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Abstract

In this paper we consider a general class of diffusion-based models and show that, even in the
absence of an Equivalent Local Martingale Measure, the financial market may still be viable, in
the sense that strong forms of arbitrage are excluded and portfolio optimisation problems can be
meaningfully solved. Relying partly on the recent literature, we provide necessary and sufficient
conditions for market viability in terms of the market price of risk process and martingale defla-
tors. Regardless of the existence of a martingale measure, we show that the financial market may
still be complete and contingent claims can be valued under the original (real-world) probability
measure, provided we use as numeraire the Growth-Optimal Portfolio.
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0 Introduction

The concepts of Equivalent (Local) Martingale Measure (E(L)MM), no-arbitrage and risk-neutral
pricing can be rightfully considered as the cornerstones of modern mathematical finance. It seems to
be almost folklore that such concepts can be regarded as mutually equivalent. In fact, most practical
applications in quantitative finance are directly formulated under suitable assumptions which ensure
that those concepts are indeed equivalent.

In recent years, maybe due to the dramatic turbulences raging over financial markets, an increasing
attention has been paid to models that allow for financial market anomalies. More specifically, several
authors have studied market models where stock price bubbles may occur (see e.g. [8], [17], [18],
[21], [22]). It has been shown that bubble phenomena are consistent with the classical no-arbitrage
theory based on the notion of No Free Lunch with Vanishing Risk (NFLVR), as developed in [10] and
[13]. However, in the presence of a bubble, discounted prices of risky assets are, under a risk-neutral
measure, strict local martingales, i.e. local martingales which are not true martingales. This fact
already implies that several well-known and classical results (for instance the put-call parity relation,
see e.g. [8]) of mathematical finance do not hold anymore and must be modified accordingly.

A decisive step towards enlarging the scope of financial models has been represented by the study
of models which do not fit at all into the classical no-arbitrage theory based on (NFLVR). Indeed,
several authors (see e.g. [7], [11], [18], [24], [30]) have studied instances where an ELMM may
fail to exist. More specifically, financial models that do not admit an ELMM appear in the context
of Stochastic Portfolio Theory (see [14] for a recent overview) and in the Benchmark Approach (see
the monograph [36] for a detailed account). In the absence of a well-defined ELMM, many of the
classical results of mathematical finance seem to break down and one is led to ask whether there is still
a meaningful way to proceed in order to solve the fundamental problems of portfolio optimisation and
contingent claim valuation. It is then a remarkable result that a satisfactory theory can be developed
even in the absence of an ELMM, especially in the case of a complete financial market model, as we
are going to illustrate.

The present paper aims at carefully analysing a general class of diffusion-based financial models,
without relying on the existence of an ELMM. More specifically, we discuss several notions of no-
arbitrage that are weaker than the traditional (NFLVR) condition and we study necessary and sufficient
conditions for their validity. We show that the financial market may still be viable, in the sense
that strong forms of arbitrage are banned from the market, even in the absence of an ELMM. In
particular, it turns out that the viability of the financial market is fundamentally linked to a square-
integrability property of the market price of risk process. Some of the results that we are going to
present have already been obtained, also in more general settings (see e.g. [7], Chapter 4 of [15],
[19], [24], [27] and [28]). However, by exploiting the Itô-process structure, we are able to provide
simple and transparent proofs, highlighting the key ideas behind the general theory. We also discuss
the connections to the Growth-Optimal Portfolio (GOP), which is shown to be the unique portfolio
possessing the numeraire property. In similar diffusion-based settings, related works that study the
question of market viability in the absence of an ELMM include [14], [16], [17], [30], [31], [33] and
[40].
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Besides studying the question of market viability, a major focus of this paper is on the valuation
and hedging of contingent claims in the absence of an ELMM. In particular, we argue that the concept
of market completeness, namely the capability to replicate every contingent claim, must be kept dis-
tinct from the existence of an ELMM. Indeed, we prove that the financial market may be viable and
complete regardless of the existence of an ELMM. We then show that, in the context of a complete fi-
nancial market, there is a unique natural candidate for the price of an arbitrary contingent claim, given
by its GOP-discounted expected value under the original (real-world) probability measure. To this
effect, we revisit some ideas originally appeared in the context of the Benchmark Approach, providing
more careful proofs and extending some previous results.

The paper is structured as follows. Section 1 introduces the general setting, which consists of a
class of Itô-process models satisfying minimal technical conditions. We introduce a basic standing
assumption and we carefully describe the set of admissible trading strategies. The question of whether
(properly defined) arbitrage opportunities do exist or not is dealt with in Section 2. In particular, we
explore the notions of increasing profit and arbitrage of the first kind, giving necessary and sufficient
conditions for their absence from the financial market. In turn, this lead us to introduce the concept
of martingale deflators, which can be regarded as weaker counterparts to the traditional (density
processes of) martingale measures. Section 3 proves the existence of an unique Growth-Optimal
strategy, which admits an explicit characterization and also generates the numeraire portfolio. In turn,
the latter is shown to be the reciprocal of a martingale deflator, thus linking the numeraire portfolio
to the no-arbitrage criteria discussed in Section 2. Section 4 starts with the hedging and valuation
of contingent claims, showing that the financial market may be complete even in the absence of an
ELMM. Section 5 deals with contingent claim valuation according to three alternative approaches:
real-world pricing, upper-hedging pricing and utility indifference valuation. In the particular case
of a complete market, we show that they yield the same valuation formula. Section 6 concludes by
pointing out possible extensions and further developments.

1 The general setting

Let (Ω,F , P ) be a complete probability space. For a fixed time horizon T ∈ (0,∞), let F =

(Ft)0≤t≤T be a filtration on (Ω,F , P ) satisfying the usual conditions of right-continuity and com-
pleteness. Let W = (Wt)0≤t≤T be an Rd-valued Brownian motion on the filtered probability space
(Ω,F ,F, P ). To allow for greater generality we do not assume from the beginning that F = FW ,
meaning that the filtration F may be strictly larger than the P -augmented Brownian filtration FW .
Also, the initial σ-field F0 may be strictly larger than the trivial σ-field.

We consider a financial market composed ofN+1 securities Si, for i = 0, 1, . . . , N , withN ≤ d.
As usual, we let S0 represent a locally riskless asset, which we name savings account, and we define
the process S0 = (S0

t )0≤t≤T as follows:

S0
t := exp

(∫ t

0

ru du

)
for t ∈ [0, T ] (1)

where the interest rate process r = (rt)0≤t≤T is a real-valued progressively measurable process such
that

∫ T
0
|rt| dt <∞ P -a.s. The remaining assets Si, for i = 1, . . . , N , are supposed to be risky assets.
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For i = 1, . . . , N , the process Si = (Sit)0≤t≤T is given by the solution to the following SDE:

dSit = Sit µ
i
t dt+

d∑
j=1

Sit σ
i,j
t dW j

t Si0 = si (2)

where:

(i) si ∈ (0,∞) for all i = 1, . . . , N ;

(ii) µ = (µt)0≤t≤T is an RN -valued progressively measurable process with µt =
(
µ1
t , . . . , µ

N
t

)′ and
satisfying

∑N
i=1

∫ T
0
|µit| dt <∞ P -a.s.;

(iii) σ = (σt)0≤t≤T is an RN×d-valued progressively measurable process with σt =
{
σi,jt
}
i=1,...,N
j=1,...,d

and satisfying
∑N

i=1

∑d
j=1

∫ T
0

(
σi,jt
)2
dt <∞ P -a.s.

The SDE (2) admits the following explicit solution, for every i = 1, . . . , N and t ∈ [0, T ]:

Sit = si exp

(∫ t

0

(
µiu −

1

2

d∑
j=1

(
σi,ju
)2
)
du+

d∑
j=1

∫ t

0

σi,ju dW j
u

)
(3)

Note that conditions (ii)-(iii) above represent minimal conditions in order to have a meaningful def-
inition of the ordinary and stochastic integrals appearing in (3). Apart from these technical require-
ments, we leave the stochastic processes µ and σ fully general. For i = 0, 1, . . . , N , we denote by
S̄i =

(
S̄it
)

0≤t≤T the discounted price process of the i-th asset, defined as S̄it := Sit/S
0
t for t ∈ [0, T ].

Let us now introduce the following standing Assumption, which we shall always assume to be
satisfied without any further mention.

Assumption A. For all t ∈ [0, T ], the (N × d)-matrix σt has P -a.s. full rank.

Remark 1.1. From a financial perspective, Assumption A means that the financial market does not
contain redundant assets, i.e. there does not exist a non-trivial linear combination of

(
S1, . . . , SN

)
that is locally riskless, in the sense that its dynamics are not affected by the Brownian motion W .
However, we want to point out that Assumption A is only used in the following for proving uniqueness
properties of trading strategies and, hence, could also be relaxed.

In order to rigorously describe the activity of trading in the financial market, we now introduce
the concepts of trading strategy and discounted portfolio process. In the following Definition we only
consider self-financing trading strategies which generate positive portfolio processes.

Definition 1.2.

(a) An RN -valued progressively measurable process π = (πt)0≤t≤T is an admissible trading strat-
egy if

∫ T
0
‖σ′t πt‖

2 dt <∞ P -a.s. and
∫ T

0
|π′t (µt − rt1)| dt <∞ P -a.s., where 1 := (1, . . . , 1)′ ∈

RN . We denote by A the set of all admissible trading strategies.
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(b) For any (v, π) ∈ R+ ×A, the associated discounted portfolio process V̄ v,π =
(
V̄ v,π
t

)
0≤t≤T is

defined by:

V̄ v,π
t := v E

(
N∑
i=1

∫
πi
dS̄i

S̄i

)
t

= v exp

(∫ t

0

π′u (µu − ru1) du− 1

2

∫ t

0

‖σ′u πu‖
2
du+

∫ t

0

π′u σu dWu

) (4)

for all t ∈ [0, T ], where E (·) denotes the stochastic exponential (see e.g. [39], Section IV.3).

The integrability conditions in part (a) of Definition 1.2 ensure that both the ordinary and the
stochastic integrals appearing in (4) are well-defined. For all i = 1, . . . , N and t ∈ [0, T ], πit represents
the proportion of wealth invested in the i-th risky asset Si at time t. Consequently, 1− π′t1 represents
the proportion of wealth invested in the savings account S0 at time t. Note that part (b) of Definition
1.2 corresponds to requiring the trading strategy π to be self-financing. Observe that Definition 1.2
implies that, for any (v, π) ∈ R+ ×A, we have V v,π

t = v V 1,π
t , for all t ∈ [0, T ]. Due to this scaling

property, we shall often let v = 1 without loss of generality, denoting V π := V 1,π for any π ∈ A. By
definition, the discounted portfolio process V̄ π satisfies the following dynamics:

dV̄ π
t = V̄ π

t

N∑
i=1

πit
dS̄it
S̄it

= V̄ π
t π′t (µt − rt1) dt+ V̄ π

t π′t σt dWt (5)

Remark 1.3. The fact that admissible portfolio processes are uniformly bounded from below by
zero excludes pathological doubling strategies (see e.g. [26], Section 1.1.2). Moreover, an economic
motivation for focusing on positive portfolios only is given by the fact that market participants have
limited liability and, therefore, are not allowed to trade anymore if their total tradeable wealth reaches
zero. See also Section 2 of [7], Section 6 of [35] and Section 10.3 of [36] for an amplification of the
latter point.

2 No-arbitrage conditions and the market price of risk

In order to ensure that the model introduced in the previous Section represents a viable financial
market, in a sense to be made precise (see Definition 2.9), we need to carefully answer the question
of whether properly defined arbitrage opportunities are excluded. We start by giving the following
Definition.

