× ρθt,s(z)n(θs) exp(−

∫ s
t n(θu)du)dsdz]

≥ Et,π[
∫ T
t

∫
Rm

(
h0 exp(r0(s− t)) +

m∑
i=1

hi exp(zi)
)µ
ρθt,s(z)dz

× exp((µm̄+ µσ̄2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

≥ Et,π[
∫ T
t (h0 exp(r0(s− t)) +

m∑
i=1

hi
∫

Rm

exp(zi)ρθt,s(z)dz)
µ

× exp((µm̄+ µσ̄2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

≥ Et,π[
∫ T
t exp((µm̄+ µσ̄2

2 )(s− t))

× exp((µm̄+ µσ̄2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

= exp((µm̄+ µ(σ̄)2

2 )(T − t))Et,π[1{τ1≤T}],

(5.17)

by using Jensen’s inequality. On the other hand, we obtain

I1 ≤ Et,π[
∫ T
t

∫
Rm(h0 exp(r0(s− t)) +

m∑
i=1

hi exp(zi))µρθt,s(z)dz

× exp((µm+ (µσ̄)2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

≤ Et,π[
∫ T
t

(
h0 exp(µr0(s− t)) +

m∑
i=1

hi
∫

Rm

exp(µzi)ρθt,s(z)dz
)

× exp((µm+ (µσ̄)2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

≤ Et,π[
∫ T
t exp((µm+ (µσ̄)2

2 )(s− t))

× exp((µm+ (µσ̄)2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

= exp((µm+ (µσ̄)2

2 )(T − t))Et,π[1{τ1≤T}],

(5.18)

again by using Jensen’s inequality and (5.2).
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(ii) (estimate (3.19)). By using Jensen’s inequality, we have

I2 = Et,π[
∫

Rm
(h0 exp(r0(T − t))

+
m∑
i=1

hi exp(zi))µρθt,T (z)dz
∫ ∞

T
n(θs) exp(−

∫ s

t
n(θu)du)ds]

≥ Et,π[(h0 exp(r0(T − t))

+
m∑
i=1

hi
∫

Rm

exp(zi)ρθt,T (z)dz)µ
∫ ∞

T
n(θs) exp(−

∫ s

t
n(θu)du)ds]

≥ Et,π[{
m∑
i=0

hi exp((m̄+
(σ̄)2

2
)(T − t)}µ

∫ ∞

T
n(θs) exp(−

∫ s

t
n(θu)du)ds]

≥ Et,π[exp((m̄+ (σ̄)2

2 )(T − t))µ
∫∞
T n(θs) exp(−

∫ s
t n(θu)du)ds]

= exp((µm̄+ µ(σ̄)2

2 )(T − t))Et,π[1{τ1>T}],

(5.19)

from (5.2), since the function xµ is decreasing. On the other hand, by using Jensen’s inequality,
we have

I2 = Et,π[
∫

Rm(h0 exp(r0(T − t))

+
m∑
i=1

hi exp(zi))µρθt,T (z)dz
∫ ∞

T
n(θs) exp(−

∫ s

t
n(θu)du)ds]

≤ Et,π[h0 exp(µr0(T − t))

+
m∑
i=1

hi
∫

Rm

exp(µzi)ρθt,T (z)dz
∫ ∞

T
n(θs) exp(−

∫ s

t
n(θu)du)ds]

= Et,π[
m∑
i=0

hi exp(µ
∫ T

t
mi(θs)ds+

µ2

2

∫ T

t
σ2
i (θs)ds)

×
∫∞
T n(θs) exp(−

∫ s
t n(θu)du)ds]

≤ Et,π[exp((µm+ (µσ̄)2

2 )(T − t))
∫∞
T n(θs) exp(−

∫ s
t n(θu)du)ds]

= exp((µm+ (µσ̄)2

2 )(T − t))Et,π[1{τ1>T}],

(5.20)

because of (5.2).

(iii) (estimate (3.20)). Since

ξ̂(t, π, h; g) =
1
µ

log(I1 + I2). (5.21)

The estimate (3.20) follows from (i) and (ii).

