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Abstract The recent financial crisis has led to so-called multi-curve models for the
term structure. Here we study a multi-curve extension of short rate models where,
in addition to the short rate itself, we introduce short rate spreads. In particular,
we consider a Gaussian factor model where the short rate and the spreads are sec-
ond order polynomials of Gaussian factor processes. This leads to an exponentially
quadratic model class that is less well known than the exponentially affine class.
In the latter class the factors enter linearly and for positivity one considers square
root factor processes. While the square root factors in the affine class have more
involved distributions, in the quadratic class the factors remain Gaussian and this
leads to various advantages, in particular for derivative pricing. After some prelimi-
naries on martingale modeling in the multi-curve setup, we concentrate on pricing of
linear and optional derivatives. For linear derivatives, we exhibit an adjustment fac-
tor that allows one to pass from pre-crisis single curve values to the corresponding
post-crisis multi-curve values.
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1 Introduction

The recent financial crisis has heavily impacted the financial market and the fixed
income markets in particular. Key features put forward by the crisis are counter-
party and liquidity/funding risk. In interest rate derivatives the underlying rates are
typically Libor/Euribor. These are determined by a panel of banks and thus reflect
various risks in the interbank market, in particular counterparty and liquidity risk.
The standard no-arbitrage relations between Libor rates of different maturities have
broken down and significant spreads have been observed between Libor rates of dif-
ferent tenors, as well as between Libor and OIS swap rates, where OIS stands for
Overnight Indexed Swap. For more details on this issue see equations (5)-(7) and the
paragraph following them, as well as the paper by Bormetti et al. (2015) and a cor-
responding version in this volume. This has led practitioners and academics alike to
construct multi-curve models where future cash flows are generated through curves
associated to the underlying rates (typically the Libor, one for each tenor structure),
but are discounted by another curve.

For the pre-crisis single-curve setup various interest rate models have been pro-
posed. Some of the standard model classes are: the short rate models, the instan-
taneous forward rate models in an Heath-Jarrow-Morton (HJM) setup; the market
forward rate models (Libor market models). In this paper we consider a possible
multi-curve extension of the short rate model class that, with respect to the other
model classes, has in particular the advantage of leading more easily to a Markovian
structure. Other multi-curve extensions of short rate models have appeared in the
literature such as Kijima et al. (2009), Kenyon (2010), Filipović and Trolle (2013)
and Morino and Runggaldier (2014). The present paper considers an exponentially
quadratic model, whereas the models in the mentioned papers concern mainly the
exponentially affine framework, except for Kijima et al. (2009) in which the expo-
nentially quadratic models are mentioned. More details on the difference between
the exponentially affine and exponentially quadratic short rate models will be pro-
vided below.

Inspired by a credit risk analogy, but also by a common practice of deriving
multi-curve quantities by adding a spread over the corresponding single-curve risk-
free quantities, we shall consider, next to the short rate itself, a short rate spread to
be added to the short rate, one for each possible tenor structure. Notice that these
spreads are added from the outset.

To discuss the basic ideas in an as simple as possible way, we consider just a
two-curve model, namely with one curve for discounting and one for generating
future cash flows; in other words, we shall consider a single tenor structure. We
shall thus concentrate on the short rate rt and a single short rate spread st and,
for their dynamics, introduce a factor model. In the pre-crisis single-curve setting
there are two basic factor model classes for the short rate: the exponentially affine
and the exponentially quadratic model classes. Here we shall concentrate on the
less common quadratic class with Gaussian factors. In the exponentially affine class
where, to guarantee positivity of rates and spreads, one considers generally square
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root models for the factors, the distribution of the factors is χ2. In the exponentially
quadratic class the factors have a more convenient Gaussian distribution.

The paper is structured as follows. In the preliminary section 2 we mainly discuss
issues related to martingale modeling. In section 3 we introduce the multi-curve
Gaussian, exponentially quadratic model class. In section 4 we deal with pricing
of linear interest rate derivatives and, finally, in section 5 with nonlinear/optional
interest rate derivatives.

2 Preliminaries

2.1 Discount curve and collateralization.

In the presence of multiple curves, the choice of the curve for discounting the fu-
ture cash flows, and a related choice of the numeraire for the standard martingale
measure used for pricing, in other words, the question of absence of arbitrage, be-
comes non-trivial (see e.g. the discussion in Kijima and Muromachi (2015)). To
avoid issues of arbitrage, one should possibly have a common discount curve to
be applied to all future cash flows independently of the tenor. A choice, which has
been widely accepted and became practically standard, is given by the OIS-curve
T 7→ p(t,T ) = pOIS(t,T ) that can be stripped from OIS rates, namely the fair rates
in an OIS. The arguments justifying this choice and which are typically evoked
in practice, are the fact that the majority of the traded interest rate derivatives are
nowadays being collateralized and the rate used for remuneration of the collateral
is exactly the overnight rate, which is the rate the OIS are based on. Moreover, the
overnight rate bears very little risk due to its short maturity and therefore can be
considered relatively risk-free. In this context we also point out that prices, cor-
responding to fully collateralized transactions, are considered as clean prices (this
terminology was first introduced by Crépey (2015) and Crépey et al. (2014)). Since
collateralization is by now applied in the majority of cases, one may thus ignore
counterparty and liquidity risk between individual parties when pricing interest rate
derivatives, but cannot ignore the counterparty and liquidity risk in the interbank
market as a whole. These risks are often jointly referred to as interbank risk and they
are main drivers of the multiple-curve phenomenon, as documented in the literature
(see e.g. Crépey and Douady (2013), Filipović and Trolle (2013) and Gallitschke
et al. (2014)). We shall thus consider only clean valuation formulas, which take into
account the multiple-curve issue. Possible ways to account for counterparty risk and
funding issues between individual counterparties in a contract are, among others, to
follow a global valuation approach that leads to nonlinear derivative valuation (see
Brigo et al. (2012), Brigo et al. (2013) and other references therein, and in particular
Pallavicini and Brigo (2013) for a global valuation approach applied specifically to
interest rate modeling), or to consider various valuation adjustments that are gen-
erally computed on top of the clean prices (see Crépey (2015)). A fully nonlinear
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valuation is preferable, but is more difficult to achieve. On the other hand, valuation
adjustments are more consolidated and also used in practice and this gives a further
justification to still look for clean prices. Concerning the explicit role of collateral
in the pricing of interest rate derivatives, we refer to the above-mentioned paper by
Pallavicini and Brigo (2013).

2.2 Martingale measures

The fundamental theorem of asset pricing links the economic principle of absence of
arbitrage with the notion of a martingale measure. As it is well known, this is a mea-
sure, under which the traded asset prices, expressed in units of a same numeraire,
are local martingales. Models for interest rate markets are typically incomplete so
that absence of arbitrage admits many martingale measures. A common approach
in interest rate modeling is to perform martingale modeling, namely to model the
quantities of interest directly under a generic martingale measure; one has then to
perform a calibration in order to single out the specific martingale measure of in-
terest. The modeling under a martingale measure now imposes some conditions on
the model and, in interest rate theory, a typical such condition is the Heath-Jarrow-
Morton (HJM) drift condition.

Starting from the OIS bonds, we shall first derive a suitable numeraire and then
consider as martingale measure a measure Q under which not only the OIS bonds,
but also the FRA contracts seen as basic quantities in the bond market, are local
martingales when expressed in units of the given numeraire. To this basic market
one can then add various derivatives imposing that their prices, expressed in units
of the numeraire, are local martingales under Q.