Definition 2.1. A trading strategy π ∈ A is said to yield an increasing profit if the corresponding
discounted portfolio process V̄ π =

(
V̄ π
t

)
0≤t≤T satisfies the following two conditions:

(a) V̄ π is P -a.s. increasing, in the sense that P
(
V̄ π
s ≤ V̄ π

t for all s, t ∈ [0, T ] with s ≤ t
)

= 1;

(b) P
(
V̄ π
T > 1

)
> 0.
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The notion of increasing profit represents the most glaring type of arbitrage opportunity and,
hence, it is of immediate interest to know whether it is allowed or not in the financial market. As
a preliminary, the following Lemma gives an equivalent characterization of the notion of increasing
profit. We denote by ` the Lebesgue measure on [0, T ].

Lemma 2.2. There exists an increasing profit if and only if there exists a trading strategy π ∈ A
satisfying the following two conditions:

(a) π′t σt = 0 P ⊗ `-a.e.;

(b) π′t (µt − rt1) 6= 0 on some subset of Ω× [0, T ] with positive P ⊗ `-measure.

Proof. Let π ∈ A be a trading strategy yielding an increasing profit. Due to Definition 2.1, the process
V̄ π is P -a.s. increasing, hence of finite variation. Equation (5) then implies that the continuous local
martingale

(∫ t
0
V̄ π
u π′u σu dWu

)
0≤t≤T

is also of finite variation. This fact in turn implies that π′t σt = 0

P ⊗ `-a.e. (see e.g. [25], Section 1.5). Since P
(
V̄ π
T > 1

)
> 0, we must have π′t (µt − rt1) 6= 0 on

some subset of Ω× [0, T ] with non-zero P ⊗ `-measure.
Conversely, let π ∈ A be a trading strategy satisfying conditions (a)-(b). Define then the process

π̄ = (π̄t)0≤t≤T as follows, for t ∈ [0, T ]:

π̄t := sign
(
π′t (µt − rt1)

)
πt

It is clear that π̄ ∈ A and π̄′t σt = 0 P ⊗ `-a.e. and hence, due to (4), for all t ∈ [0, T ]:

V̄ π̄
t = exp

(∫ t

0

π̄′u (µu − ru1) du

)
Furthermore, we have that π̄′t (µt − rt1) ≥ 0, with strict inequality holding on some subset of
Ω × [0, T ] with non-zero P ⊗ `-measure. This implies that the process V̄ π̄ =

(
V̄ π̄
t

)
0≤t≤T is P -a.s.

increasing and satisfies P
(
V̄ π̄
T > 1

)
> 0, thus showing that π̄ yields an increasing profit.

Remark 2.3. According to Definition 3.9 in [24], a trading strategy satisfying conditions (a)-(b) of
Lemma 2.2 is said to yield an immediate arbitrage opportunity (see [12] and Section 4.3.2 of [15]
for a thorough analysis of the concept). In a general semimartingale setting, Proposition 3.10 of [24]
extends our Lemma 2.2 and shows that the absence of (unbounded) increasing profits is equivalent to
the absence of immediate arbitrage opportunities.

The following Proposition gives a necessary and sufficient condition in order to exclude the exis-
tence of increasing profits.

Proposition 2.4. There are no increasing profits if and only if there exists an Rd-valued progressively
measurable process γ = (γt)0≤t≤T such that the following condition holds:

µt − rt1 = σtγt P ⊗ `-a.e. (6)
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Proof. Suppose there exists an Rd-valued progressively measurable process γ = (γt)0≤t≤T such that
condition (6) is satisfied and let π ∈ A be such that π′t σt = 0 P ⊗ `-a.e. Then we have:

π′t (µt − rt1) = π′t σtγt = 0 P ⊗ `-a.e.

meaning that there cannot exist a trading strategy π ∈ A satisfying conditions (a)-(b) of Lemma 2.2.
Due to the equivalence result of Lemma 2.2, this implies that there are no increasing profits.

Conversely, suppose that there exists no trading strategy inA yielding an increasing profit. Let us
first introduce the following linear spaces, for every t ∈ [0, T ]:

R (σt) :=
{
σty : y ∈ Rd

}
K (σ′t) :=

{
y ∈ RN : σ′ty = 0

}
Denote by ΠK(σ′t)

the orthogonal projection on K (σ′t). As in Lemma 1.4.6 of [26], we define the
process p = (pt)0≤t≤T by:

pt := ΠK(σ′t)
(µt − rt1)

Define then the process π̂ = (π̂t)0≤t≤T by:

π̂t :=

{
pt
‖pt‖ if pt 6= 0,

0 if pt = 0.

Since the processes µ and r are progressively measurable, Corollary 1.4.5 of [26] ensures that π̂ is
progressively measurable. Clearly, we have then π̂ ∈ A and, by construction, π̂ satisfies condition (a)
of Lemma 2.2. Since there are no increasing profits, Lemma 2.2 implies that the following identity
holds P ⊗ `-a.e.:

‖pt‖ =
p′t
‖pt‖

(µt − rt1) 1I{pt 6=0} = π̂′t (µt − rt1) 1I{pt 6=0} = 0 (7)

where the first equality uses the fact that µt − rt1 − pt ∈ K⊥ (σ′t), for all t ∈ [0, T ], with the
superscript ⊥ denoting the orthogonal complement. From (7) we have pt = 0 P ⊗ `-a.e., meaning
that µt − rt1 ∈ K⊥ (σ′t) = R (σt) P ⊗ `-a.e. This amounts to saying that we have:

µt − rt1 = σtγt P ⊗ `-a.e.

for some γt ∈ Rd. Taking care of the measurability issues, it can be shown that we can take γ =

(γt)0≤t≤T as a progressively measurable process (compare [26], proof of Theorem 1.4.2).

Let us now introduce one of the crucial objects in our analysis: the market price of risk process.

Definition 2.5. The Rd-valued progressively measurable market price of risk process θ = (θ)0≤t≤T is
defined as follows, for t ∈ [0, T ]:

θt := σ′t (σt σ
′
t)
−1

(µt − rt1)

The standing Assumption A ensures that the market price of risk process θ is well-defined1. From
a financial perspective, θt measures the excess return (µt − rt1) of the risky assets (with respect to
the savings account) in terms of their volatility.

1It is worth pointing out that, if Assumption A does not hold but condition (6) is satisfied, i.e. we have µt − rt1 ∈
R (σt) P ⊗ `-a.e., then the market price of risk process θ can still be defined by replacing σ′t (σt σ

′
t)
−1 with the Moore-

Penrose pseudoinverse of the matrix σt.
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Remark 2.6 (Absence of increasing profits). Note that, by definition, the market price of risk process
θ satisfies condition (6). Proposition 2.4 then implies that, under the standing Assumption A, there
are no increasing profits. Note however that θ may not be the unique process satisfying condition (6).

Let us now introduce the following integrability condition on the market price of risk process.

Assumption B. The market price of risk process θ = (θt)0≤t≤T belongs to L2
loc (W ), meaning that∫ T

0
‖θt‖2 dt <∞ P -a.s.

Remark 2.7. Let γ = (γt)0≤t≤T be an Rd-valued progressively measurable process satisfying condi-
tion (6). Letting R (σ′t) =

{
σ′t x : x ∈ RN

}
and R⊥ (σ′t) = K (σt) =

{
x ∈ Rd : σt x = 0

}
, we get

the orthogonal decomposition γt = ΠR(σ′t)
(γt) + ΠK(σt) (γt), for t ∈ [0, T ]. Under Assumption A,

elementary linear algebra gives that ΠR(σ′t)
(γt) = σ′t (σtσ

′
t)
−1 σtγt = σ′t (σtσ

′
t)
−1 (µt − rt1) = θt,

thus giving ‖γt‖ = ‖θt‖+
∥∥ΠK(σt) (γt)

∥∥ ≥ ‖θt‖, for all t ∈ [0, T ]. This implies that, as soon as there
exists some Rd-valued progressively measurable process γ satisfying (6) and such that γ ∈ L2

loc (W ),
then the market price of risk process θ satisfies Assumption B. In other words, the risk premium pro-
cess θ introduced in Definition 2.5 enjoys a minimality property among all progressively measurable
processes γ which satisfy condition (6).

Many of our results will rely on the key relation existing between Assumption B and no-arbitrage,
which has been first examined in [1] and [41] and also plays a crucial role in [12] and [29]. We
now introduce a fundamental local martingale associated to the market price of risk process θ. Let us
define the process Ẑ =

(
Ẑt
)

0≤t≤T as follows, for all t ∈ [0, T ]:

Ẑt := E
(
−
∫
θ′dW

)
t

= exp

(
−

d∑
j=1

∫ t

0

θju dW
j
u −

1

2

d∑
j=1

∫ t

0

(
θju
)2
du

)
(8)

Note that Assumption B ensures that the stochastic integral
∫
θ′dW is well-defined as a continuous

local martingale. It is well-known that Ẑ =
(
Ẑt
)

0≤t≤T is a strictly positive continuous local martin-

gale with Ẑ0 = 1. Due to Fatou’s Lemma, the process Ẑ is also a supermartingale (see e.g. [25],
Problem 1.5.19) and, hence, we have E

[
ẐT
]
≤ E

[
Ẑ0

]
= 1. It is easy to show that the process Ẑ is

a true martingale, and not only a local martingale, if and only if E
[
ẐT
]

= E
[
Ẑ0

]
= 1. However, it

may happen that the process Ẑ is a strict local martingale, i.e. a local martingale which is not a true
martingale. In any case, the following Proposition shows the basic property of the process Ẑ.

Proposition 2.8. Suppose that Assumption B holds and let Ẑ =
(
Ẑt
)

0≤t≤T be defined as in (8). Then
the following hold:

(a) for all i = 1, . . . , N , the process Ẑ S̄i =
(
Ẑt S̄

i
t

)
0≤t≤T is a local martingale;

(b) for any trading strategy π ∈ A the process Ẑ V̄ π =
(
Ẑt V̄

π
t

)
0≤t≤T is a local martingale.

Proof. Part (a) follows from part (b) by taking π ∈ A with πi ≡ 1 and πj ≡ 0 for j 6= i, for any
i = 1, . . . , N . Hence, it suffices to prove part (b). Recalling equation (5), an application of the product
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rule gives:

d
(
Ẑt V̄

π
t

)
= V̄ π

t dẐt + Ẑt dV̄
π
t + d

〈
V̄ π, Ẑ

〉
t

= −V̄ π
t Ẑt θ

′
t dWt + Ẑt V̄

π
t π′t (µt − rt1) dt+ Ẑt V̄

π
t π′t σt dWt − Ẑt V̄ π

t π′t σt θt dt

= Ẑt V̄
π
t (π′t σt − θ′t) dWt

(9)

Since σ′π ∈ L2
loc (W ) and θ ∈ L2

loc (W ), this shows the local martingale property of Ẑ V̄ π.

Under the standing Assumption A, we have seen that the diffusion-based financial market de-
scribed in Section 1 does not allow for increasing profits (see Remark 2.6). However, the concept of
increasing profit represents an almost pathological notion of arbitrage opportunity. Hence, we would
like to know whether weaker and more economically meaningful types of arbitrage opportunities can
exist. To this effect, let us give the following Definition, adapted from [28].

Definition 2.9. An F-measurable non-negative random variable ξ is called an arbitrage of the first
kind if P (ξ > 0) > 0 and, for all v ∈ (0,∞), there exists a trading strategy πv ∈ A such that
V̄ v,πv

T ≥ ξ P -a.s. We say that the financial market is viable if there are no arbitrages of the first kind.

The following Proposition shows that the existence of an increasing profit implies the existence of
an arbitrage of the first kind. Due to the Itô-process framework considered in this paper, we are able
to provide a simple proof.

Proposition 2.10. Let π ∈ A be a trading strategy yielding an increasing profit. Then there exists an
arbitrage of the first kind.