Lemma 5.4. For all g ∈ G, the function exp(µξ̂(t, π, h; g)) is continuous with respect to h.
Furthermore, for each g ∈ G1 the relation (3.21) holds and for each g ∈ G2 the relation (3.22)
holds.
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Proof. Let us first prove the continuity of exp(µξ̂(t, π, h; g)). From (5.13), we have for m ≥ 1

exp(µD(h,XT∧τ1 −Xt) + µg(τ1, π1)) ≤
m∑
i=0

exp(µ(Xi
T∧τ1 −Xi

t) + µg(τ1, π1)). (5.22)

Similarly to (5.15), we have for each i

Et,π[exp(µ(Xi
T∧τ1 −Xi

t) + µg(τ1, π1))] <∞. (5.23)

Applying the dominated convergence theorem, for hn ⊂ H̄m, s.t. lim
n→∞

hn = h ∈ H̄m

lim
n→∞

exp(µξ̂(t, π, hn; g))

= Et,π[ lim
n→∞

exp(µD(hn, XT∧τ1 −Xt) + µg(τ1, π1)1{τ1≤T})]

= exp(µξ̂(t, π, h; g)).

(5.24)

We next prove that, for g ∈ G1, the relation (3.21) holds. For this purpose, recalling Corollary
2.2, we rewrite

exp(µξ̂(t, π, h; g))

= Et,π[exp
(
µD(h,XT∧τ1 −Xt) + µg(τ1,M(τ1 − t,Xτ1 −Xt, π))1{τ1≤T}

)
]

=
∑
j

Et,ej [exp
(
µD(h,XT∧τ1 −Xt)

+ µg(τ1,M(τ1 − t,Xτ1 −Xt, π))1{τ1≤T}
)
]πj .

(5.25)

Then, recalling the Definition 3.3 of ξ̂(·), from (3.20) in Proposition 3.2 and (2.4) it follows that

| exp(µξ̂(t, π, h; g))− exp(µξ̂(t, π̄, h; g))|

= |
∑
j

Et,ej [exp
(
µD(h,XT∧τ1 −Xt)

+ µg(τ1,M(τ1 − t,Xτ1 −Xt, π))1{τ1≤T}
)
](πj − π̄j)

+
∑
j

Et,ej [exp(µD(h,Xτ1 −Xt)){exp
(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π))

)
− exp

(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π̄))

)
}1{τ1≤T})]π̄j |

≤ exp((µm+ (µσ̄)2

2 )(T − t)) 2
log 3dH(π, π̄)

+ Et,π̄[exp(µD(h,X1 −Xt))| exp
(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π))

)
− exp

(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π̄))

)
|1{τ1≤T})].

(5.26)

25



Furthermore, by the definition the definition of G1 (see (3.15) in Definition 3.2), using also (3.10)

| exp
(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π))

)
− exp

(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π̄))

)
|

≤ exp((µm+ (µσ̄)2

2 )(T − τ1))

× 2
log 3dH(M(τ1 − t,Xτ1 −Xt, π),M(τ1 − t,Xτ1 −Xt, π̄))

≤ 2
log 3dH(π, π̄) exp((µm+ (µσ̄)2

2 )(T − τ1)).

(5.27)

Therefore, we obtain

| exp(µξ̂(t, π, h; g))− exp(µξ̂(t, π̄, h; g))|

≤ 2
log 3dH(π, π̄) exp((µm+ (µσ̄)2

2 )(T − t))(1 + c).
(5.28)

Finally, to prove that for g ∈ G2 the relation (3.22) holds, we rewrite, using the time homo-
geneity of (Xt, θt),

exp(µξ̂(t, π, h; g))

= Et,π[exp(µD(h,XT −Xt))1{τ1>T} + exp(µD(h,Xτ1 −Xt) + µg(τ1, π1))1{τ1≤T}]