Having made the choice of the OIS curve T 7→ p(t,T ) as the discount curve, con-
sider the instantaneous forward rates f (t,T ) := − ∂

∂T log p(t,T ) and let rt = f (t, t)
be the corresponding short rate at the generic time t. Define the OIS bank account
as

Bt = exp
(∫ t

0
rsds

)
(1)

and, as usual, the standard martingale measure Q as the measure, equivalent to the
physical measure P, that is associated to the bank account Bt as numeraire. Hence
the arbitrage-free prices of all assets, discounted by Bt , have to be local martingales
with respect to Q. For derivative pricing, among them also FRA pricing, it is often
more convenient to use, equivalently, the forward measure QT associated to the OIS
bond p(t,T ) as numeraire. The two measures Q and QT are related by their Radon-
Nikodym density process

d QT

d Q

∣∣∣
Ft

=
p(t,T )

Bt p(0,T )
0≤ t ≤ T. (2)
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As already mentioned, we shall follow the traditional martingale modeling, whereby
the model dynamics are assigned under the martingale measure Q. This leads to
defining the OIS bond prices according to

p(t,T ) = EQ
{

exp
[
−
∫ T

t
rudu

]
|Ft

}
(3)

after having specified the Q−dynamics of r.
Coming now to the FRA contracts, recall that they concern a forward rate agree-

ment, established at a time t for a future interval [T,T +∆ ], where at time T +∆

the interest corresponding to a floating rate is received in exchange for the interest
corresponding to a fixed rate R. There exist various possible conventions concern-
ing the timing of the payments. Here we choose payment in arrears, which in this
case means at time T +∆ . Typically, the floating rate is given by the Libor rate and,
having assumed payments in arrears, we also assume that the rate is fixed at the
beginning of the interval of interest, here at T . Recall that for expository simplicity
we had reduced ourselves to a two-curve setup involving just a single Libor for a
given tenor ∆ . The floating rate received at T +∆ is therefore the rate L(T ;T,T +∆),
fixed at the inception time T . For a unitary notional, and using the (T +∆)−forward
measure QT+∆ as the pricing measure, the arbitrage-free price at t ≤ T of the FRA
contract is then

PFRA(t;T,T +∆ ,R) = ∆ p(t,T +∆)ET+∆ {L(T ;T,T +∆)−R |Ft} , (4)

where ET+∆ denotes the expectation with respect to the measure QT+∆ . From this
expression it follows that the value of the fixed rate R that makes the contract fair at
time t is given by

Rt = ET+∆ {L(T ;T,T +∆) |Ft} := L(t;T,T +∆) (5)

and we shall call L(t;T,T +∆) the forward Libor rate. Note that L(·;T,T +∆) is a
QT+∆−martingale by construction.

In view of developing a model for L(T ;T,T + ∆), recall that, by absence of
arbitrage arguments, the classical discrete compounding forward rate at time t for
the future time interval [T,T +∆ ] is given by

F(t;T,T +∆) =
1
∆

(
p(t,T )

p(t,T +∆)
−1
)
,

where p(t,T ) represents here the price of a risk-free zero coupon bond. This expres-
sion can be justified also by the fact that it represents the fair fixed rate in a forward
rate agreement, where the floating rate received at T +∆ is

F(T ;T,T +∆) =
1
∆

(
1

p(T,T +∆)
−1
)

(6)

and we have
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F(t;T,T +∆) = ET+∆ {F(T ;T,T +∆) |Ft} . (7)

This makes the forward rate coherent with the risk-free bond prices, where the latter
represent the expectation of the market concerning the future value of money.

Before the financial crisis, L(T ;T,T +∆) was assumed to be equal to F(T ;T,T +
∆), an assumption that allowed for various simplifications in the determination of
derivative prices. After the crisis L(T ;T,T +∆) is no longer equal to F(T ;T,T +∆)
and what one considers for F(T ;T,T +∆) is in fact the OIS discretely compounded
rate, which is based on the OIS bonds, even though the OIS bonds are not necessarily
equal to the risk-free bonds (see sections 1.3.1 and 1.3.2 of Grbac and Runggaldier
(2015) for more details on this issue). In particular, the Libor rate L(T ;T,T +∆)
cannot be expressed by the right hand side of (6). The fact that L(T ;T,T +∆) 6=
F(T ;T,T +∆) implies by (5) and (7) that also L(t;T,T +∆) 6= F(t;T,T +∆) for
all t ≤ T and this leads to a Libor-OIS spread L(t;T,T +∆)−F(t;T,T +∆).

Following some of the recent literature (see e.g. Kijima et al. (2009), Crépey
et al. (2012), Filipović and Trolle (2013)), one possibility is now to keep the clas-
sical relationship (6) also for L(T ;T,T +∆) thereby replacing however the bonds
p(t,T ) by fictitious risky ones p̄(t,T ) that are assumed to be affected by the same
factors as the Libor rates. Such a bond can be seen as an average bond issued by a
representative bank from the Libor group and it is therefore sometimes referred to
in the literature as a Libor bond. This leads to

L(T ;T,T +∆) =
1
∆

(
1

p̄(T,T +∆)
−1
)
. (8)

Recall that, for simplicity of exposition, we consider a single Libor for a single
tenor ∆ and so also a single fictitious bond. In general, one has one Libor and one
fictitious bond for each tenor, i.e. L∆ (T ;T,T +∆) and p̄∆ (T,T +∆). Note that we
shall model the bond prices p̄(t,T ), for all t and T with t ≤ T , even though only
the prices p̄(T,T +∆), for all T , are needed in relation (8). Moreover, keeping in
mind that the bonds p̄(t,T ) are fictitious, they do not have to satisfy the boundary
condition p̄(T,T ) = 1, but we still assume this condition in order to simplify the
modeling.

To derive a dynamic model for L(t;T,T +∆), we may now derive a dynamic
model for p̄(t,T +∆), where we have to keep in mind that the latter is not a traded
quantity. Inspired by a credit-risk analogy, but also by a common practice of deriving
multi-curve quantities by adding a spread over the corresponding single-curve (risk-
free) quantities, which in this case is the short rate rt , let us define then the Libor
(risky) bond prices as

p̄(t,T ) = EQ
{

exp
[
−
∫ T

t
(ru + su)du

]
|Ft

}
, (9)

with st representing the short rate spread. In case of default risk alone, st corresponds
to the hazard rate/default intensity, but here it corresponds more generally to all the
factors affecting the Libor rate, namely besides credit risk, also liquidity risk etc.
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Notice also that the spread is introduced here from the outset. Having for simplicity
considered a single tenor ∆ and thus a single p̄(t,T ), we shall also consider only a
single spread st . In general, however, one has a spread s∆

t for each tenor ∆ .
We need now a dynamical model for both rt and st and we shall define this model

directly under the martingale measure Q (martingale modeling).

3 Short rate model

3.1 The model

As mentioned, we shall consider a dynamical model for rt and the single spread st
under the martingale measure Q that, in practice, has to be calibrated to the market.
For this purpose we shall consider a factor model with several factors driving rt and
st .

The two basic factor model classes for the short rate in the pre-crisis single-
curve setup, namely the exponentially affine and the exponentially quadratic model
classes, both allow for flexibility and analytical tractability and this in turn allows
for closed or semi-closed formulas for linear and optional interest rate derivatives.
The former class is usually better known than the latter, but the latter has its own
advantages. In fact, for the exponentially affine class one would consider rt and st
as given by a linear combination of the factors and so, in order to obtain positivity,
one has to consider a square root model for the factors. On the other hand, in the
Gaussian exponentially quadratic class, one considers mean reverting Gaussian fac-
tor models, but at least some of the factors in the linear combination for rt and st
appear as a square. In this way the distribution of the factors remains always Gaus-
sian; in a square-root model it is a non-central χ2−distribution. Notice also that the
exponentially quadratic models can be seen as dual to the square root exponentially
affine models.

In the pre-crisis single-curve setting, the exponentially quadratic models have
been considered e.g. in El Karoui et al. (1992), Pelsser (1997), Gombani and Rung-
galdier (2001), Leippold and Wu (2002), Chen et al. (2004), and Gaspar (2004).
However, since the pre-crisis exponentially affine models are more common, there
have also been more attempts to extend them to a post-crisis multi-curve setting (for
an overview and details see e.g. Grbac and Runggaldier (2015)). A first extension
of exponentially quadratic models to a multi-curve setting can be found in Kijima
et al. (2009) and the present paper is devoted to a possibly full extension.

Let us now present the model for rt and st , where we consider not only the short
rate rt itself, but also its spread st to be given by a linear combination of the factors,
where at least some of the factors appear as a square. To keep the presentation
simple, we shall consider a small number of factors and, in order to model also a
possible correlation between rt and st , the minimal number of factors is three. It also
follows from some of the econometric literature that a small number of factors may
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suffice to adequately model most situations (see also Duffee (1999) and Duffie and
Gârleanu (2001)).