Proof. Let π ∈ A yield an increasing profit and define ξ := V̄ π
T − 1. Due to Definition 2.1, we have

P (ξ ≥ 0) = 1 and P (ξ > 0) > 0. Then, for any v ∈ [1,∞), we have V̄ v,π
T = vV̄ π

T > v ξ ≥ ξ P -a.s.
For any v ∈ (0, 1), let us define πvt := − log(v)+log(1−v)

v
πt. Clearly, for any v ∈ (0, 1), the process

πv = (πvt )0≤t≤T satisfies πv ∈ A and, due to Lemma 2.2, (πvt )
′ σt = 0 P ⊗ `-a.e. We have then:

V̄ v,πv

T = v exp

(∫ T

0

(πvt )
′ (µt − rt1) dt

)
= v

(
V̄ π
T

)− log(v)+log(1−v)
v > V̄ π

T − 1 = ξ P -a.s.

where the second equality follows from the elementary identity exp (αx) = (expx)α and the last
inequality follows since vx−

log(v)+log(1−v)
v > x − 1 for x ≥ 1 and for every v ∈ (0, 1). We have thus

shown that, for every v ∈ (0,∞), there exists a trading strategy πv ∈ A such that V̄ v,πv

T ≥ ξ P -a.s.,
meaning that the random variable ξ = V̄ π

T − 1 is an arbitrage of the first kind.

Remark 2.11. As we shall see by means of a simple example after Corollary 2.18, there are instances
of models where there are no increasing profits but there are arbitrages of the first kind, meaning
that the absence of arbitrages of the first kind is a strictly stronger no-arbitrage-type condition than
the absence of increasing profits. Furthermore, there exists a notion of arbitrage opportunity lying
between the notion of increasing profit and that of arbitrage of the first kind, namely the notion of
strong arbitrage opportunity, which consists of a trading strategy π ∈ A such that V̄ π

t ≥ 1 P -a.s. for
all t ∈ [0, T ] and P

(
V̄ π
T > 1

)
> 0. It can be shown that there are no strong arbitrage opportunities if

9



and only if there are no increasing profits and the process
(∫ t

0
‖θu‖2du

)
0≤t≤T does not jump to infinity

on [0, T ]. For simplicity of presentation, we omit the details and refer instead the interested reader
to Theorem 3.5 of [43] (where the absence of strong arbitrage opportunities is denoted as condition
NA+) and Section 4.3.2 of [15]. We want to point out that the notion of strong arbitrage opportunity
plays an important role in the context of the benchmark approach, see e.g. Section 6 of [35], Section
10.3 of [36] and Remark 4.3.9 of [15].

We now proceed with the question of whether arbitrages of the first kind are allowed in our finan-
cial market model. To this effect, let us first give the following Definition.

Definition 2.12. A martingale deflator is a real-valued non-negative adapted process D = (Dt)0≤t≤T
with D0 = 1 and DT > 0 P -a.s. and such that the process DV̄ π =

(
DtV̄

π
t

)
0≤t≤T is a local

martingale for every π ∈ A. We denote by D the set of all martingale deflators.

Remark 2.13. Let D ∈ D. Then, taking π ≡ 0, Definition 2.12 implies that D is a non-negative
local martingale and hence, due to Fatou’s Lemma, also a supermartingale. Since DT > 0 P -a.s., the
minimum principle for non-negative supermartingales (see e.g. [39], Proposition II.3.4) implies that
P
(
Dt > 0, Dt− > 0 for all t ∈ [0, T ]

)
= 1.

Note that part (b) of Proposition 2.8 implies that, as soon as Assumption B is satisfied, the pro-
cess Ẑ =

(
Ẑt
)

0≤t≤T introduced in (8) is a martingale deflator, in the sense of Definition 2.12. The
following Lemma describes the general structure of martingale deflators. Related results can also be
found in [1], [2] and [42].

Lemma 2.14. Let D = (Dt)0≤t≤T be a martingale deflator. Then there exist an Rd-valued progres-
sively measurable process γ = (γt)0≤t≤T in L2

loc (W ) satisfying condition (6) and a real-valued local
martingale N = (Nt)0≤t≤T with N0 = 0, ∆N > −1 P -a.s. and 〈N,W i〉 ≡ 0, for all i = 1, . . . , d,
such that the following hold, for all t ∈ [0, T ]:

Dt = E
(
−
∫
γ dW +N

)
t

(10)

Proof. Let us define the process L :=
∫
D−1
− dD. Due to Remark 2.13, the process D−1

− is well-
defined and, being adapted and left-continuous, is also predictable and locally bounded. Since D is
a local martingale, this implies that the process L is well-defined as a local martingale null at 0 and
we have D = E (L). The Kunita-Watanabe decomposition (see [3], case 3) allows us to represent the
local martingale L as follows:

L = −
∫
γ dW +N

for some Rd-valued progressively measurable process γ = (γt)0≤t≤T belonging to L2
loc (W ), i.e.

satisfying
∫ T

0
‖γt‖2 dt < ∞ P -a.s., and for some local martingale N = (Nt)0≤t≤T with N0 = 0 and

〈N,W i〉 ≡ 0 for all i = 1, . . . , d. Furthermore, since {D > 0} = {∆L > −1} and ∆L = ∆N , we
have that ∆N > −1 P -a.s. It remains to show that γ satisfies condition (6). Let π ∈ A. Then, by

10



using the product rule and recalling equation (5):

d
(
DV̄ π

)
t

= Dt− dV̄
π
t + V̄ π

t dDt + d〈D, V̄ π〉t

= Dt−V̄
π
t π
′
t (µt − rt1) dt+Dt−V̄

π
t π
′
tσt dWt + V̄ π

t Dt− dLt +Dt−V̄
π
t d
〈
L,

∫
π′σ dW

〉
t

= Dt−V̄
π
t π
′
t (µt − rt1) dt+Dt−V̄

π
t π
′
tσt dWt + V̄ π

t Dt− dLt −Dt−V̄
π
t π
′
tσtγt dt

= Dt−V̄
π
t π
′
tσt dWt + V̄ π

t Dt− dLt +Dt−V̄
π
t π
′
t (µt − rt1− σtγt) dt

(11)
Since D ∈ D, the product DV̄ π is a local martingale, for every π ∈ A. This implies that the
continuous finite variation term in (11) must vanish. Since D− and V̄ π are P -a.s. strictly positive and
π ∈ A was arbitrary, this implies that condition (6) must hold.

The following Proposition shows that the existence of a martingale deflator is a sufficient condition
for the absence of arbitrages of the first kind.

Proposition 2.15. If D 6= ∅ then there cannot exist arbitrages of the first kind.

Proof. Let D ∈ D and suppose that there exists a random variable ξ yielding an arbitrage of the
first kind. Then, for every n ∈ N, there exists a strategy πn ∈ A such that V̄ 1/n,πn

T ≥ ξ P -a.s. For
every n ∈ N, the process DV̄ 1/n,πn =

(
DtV̄

1/n,πn

t

)
0≤t≤T is a positive local martingale and, hence, a

supermartingale. So, for every n ∈ N:

E [DT ξ] ≤ E
[
DT V̄

1/n,πn

T

]
≤ E

[
D0V̄

1/n,πn

0

]
=

1

n

Letting n → ∞ gives E [DT ξ] = 0 and hence DT ξ = 0 P -a.s. Since, due to Definition 2.12, we
have DT > 0 P -a.s. this implies that ξ = 0 P -a.s., which contradicts the assumption that ξ is an
arbitrage of the first kind.

It is worth pointing out that one can also prove a converse result to Proposition 2.15, showing that
if there are no arbitrages of the first kind then the set D is non-empty. In a general semimartingale
setting, this has been recently shown in [28] (see also Section 4 of [15] and [19] in the context of
continuous path processes). Furthermore, Proposition 1 of [27] shows that the absence of arbitrages
of the first kind is equivalent to the condition of No Unbounded Profit with Bounded Risk (NUPBR),
formally defined as the condition that the set

{
V̄ π
T : π ∈ A

}
be bounded in probability2. By relying on

these facts, we can state the following Theorem3, the second part of which follows from Proposition
4.19 of [24].

Theorem 2.16. The following are equivalent:

(a) D 6= ∅;
2The (NUPBR) condition has been introduced under that name in [24]. However, the condition that the set{

V̄ π
T : π ∈ A

}
be bounded in probability also plays a key role in the seminal work [10] and its implications have been

systematically studied in [23], where the same condition is denoted as “property BK”.
3We want to remark that an analogous result has already been given in Theorem 2 of [30] under the assumption of a

complete financial market.
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(b) there are no arbitrages of the first kind;

(c)
{
V̄ π
T : π ∈ A

}
is bounded in probability, i.e. the (NUPBR) condition holds.

Moreover, for every concave and strictly increasing utility function U : [0,∞) → R, the expected
utility maximisation problem of finding an element π∗ ∈ A such that

E
[
U
(
V̄ π∗

T

)]
= sup

π∈A
E
[
U
(
V̄ π
T

)]
either does not have a solution or has infinitely many solutions when any of the conditions (a)-(c)
fails.

In view of the second part of the above Theorem, the condition of absence of arbitrages of the
first kind can be seen as the minimal no-arbitrage condition in order to be able to meaningfully solve
portfolio optimisation problems.

Remark 2.17. We have defined the notion of viability for a financial market in terms of the absence
of arbitrages of the first kind (see Definition 2.9). In [30], a financial market is said to be viable if
any agent with sufficiently regular preferences and with a positive initial endowment can construct an
optimal portfolio. The last part of Theorem 2.16 gives a correspondence between these two notions of
viability, since it shows that the absence of arbitrages of the first kind is the minimal no-arbitrage-type
condition in order to being able to meaningfully solve portfolio optimisation problems.

It is now straightforward to show that, as soon as Assumption B holds, the diffusion-based model
introduced in Section 1 satisfies the equivalent conditions of Theorem 2.16. In fact, due to Proposition
2.8, the process Ẑ defined in (8) is a martingale deflator for the financial market

(
S0, S1, . . . , SN

)
as

soon as Assumption B is satisfied and, hence, due to Proposition 2.15, there are no arbitrages of the
first kind. Conversely, suppose that there are no arbitrages of the first kind but Assumption B fails
to hold. Then, due to Remark 2.7 together with Lemma 2.14, we have that D = ∅. Theorem 2.16
then implies that there exist arbitrages of the first kind, thus leading to a contradiction. We have thus
proved the following Corollary.

Corollary 2.18. The financial market
(
S0, S1, . . . , SN

)
is viable, i.e. it does not admit arbitrages of

the first kind (see Definition 2.9), if and only if Assumption B holds.

As we have seen in Proposition 2.10, if there exist an increasing profit then there exist an arbitrage
of the first kind. We now show that the absence of arbitrages of the first kind is a strictly stronger
no-arbitrage-type condition than the absence of increasing profits by means of a simple example,
which we adapt from Example 3.4 of [12]. Let N = d = 1, r ≡ 0 and let the real-valued process
S = (St)0≤t≤T be given as the solution to the following SDE:

dSt =
St√
t
dt+ St dWt S0 = s ∈ (0,∞)

Using the notations introduced in Section 1, we have µt = 1/
√
t, for t ∈ [0, T ], and σ ≡ 1. Clearly,

condition (6) is satisfied, since we trivially have µt = σtθt, where θt = 1/
√
t, for t ∈ [0, T ].

Proposition 2.4 then implies that there are no increasing profits. However, θ /∈ L2
loc (W ), since

12



∫ t
0
θ2
u du =

∫ t
0

1
u
du = ∞ for all t ∈ [0, T ]. Corollary 2.18 then implies that there exist arbitrages of

the first kind4.
We want to emphasise that, due to Theorem 2.16, the diffusion-based model introduced in Section

1 allows us to meaningfully consider portfolio optimisation problems as soon as Assumption B holds.
However, nothing guarantees that an Equivalent Local Martingale Measure (ELMM) exists, as shown
in the following classical example, already considered in [11], [18] and [24]. Other instances of
models for which an ELMM does not exist arise in the context of diverse financial markets, see
Chapter II of [14].