= Et,π[exp(µD(h,XT−t −X0))1{τ1>T−t}

+ exp(µD(h,Xτ1 −X0) + µg(τ1 + t, π1))1{τ1≤T−t}].
(5.29)

Therefore, recalling that t̄ < t,

| exp(µξ̂(t, π, h; g))− exp(µξ̂(t̄, π, h; g))|

≤ |E0,π[exp(µD(h,XT−t −X0)){1{τ1>T−t} − 1{τ1>T−t̄}}]|

+|E0,π[ exp(µD(h,Xτ1 −X0) + µg(τ1 + t, π1)) {1{τ1≤T−t} − 1{τ1≤T−t̄}}]|

+|E0,π[{exp(µD(h,XT−t −X0)− exp(µD(h,XT−t̄ −X0))}1{τ1>T−t̄}]|

+|E0,π[ exp(µD(h,Xτ1 −X0)){exp(µg(τ1 + t, π1))− exp(µg(τ1 + t̄, π1)}1{τ1≤T−t̄}]|

≡ J1 + J2 + J3 + J4.
(5.30)

Now we have

J1 ≤ exp((µm+ (µσ̄)2

2 )(T − t))P 0,π(T − t < τ1 < T − t̄)

= exp((µm+ (µσ̄)2

2 )(T − t))Et,π[
∫ T−t̄
T−t n(θs) exp(

∫ s
0 −n(θu)du)ds]

≤ exp((µm+ (µσ̄)2

2 )(T − t))
∫ T−t̄
T−t n̄ exp(−ns)ds

≤ exp((µm+ (µσ̄)2

2 )(T − t))
(
n̄
n

)
(en(t−t̄) − 1).

(5.31)

We also have, using (3.20),

J2 ≤ exp((µm+
(µσ̄)2

2
)(T − t))

(
n̄

n

)
(en(t−t̄) − 1). (5.32)
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Further, since |D(h, x)−D(h, y)| ≤ |x− y| holds from (5.10), we obtain

J3 ≤ E0,π[| exp(µD(h,XT−t −X0))− exp(µD(h,XT−t̄ −X0))|]

= E0,π[exp(µD(h,XT−t −X0))

× |1− exp
(
µ(D(h,XT−t̄ −X0)−D(h,XT−t −X0))

)
|]|

≤ E0,π[exp(µD(h,XT−t −X0))|1− exp(µ|XT−t̄ −XT−t|)|]

= E0,π[exp(µD(h,XT−t −X0))E[|1− exp(µ|XT−t̄ −XT−t|)||XT−t]].

(5.33)

Since (Xt, θt) is a time homogeneous process, we have

E[|1− exp(µ|XT−t̄ −XT−t|)||XT−t]

= E[|1− exp(µ|
∫ T−t̄
T−t r(θs)− d(σσ∗(θs))ds+

∫ T−t̄
T−t σ(θs)dBs)||XT−t]

= EXT−t
[|1− exp(µ|

∫ T−t̄
T−t r(θs)− d(σσ∗(θs))ds+

∫ T−t̄
T−t σ(θs)dBs|)|]

= EXT−t
[|1− exp(µ|

∫ t−t̄
0 r(θs)− d(σσ∗(θs))ds+

∫ t−t̄
0 σ(θs)dBs|)|]

= EXT−t
[|1− exp(µ|Xt−t̄ −X0|)]

= l(t− t̄),

(5.34)

where l is the function defined in (3.1). Hence, we obtain

J3 ≤ E0,π[exp(µD(h,XT−t −X0))]l(t− t̄)

≤ exp((µm+ (µσ̄)2

2 )(T − t))l(t− t̄).
(5.35)

Since g ∈ G2, we have

J4 ≤ E0,π[exp(µD(h,Xτ1 −X0))

exp((µm+ (µσ̄)2

2 )(T − t− τ1))k(t− t̄))1{τ1≤T−t̄}]

≤ c exp((µm+ (µσ̄)2

2 )(T − t))k(t− t̄),

(5.36)

by using (3.18) in Proposition 3.2.