Given three independent affine factor processes Ψ i
t , i = 1,2,3, having under Q

the Gaussian dynamics

dΨ
i

t =−bi
Ψ

i
t dt +σ

i dwi
t , i = 1,2,3, (10)

with bi,σi > 0 and wi
t , i = 1,2,3, independent Q−Wiener processes, we let{

rt = Ψ 1
t +(Ψ 2

t )
2

st = κΨ 1
t +(Ψ 3

t )
2 , (11)

where Ψ 1
t is the common systematic factor allowing for instantaneous correlation

between rt and st with correlation intensity κ and Ψ 2
t and Ψ 3

t are the idiosyncratic
factors. Other factors may be added to drive st , but the minimal model containing
common and idiosyncratic components requires three factors, as explained above.
The common factor is particularly important because we want to take into account
the realistic feature of non-zero correlation between rt and st in the model.

Remark 3.1 The zero mean-reversion level is here considered only for convenience
of simpler formulas, but can be easily taken to be positive, so that short rates and
spreads can become negative only with small probability (see Kijima and Muro-
machi (2015) for an alternative representation of the spreads in terms of Gaussian
factors that guarantees the spreads to remain nonnegative and still allows for cor-
relation between rt and st ). Note, however, that given the current market situation
where the observed interest rates are very close to zero and sometimes also nega-
tive, even models with negative mean-reversion level have been considered, as well
as models allowing for regime-switching in the mean reversion parameter.

Remark 3.2 For the short rate itself one could also consider the model rt = φt +
Ψ 1

t + (Ψ 2
t )

2 where φt is a deterministic shift extension (see Brigo and Mercurio
(2006)) that allows for a good fit to the initial term structure in short rate models
even with constant model parameters.

In the model (11) we have included a linear term Ψ 1
t which may lead to negative

values of rates and spreads, although only with small probability in the case of
models of the type (10) with a positive mean reversion level. The advantage of
including this linear term is more generality and flexibility in the model. Moreover,
it allows to express p̄(t,T ) in terms of p(t,T ) multiplied by a factor. This property
will lead to an adjustment factor by which one can express post-crisis quantities in
terms of corresponding pre-crisis quantities, see Morino and Runggaldier (2014) in
which this idea has been firstly proposed in the context of exponentially affine short
rate models for multiple curves.
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3.2 Bond prices (OIS and Libor bonds)

In this subsection we derive explicit pricing formulas for the OIS bonds p(t,T ) as
defined in (3) and the fictitious Libor bonds p̄(t,T ) as defined in (9). Thereby, rt and
st are supposed to be given by (11) with the factor processes Ψ i

t evolving under the
standard martingale measure Q according to (10). Defining the matrices

F =

−b1 0 0
0 −b2 0
0 0 −b3

 , D =

σ1 0 0
0 σ2 0
0 0 σ3

 (12)

and considering the vector factor process Ψt := [Ψ 1
t ,Ψ

2
t ,Ψ

3
t ]
′ as well as the mul-

tivariate Wiener process Wt := [w1
t ,w

2
t ,w

3
t ]
′, where ′ denotes transposition, the dy-

namics (10) can be rewritten in synthetic form as

dΨt = FΨtdt +DdWt . (13)

Using results on exponential quadratic term structures (see Gombani and Rung-
galdier (2001), Filipović (2002)), we have

p(t,T ) = EQ
{

e−
∫ T
t rudu

∣∣∣Ft

}
= EQ

{
e−

∫ T
t (Ψ 1

u +(Ψ 2
u )2)du

∣∣∣Ft

}
= exp

[
−A(t,T )−B′(t,T )Ψt −Ψ

′
t C(t,T )Ψt

]
(14)

and, setting Rt := rt + st ,

p̄(t,T ) = EQ
{

e−
∫ T
t Rudu

∣∣∣Ft

}
= EQ

{
e−

∫ T
t ((1+κ)Ψ 1

u +(Ψ 2
u )2+(Ψ 3

u )2)du
∣∣∣Ft

}
= exp

[
−Ā(t,T )− B̄′(t,T )Ψt −Ψ

′
t C̄(t,T )Ψt

]
, (15)

where A(t,T ), Ā(t,T ), B(t,T ), B̄(t,T ), C(t,T ) and C̄(t,T ) are scalar, vector and
matrix-valued deterministic functions to be determined.

For this purpose we recall the Heath-Jarrow-Morton (HJM) approach for the case
when p(t,T ) in (14) represents the price of a risk-free zero coupon bond. The HJM
approach leads to the so-called HJM drift conditions that impose conditions on the
coefficients in (14) so that the resulting prices p(t,T ) do not imply arbitrage possi-
bilities. Since the risk-free bonds are traded, the no-arbitrage condition is expressed
by requiring p(t,T )

Bt
to be a Q−martingale for Bt defined in (1) and it is exactly this

martingality property to yield the drift condition. In our case, p(t,T ) is the price of
an OIS bond that is not necessarily traded and in general does not coincide with the
price of a risk-free bond. However, whether the OIS bond is traded or not, p(t,T )

Bt
is a Q−martingale by the very definition of p(t,T ) in (14) (see the first equality
in (14)) and so we can follow the same HJM approach to obtain conditions on the
coefficients in (14) also in our case.
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For what concerns, on the other hand, the coefficients in (15), recall that p̄(t,T )
is a fictitious asset that is not traded and thus is not subject to any no-arbitrage
condition. Notice, however, that by analogy to p(t,T ) in (14), by its very defini-
tion given in the first equality in (15), p̄(t,T )

B̄t
is a Q−martingale for B̄t given by

B̄t := exp
∫ t

0 Rudu. The two cases p(t,T ) and p̄(t,T ) can thus be treated in complete
analogy provided that we use for p̄(t,T ) the numeraire B̄t .

We shall next derive from the Q−martingality of p(t,T )
Bt

and p̄(t,T )
B̄t

conditions on
the coefficients in (14) and (15) that correspond to the classical HJM drift condition
and lead thus to ODEs for these coefficients. For this purpose we shall proceed by
analogy to section 2 in Gombani and Runggaldier (2001), in particular to the proof
of Proposition 2.1 therein, to which we also refer for more detail.

Introducing the “instantaneous forward rates” f (t,T ) := − ∂

∂T log p(t,T ) and
f̄ (t,T ) :=− ∂

∂T log p̄(t,T ), and setting

a(t,T ) :=
∂

∂T
A(t,T ) , b(t,T ) :=

∂

∂T
B(t,T ) , c(t,T ) :=

∂

∂T
C(t,T ) (16)

and analogously for ā(t,T ), b̄(t,T ), c̄(t,T ), from (14) and (15) we obtain

f (t,T ) = a(t,T )+b′(t,T )Ψt +Ψ
′

t c(t,T )Ψt , (17)

f̄ (t,T ) = ā(t,T )+ b̄′(t,T )Ψt +Ψ
′

t c̄(t,T )Ψt . (18)

Recalling that rt = f (t, t) and Rt = f̄ (t, t), this implies, with a(t) := a(t, t),b(t) :=
b(t, t),c(t) := c(t, t) and analogously for the corresponding quantities with a bar,
that

rt = a(t)+b(t)Ψt +Ψ
′

t c(t)Ψt (19)

and
Rt = rt + st = ā(t)+ b̄′(t)Ψt +Ψ

′
t c̄(t)Ψt . (20)

Comparing (19) and (20) with (11), we obtain the following conditions where i, j =
1,2,3, namely

a(t) = 0
bi(t) = 1{i=1}
ci j(t) = 1{i= j=2}


ā(t) = 0
b̄i(t) = (1+κ)1{i=1}
c̄i j(t) = 1{i= j=2}∪{i= j=3}.