Example. Let us suppose that F = FW , where W is a standard Brownian motion (d = 1), and let
N = 1. Assume that S0

t ≡ 1 for all t ∈ [0, T ] and that the real-valued process S = (St)0≤t≤T is given
by the solution to the following SDE:

dSt =
1

St
dt+ dWt S0 = s ∈ (0,∞) (12)

It is well-known that the process S is a Bessel process of dimension three (see e.g. [39], Section
XI.1). So, St is P -a.s. strictly positive and finite valued for all t ∈ [0, T ]. Furthermore, the market
price of risk process θ is given by θt = σ−1

t µt = 1
St

, for t ∈ [0, T ]. Since S is continuous, we clearly

have
∫ T

0
θ2
t dt < ∞ P -a.s., meaning that Assumption B is satisfied. Hence, due to Corollary 2.18,

there are no arbitrages of the first kind.
However, for this particular financial market model there exists no ELMM. We prove this claim

arguing by contradiction. Suppose that Q is an ELMM for S and denote by ZQ =
(
ZQ
t

)
0≤t≤T its

density process. Then, due to the martingale representation theorem (see [25], Theorem 3.4.15 and
Problem 3.4.16), we can represent ZQ as follows:

ZQ
t = E

(
−
∫
λ dW

)
t

for t ∈ [0, T ]

where λ = (λt)0≤t≤T is a progressively measurable process such that
∫ T

0
λ2
t dt < ∞ P -a.s. Due to

Girsanov’s theorem, the process WQ =
(
WQ
t

)
0≤t≤T defined by WQ

t := Wt +
∫ t

0
λu du, for t ∈ [0, T ],

is a Brownian motion under Q. Hence, the process S satisfies the following SDE under Q:

dSt =

(
1

St
− λt

)
dt+ dWQ

t S0 = s (13)

Since Q is an ELMM for S, the SDE (13) must have a zero drift term, i.e. it must be λt = 1
St

= θt for
all t ∈ [0, T ]. Then, a simple application of Itô’s formula gives:

ZQ
t = E

(
−
∫

1

S
dW

)
t

= exp

(
−
∫ t

0

1

Su
dWu −

1

2

∫ t

0

1

S2
u

du

)
=

1

St

4More precisely, note that the process
(∫ t

0
θ2udu

)
0≤t≤T =

(∫ t
0

1
udu

)
0≤t≤T jumps to infinity instantaneously at t = 0.

Hence, as explained in Remark 2.11, the model considered in the present example allows not only for arbitrages of the
first kind, but also for strong arbitrage opportunities. Of course, there are instances where strong arbitrage opportunities
are precluded but still there exist arbitrages of the first kind. We refer the interested reader to [4] for an example of such a
model, where the price of a risky asset is modelled as the exponential of a Brownian bridge (see also [30], example 3.1)
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However, since S is a Bessel process of dimension three, it is well-known that the process 1/S =

(1/St)0≤t≤T is a strict local martingale, i.e. it is a local martingale but not a true martingale (see
e.g. [39], Exercise XI.1.16). Clearly, this contradicts the fact that Q is a well-defined probability
measure5, thus showing that there cannot exist an ELMM for S.

As the above Example shows, Assumption B does not guarantee the existence of an ELMM for the
financial market

(
S0, S1, . . . , SN

)
. It is well-known that, in the case of continuous-path processes,

the existence of an ELMM is equivalent to the No Free Lunch with Vanishing Risk (NFLVR) no-
arbitrage-type condition, see [10] and [13]. Furthermore, (NFLVR) holds if and only if both (NUPBR)
and the classical no-arbitrage (NA) condition hold (see Section 3 of [10], Lemma 2.2 of [23] and
Proposition 4.2 of [24]), where, recalling that V̄ π

0 = 1, the (NA) condition precludes the existence of
a trading strategy π ∈ A such that P

(
V̄ π
T ≥ 1

)
= 1 and P

(
V̄ π
T > 1

)
> 0. This implies that, even

if Assumption B holds, the classical (NFLVR) condition may fail to hold. However, due to Theorem
2.16, the financial market may still be viable.

Remark 2.19 (On the martingale property of Ẑ). It is important to note that Assumption B does
not suffice to ensure that Ẑ is a true martingale. Well-known sufficient conditions for this to hold
include the Novikov and Kazamaki criteria, see e.g. [39], Section VIII.1. If Ẑ is a true martingale
we have then E

[
ẐT
]

= 1 and we can define a probability measure Q̂ ∼ P by letting dQ̂
dP

:= ẐT .

The martingale Ẑ represents then the density process of Q̂ with respect to P , i.e. Ẑt = E
[
dQ̂
dP

∣∣Ft]
P -a.s. for all t ∈ [0, T ], and a process M = (Mt)0≤t≤T is a local Q̂-martingale if and only if the
process ẐM =

(
ẐtMt

)
0≤t≤T is a local P -martingale. Due to Proposition 2.8-(a), this implies that

if E
[
ẐT
]

= 1 then the process S̄ :=
(
S̄1, . . . , S̄N

)′ is a local Q̂-martingale or, in other words,
the probability measure Q̂ is an ELMM. Girsanov’s theorem then implies that the process Ŵ =(
Ŵt

)
0≤t≤T defined by Ŵt := Wt +

∫ t
0
θu du for t ∈ [0, T ] is a Brownian motion under Q̂. Since the

dynamics of S :=
(
S1, . . . , SN

)′ in (2) can be rewritten as:

dSt = diag (St)1 rt dt+ diag (St)σt
(
θt dt+ dWt

)
S0 = s

the process S̄ :=
(
S̄1, . . . , S̄N

)′ satisfies the following SDE under the measure Q̂:

dS̄t = diag
(
S̄t
)
σt dŴt S̄0 = s

We want to point out that the process Ẑ =
(
Ẑt
)

0≤t≤T represents the density process with respect to
P of the minimal martingale measure, when the latter exists, see e.g. [19]. Again, we emphasise that
in this paper we do not assume neither that E

[
ẐT
]

= 1 nor that an ELMM exists.

We close this Section with a simple technical result which turns out to be useful in the following.

Lemma 2.20. Suppose that Assumption B holds. Then an RN -valued progressively measurable pro-
cess π = (πt)0≤t≤T belongs to A if and only if

∫ T
0
‖σ′t πt‖

2 dt <∞ P -a.s.

5Alternatively, one can show that the probability measures Q and P fail to be equivalent by arguing as follows. Let
us define the stopping time τ := inf {t ∈ [0, T ] : St = 0}. The process S = (St)0≤t≤T is a Bessel process of dimension
three under P and, hence, we have P (τ <∞) = 0. However, since the process S = (St)0≤t≤T is aQ-Brownian motion,
we clearly have Q (τ <∞) > 0. This contradicts the assumption that Q and P are equivalent.
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Proof. We only need to show that Assumption B and
∫ T

0
‖σ′t πt‖

2 dt <∞ P -a.s. together imply that∫ T
0
|π′t (µt − rt1)| dt <∞ P -a.s. This follows easily from the Cauchy-Schwarz inequality, in fact:

∫ T

0

|π′t (µt − rt1)| dt =

∫ T

0

|π′t σt θt| dt ≤
(∫ T

0

‖σ′t πt‖
2
dt

) 1
2
(∫ T

0

‖θt‖2 dt

) 1
2

<∞ P -a.s.

3 The growth-optimal portfolio and the numeraire portfolio

As we have seen in the last Section, the diffusion-based model introduced in Section 1 can repre-
sent a viable financial market even if the traditional (NFLVR) no-arbitrage-type condition fails to hold
or, equivalently, if an ELMM for

(
S0, S1, . . . , SN

)
fails to exist. Let us now consider an interesting

portfolio optimisation problem, namely the problem of maximising the growth rate, formally defined
as follows (compare [14], [34] and [36], Section 10.2).

Definition 3.1. For a trading strategy π ∈ A the growth rate process gπ = (gπt )0≤t≤T is defined as the
drift term in the SDE satisfied by the process log V π = ( log V π

t )0≤t≤T , i.e. the term gπt in the SDE:

d log V π
t = gπt dt+ π′tσt dWt (14)

A trading strategy π∗ ∈ A (and the corresponding portfolio process V π∗) is said to be growth-optimal
if gπ

∗
t ≥ gπt P -a.s. for all t ∈ [0, T ] for any trading strategy π ∈ A.

The terminology “growth rate” is motivated by the fact that:

lim
T→∞

1

T

(
log V π

T −
∫ T

0

gπt dt

)
= 0 P -a.s.

under “controlled growth” of a := σσ′, i.e. lim
T→∞

(
log log T
T 2

∫ T
0
ai,it dt

)
= 0 P -a.s. (see [14], Section 1).

In the context of the general diffusion-based financial market described in Section 1, the following
Theorem gives an explicit description of the growth-optimal strategy π∗ ∈ A.

Theorem 3.2. Suppose that Assumption B holds. Then there exists an unique growth-optimal strategy
π∗ ∈ A, explicitly given by:

π∗t = (σt σ
′
t)
−1
σt θt (15)

where the process θ = (θt)0≤t≤T is the market price of risk introduced in Definition 2.5. The corre-
sponding Growth-Optimal Portfolio (GOP) V π∗ =

(
V π∗
t

)
0≤t≤T satisfies the following dynamics:

dV π∗
t

V π∗
t

= rt dt+ θ′t (θt dt+ dWt) (16)

Proof. Let π ∈ A be a trading strategy. A simple application of Itô’s formula gives that:

d log V π
t = gπt dt+ π′t σt dWt (17)
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where gπt := rt + π′t (µt − rt1)− 1
2
π′t σt σ

′
t πt, for t ∈ [0, T ]. Since the matrix σtσ′t is P -a.s. positive

definite for all t ∈ [0, T ], due to Assumption A, a trading strategy π∗ ∈ A is growth-optimal (in the
sense of Definition 3.1) if and only if, for every t ∈ [0, T ], π∗t solves the first order condition obtained
by differentiating gπt with respect to πt. This means that π∗t must satisfy the following condition, for
every t ∈ [0, T ]:

µt − rt1− σtσ′tπ∗t = 0

Due to Assumption A, the matrix σtσ′t is P -a.s. invertible for all t ∈ [0, T ]. So, using Definition 2.5,
we get the following unique optimiser π∗t :

π∗t = (σt σ
′
t)
−1

(µt − rt1) = (σt σ
′
t)
−1
σt θt for t ∈ [0, T ]

We now need to verify that π∗ = (π∗t )0≤t≤T ∈ A. Due to Lemma 2.20, it suffices to check that∫ T
0
‖σ′tπ∗t ‖

2 dt <∞ P -a.s. To show this, it is enough to notice that:∫ T

0

‖σ′t π∗t ‖
2
dt =

∫ T

0

(µt − rt1)′ (σt σ
′
t)
−1

(µt − rt1) dt =

∫ T

0

‖θt‖2 dt <∞ P -a.s.

due to Assumption B. We have thus shown that π∗ maximises the growth rate and is an admissible
trading strategy. Finally, note that equation (17) leads to:

d log V π∗

t = gπ
∗

t dt+ (π∗t )
′ σt dWt

= rt dt+ θ′t σ
′
t (σt σ

′
t)
−1

(µt − rt1) dt− 1

2
θ′t σ

′
t (σt σ

′
t)
−1
σt σ

′
t (σt σ

′
t)
−1
σt θt dt

+ θ′t σ
′
t (σt σ

′
t)
−1
σt dWt

=
(
rt +

1

2
‖θt‖2

)
dt+ θ′tdWt

where the last equality is obtained by replacing θt with its expression as given in Definition 2.5.
Equation (16) then follows by a simple application of Itô’s formula.

Remark 3.3.

1. Results analogous to Theorem 3.2 can be found in Section 2 of [16], Example 3.7.9 of [26], Sec-
tion 2.7 of [33], Section 3.2 of [34], Section 10.2 of [36] and Proposition 2 of [38]. However, in
all these works the growth-optimal strategy has been derived for the specific case of a complete
financial market, i.e. under the additional assumptions that d = N and F = FW (see Section
4). Here, we have instead chosen to deal with the more general situation described in Section
1, i.e. with a general incomplete market. Furthermore, we rigorously check the admissibility of
the candidate growth-optimal strategy.