Putting all the estimates together, we finally obtain

| exp(µξ̂(t, π, h; g))− exp(µξ̂(t̄, π, h; g))|

≤ exp((µm+ (µσ̄)2

2 )(T − t))(2
(
n̄
n

)
(en(t−t̄) − 1) + l(t− t̄) + ck(t− t̄)).

(5.37)

Proof of Proposition 3.5. The equality (3.46) is shown in Lemma 5.5 below. This lemma is
followed by Lemma 5.6 that is preliminary to Lemma 5.7, from which then (3.47) follows.

Lemma 5.5. For each n ≥ 0, the equality (3.46) holds.

27



Proof. By definition we have
W̄ 0(t, π) = W 0(t, π). (5.38)

Moreover, W̄ 0(t, π) ∈ G1 ∩ G2 because of Proposition 3.3. Therefore, in Corollary 3.1, we set
g(t, π) = W̄ 0(t, π) and obtain a Borel function ĥ(n)(t, π) satisfying (3.31) for n ≥ 0. Then,

W̄n(t, π) = Jnµ W̄
0(t, π) = sup

h∈Hm

ξ̂(t, π, h;Jn−1
µ W̄ 0) = ξ̂(t, π, ĥ(n−1)(t, π);Jn−1

µ W̄ 0).

We also have a Borel function h̄(t, π) such that

W̄ 0(t, π) = sup
h
W̄ 0(t, π, h) = W̄ 0(t, π, h̄(t, π)).

We define a strategy h̄(n) ∈ An as follows.

h̄
(n)
k = ĥ(n−1−k)(τk, πk), k = 0, . . . , n− 1,

h̄
(n)
n = h̄(τn, πn),

h̄
(n)
k = γ(X̃τk − X̃τn , h̄

(n)
n ), k ≥ n+ 1.

(5.39)

First, to show that W̄n(t, π) ≤Wn(t, π), we rewrite W̄n as follows,

W̄n(t, π)

= sup
h∈H̄m

ξ̂(t, π, h;Jn−1
µ W̄ 0)

= ξ̂(t, π, ĥ(n−1)(t, π);Jn−1
µ W̄ 0)

= 1
µ logEt,π[exp(µD(ĥ(n−1)(t, π), XT∧τ1 −Xt) + µW̄n−1(τ1, π1)1{τ1≤T})]

= 1
µ logEt,π[exp(µD(ĥ(n−1)(t, π), XT −Xt))1{τ1>T}

+exp(µD(ĥ(n−1)(t, π), Xτ1 −Xt) + µW̄n−1(τ1, π1))1{τ1≤T}]

= 1
µ logEt,π[eµD(ĥ(n−1)(t,π),XT−Xt)1{τ1>T} + eµD(ĥ(n−1)(t,π),Xτ1−Xt)

·Eτ1,π1 [eµD(ĥ(n−2)(τ1,π1),XT∧τ2
−Xτ1 )+µW̄n−2(τ2,π2)1{τ2≤T} ]1{τ1≤T}].

(5.40)

Noting that

Et,π[eµD(ĥ(n−1)(t,π),Xτ1−Xt)

·Eτ1,π1 [eµD(ĥ(n−2)(τ1,π1),XT∧τ2
−Xτ1 )+µW̄n−2(τ2,π2)1{τ2≤T} ]1{τ1≤T}]

= Et,π[eµD(ĥ(n−1)(t,π),Xτ1−Xt)Eτ1,π1 [eµD(ĥ(n−2)(τ1,π1),XT−Xτ1 )1{τ2>T}]1{τ1≤T}]

+Et,π[eµD(ĥ(n−1)(t,π),Xτ1−Xt)

·Eτ1,π1 [eµD(ĥ(n−2)(τ1,π1),Xτ2−Xτ1 )+µW̄n−2(τ2,π2)1{τ2≤T}]1{τ1≤T}],

(5.41)
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we have

W̄n(t, π)