Using next the fact that

p(t,T ) = exp
[
−
∫ T

t
f (t,s)ds

]
, p̄(t,T ) = exp

[
−
∫ T

t
f̄ (t,s)ds

]
,

and imposing p(t,T )
Bt

and p̄(t,T )
B̄t

to be Q−martingales, one obtains ordinary differen-
tial equations to be satisfied by c(t,T ),b(t,T ),a(t,T ). Integrating these ODEs with
respect to the second variable and recalling (16) one obtains (for the details see the
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proof of Proposition 2.1 in Gombani and Runggaldier (2001)){
Ct(t,T )+2FC(t,T )−2C(t,T )DDC(t,T )+ c(t) = 0, C(T,T ) = 0
C̄t(t,T )+2FC̄(t,T )−2C̄(t,T )DDC̄(t,T )+ c̄(t) = 0, C̄(T,T ) = 0

(21)

with

c(t) =

0 0 0
0 1 0
0 0 0

 c̄(t) =

0 0 0
0 1 0
0 0 1

 . (22)

The special forms of F , D, c(t) and c̄(t) together with boundary conditions C(T,T )=
0 and C̄(T,T ) = 0 imply that only C22,C̄22,C̄33 are non-zero and satisfy

C22
t (t,T )−2b2C22(t,T )−2(σ2)2(C22(t,T ))2 +1 = 0, C22(T,T ) = 0

C̄22
t (t,T )−2b2C̄22(t,T )−2(σ2)2(C̄22(t,T ))2 +1 = 0, C̄22(T,T ) = 0

C̄33
t (t,T )−2b3C̄33(t,T )−2(σ3)2(C̄33(t,T ))2 +1 = 0, C̄33(T,T ) = 0

(23)

that can be shown to have as solution
C22(t,T ) = C̄22(t,T ) = 2(e(T−t)h2−1)

2h2+(2b2+h2)(e(T−t)h2−1)

C̄33(t,T ) = 2(e(T−t)h3−1)
2h3+(2b3+h3)(e(T−t)h3−1)

(24)

with hi =
√

4(bi)2 +8(σ i)2 > 0, i = 2,3.
Next, always by analogy to the proof of Proposition 2.1 in Gombani and Rung-

galdier (2001), the vectors of coefficients B(t,T ) and B̄(t,T ) of the first order terms
can be seen to satisfy the following system{

Bt(t,T )+B(t,T )F−2B(t,T )DDC(t,T )+b(t) = 0, B(T,T ) = 0
B̄t(t,T )+ B̄(t,T )F−2B̄(t,T )DDC(t,T )+ b̄(t) = 0, B̄(T,T ) = 0

(25)

with
b(t) = [1,0,0] b̄(t) = [(1+κ),0,0].

Noticing similarly as above that only B1(t,T ), B̄1(t,T ) are non-zero, system (25)
becomes {

B1
t (t,T )−b1B1(t,T )+1 = 0 B1(T,T ) = 0

B̄1
t (t,T )−b1B̄1(t,T )+(1+κ) = 0 B̄1(T,T ) = 0

(26)

leading to the explicit solutionB1(t,T ) = 1
b1

(
1− e−b1(T−t)

)
B̄1(t,T ) = 1+κ

b1

(
1− e−b1(T−t)

)
= (1+κ)B1(t,T ).

(27)
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Finally, A(t,T ) and Ā(t,T ) have to satisfy{
At(t,T )+(σ2)2C22(t,T )− 1

2 (σ
1)2(B1(t,T ))2 = 0,

Āt(t,T )+(σ2)2C22(t,T )+(σ3)2C33(t,T )− 1
2 (σ

1)2(B1(t,T ))2 = 0
(28)

with boundary conditions A(T,T ) = 0, Ā(T,T ) = 0. The explicit expressions can be
obtained simply by integrating the above equations.

Summarizing, we have proved the following

Proposition 3.1 Assume that the OIS short rate r and the spread s are given by
(11) with the factor processes Ψ i

t , i = 1,2,3, evolving according to (10) under the
standard martingale measure Q. The time-t price of the OIS bond p(t,T ), as defined
in (3), is given by

p(t,T ) = exp[−A(t,T )−B1(t,T )Ψ 1
t −C22(t,T )(Ψ 2

t )
2], (29)

and the time-t price of the fictitious Libor bond p̄(t,T ), as defined in (9), by

p̄(t,T ) = exp[−Ā(t,T )− (κ +1)B1(t,T )Ψ 1
t −C22(t,T )(Ψ 2

t )
2−C̄33(t,T )(Ψ 3

t )
2]

= p(t,T )exp[−Ã(t,T )−κB1(t,T )Ψ 1
t −C̄33(t,T )(Ψ 3

t )
2],

(30)

where Ã(t,T ) := Ā(t,T )−A(t,T ) with A(t,T ) and Ā(t,T ) given by (28), B1(t,T )
given by (27) and C22(t,T ) and C33(t,T ) given by (24).

In particular, expression (30) gives p̄(t,T ) in terms of p(t,T ). Based on this we
shall derive in the following section the announced adjustment factor allowing to
pass from pre-crisis quantities to the corresponding post-crisis quantities.

3.3 Forward measure

The underlying factor model was defined in (10) under the standard martingale
measure Q. For derivative prices, which we shall determine in the following two
sections, it will be convenient to work under forward measures, for which, given the
single tenor ∆ , we shall consider a generic (T +∆)-forward measure. The density
process to change the measure from Q to QT+∆ is

Lt :=
d QT+∆

d Q

∣∣∣
Ft

=
p(t,T +∆)

p(0,T +∆)

1
Bt

(31)

from which it follows by (29) and the martingale property of
(

p(t,T+∆)
Bt

)
t≤T+∆

that

dLt = Lt
(
−B1(t,T +∆)σ1dw1

t −2C22(t,T +∆)Ψ 2
t σ

2dw2
t
)
.
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This implies by Girsanov’s theorem that
dw1,T+∆

t = dw1
t +σ1B1(t,T +∆)dt

dw2,T+∆

t = dw2
t +2C22(t,T +∆)Ψ 2

t σ2dt
dw3,T+∆

t = dw3
t

(32)

are QT+∆−Wiener processes. From the Q−dynamics (10) we then obtain the fol-
lowing QT+∆−dynamics for the factors

dΨ 1
t = −

[
b1Ψ 1

t +(σ1)2B1(t,T +∆)
]

dt +σ1dw1,T+∆

t

dΨ 2
t = −

[
b2Ψ 2

t +2(σ2)2C22(t,T +∆)Ψ 2
t
]

dt +σ2dw2,T+∆

t

dΨ 3
t = −b3Ψ 3

t dt +σ3dw3,T+∆

t .

(33)

Remark 3.3 While in the dynamics (10) for Ψ i
t , (i = 1,2,3) under Q we had for

simplicity assumed a zero mean-reversion level, under the (T +∆)-forward mea-
sure the mean-reversion level is for Ψ 1

t and Ψ 2
t now different from zero due to the

measure transformation.

Lemma 3.1 Analogously to the case when p(t,T ) represents the price of a risk-free
zero coupon bond, also for p(t,T ) viewed as OIS bond we have that p(t,T )

p(t,T+∆) is a

QT+∆−martingale.

Proof. We have seen that also for OIS bonds as defined in (3) we have that, with Bt

as in (1), the ratio p(t,T )
Bt

is a Q−martingale. From Bayes’ formula we then have

ET+∆

{
p(T,T )

p(T,T+∆) |Ft

}
=

EQ
{

1
p(0,T+∆)

1
BT+∆

p(T,T )
p(T,T+∆)

|Ft

}
EQ
{

1
p(0,T+∆)

1
BT+∆

|Ft

}

=
EQ
{

p(T,T )
p(T,T+∆)

EQ
{

1
BT+∆

|FT

}
|Ft

}
p(t,T+∆)

Bt

=
Bt EQ

{
p(T,T )

p(T,T+∆)
p(T,T+∆)

BT
|Ft

}
p(t,T+∆)

=
Bt EQ

{
p(T,T )

BT
|Ft

}
p(t,T+∆) = p(t,T )

p(t,T+∆
,

thus proving the statement of the lemma.