2. Due to Corollary 2.18, Assumption B is equivalent to the absence of arbitrages of the first kind.
However, it is worth emphasising that Theorem 3.2 does not rely on the existence of an ELMM
for the financial market

(
S0, S1, . . . , SN

)
.
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3. Due to equation (16), the discounted GOP process V̄ π∗ =
(
V̄ π∗
t

)
0≤t≤T satisfies the following

dynamics:
dV̄ π∗

t

V̄ π∗
t

= ‖θt‖2 dt+ θ′t dWt (18)

We can immediately observe that the drift coefficient is the “square” of the diffusion coefficient,
thus showing that there is a strong link between instantaneous rate of return and volatility in
the GOP dynamics. Moreover, the market price of risk plays a key role in the GOP dynamics
(to this effect, compare the discussion in [36], Chapter 13). Observe also that Assumption
B is equivalent to requiring that the solution V̄ π∗ to the SDE (18) is well-defined and P -a.s.
finite valued, meaning that the discounted GOP does not explode in the finite time interval
[0, T ]. Indeed, it can be shown, and this holds true in general semimartingale models, that the
existence of a non-explosive GOP is in fact equivalent to the absence of arbitrages of the first
kind, as can be deduced by combining Theorem 2.16 and [24], Theorem 4.12 (see also [7] and
[19]).

Example (The classical Black-Scholes model). In order to develop an intuitive feeling for some of
the concepts introduced in this Section, let us briefly consider the case of the classical Black-Scholes
model, i.e. a financial market represented by (S0, S), with rt ≡ r for some r ∈ R for all t ∈ [0, T ]

and S = (St)0≤t≤T a real-valued process satisfying the following SDE:

dSt = St µ dt+ St σ dWt S0 = s ∈ (0,∞)

with µ ∈ R and σ ∈ R \ {0}. The market price of risk process θ = (θt)0≤t≤T is then given by
θt ≡ θ := µ−r

σ
for all t ∈ [0, T ]. Due to Theorem 3.2, the GOP strategy π∗ = (π∗t )0≤t≤T is then given

by π∗t ≡ π∗ := µ−r
σ2 , for all t ∈ [0, T ]. In this special case, Novikov’s condition implies that Ẑ is a true

martingale, yielding the density process of the (minimal) martingale measure Q̂ (see Remark 2.19).

The remaining part of this Section is devoted to the derivation of some basic but fundamental
properties of the GOP. Let us start with the following simple Proposition.

Proposition 3.4. Suppose that Assumption B holds. Then the discounted GOP process V̄ π∗ =(
V̄ π∗
t

)
0≤t≤T is related to the martingale deflator Ẑ =

(
Ẑt
)

0≤t≤T as follows, for all t ∈ [0, T ]:

V̄ π∗

t =
1

Ẑt

Proof. Assumption B ensures that the process Ẑ =
(
Ẑt
)

0≤t≤T is P -a.s. strictly positive and well-
defined as a martingale deflator. Furthermore, due to Theorem 3.2, the growth-optimal strategy π∗ ∈
A exists and is explicitly given by (15). Now it suffices to observe that, due to equations (18) and (8):

V̄ π∗

t = exp

(∫ t

0

θ′udWu +
1

2

∫ t

0

‖θu‖2 du

)
=

1

Ẑt

We then immediately obtain the following Corollary.
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Corollary 3.5. Suppose that Assumption B holds. Then, for any trading strategy π ∈ A, the process
V̂ π =

(
V̂ π
t

)
0≤t≤T defined by V̂ π

t := V π
t /V

π∗
t , for t ∈ [0, T ], is a non-negative local martingale and,

hence, a supermartingale.

Proof. Passing to discounted quantities, we have V̂ π
t = V π

t /V
π∗
t = V̄ π

t /V̄
π∗
t . The claim then follows

by combining Proposition 3.4 with part (b) of Proposition 2.8.

In order to give a better interpretation to the preceding Corollary, let us give the following Defini-
tion, which we adapt from [5], [24] and [35].

Definition 3.6. An admissible portfolio process V π̃ =
(
V π̃
t

)
0≤t≤T has the numeraire property if all

admissible portfolio processes V π = (V π
t )0≤t≤T , when denominated in units of V π̃, are supermartin-

gales, i.e. if the process V π/V π̃ =
(
V π
t /V

π̃
t

)
0≤t≤T is a supermartingale for all π ∈ A.

The following Proposition shows that if a numeraire portfolio exists then it is also unique.

Proposition 3.7. The numeraire portfolio process V π̃ =
(
V π̃
t

)
0≤t≤T is unique (in the sense of in-

distinguishability). Furthermore, there exists an unique trading strategy π̃ ∈ A such that V π̃ is the
numeraire portfolio, up to a null subset of Ω× [0, T ].

Proof. Let us first prove that if M = (Mt)0≤t≤T is a P -a.s. strictly positive supermartingale such that
1
M

is also a supermartingale then Mt = M0 P -a.s. for all t ∈ [0, T ]. In fact, for any 0 ≤ s ≤ t ≤ T :

1 =
Ms

Ms

≥ 1

Ms

E [Mt|Fs] ≥ E

[
1

Mt

∣∣∣Fs]E [Mt|Fs] ≥
1

E [Mt|Fs]
E [Mt|Fs] = 1 P -a.s.

where the first inequality follows from the supermartingale property of M , the second from the su-
permartingale property of 1

M
and the third from Jensen’s inequality. Hence, both M and 1

M
are

martingales. Furthermore, since we have E
[

1
Mt

∣∣Fs] = 1
E[Mt|Fs] and the function x 7→ x−1 is strictly

convex on (0,∞), again Jensen’s inequality implies that Mt is Fs-measurable, for all 0 ≤ s ≤ t ≤ T .
For s = 0, this implies that Mt = E [Mt|F0] = M0 P -a.s. for all t ∈ [0, T ].

Suppose now there exist two elements π̃1, π̃2 ∈ A such that both V π̃1 and V π̃2 have the numeraire
property. By Definition 3.6, both V π̃1

/V π̃2 and V π̃2
/V π̃1 are P -a.s. strictly positive supermartin-

gales. Hence, it must be V π̃1

t = V π̃2

t P -a.s. for all t ∈ [0, T ], due to the general result just proved, and
thus V π̃1 and V π̃2 are indistinguishable (see [25], Section 1.1). In order to show that the two trading
strategies π̃1 and π̃2 coincide, let us write as follows:

E

[∫ T

0

(
V̄ π̃1

t π̃1
t − V̄ π̃2

t π̃2
t

)′
σt σ

′
t

(
V̄ π̃1

t π̃1
t − V̄ π̃2

t π̃2
t

)
dt

]
= E

[〈∫
V̄ π̃1

(π̃1)′σ dW −
∫
V̄ π̃2

(π̃2)′σ dW

〉
T

]
= E

[〈
V̄ π̃1 − V̄ π̃2〉

T

]
= 0

where we have used equation (5) and the fact that V̄ π̃1 and V̄ π̃2 are indistinguishable. Since, due to
the standing Assumption A, the matrix σtσ′t is P -a.s. positive definite for all t ∈ [0, T ] and V̄ π̃1 and
V̄ π̃2 are indistinguishable, this implies that it must be π̃t := π̃1

t = π̃2
t P ⊗ `-a.e., thus showing the

uniqueness of the strategy π̃ ∈ A.
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Remark 3.8. Note that the first part of Proposition 3.7 does not rely on any modelling assumption
and, hence, is valid in full generality for any semimartingale model (compare also [5], Section 4).

The following fundamental Corollary makes precise the relation between the GOP, the numeraire
portfolio and the viability of the financial market.

Corollary 3.9. The financial market is viable, in the sense of Definition 2.9, if and only if the nu-
meraire portfolio exists. Furthermore, if Assumption B holds, then the growth-optimal portfolio V π∗

coincides with the numeraire portfolio V π̃ and the corresponding trading strategies π∗, π̃ ∈ A coin-
cide, up to a null subset of Ω× [0, T ].

Proof. If the financial market is viable, Corollary 2.18 implies that Assumption B is satisfied. Hence,
due to Theorem 3.2 together with Corollary 3.5 and Definition 3.6, the GOP exists and possesses
the numeraire property. Conversely, suppose that the numeraire portfolio V π̃ exists. Then, due to
Definition 3.6, the process V π/V π̃ =

(
V π
t /V

π̃
t

)
0≤t≤T is a supermartingale, for every π ∈ A. In

turn, this implies that E
[
V̄ π
T /V̄

π̃
T

]
≤ E

[
V̄ π

0 /V̄
π̃

0

]
= 1, for all π ∈ A, thus showing that the set{

V̄ π
T /V̄

π̃
T : π ∈ A

}
is bounded in L1 and, hence, also in probability. Since the multiplication by the

fixed random variable V̄ π̃
T does not affect the boundedness in probability, this implies that the NUPBR

condition holds. Hence, due to Theorem 2.16, the financial market is viable. The second assertion
follows immediately from Proposition 3.7.

We emphasise again that all these results hold true even in the absence of an ELMM. For further
comments on the relations between the GOP and the numeraire portfolio in a general semimartingale
setting, we refer to Section 3 of [24] (see also [19] in the continuous semimartingale case).

Remark 3.10 (On the GOP-denominated market). Due to Corollary 3.9, the GOP coincides with
the numeraire portfolio. Moreover, Corollary 3.5 shows that all portfolio processes V π, for π ∈ A,
are local martingales when denominated in units of the GOP V π∗ . This means that, if we express
all price processes in terms of the GOP, then the original probability measure P becomes an ELMM
for the GOP-denominated market. Hence, due to the fundamental theorem of asset pricing (see [10]),
the classical (NFLVR) no-arbitrage-type condition holds for the GOP-denominated market. This
observation suggests that the GOP-denominated market may be regarded as the minimal and natural
setting for dealing with valuation and portfolio optimisation problems, even when there does not exist
an ELMM for the original market (S0, S1, . . . , SN) and this fact will be exploited in Section 5. In a
related context, see also [7].

According to [33], [34], [35] and [36], let us give the following Definition.

Definition 3.11. For any portfolio process V π, the process V̂ π =
(
V̂ π
t

)
0≤t≤T , defined as V̂ π

t :=

V π
t /V

π∗
t for t ∈ [0, T ], is called benchmarked portfolio process. A trading strategy π ∈ A and

the associated portfolio process V π are said to be fair if the benchmarked portfolio process V̂ π is a
martingale. We denote by AF the set of all fair trading strategies in A.

According to Definition 3.11, the result of Corollary 3.5 amounts to saying that all benchmarked
portfolio processes are positive supermartingales. Note that every benchmarked portfolio process
is a local martingale but not necessarily a true martingale. This amounts to saying that there may
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exist unfair portfolios, namely portfolios for which the benchmarked value process is a strict local
martingale. The concept of benchmarking will become relevant in Section 5.1, where we shall discuss
its role for valuation purposes.

Remark 3.12 (Other optimality properties of the GOP). Besides maximising the growth-rate, the
GOP enjoys several other optimality properties, many of which are illustrated in the monograph [36].
In particular, it has been shown that the GOP maximises the long-term growth rate among all admis-
sible portfolios, see e.g. [35]. It is also well-known that the GOP is the solution to the problem of
maximising an expected logarithmic utility function, see Section 5.3 and also [24]. Other interesting
properties of the GOP include the impossibility of relative arbitrages (or systematic outperformance)
with respect to it, see [14] and [35], and, under suitable assumptions on the behavior of market partic-
ipants, two-fund separation results and connections with mean-variance efficiency, see e.g. [33] and
[34]. Other properties of the growth-optimal strategy are also illustrated in the recent paper [32].