= 1
µ logEt,π[eµD(ĥ(n−1)(t,π),XT∧τ1

−Xt)+µD(ĥ(n−2)(τ1,π1),XT∧τ2
−Xτ1 )1{τ1≤T}+µW̄

n−2(τ2,π2)1{τ2≤T} ]

= 1
µ logEt,π[exp(µ

∑n
k=1D(h̄(n)(τk−1, πk−1), XT∧τk −Xτk−1

)1{τk−1≤T}

+µW̄ 0(τn, πn, h̄(n)(τn, πn))1{τn<T})],
(5.42)

inductively. By Corollary 3.3 we then have

W̄n(t, π)

= 1
µ logEt,π[exp(µ

∑n
k=1D(h̄n(τk−1, πk−1), XT∧τk −Xτk−1

)1{τk−1<T}

+µW̄ 0(τn, πn, h̄n(τn, πn))1{τn<T})]

≤ sup
h∈An

1
µ

logEt,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+µW̄ 0(τn, πn, hn)1{τn≤T}
)
]

= Wn(t, π).

(5.43)

Next, we shall prove the converse inequality. By applying Lemma 3.4, we have for h ∈ An

W (t, π, h.)

= 1
µ logEt,π[exp(µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T} + µW̄ 0(τn, πn, hn)1{τn≤T})]

≤ 1
µ logEt,π[exp(µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T} + µW̄ 0(τn, πn)1{τn≤T})]

= 1
µ logEt,π[exp(µ

n−1∑
k=1

D(hk−1, Xτk −Xτk−1
)1{τk−1<T})

× exp(µD(hn−1, XT∧τn −Xτn−1) + µW̄ 0(τn, πn)1{τn≤T})1{τn−1≤T}

+ exp(µ
n−1∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T})1{τn−1>T}]

= 1
µ logEt,π[exp(µ

n−1∑
k=1

D(hk−1, Xτk −Xτk−1
)1{τk−1<T})

×Eτn−1,πn−1 [exp(µD(hn−1, XT∧τn −Xτn−1) + µW̄ 0(τn, πn)1{τn≤T})]1{τn−1≤T}

+ exp(µ
n−1∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T})1{τn−1>T}].

(5.44)
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By the definition of ξ̂ and W̄ 1we have

Eτn−1,πn−1 [exp(µD(hn−1, XT∧τn −Xτn−1) + µW̄ 0(τn, πn)1{τn≤T})]

= exp(µξ̂(τn−1, πn−1, hn−1; W̄ 0))

≥ exp(µ sup
h∈H̄m

ξ̂(τn−1, πn−1, h; W̄ 0)) = exp(µW̄ 1(τn−1, πn−1)).
(5.45)

Therefore, for h ∈ An, we have inductively

W (t, π, h.)

≤ 1
µ logEt,π[exp(µ

n−1∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T} + µW̄ 1(τn, πn)1{τn≤T})]

≤ 1
µ logEt,π[exp(µD(h,XT∧τ1 −X0) + µW̄n−1(τ1, π1)1{τ1≤T})]

≤ W̄n(t, π).

(5.46)

Lemma 5.6. For all h ∈ A, we have

lim
n→∞

1
µ

logEt,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+ µW 0(τn, πn, hn)1{τn≤T}
)
]

= W (t, π, h.).

(5.47)

Proof.

Et,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1≤T}

+ µW 0(τn, πn, hn)1{τn≤T}
)
]

= Et,π[exp
(
µ

n∑
k=1

D(hk−1, Xτk −Xτk−1
) + µW 0(τn, πn, hn)

)
1{τn≤T}]

+ Et,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1≤T}

)
1{τn>T}]

=: I1(n) + I2(n).