We recall that we denote the expectation with respect to the measure QT+∆ by
ET+∆{·}. The dynamics in (33) lead to Gaussian distributions for Ψ i

t , i= 1,2,3 that,
given B1(·) and C22(·), have mean and variance

ET+∆{Ψ i
t }= ᾱ

i
t = ᾱ

i
t (b

i,σ i) , VarT+∆{Ψ i
t }= β̄

i
t = β̄

i
t (b

i,σ i),

which can be explicitly computed. More precisely, we have
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ᾱ1
t = e−b1t

[
Ψ 1

0 −
(σ1)2

2(b1)2 e−b1(T+∆)(1− e2b1t)− (σ1)2

(b1)2 (1− eb1t)
]

β̄ 1
t = e−2b1t(e2b1t −1) (σ

1)2

2(b1)

ᾱ2
t = e−(b

2t+2(σ2)2C̃22(t,T+∆))Ψ 2
0

β̄ 2
t = e−(2b2t+4(σ2)2C̃22(t,T+∆))

∫ t
0 e2b2s+4(σ2)2C̃22(s,T+∆)(σ2)2ds

ᾱ3
t = e−b3tΨ 3

0

β̄ 3
t = e−2b3t (σ3)2

2b3 (e2b3t −1),

(34)

with

C̃22(t,T +∆) =
2(2log(2b2(e(T+∆−t)h2 −1)+h2(e(T+∆−t)h2

+1))+ t(2b2 +h2))

(2b2 +h2)(2b2−h2)

− 2(2log(2b2(e(T+∆)h2 −1)+h2(e(T+∆)h2
+1))

(2b2 +h2)(2b2−h2)
(35)

and h2 =
√

(2b2)2 +2(σ2)2, and where we have assumed deterministic initial val-
ues Ψ 1

0 ,Ψ
2

0 and Ψ 3
0 . For details of the above computation see the proof of Corollary

4.1.3. in Meneghello (2014).

4 Pricing of linear interest rate derivatives

We have discussed in subsection 3.2 the pricing of OIS and Libor bonds in the
Gaussian, exponentially quadratic short rate model introduced in subsection 3.1. In
the remaining part of the paper we shall be concerned with the pricing of interest
rate derivatives, namely with derivatives having the Libor rate as underlying rate.
In the present section we shall deal with the basic linear derivatives, namely FRAs
and interest rate swaps, while nonlinear derivatives will then be dealt with in the
following section 5. For the FRA rates discussed in the next subsection 4.1 we shall
in sub-subsection 4.1.1 exhibit an adjustment factor allowing to pass from the single-
curve FRA rate to the multi-curve FRA rate.

4.1 FRAs

We start by recalling the definition of a standard forward rate agreement. We em-
phasize that we use a text-book definition which differs slightly from a market defi-
nition, see Mercurio (2010).

Definition 4.1 Given the time points 0≤ t ≤ T < T +∆ , a forward rate agreement
(FRA) is an OTC derivative that allows the holder to lock in at the generic date
t ≤ T the interest rate between the inception date T and the maturity T +∆ at a
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fixed value R. At maturity T +∆ a payment based on the interest rate R, applied
to a notional amount of N, is made and the one based on the relevant floating rate
(generally the spot Libor rate L(T ;T,T +∆)) is received.

Recalling that for the Libor rate we had postulated the relation (8) to hold at the
inception time T , namely

L(T ;T,T +∆) =
1
∆

(
1

p̄(T,T +∆)
−1
)
,

the price, at t ≤ T, of the FRA with fixed rate R and notional N can be computed
under the (T +∆)− forward measure as

PFRA(t;T,T +∆ ,R,N)

= N∆ p(t,T +∆)ET+∆ {L(T ;T,T +∆)−R |Ft}

= N p(t,T +∆)ET+∆

{
1

p̄(T,T+∆) − (1+∆R) |Ft

}
,

(36)

Defining

ν̄t,T := ET+∆

{
1

p̄(T,T +∆)
|Ft

}
, (37)

it is easily seen from (36) that the fair value of the FRA, namely the FRA rate, is
given by

R̄t =
1
∆
(ν̄t,T −1) . (38)

In the single-curve case we have instead

Rt =
1
∆
(νt,T −1) , (39)

where, given that p(·,T )
p(·,T+∆) is a QT+∆−martingale (see Lemma 3.1),

νt,T := ET+∆

{
1

p(T,T +∆)
|Ft

}
=

p(t,T )
p(t,T +∆)

, (40)

which is the classical expression for the FRA rate in the single curve case. Notice
that, contrary to (37), the expression in (40) can be explicitly computed on the basis
of bond price data without requiring an interest rate model.

4.1.1 Adjustment factor

We shall show here the following

Proposition 4.1 We have the relationship



16 Zorana Grbac and Laura Meneghello and Wolfgang J. Runggaldier

ν̄t,T = νt,T ·AdT,∆
t ·ResT,∆

t (41)

with
AdT,∆

t := EQ
{

p(T,T+∆)
p̄(T,T+∆) |Ft

}
= EQ

{
exp
[
Ã(T,T +∆)

+κB1(T,T +∆)Ψ 1
T +C̄33(T,T +∆)(Ψ 3

T )
2
]
|Ft

} (42)

and

ResT,∆
t = exp

[
−κ

(σ1)2

2(b1)3

(
1+ e−b1∆

)(
1− e−b1(T−t)

)2]
, (43)

where Ã(t,T ) is defined after (30), B1(t,T ) in (27) and C̄33(t,T ) in (24).

Proof. Firstly, from (30) we obtain

p(T,T +∆)

p̄(T,T +∆)
= eÃ(T,T+∆)+κB1(T,T+∆)Ψ 1

T +C̄33(T,T+∆)(Ψ 3
T )2

. (44)

In (37) we now change back from the (T +∆)− forward measure to the standard
martingale measure using the density process Lt given in (31). Using furthermore
the above expression for the ratio of the OIS and the Libor bond prices and taking
into account the definition of the short rate rt in terms of the factor processes, we
obtain

ν̄t,T = ET+∆

{
1

p̄(T,T +∆)

∣∣Ft

}
= L −1

t EQ
{

LT

p̄(T,T +∆)

∣∣Ft

}
=

1
p(t,T +∆)

EQ
{

exp
(
−
∫ T

t
rudu

) p(T,T +∆)

p̄(T,T +∆)

∣∣Ft

}
=

1
p(t,T +∆)

exp[Ã(T,T +∆)]EQ
{

eC̄33(T,T+∆)(Ψ 3
T )2 ∣∣Ft

}
·EQ

{
e−

∫ T
t (Ψ 1

u +(Ψ 2
u )2)dueκB1(T,T+∆)Ψ 1

T
∣∣Ft

}
=

1
p(t,T +∆)

exp[Ã(T,T +∆)]EQ
{

eC̄33(T,T+∆)(Ψ 3
T )2 ∣∣Ft

}
·EQ

{
e−

∫ T
t Ψ 1

u dueκB1(T,T+∆)Ψ 1
T
∣∣Ft

}
EQ
{

e−
∫ T
t (Ψ 2

u )2du∣∣Ft

}
,

(45)

where we have used the independence of the factors Ψ i, i = 1,2,3 under Q.
Recall now from the theory of affine processes (see e.g. Lemma 2.1 in Grbac and

Runggaldier (2015)) that, for a process Ψ 1
t satisfying (10), we have for all δ ,K ∈ R

EQ
{

exp
[
−
∫ T

t
δΨ

1
u du−KΨ

1
T

]
|Ft

}
= exp[α1(t,T )−β

1(t,T )Ψ 1
t ], (46)

where {
β 1(t,T ) = Ke−b1(T−t)− δ

b1

(
e−b1(T−t)−1

)
α1(t,T ) = (σ1)2

2
∫ T

t (β 1(u,T ))2du.
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Setting K = −κ B1(T,T +∆) and δ = 1, and recalling from (27) that B1(t,T ) =
1
b1

(
1− e−b1(T−t)

)
, this leads to

EQ
{

e−
∫ T
t Ψ 1

u dueκB1(T,T+∆)Ψ 1
T
∣∣Ft

}
= exp

[
(σ1)2

2 (κB1(T,T +∆))2
∫ T

t
e−2b1(T−u)du

+κB1(T,T +∆)(σ1)2
∫ T

t
B1(u,T )e−b1(T−u)du+

(σ1)2

2

∫ T

t
(B1(u,T ))2du

+
(

κB1(T,T +∆)e−b1(T−t)+B1(t,T )
)

Ψ 1
t

]
.