4 Replicating strategies and completeness of the financial market

Without relying on the existence of an ELMM for the financial market
(
S0, S1, . . . , SN

)
, in this

Section we start laying the foundations for the valuation of arbitrary contingent claims. More specif-
ically, in this Section we shall be concerned with the study of replicating (or hedging) strategies,
formally defined as follows.

Definition 4.1. Let H be a positive F-measurable contingent claim (i.e. random variable) such that
E
[
ẐT
S0
T
H
]
<∞. If there exists a couple

(
vH , πH

)
∈ (0,∞)×A such that V vH ,πH

T = H P -a.s., then

we say that πH is a replicating strategy for H .

The following Proposition illustrates some basic features of a replicating strategy .

Proposition 4.2. Suppose that Assumption B holds. Let H be a positive F-measurable contingent
claim such that E

[
ẐT
S0
T
H
]
< ∞ and suppose there exists a trading strategy πH ∈ A such that

V vH ,πH

T = H P -a.s. for vH = E
[
ẐT
S0
T
H
]
. Then the following hold:

(a) the strategy πH is fair, in the sense of Definition 3.11;

(b) the strategy πH is unique, up to a null subset of Ω× [0, T ].

Moreover, for every (v, π) ∈ (0,∞)×A such that V v,π
T = H P -a.s., we have V v,π

t ≥ V vH ,πH

t P -a.s.
for all t ∈ [0, T ]. In particular, there cannot exist an element π̄ ∈ A such that V v̄,π̄

T = H P -a.s. for
some v̄ < vH .

Proof. Corollary 3.5 implies that the benchmarked portfolio process V̂ vH ,πH =
(
V vH ,πH

t /V π∗
t

)
0≤t≤T

is a supermartingale. Moreover, it is also a martingale, due to the fact that:

V̂ vH ,πH

0 = vH = E

[
ẐT
S0
T

H

]
= E

[
V vH ,πH

T

V π∗
T

]
= E

[
V̂ vH ,πH

T

]
(19)
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where the third equality follows from Proposition 3.4. Part (a) then follows from Definition 3.11. To
prove part (b), let π̂ ∈ A be a trading strategy such that V vH ,π̂

T = H P -a.s. for vH = E
[
ẐT
S0
T
H
]
. Rea-

soning as in (19), the benchmarked portfolio process V̂ vH ,π̂ =
(
V vH ,π̂
t /V π∗

t

)
0≤t≤T is a martingale.

Together with the fact that V̂ vH ,π̂
T = ẐT

S0
T
H = V̂ vH ,πH

T P -a.s., this implies that V vH ,π̂
t = V vH ,πH

t P -a.s.
for all t ∈ [0, T ]. Part (b) then follows by the same arguments as in the second part of the proof of
Proposition 3.7. To prove the last assertion let (v, π) ∈ (0,∞)×A be such that V v,π

T = H P -a.s. Due
to Corollary 3.5, the benchmarked portfolio process V̂ v,π =

(
V v,π
t /V π∗

t

)
0≤t≤T is a supermartingale.

So, for any t ∈ [0, T ], due to part (a):

V̂ vH ,πH

t = E
[
V̂ vH ,πH

T

∣∣Ft] = E

[
ẐT
S0
T

H
∣∣∣Ft] = E

[
V̂ v,π
T

∣∣Ft] ≤ V̂ v,π
t P -a.s.

and, hence, V vH ,πH

t ≤ V v,π
t P -a.s. for all t ∈ [0, T ]. For t = 0, this implies that v ≥ vH , thus

completing the proof.

Remark 4.3. Observe that Proposition 4.2 does not exclude the existence of a trading strategy π̌ ∈ A
such that V v̌,π̌

T = H P -a.s. for some v̌ > vH . However, one can argue that it may not be optimal to
invest in such a strategy in order to replicate H , since it requires a larger initial investment and leads
to an unfair portfolio process. Indeed, Proposition 4.2 shows that vH = E

[
ẐT
S0
T
H
]

is the minimal
initial capital starting from which one can replicate the contingent claim H . To this effect, see also
Remark 1.6.4 in [26].

A particularly nice and interesting situation arises when the financial market is complete, mean-
ing that every contingent claim can be perfectly replicated starting from some initial investment by
investing in the financial market according to some admissible self-financing trading strategy.

Definition 4.4. The financial market
(
S0, S1, . . . , SN

)
is said to be complete if for any positive F-

measurable contingent claim H such that E
[
ẐT
S0
T
H
]
<∞ there exists a couple

(
vH , πH

)
∈ (0,∞)×

A such that V vH ,πH

T = H P -a.s.

In general, the financial market described in Section 1 is incomplete and, hence, not all contingent
claims can be perfectly replicated. The following Theorem gives a sufficient condition for the financial
market to be complete. The proof is similar to that of Theorem 1.6.6 in [26], except that we avoid the
use of any ELMM, since the latter may fail to exist in our general context. This allows us to highlight
the fact that the concept of market completeness does not depend on the existence of an ELMM.

Theorem 4.5. Suppose that Assumption B holds. Assume furthermore that F = FW , where FW is
the P -augmented Brownian filtration associated to W , and that d = N . Then the financial market(
S0, S1, . . . , SN

)
is complete. More precisely, any positive F-measurable contingent claim H with

E
[
ẐT
S0
T
H
]
< ∞ can be replicated by a fair portfolio process V vH ,πH , with vH = E

[
ẐT
S0
T
H
]

and

πH ∈ AF .

Proof. Let H be a positive F = FWT -measurable random variable such that E
[
ẐT
S0
T
H
]
< ∞ and

define the martingale M = (Mt)0≤t≤T by Mt := E
[
ẐT
S0
T
H
∣∣Ft], for t ∈ [0, T ]. According to the
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martingale representation theorem (see [25], Theorem 3.4.15 and Problem 3.4.16) there exists an
RN -valued progressively measurable process ϕ = (ϕt)0≤t≤T such that

∫ T
0
‖ϕt‖2 dt <∞ P -a.s. and:

Mt = M0 +

∫ t

0

ϕ′u dWu for all t ∈ [0, T ] (20)

Define then the positive process V = (Vt)0≤t≤T by Vt :=
S0
t

Ẑt
Mt, for t ∈ [0, T ]. Recalling that S0

0 = 1,

we have vH := V0 = M0 = E
[
ẐT
S0
T
H
]
. The standing Assumption A, together with the fact that

d = N , implies that the matrix σt is P -a.s. invertible for all t ∈ [0, T ]. Then, an application of the
product rule together with equations (8) and (20), gives:

d

(
Vt
S0
t

)
= d

(
Mt

Ẑt

)
= Mt d

1

Ẑt
+

1

Ẑt
dMt + d

〈
M,

1

Ẑ

〉
t

=
Mt

Ẑt
θ′t dWt +

Mt

Ẑt
‖θt‖2 dt+

1

Ẑt
ϕ′t dWt +

1

Ẑt
ϕ′t θt dt

=
Vt
S0
t

(
θt +

ϕt
Mt

)′
θt dt+

Vt
S0
t

(
θt +

ϕt
Mt

)′
dWt

=
Vt
S0
t

(
θt +

ϕt
Mt

)′
σ−1
t (µt − rt1) dt+

Vt
S0
t

(
θt +

ϕt
Mt

)′
σ−1
t σt dWt

=
Vt
S0
t

N∑
i=1

πH,it

dS̄it
S̄it

(21)

where πHt =
(
πH,1t , . . . , πH,Nt

)′
:= (σ′t)

−1 (θt+ ϕt
Mt

)
, for all t ∈ [0, T ]. The last line of (21) shows that

the process V̄ := V/S0 = (Vt/S
0
t )0≤t≤T can be represented as a stochastic exponential as in part (b)

of Definition 1.2. Hence, it remains to check that the process πH satisfies the integrability conditions
of part (a) of Definition 1.2. Due to Lemma 2.20, it suffices to verify that

∫ T
0

∥∥σ′t πHt ∥∥2
dt <∞ P -a.s.

This can be shown as follows:∫ T

0

∥∥σ′t πHt ∥∥2
dt =

∫ T

0

∥∥∥∥θt +
ϕt
Mt

∥∥∥∥2

dt ≤ 2

∫ T

0

‖θt‖2 dt+ 2

∥∥∥∥ 1

M

∥∥∥∥
∞

∫ T

0

‖ϕt‖2 dt <∞ P -a.s.

due to Assumption B and because
∥∥ 1
M

∥∥
∞ := max

t∈[0,T ]

∣∣∣ 1
Mt

∣∣∣ <∞ P -a.s. due to the continuity of M . We

have thus shown that πH is an admissible trading strategy, i.e. πH ∈ A, and the associated portfolio
process V vH ,πH =

(
V vH ,πH

t

)
0≤t≤T satisfies V vH ,πH

T = VT = H P -a.s. with vH = E
[
ẐT
S0
T
H
]
.

Furthermore, since V̂ vH ,πH

t = V vH ,πH

t /V π∗
t = Vt Ẑt/S

0
t = Mt, we also have πH ∈ AF .

We close this Section with some important comments on the result of Theorem 4.5.

Remark 4.6.

1. We want to emphasise that Theorem 4.5 does not rely on the existence of an ELMM for the
financial market

(
S0, S1, . . . , SN

)
. This amounts to saying that the completeness of a financial

market does not necessarily imply that some mild forms of arbitrage opportunities are a priori
excluded. Typical “textbook versions” of the so-called second Fundamental Theorem of Asset
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Pricing state that the completeness of the financial market is equivalent to the uniqueness of
the Equivalent (Local) Martingale Measure, loosely speaking. However, Theorem 4.5 shows
that we can have a complete financial market even when no E(L)MM exists at all. The fact
that absence of arbitrage opportunities and market completeness should be regarded as distinct
concepts has been already pointed out in a very general setting in [20]. The completeness of
the financial market model will play a crucial role in Section 5, where we shall be concerned
with valuation and hedging problems in the absence of an ELMM.

2. Following the reasoning in the proof of Theorem 1.6.6 of [26], but avoiding the use of an ELMM
(which in our context may fail to exist), it is possible to prove a converse result to Theorem 4.5.
More precisely, if we assume that F = FW and that every F-measurable positive random
variable H with vH := E

[
ẐT
S0
T
H
]
< ∞ admits a trading strategy πH ∈ A such that V vH ,πH

T =

H P -a.s., then we necessarily have d = N . Moreover, it can be shown that the completeness of
the financial market is equivalent to the existence of a unique martingale deflator and this holds
true even in more general models based on continuous semimartingales. For details, we refer
the interested reader to Chapter 4 of [15].

5 Contingent claim valuation without ELMMs

The main goal of this Section is to show how one can proceed to the valuation of contingent claims
in financial market models which may not necessarily admit an ELMM. Since the non-existence of
a properly defined martingale measure precludes the whole machinery of risk-neutral pricing, this
appears as a non-trivial issue. Here we concentrate on the situation of a complete financial market,
as considered at the end of the last Section (see Section 6 for possible extensions to incomplete
markets). A major focus of this Section is on providing a mathematical justification for the so-called
real-world pricing approach, according to which the valuation of contingent claims is performed
under the original (or real-world) probability measure P using the GOP as the natural numeraire.

Remark 5.1. In this Section we shall be concerned with the problem of pricing contingent claims.
However, one should be rather careful with the terminology and distinguish between a value assigned
to a contingent claim and its prevailing market price. Indeed, the former represents the outcome
of an a priori chosen valuation rule, while the latter is the price determined by supply and demand
forces in the financial market. Since the choice of the valuation criterion is a subjective one, the two
concepts of value and market price do not necessarily coincide. This is especially true when arbitrage
opportunities and/or bubble phenomena are not excluded from the financial market. In this Section,
we use the word “price” only to be consistent with the standard terminology in the literature.