(5.48)

We shall first give an estimate for I1(n). From (3.11) in Proposition 3.1 it follows that for h ∈ H̄m

exp(µW 0(t, π, h)) ≤ exp((µm+
(µσ̄)2

2
)(T − t)). (5.49)
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Therefore, we have

I1(n) ≤ Et,π[exp
(
µ

n∑
k=1

D(hk−1, Xτk −Xτk−1
) + µ(m+

(µσ̄)2

2
)(T − τn)

)
1{τn≤T}]

≤ Et,π[exp
(
µ
n−1∑
k=1

D(hk−1, Xτk −Xτk−1

)
Eτn−1,πn−1 [exp

(
µD(hn−1, Xτn −Xτn−1)

+ µ(m+ (µσ̄)2

2 )(T − τn)
)
1{τn<T}]1{τn−1≤T}]

≤ cEt,π[exp
(
µ

n−1∑
k=1

D(hk−1, Xτk −Xτk−1

)
exp((µm+

(µσ̄)2

2
)(T − τn−1))1{τn−1≤T}],

(5.50)

by using Proposition 3.2(i) because clearly exp((µm + (µσ̄)2

2 )(T − t)) ∈ G. Thus, we obtain
inductively

I1(n) ≤ cEt,π[exp
(
µ
n−2∑
k=1

D(hk−1, Xτk −Xτk−1
)
)

× Eτn−2,πn−2 [exp
(
µD(hn−2, Xτn−1 −Xτn−2)

+(µm+ (µσ̄)2

2 )(T − τn−1)
)
1{τn−1<T}]1{τn−2≤T}]

≤ c2Et,π[exp
(
µ

n−2∑
k=1

D(hk−1, Xτk −Xτk−1
)
)

× exp
(
(µm+ (µσ̄)2

2 )(T − τn−2)
)
1{τn−2≤T}]]

≤ cn exp((µm+ (µσ̄)2

2 )(T − t)),

(5.51)

and therefore we see that
lim
n→∞

I1(n) = 0.

On the other hand, since 1{τn>T} =
∑n−1

j=0 1{τj<T≤τj+1}, we have

I2(n) = Et,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τn≥T}]

= Et,π[
∑n−1

j=0 exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}]

= Et,π[
n−1∑
j=0

exp
(
µ

j+1∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+µ
∑n

k=j+2D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}].

(5.52)
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Noting that {τk < T} ∩ {T ≤ τj+1} = ∅ for all k ≥ j + 1, we have

exp
(
µ

n∑
k=j+2

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}

= exp
(
µ

∞∑
k=j+2

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}

= 1{τj<T≤τj+1}

(5.53)

and that

lim
n→∞

I2(n) = lim
n→∞

Et,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τn≥T}]

= lim
n→∞

Et,π[
n−1∑
j=0

exp
(
µ

∞∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}]

= Et,π[
∞∑
j=0

exp
(
µ

∞∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}]

= Et,π[exp
(
µ

∞∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
].

(5.54)
Therefore, we obtain

lim
n→∞

Et,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T} + µW 0(τn, πn, hn)1{τn≤T}

)
]

= lim
n→∞

I1(n) + I2(n) = exp(µW (t, π, h.)),

(5.55)

having used Lemma 3.1. This completes the proof.

Lemma 5.7. The equality (3.47) holds.

Proof. By the definition of An, the inclusions An ⊂ An+1 ⊂ A hold for n ≥ 0 and we have

sup
h∈An

W (t, π, h.) ≤ sup
h∈An+1

W (t, π, h.) ≤ sup
h∈A

W (t, π, h.). (5.56)

From the definition of Wn(t, π) and W (t, π) it follows that

Wn(t, π) ≤Wn+1(t, π) ≤W (t, π). (5.57)

Therefore, from Lemma 5.5 we have

W̄n(t, π) ≤ W̄n+1(t, π) ≤W (t, π). (5.58)

Thus, from Proposition 3.4 and (3.39), we obtain

W̄ (t, π) ≤W (t, π). (5.59)
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On the other hand, for h ∈ A

W̄n(t, π) = Wn(t, π)

≥ 1
µ logEt,π[exp

(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+ µW 0(τn, πn, hn)1{τn≤T}
)
].

(5.60)

Letting n→∞ and applying Lemma 5.6,

W̄ (t, π) ≥W (t, π, h.) (5.61)

and hence, we obtain
W̄ (t, π) = W (t, π). (5.62)
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