(47)
On the other hand, from the results of section 3.2 we also have that, for a process
Ψ 2

t satisfying (10),

EQ
{

exp
[
−
∫ T

t
(Ψ 2

u )
2du
]
|Ft

}
= exp

[
−α

2(t,T )−C22(t,T )(Ψ 2
t )

2] ,
where C22(t,T ) corresponds to (24) and (see (28))

α
2(t,T ) = (σ2)2

∫ T

t
C22(u,T )du.

This implies that

EQ
{

exp
[
−
∫ T

t
(Ψ 2

u )
2du
]
|Ft

}
= exp

[
−(σ2)2

∫ T

t
C22(u,T )du−C22(t,T )

(
Ψ

2
t
)2
]
.

(48)

Replacing (47) and (48) into (45), and recalling the expression for p(t,T ) in (29)
with A(·),B1(·),C22(·) according to (28), (27) and (24) respectively, we obtain

ν̄t,T = p(t,T )
p(t,T+∆)eÃ(T,T+∆)EQ

[
eC̄33(T,T+∆)(Ψ 3

T )2 ∣∣Ft

]
·exp

[
(σ1)2

2 (κB1(T,T +∆))2
∫ T

t
e−2b1(T−u)du+κB1(T,T +∆)e−b1(T−t)

Ψ
1

t

]
·exp

[
κB1(T,T +∆)(σ1)2

∫ T

t
B1(u,T )e−b1(T−u)du

]
.

(49)
We recall the expression (44) for p(T,T+∆)

p̄(T,T+∆) and the fact that, according to (46), we
have

EQ
{

eκB1(T,T+∆)Ψ 1
T
∣∣Ft

}
= exp

[
(σ1)2

2 (κB1(T,T +∆))2
∫ T

t
e−2b1(T−u)du+κB1(T,T +∆)e−b1(T−t)

Ψ
1

t

]
.



18 Zorana Grbac and Laura Meneghello and Wolfgang J. Runggaldier

Inserting these expressions into (49) we obtain the result, namely

ν̄t,T = p(t,T )
p(t,T+∆)EQ

{
p(T,T+∆)
p̄(T,T+∆)

∣∣Ft

}
·exp

[
κB1(T,T +∆)(σ1)2

∫ T

t
B1(u,T )e−b1(T−u)du

]
= p(t,T )

p(t,T+∆)EQ
{

p(T,T+∆)
p̄(T,T+∆)

∣∣Ft

}
· exp

[
− κ

b1 (e−b1∆ +1)(σ1)2
(

1
2(b1)2 (1− e−2b1(T−t))− 1

(b1)2 (1− e−b1(T−t))
)]

,

(50)
where we have also used the fact that

∫ T
t B1(u,T )e−b1(T−u)du =

∫ T

t

1
b1

(
1− e−b1(T−u)

)
e−b1(T−u)du

= 1
2(b1)2

(
1− e−2b1(T−t)

)
− 1

(b1)2

(
1− e−b1(T−t)

)
.

ut

Remark 4.1 The adjustment factor AdT,∆
t allows for some intuitive interpretations.

Here we mention only the easiest one for the case when κ = 0 (independence of rt
and st ). In this case we have rt + st > rt implying that p̄(T,T +∆) < p(T,T +∆)

so that AdT,∆
t ≥ 1. Furthermore, always for κ = 0, the residual factor has value

ResT,∆
t = 1. All this in turn implies ν̄t,T ≥ νt,T and with it R̄t ≥ Rt , which is what one

would expect to be the case.

Remark 4.2 (Calibration to the initial term structure). The parameters in the model
(10) for the factors Ψ i

t and thus also in the model (11) for the short rate rt and
the spread st are the coefficients bi and σ i for i = 1,2,3. From (14) notice that, for
i = 1,2, these coefficients enter the expressions for the OIS bond prices p(t,T ) that
can be assumed to be observable since they can be bootstrapped from the market
quotes for the OIS swap rates. We may thus assume that these coefficients, i.e. bi

and σ i for i = 1,2, can be calibrated as in the pre-crisis single-curve short rate
models. It remains to calibrate b3, σ3 and, possibly the correlation coefficient κ .
Via (15) they affect the prices of the fictitious Libor bonds p̄(t,T ) that are, however,
not observable. One may observe though the FRA rates Rt and R̄t and thus also νt,T ,
as well as ν̄t,T . Via (41) this would then allow one to calibrate also the remaining
parameters. This task would turn out to be even simpler if one would have access to
the value of κ by other means.

We emphasize that in order to ensure a good fit to the initial bond term structure,
a deterministic shift extension of the model or time-dependent coefficients bi could
be considered. We recall also that we have assumed the mean-reversion level equal
to zero for simplicity; in practice it would be one more coefficient to be calibrated
for each factor Ψ i

t .
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4.2 Interest rate swaps

We first recall the notion of a (payer) interest rate swap. Given a collection of dates
0≤ T0 < T1 < · · ·< Tn with γ ≡ γk := Tk−Tk−1 (k = 1, · · · ,n), as well as a notional
amount N, a payer swap is a financial contract, where a stream of interest payments
on the notional N is made at a fixed rate R in exchange for receiving an analogous
stream corresponding to the Libor rate. Among the various possible conventions
concerning the fixing for the Libor and the payment dates, we choose here the one
where, for each interval [Tk−1,Tk], the Libor rates are fixed in advance and the pay-
ments are made in arrears. The swap is thus initiated at T0 and the first payment is
made at T1. A receiver swap is completely symmetric with the interest at the fixed
rate being received; here we concentrate on payer swaps.

The arbitrage-free price of the swap, evaluated at t ≤ T0, is given by the following
expression where, analogously to ET+∆{·}, we denote by ETk{·} the expectation
with respect to the forward measure QTk (k = 1, · · · ,n)

PSw(t;T0,Tn,R) = γ

n

∑
k=1

p(t,Tk)ETk {L(Tk−1;Tk−1,Tk)−R|Ft}

= γ

n

∑
k=1

p(t,Tk)(L(t;Tk−1,Tk)−R) . (51)

For easier notation we have assumed the notional to be 1, i.e. N = 1.
We shall next obtain an explicit expression for PSw(t;T0,Tn,R) starting from the

first equality in (51). To this effect, recalling from (24) that C22(t,T ) = C̄22(t,T ),
introduce again some shorthand notation, namely

Ak := Ā(Tk−1,Tk),B1
k := B1(Tk−1,Tk),

C22
k :=C22(Tk−1,Tk) = C̄22(Tk−1,Tk), C̄33

k := C̄33(Tk−1,Tk).
(52)

The crucial quantity to be computed in (51) is the following one

ETk{γL(Tk−1;Tk−1,Tk)|Ft}= ETk
{ 1

p̄(Tk−1,Tk)
|Ft

}
−1

= eAk ETk{exp((κ +1)B1
kΨ

1
Tk−1

+C22
k (Ψ 2

Tk−1
)2 +C̄33

k (Ψ 3
Tk−1

)2)|Ft}−1,
(53)

where we have used the first relation on the right in (30). The expectations in (53)
have to be computed under the measures QTk , under which, by analogy to (33), the
factors have the dynamics

dΨ 1
t = −

[
b1Ψ 1

t +(σ1)2B1(t,Tk)
]

dt +σ1dw1,k
t

dΨ 2
t = −

[
b2Ψ 2

t +2(σ2)2C22(t,Tk)Ψ
2

t
]

dt +σ2dw2,k
t

dΨ 3
t = −b3Ψ 3

t dt +σ3dw3,k
t .