5.1 Real-world pricing and the benchmark approach

We start by introducing the concept of real-world price, which is at the core of the so-called
benchmark approach to the valuation of contingent claims.
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Definition 5.2. Let H be a positive F-measurable contingent claim such that E
[
ẐT
S0
T
H
]
< ∞. If

there exists a fair portfolio process V vH ,πH =
(
V vH ,πH

t

)
0≤t≤T such that V vH ,πH

T = H P -a.s., for
some

(
vH , πH

)
∈ (0,∞)×AF , then the real-world price of H at time t, denoted as ΠH

t , is defined as
follows:

ΠH
t := V π∗

t E

[
H

V π∗
T

∣∣∣Ft] (22)

for every t ∈ [0, T ] and where V π∗ =
(
V π∗
t

)
0≤t≤T denotes the GOP.

The terminology real-world price is used to indicate that, unlike in the traditional setting, all
contingent claims are valued under the original real-world probability measure P and not under an
equivalent risk-neutral measure. This allows us to extend the valuation of contingent claims to fi-
nancial markets for which no ELMM may exist. The concept of real-world price gives rise to the
so-called benchmark approach to the valuation of contingent claims in view of the fact that the GOP
plays the role of the natural numeraire portfolio (compare Remark 3.10). For this reason we shall refer
to it as the benchmark portfolio. We refer the reader to [34], [35] and [36] for a thorough presentation
of the benchmark approach.

Clearly, if there exists a fair portfolio process V vH ,πH such that V vH ,πH

T = H P -a.s. for
(
vH , πH

)
∈

(0,∞) × AF , then the real-world price coincides with the value of the fair replicating portfolio. In
fact, for all t ∈ [0, T ]:

ΠH
t = V π∗

t E

[
H

V π∗
T

∣∣∣Ft] = V π∗

t E

[
V vH ,πH

T

V π∗
T

∣∣∣Ft] = V vH ,πH

t P -a.s.

where the last equality is due to the fairness of V vH ,πH , see Definition 3.11. Moreover, the second
part of Proposition 4.2 gives an economic rationale for the use of the real-world pricing formula (22),
since it shows that the latter gives the value of the least expensive replicating portfolio. This property
has been called the law of the minimal price (see [35], Section 4). The following simple Proposition
immediately follows from Theorem 4.5.

Proposition 5.3. Suppose that Assumption B holds. Let H be a positive F-measurable contingent
claim such that E

[
ẐT
S0
T
H
]
<∞. Then, under the assumptions of Theorem 4.5, the following hold:

(a) there exists a fair portfolio process V vH ,πH =
(
V vH ,πH

t

)
0≤t≤T such that V vH ,πH

T = H P -a.s.;

(b) the real-world price (at time t = 0) is given by ΠH
0 = E

[
H
V π∗
T

]
= E

[
ẐT
S0
T
H
]

= vH .
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Remark 5.4.

1. Notice that, due to Proposition 3.4, the real-world pricing formula (22) can be rewritten as
follows, for any t ∈ [0, T ]:

ΠH
t =

S0
t

Ẑt
E

[
ẐT
S0
T

H
∣∣∣Ft] (23)

Suppose now that E
[
ẐT
]

= 1, so that Ẑ represents the density process of the ELMM Q̂ (see
Remark 2.19). Due to the Bayes formula, equation (23) can then be rewritten as follows:

ΠH
t = S0

t E
Q̂

[
H

S0
T

∣∣∣Ft]
and we recover the usual risk-neutral pricing formula (see also [35], Section 5, and [36], Section
10.4). In this sense, the real-world pricing approach can be regarded as a consistent extension
of the usual risk-neutral valuation approach to a financial market for which an ELMM may fail
to exist.

2. Let us suppose for a moment that H and the final value of the GOP V π∗
T are conditionally

independent given the σ-field Ft, for all t ∈ [0, T ]. The real-world pricing formula (22) can
then be rewritten as follows:

ΠH
t = V π∗

t E

[
1

V π∗
T

∣∣∣Ft]E [H|Ft] =: P (t, T )E [H|Ft] (24)

where P (t, T ) denotes the fair value at time t of a zero coupon bond with maturity T (i.e. a
contingent claim which pays the deterministic amount 1 at time T ). This shows that, under
the (rather strong) assumption of conditional independence, one can recover the well-known
actuarial pricing formula (see also [34], Corollary 3.4, and [35], Section 5).

3. We want to point out that part (b) of Proposition 5.3 can be easily generalised to any time
t ∈ [0, T ]; compare for instance Proposition 10 in [16].

In view of the above Remarks, it is interesting to observe how several different valuation ap-
proaches which have been widely used in finance and insurance, such as risk-neutral pricing and
actuarial pricing, are both generalised and unified under the concept of real-world pricing. We refer
to Section 10.4 of [36] for related comments on the unifying aspects of the benchmark approach.

5.2 The upper hedging price approach

The upper hedging price (or super-hedging price) is a classical approach to the valuation of con-
tingent claims (see e.g. [26], Section 5.5.3). The intuitive idea is to find the smallest initial capital
which allows one to obtain a final wealth which is greater or equal than the payoff at maturity of a
given contingent claim.

Definition 5.5. Let H be a positive F-measurable contingent claim. The upper hedging price U (H)

of H is defined as follows:

U (H) := inf
{
v ∈ [0,∞) : ∃ π ∈ A such that V v,π

T ≥ H P -a.s.
}

with the usual convention inf ∅ =∞.
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The next Proposition shows that, in a complete diffusion-based financial market, the upper hedg-
ing price takes a particularly simple and natural form. This result is an immediate consequence of the
supermartingale property of benchmarked portfolio processes together with the completeness of the
financial market but, for the reader’s convenience, we give a detailed proof.

Proposition 5.6. Let H be a positive F-measurable contingent claim such that E
[
ẐT
S0
T
H
]
< ∞.

Then, under the assumptions of Theorem 4.5, the upper hedging price of H is explicitly given by:

U (H) = E

[
ẐT
S0
T

H

]
(25)

Proof. In order to prove (25), we show both directions of inequality.

(≥): If {v ∈ [0,∞) : ∃ π ∈ A such that V v,π
T ≥ H P -a.s.} = ∅ then we have E

[
ẐT
S0
T
H
]
< U (H) =

∞. So, let us assume there exists a couple (v, π) ∈ [0,∞) × A such that V v,π
T ≥ H P -

a.s. Under Assumption B, due to Corollary 3.5, the benchmarked portfolio process V̂ v,π =(
V v,π
t /V π∗

t

)
0≤t≤T is a supermartingale and so, recalling also Proposition 3.4:

v = V̂ v,π
0 ≥ E

[
V̂ v,π
T

]
= E

[
ẐT
S0
T

V v,π
T

]
≥ E

[
ẐT
S0
T

H

]
This implies that U (H) ≥ E

[
ẐT
S0
T
H
]
.

(≤): Under the present assumptions, Theorem 4.5 yields the existence of a couple
(
vH , πH

)
∈

(0,∞)×AF such that V vH ,πH

T = H P -a.s. and where vH = E
[
ẐT
S0
T
H
]
. Hence:

E

[
ẐT
S0
T

H

]
= vH ∈

{
v ∈ [0,∞) : ∃ π ∈ A such that V v,π

T ≥ H P -a.s.
}

This implies that U (H) ≤ E
[
ẐT
S0
T
H
]
.

An analogous result can be found in Proposition 5.3.2 of [26] (compare also [14], Section 10). We
want to point out that Definition 5.5 can be easily generalised to an arbitrary time point t ∈ [0, T ] in
order to define the upper hedging price at t ∈ [0, T ]. The result of Proposition 5.6 carries over to this
slightly generalised setting with essentially the same proof, see e.g. Theorem 3 in [16].

Remark 5.7.

1. Notice that, due to Proposition 3.4, equation (25) can be rewritten as follows:

U (H) = E

[
ẐT
S0
T

H

]
= E

[
H

V π∗
T

]
This shows that the upper hedging price can be obtained by computing the expectation of the
benchmarked value (in the sense of Definition 3.11) of the contingent claim H under the real-
world probability measure P and thus coincides with the real-world price (evaluated at t = 0),
see part (b) of Proposition 5.3.
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2. Suppose that E
[
ẐT
]

= 1. As explained in Remark 2.19, the process Ẑ represents then the
density process of the ELMM Q̂. In this case, the upper hedging price U (H) yields the usual
risk-neutral valuation formula, i.e. we have U (H) = EQ̂ [H/S0

T ].

5.3 Utility indifference valuation

The real-world valuation approach has been justified so far on the basis of replication arguments,
as can be seen from Propositions 5.3 and 5.6. We now present a different approach which uses the
idea of utility indifference valuation. To this effect, let us first consider the problem of maximising
an expected utility function of the discounted final wealth. Recall that, due to Theorem 2.16, we
can meaningfully consider portfolio optimisation problems even in the absence of an ELMM for(
S0, S1, . . . , SN

)
.

Definition 5.8. We call utility function U a function U : [0,∞)→ [0,∞) such that:

1. U is strictly increasing and strictly concave, continuously differentiable;

2. lim
x→∞

U ′ (x) = 0 and lim
x→0

U ′ (x) =∞.

Problem (expected utility maximisation). Let U be as in Definition 5.8 and let v ∈ (0,∞). The
expected utility maximisation problem consists in the following:

maximise E
[
U
(
V̄ v,π
T

)]
over all π ∈ A (26)

The following Lemma shows that, in the case of a complete financial market, there is no loss of
generality in restricting our attention to fair strategies only. Recall that, due to Definition 3.11, AF
denotes the set of all fair trading strategies in A.

Lemma 5.9. Under the assumptions of Theorem 4.5, for any utility functionU and for any v ∈ (0,∞),
the following holds:

sup
π∈A

E
[
U
(
V̄ v,π
T

)]
= sup

π∈AF
E
[
U
(
V̄ v,π
T

)]
(27)

Proof. It is clear that “≥” holds in (27), since AF ⊆ A. To show the reverse inequality, let us
consider an arbitrary strategy π ∈ A. The benchmarked portfolio process V̂ v,π =

(
V v,π
t /V π∗

t

)
0≤t≤T

is a supermartingale, due to Corollary 3.5, and hence:

v′ := E

[
ẐT
S0
T

V v,π
T

]
= E

[
V v,π
T

V π∗
T

]
≤ v

with equality holding if and only if π ∈ AF . Let v̄ := v − v′ ≥ 0. It is clear that the positive
F-measurable random variable H̄ := V̄ v,π

T + v̄/ẐT satisfies E
[
ẐT H̄

]
= v and so, due to Theorem

4.5, there exists an element πH ∈ AF such that V̄ v,πH

T = H̄ ≥ V̄ v,π
T P -a.s., with equality holding if

and only if the strategy π is fair. We then have, due to the monotonicity of U :

E
[
U
(
V̄ v,π
T

)]
≤ E

[
U
(
H̄
)]

= E
[
U
(
V̄ v,πH

T

)]
≤ sup

π∈AF
E
[
U
(
V̄ v,π
T

)]
Since π ∈ A was arbitrary, this shows the “≤” inequality in (27).
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In particular, Lemma 5.9 shows that, in the context of portfolio optimisation problems, restricting
the class of admissible trading strategies to fair admissible strategies is not only “reasonable”, as
argued in Chapter 11 of [36], but exactly yields the same optimal value of the problem in its original
formulation. The following Theorem gives the solution to Problem (26), in the case of a complete
financial market. Related results can be found in Lemma 5 of [16] and Theorem 3.7.6 of [26].

Theorem 5.10. Let the assumptions of Theorem 4.5 hold and let U be a utility function. For v ∈
(0,∞), assume that the functionW (y) := E

[
ẐT I

(
y/V̄ v,π∗

T

)]
is finite for every y ∈ (0,∞), where

I is the inverse function of U ′. Then the function W is invertible and the optimal discounted final
wealth V̄ v,πU

T for Problem (26) is explicitly given as follows:

V̄ v,πU

T = I

(
Y (v)

V̄ v,π∗

T

)
(28)

where Y denotes the inverse function ofW . The optimal strategy πU ∈ AF is given by the replicating
strategy for the right hand side of (28).