(54)

where wi,k, i = 1,2,3, are independent Wiener processes with respect to QTk . A
straightforward generalization of (46) to the case where the factor process Ψ 1

t satis-
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fies the following affine Hull-White model

dΨ
1

t = (a1(t)−b1
Ψ

1
t )dt +σ

1dwt

can be obtained as follows

EQ
{

exp
[
−
∫ T

t
δΨ

1
u du−KΨ

1
T

]
|Ft

}
= exp[α1(t,T )−β

1(t,T )Ψ 1
t ], (55)

with 
β 1(t,T ) = Ke−b1(T−t)− δ

b1

(
e−b1(T−t)−1

)
α1(t,T ) = (σ1)2

2

∫ T

t
(β 1(u,T ))2du−

∫ T

t
a1(u)β 1(u,T )du.

(56)

We apply this result to our situation where under QTk the process Ψ 1
t satisfies

the first SDE in (54) and thus corresponds to the above dynamics with a1(t) =
−(σ1)2B1(t,Tk). Furthermore, setting K = −(κ + 1)B1

k and δ = 0, we obtain for
the first expectation in the second line of (53)

ETk{exp((κ +1)B1
kΨ

1
Tk−1
|Ft}= exp[Γ 1(t,Tk)−ρ

1(t,Tk)Ψ
1

t ], (57)

withρ1(t,Tk) = −(κ +1)B1
ke−b1(Tk−t)

Γ 1(t,Tk) =
(σ1)2

2

∫ Tk

t

(
ρ

1(u,Tk)
)2

du+(σ1)2
∫ Tk

t
B1(u,Tk)ρ

1(u,Tk)du.
(58)

For the remaining two expectations in the second line of (53) we shall use the fol-
lowing

Lemma 4.1 Let a generic process Ψt satisfy the dynamics

dΨt = b(t)Ψtdt +σ dwt (59)

with wt a Wiener process. Then, for all C ∈ R such that EQ
{

exp
[
C (ΨT )

2
]}

< ∞,
we have

EQ{exp
[
C (ΨT )

2] |Ft
}
= exp

[
Γ (t,T )−ρ(t,T )(Ψt)

2] (60)

with ρ(t,T ) and Γ (t,T ) satisfying{
ρt(t,T )+2b(t)ρ(t,T )−2(σ)2 (ρ(t,T ))2 = 0 ; ρ(T,T ) =−C
Γt(t,T ) = (σ)2ρ(t,T ).

(61)

Proof. An application of Itô’s formula yields that the nonnegative process Φt :=
(Ψt)

2 satisfies the following SDE

dΦt =
(
(σ)2 +2b(t)Φt

)
dt +2σ

√
Φt dwt .

We recall that a process Φt given in general form by
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dΦt = (a+λ (t)Φt)dt +η
√

Φt dwt ,

with a,η > 0 and λ (t) a deterministic function, is a CIR process. Thus, (Ψt)
2 is

equivalent in distribution to a CIR process with coefficients given by

λ (t) = 2b(t) , η = 2σ , a = (σ)2.

From the theory of affine term structure models (see e.g. Lamberton and Lapeyre
(2007), or Lemma 2.2 in Grbac and Runggaldier (2015)) it now follows that

EQ{exp
[
C (ΨT )

2] |Ft
}
= EQ {exp [C ΦT ] |Ft}= exp [Γ (t,T )−ρ(t,T )Φt ]

= exp
[
Γ (t,T )−ρ(t,T )(Ψt)

2]
with ρ(t,T ) and Γ (t,T ) satisfying (61). ut

Corollary 4.1 When b(t) is constant with respect to time, i.e. b(t)≡ b, so that also
λ (t)≡ λ , then the equations for ρ(t,T ) and Γ (t,T ) in (61) admit an explicit solu-
tion given by 

ρ(t,T ) = 4bhe2b(T−t)

4(σ)2he2b(T−t)−1
with h := C

4(σ)2C+4b

Γ (t,T ) =−(σ)2
∫ T

t
ρ(u,T )du.

(62)

Coming now to the second expectation in the second line of (53) and using the
second equation in (54), we set

b(t) :=−
[
b2 +2(σ2)2C22(t,Tk)

]
, σ := σ

2, C =C22
k

and apply Lemma 4.1, provided that the parameters b2 and σ2 of the process Ψ 2 are
such that C =C22

k satisfies the assumption from the lemma. We thus obtain

ETk{exp(C22
k (Ψ 2

Tk−1
)2)|Ft}= exp[Γ 2(t,Tk)−ρ

2(t,Tk)(Ψ
2

t )
2], (63)

with ρ2(t,T ),Γ 2(t,T ) satisfying
ρ2

t (t,T )−2
[
b2 +2(σ2)2C22(t,Tk)

]
ρ2(t,T )−2(σ2)2(ρ2(t,T ))2 = 0

ρ2(Tk,Tk) =−C22
k

Γ 2(t,T ) =−(σ2)2
∫ T

t
ρ(u,T )du.

(64)

Finally, for the third expectation in the second line of (53), we may take advantage
of the fact that the dynamics of Ψ 3

t do not change when passing from the measure
Q to the forward measure QTk . We can then apply Lemma 4.1, this time with (see
the third equation in (54))

b(t) :=−b3, σ := σ
3, C = C̄33

k
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and ensuring that the parameters b3 and σ3 of the process Ψ 3 are such that C = C̄33
k

satisfies the assumption from the lemma. Since b(t) is constant with respect to time,
also Corollary 4.1 applies and we obtain

ETk{exp(C̄33
k (Ψ 3

Tk−1
)2)|Ft}= exp[Γ 3(t,Tk)−ρ

3(t,Tk)(Ψ
3

t )
2],

where 
ρ3(t,Tk) =

4b3h3
ke2b3(Tk−t)

4(σ3)2h3
ke2b3(Tk−t)−1

with h3
k =

C̄33
k

4(σ3)2C̄33
k +4b3

Γ 3(t,Tk) = −(σ3)2
∫ Tk

t
ρ

3(u,Tk)du.
(65)

With the use of the explicit expressions for the expectations in (53), and taking
also into account the expression for p(t,T ) in (29), it follows immediately that the
arbitrage-free swap price in (51) can be expressed according to the following

Proposition 4.2 The price of a payer interest rate swap at t ≤ T0 is given by

PSw(t;T0,Tn,R) = γ

n

∑
k=1

p(t,Tk)ETk {L(Tk−1;Tk−1,Tk)−R|Ft}

=
n

∑
k=1

p(t,Tk)
(

Dt,ke−ρ1(t,Tk)Ψ
1

t −ρ2(t,Tk)(Ψ
2

t )2−ρ3(t,Tk)(Ψ
3

t )2 − (Rγ +1)
)

=
n

∑
k=1

(
Dt,ke−At,k e−B̃1

t,kΨ 1
t −C̃22

t,k(Ψ
2

t )2−C̃33
t,k(Ψ

3
t )2
− (Rγ +1)e−At,k e−B1

t,kΨ 1
t −C22

t,k(Ψ
2

t )2)
,

(66)
where

At,k := A(t,Tk), B1
t,k := B1(t,Tk), C22

t,k :=C22(t,Tk)

B̃1
t,k := B1

t,k +ρ1(t,Tk), C̃22
t,k :=C22

t,k +ρ2(t,Tk), C̃33
t,k := ρ3(t,Tk)

Dt,k := eAk exp[Γ 1(t,Tk)+Γ 2(t,Tk)+Γ 3(t,Tk)],

(67)

with ρ i(t,Tk), Γ i(t,Tk) (i = 1,2,3) determined according to (58), (64) and (65) re-
spectively and with Ak as in (52).

5 Nonlinear/optional interest rate derivatives

In this section we consider the main nonlinear interest rate derivatives with the Li-
bor rate as underlying. They are also called optional derivatives since they have the
form of an option. In subsection 5.1 we shall consider the case of caps and, sym-
metrically, that of floors. In the subsequent subsection 5.2 we shall then concentrate
on swaptions as options on a payer swap of the type discussed in subsection 4.2.
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5.1 Caps and floors

Since floors can be treated in a completely symmetric way to the caps simply by
interchanging the roles of the fixed rate and the Libor rate, we shall concentrate
here on caps. Furthermore, to keep the presentation simple, we consider here just
a single caplet for the time interval [T,T +∆ ] and for a fixed rate R (recall also
that we consider just one tenor ∆ ). The payoff of the caplet at time T + ∆ is
thus ∆(L(T ;T,T + ∆)− R)+, assuming the notional N = 1, and its time-t price
PCpl(t;T +∆ ,R) is given by the following risk-neutral pricing formula under the
forward measure QT+∆

PCpl(t;T +∆ ,R) = ∆ p(t,T +∆)ET+∆
{
(L(T ;T,T +∆)−R)+ |Ft

}
.