Proof. Note first that, due to Definition 5.8, the function U ′ admits a strictly decreasing continuous
inverse function I : [0,∞] → [0,∞] with I (0) = ∞ and I (∞) = 0. We have then the following
well-known result from convex analysis (see e.g. [26], Section 3.4):

U
(
I (y)

)
− yI (y) ≥ U (x)− xy for 0 ≤ x <∞, 0 < y <∞ (29)

As in Lemma 3.6.2 of [26], it can be shown that the function W : [0,∞] → [0,∞] is strictly de-
creasing and continuous and, hence, it admits an inverse function Y : [0,∞] → [0,∞]. Since
W
(
Y (v)

)
= v, for any v ∈ (0,∞), Theorem 4.5 shows that there exists a fair strategy πU ∈ AF

such that V̄ v,πU

T = I
(
Y (v) /V̄ v,π∗

T

)
P -a.s. Furthermore, for any π ∈ AF , the inequality (29) with

y = Y (v) /V̄ v,π∗

T and x = V̄ v,π
T gives that:

E
[
U
(
V̄ v,πU

T

)]
= E

[
U

(
I

(
Y (v)

V̄ v,π∗

T

))]
≥ E

[
U
(
V̄ v,π
T

)]
+ Y (v)E

[
1

V̄ v,π∗

T

(
I

(
Y (v)

V̄ v,π∗

T

)
− V̄ v,π

T

)]
= E

[
U
(
V̄ v,π
T

)]
+ Y (v)E

[
1

V̄ v,π∗

T

(
V̄ v,πU

T − V̄ v,π
T

)]
= E

[
U
(
V̄ v,π
T

)]
thus showing that, based also on Lemma 5.9, πU ∈ AF solves Problem (26).

Remark 5.11.

1. It is important to observe that Theorem 5.10 does not rely on the existence of an ELMM.
This amounts to saying that we can meaningfully solve expected utility maximisation problems
even when no ELMM exists or, equivalently, when the traditional (NFLVR) no-arbitrage-type
condition fails to hold. The crucial assumption for the validity of Theorem 5.10 is Assumption
B, which ensures that the financial market is viable, in the sense that there are no arbitrages of
the first kind (compare Theorem 2.16 and Corollary 2.18).
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2. The assumption that the functionW (y) := E
[
ẐT I

(
y/V̄ v,π∗

T

)]
be finite for every y ∈ (0,∞)

can be replaced by suitable technical conditions on the utility function U and on the processes
µ and σ (see Remarks 3.6.8 and 3.6.9 in [26] for more details).

Having solved in general the expected utility maximisation problem, we are now in a position to
give the definition of the utility indifference price, in the spirit of [9] (compare also [16], Section 4.2,
[36], Definition 11.4.1, and [38], Definition 10)6. Until the end of this Section, we let U be a utility
function, in the sense of Definition 5.8, such that all expected values below exist and are finite.

Definition 5.12. Let H be a positive F-measurable contingent claim and v ∈ (0,∞). For p ≥ 0, let
us define, for a given utility function U , the function WU

p : [0, 1]→ [0,∞) as follows:

WU
p (ε) := E

[
U
(

(v − εp) V̄ πU

T + εH̄
)]

(30)

where πU ∈ AF solves Problem (26) for the utility function U . The utility indifference price of the
contingent claim H is defined as the value p (H) which satisfies the following condition:

lim
ε→0

WU
p(H) (ε)−WU

p(H) (0)

ε
= 0 (31)

Definition 5.12 is based on a “marginal rate of substitution” argument, as first pointed out in [9].
In fact, p (H) can be thought of as the value at which an investor is marginally indifferent between
the two following alternatives:

• invest an infinitesimal part εp (H) of the initial endowment v into the contingent claim H and
invest the remaining wealth

(
v − εp (H)

)
according to the optimal trading strategy πU ;

• ignore the contingent claim H and simply invest the whole initial endowment v according to
the optimal trading strategy πU .

The following simple result, essentially due to [9] (compare also [36], Section 11.4), gives a
general representation of the utility indifference price p (H).

Proposition 5.13. Let U be a utility function and H a positive F-measurable contingent claim. The
utility indifference price p (H) can be represented as follows:

p (H) =
E
[
U ′
(
V̄ v,πU

T

)
H̄
]

E
[
U ′
(
V̄ v,πU

T

)
V̄ πU
T

] (32)

Proof. Using equation (30), let us write the following Taylor’s expansion:

WU
p (ε) = E

[
U
(
V̄ v,πU

T

)
+ εU ′

(
V̄ v,πU

T

)(
H̄ − p V̄ πU

T

)
+ o (ε)

]
= WU

p (0) + εE
[
U ′
(
V̄ v,πU

T

)(
H̄ − p V̄ πU

T

)]
+ o (ε)

(33)

6In [16] and [38] the authors generalise Definition 5.12 to an arbitrary time t ∈ [0, T ]. However, since the results and
the techniques remain essentially unchanged, we only consider the basic case t = 0.
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If we insert (33) into (31) we get:

E
[
U ′
(
V̄ v,πU

T

)(
H̄ − p (H) V̄ πU

T

)]
= 0

from which (32) immediately follows.

By combining Theorem 5.10 with Proposition 5.13, we can easily prove the following Corollary,
which yields an explicit and “universal” representation of the utility indifference price p (H) (compare
also [16], Theorem 8, [36], Section 11.4, and [38], Proposition 11).

Corollary 5.14. Let H be a positive F-measurable contingent claim. Then, under the assumptions
of Theorem 5.10, for any utility function U the utility indifference price coincides with the real-world
price (at t = 0), namely:

p (H) = E

[
H

V π∗
T

]
Proof. The present assumptions imply that, due to (28), we can rewrite (32) as follows:

p (H) =

E

[
U ′
(
I
(
Y(v)

V̄ v,π∗
T

))
H̄

]
E

[
U ′
(
I
(
Y(v)

V̄ v,π∗
T

))
V̄ πU
T

] =
E
[
Y(v)

V̄ v,π∗
T

H̄
]

E
[
Y(v)

V̄ v,π∗
T

V̄ πU
T

] =

1
v
E
[

H̄
V̄ π∗
T

]
1
v

V̄ πU
0

V̄ π∗
0

= E

[
H

V π∗
T

]
(34)

where the third equality uses the fact that πU ∈ AF .

Remark 5.15. As can be seen from Definition 5.12, the utility indifference price p (H) depends a
priori both on the initial endowment v and on the chosen utility function U . The remarkable result of
Corollary 5.14 consists in the fact that, under the hypotheses of Theorem 5.10, the utility indifference
price p (H) represents an “universal” pricing rule, since it depends neither on v nor on the utility
function U and, furthermore, it coincides with the real-world pricing formula.

6 Conclusions, extensions and further developments

In this work, we have studied a general class of diffusion-based models for financial markets,
weakening the traditional assumption that the (NFLVR) no-arbitrage-type condition holds or, equiv-
alently, that there exists an ELMM. We have shown that the financial market may still be viable, in
the sense that arbitrages of the first kind are not permitted, as soon as the market price of risk process
satisfies a crucial square-integrability condition. In particular, we have shown that the failure of the
existence of an ELMM does not preclude the completeness of the financial market and the solvability
of portfolio optimisation problems. Furthermore, in the context of a complete market, contingent
claims can be consistently evaluated by relying on the real-world pricing formula.

We have chosen to work in the context of a multi-dimensional diffusion-based modelling struc-
ture since this allows us to consider many popular and widely employed financial models and, at the
same time, avoid some of the technicalities which arise in more general settings. However, most of
the results of the present paper carry over to a more general and abstract setting based on continuous
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semimartingales, as shown in Chapter 4 of [15]. In particular, the latter work also deals with the ro-
bustness of the absence of arbitrages of the first kind with respect to several changes in the underlying
modelling structure, namely changes of numéraire, absolutely continuous changes of the reference
probability measure and restrictions and enlargements of the reference filtration.

The results of Section 5.3 on the valuation of contingent claims have been obtained under the
assumption of a complete financial market. These results, namely that the real-world pricing formula
(22) coincides with the utility indifference price, can be extended to the more general context of an
incomplete financial market, provided that we choose a logarithmic utility function.

Proposition 6.1. Suppose that Assumption B holds. Let H be a positive F-measurable contingent
claim such that E

[
ẐT
S0
T
H
]
< ∞ and let U (x) = log (x). Then, the log-utility indifference price

p log (H) is explicitly given as follows:

p log (H) = E

[
H

V π∗
T

]
Proof. Note first that U (x) = log (x) is a well-defined utility function in the sense of Definition 5.8.
Let us first consider Problem (26) for U (x) = log (x). Using the notations introduced in the proof
of Theorem 5.10, the function I is now given by I (x) = x−1, for x ∈ (0,∞). Due to Proposition
3.4, we have W (y) = v/y for all y ∈ (0,∞) and, hence, Y (v) = 1. Then, equation (28) implies
that V̄ v,πU

T = V̄ v,π∗

T , meaning that the growth-optimal strategy π∗ ∈ AF solves Problem (26) for a
logarithmic utility function. The same computations as in (34) imply then the following:

p log (H) =
E
[

H̄

V̄ v,π∗
T

]
E
[

1

V̄ v,π∗
T

V̄ π∗
T

] = E

[
H

V π∗
T

]

The interesting feature of Proposition 6.1 is that the claim H does not need to be replicable.
However, Proposition 6.1 depends on the choice of the logarithmic utility function and does not hold
for a generic utility function U , unlike the “universal” result shown in Corollary 5.14. Of course, the
result of Proposition 6.1 is not surprising, due to the well-known fact that the growth-optimal portfolio
solves the log-utility maximisation problem, see e.g. [5], [7] and [24].

Remark 6.2. Following Section 11.3 of [36], let us suppose that the discounted GOP process V̄ π∗ =(
V̄ π∗
t

)
0≤t≤T has the Markov property under P . Under this assumption, one can obtain an analogous

version of Theorem 5.10 also in the case of an incomplete financial market model (see [36], Theorem
11.3.3). In fact, the first part of the proof of Theorem 5.10 remains unchanged. One then proceeds
by considering the martingale M = (Mt)0≤t≤T defined by Mt := E

[
ẐT I

(
Y (v) /V̄ v,π∗

T

)∣∣Ft] =

E
[
1/V̄ π∗

T I
(
Y (v) /V̄ v,π∗

T

)∣∣Ft], for t ∈ [0, T ]. Due to the Markov property, Mt can be represented as
g
(
t, V̄t

π∗), for every t ∈ [0, T ]. If the function g is sufficiently smooth one can apply Itô’s formula and
express M as the value process of a benchmarked fair portfolio. If one can shown that the resulting
strategy satisfies the admissibility conditions (see Definition 1.2), Proposition 5.13 and Corollary 5.14
can then be applied to show that the real-world pricing formula coincides with the utility indifference
price (for any utility function!). Always in a diffusion-based Markovian context, a detailed analysis
to this effect can also be found in the recent paper [40].
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We want to point out that the modeling framework considered in this work is not restricted to
stock markets, but can also be applied to the valuation of fixed income products. In particular, in
[6] and [36], Section 10.4, the authors develop a version of the Heath-Jarrow-Morton approach to
the modeling of the term structure of interest rates without relying on the existence of a martingale
measure. In this context, they derive a real-world version of the classical Heath-Jarrow-Morton drift
condition, relating the drift and diffusion terms in the system of SDEs describing the evolution of for-
ward interest rates. Unlike in the traditional setting, this real-world drift condition explicitly involves
the market price of risk process.

Finally, we want to mention that the concept of real-world pricing has also been studied in the
context of incomplete information models, meaning that investors are supposed to have access only
to the information contained in a sub-filtration of the original full-information filtration F, see [16],
[37] and [38].
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