In view of deriving pricing formulas, recall from subsection 3.3 that, under the
(T +∆)− forward measure, at time T the factors Ψ i

T have independent Gaussian
distributions (see (34)) with mean and variance given, for i = 1,2,3, by

ET+∆{Ψ i
t }= ᾱ

i
t = ᾱ

i
t (b

i,σ i), VarT+∆{Ψ i
t }= β̄

i
t = β̄

i
t (b

i,σ i).

In the formulas below we shall consider the joint probability density function of
(Ψ 1

T ,Ψ
2

T ,Ψ
3

T ) under the T +∆ forward measure, namely, using the independence of
the processes Ψ i

t , (i = 1,2,3),

f(Ψ 1
T ,Ψ 2

T ,Ψ 3
T )(x1,x2,x3) =

3

∏
i=1

f
Ψ i

T
(xi) =

3

∏
i=1

N (xi, ᾱ
i
T , β̄

i
T ), (68)

and use the shorthand notation fi(·) for f
Ψ i

T
(·) in the sequel. We shall also write

Ā,B1,C22, C̄33 for the corresponding functions evaluated at (T,T +∆) and given in
(28), (27) and (24) respectively.

Setting R̃ := 1+∆ R, and recalling the first equality in (30), the time-0 price of
the caplet can be expressed as

PCpl(0;T +∆ ,R) = ∆ p(0,T +∆)ET+∆
{
(L(T ;T,T +∆)−R)+

}
= p(0,T +∆)ET+∆

{(
1

p̄(T,T+∆) − R̃
)+}

= p(0,T +∆)ET+∆

{(
eĀ+(κ+1)B1Ψ 1

T +C22(Ψ 2
T )2+C̄33(Ψ 3

T )2 − R̃
)+}

= p(0,T +∆)
∫
R3

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+
· f(Ψ 1

T ,Ψ 2
T ,Ψ 3

T )(x,y,z)d(x,y,z).

(69)
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To proceed, we extend to the multi-curve context an idea suggested in Jamshid-
ian (1989) (where it is applied to the pricing of coupon bonds) by considering the
function

g(x,y,z) := exp[Ā+(κ +1)B1x+C22y2 +C̄33z2]. (70)

Noticing that C̄33(T,T +∆) > 0 (see (24) together with the fact that h3 > 0 and
2b3 +h3 > 0), for fixed x,y the function g(x,y,z) can be seen to be continuous and
increasing for z ≥ 0 and decreasing for z < 0 with limz→±∞ g(x,y,z) = +∞. It will
now be convenient to introduce some objects according to the following

Definition 5.1 Let a set M ⊂ R2 be given by

M := {(x,y) ∈ R2 | g(x,y,0)≤ R̃} (71)

and let Mc be its complement. Furthermore, for (x,y) ∈M let

z̄1 = z̄1(x,y) , z̄2 = z̄2(x,y)

be the solutions of g(x,y,z) = R̃. They satisfy z̄1 ≤ 0≤ z̄2.

Notice that, for z≤ z̄1 ≤ 0 and z≥ z̄2 ≥ 0, we have g(x,y,z)≥ g(x,y, z̄k) = R̃, and
for z ∈ (z̄1, z̄2), we have g(x,y,z)< R̃ . In Mc we have g(x,y,z)≥ g(x,y,0)> R̃ and
thus no solution of the equation g(x,y,z) = R̃.

In view of the main result of this subsection, given in Proposition 5.1 below, we
prove as a preliminary the following

Lemma 5.1 Assuming that the (non-negative) coefficients b3,σ3 in the dynamics
(10) of the factor Ψ 3

t satisfy the condition

b3 ≥ σ3
√

2
, (72)

we have that 1−2β̄ 3
T C̄33 > 0, where C̄33 = C̄33(T,T +∆) is given by (24) for generic

t ≤ T and where β̄ 3
T = (σ3)2

2b3 (1− e−2b3T ) according to (34).

Proof. From the definitions of β̄ 3
T and C̄33 we may write

1−2β̄
3
T C̄33 = 1−

(
1− e−2b3T

) 2
(

e∆ h3 −1
)

2 b3h3

(σ3)2 +
b3

(σ3)2 (2b3 +h3)
(
e∆ h3 −1

) . (73)

Notice next that b3 > 0 implies that 1− e−2b3T ∈ (0,1) and that b3h3

(σ3)2 ≥ 0. From

(73) it then follows that a sufficient condition for 1−2β̄ 3
T C̄33 > 0 to hold is that

2≤ b3

(σ3)2 (2b3 +h3). (74)
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Given that, see definition after (24), h3 = 2
√

(b3)2 +2(σ3)2 ≥ 2b3, the condition
(74) is satisfied under our assumption (72). ut

Proposition 5.1 Under the assumption (72) we have that the time-0 price of the
caplet for the time interval [T,T +∆ ] and with fixed rate R is given by

PCpl(0;T +∆ ,R) = p(0,T +∆)

[∫
M

eĀ+(κ+1)B1x+C22(y)2

·
[
γ(ᾱ3

T , β̄
3
T ,C̄

33)
(
Φ(d1(x,y))+Φ(−d2(x,y))

)
−eC̄33(z̄1(x,y))2

Φ(d3(x,y))+ eC̄33(z̄2(x,y))2
Φ(−d4(x,y))

]
f1(x) f2(y)dxdy

+γ(ᾱ3
T , β̄

3
T ,C̄

33)
∫

Mc
eĀ+(κ+1)B1x+C22(y)2

f1(x) f2(y)dxdy

−R̃QT+∆
{
(Ψ 1

T ,Ψ
2

T ) ∈Mc
}]

,

(75)

where Φ(·) is the cumulative standard Gaussian distribution function, M and Mc

are as in Definition 5.1,

d1(x,y) :=
√

1−2β̄ 3
T C̄33 z̄1(x,y)−(ᾱ3

T−θβ̄ 3
T )√

β̄ 3
T

d2(x,y) :=
√

1−2β̄ 3
T C̄33 z̄2(x,y)−(ᾱ3

T−θβ̄ 3
T )√

β̄ 3
T

d3(x,y) := z̄1(x,y)−ᾱ3
T√

β̄ 3
T

d4(x,y) := z̄2(x,y)−ᾱ3
T√

β̄ 3
T

(76)

with θ :=
ᾱ3

T

(
1−1/
√

1−2β̄ 3
T C̄33

)
β̄ 3

T
, which by Lemma 5.1 is well defined under the given

assumption (72), and with γ(ᾱ3
T , β̄

3
T ,C̄

33) := e(
1
2 (θ)2 β̄3

T−ᾱ3
T θ)√

1−2β̄ 3
T C̄33

.

Remark 5.1 Notice that, once the set M and its complement Mc from Definition 5.1
are made explicit, the integrals, as well as the probability in (75), can be computed
explicitly.

Proof. On the basis of the sets M and Mc we can continue (69) as
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PCpl(0;T +∆ ,R) = p(0,T +∆)
∫
R3

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+
· f(Ψ 1

T ,Ψ 2
T ,Ψ 3

T )(x,y,z)d(x,y,z)

= p(0,T +∆)
∫

M×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+
· f(Ψ 1

T ,Ψ 2
T ,Ψ 3

T )(x,y,z)d(x,y,z)

+p(0,T +∆)
∫

Mc×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)+
· f(Ψ 1

T ,Ψ 2
T ,Ψ 3

T )(x,y,z)d(x,y,z)

=: P1(0;T +∆)+P2(0;T +∆).

(77)

We shall next compute separately the two terms in the equality in (77) distinguishing
between two cases according to whether (x,y) ∈M or (x,y) ∈Mc.
Case i): For (x,y) ∈M we have from Definition 5.1 that there exist z̄1(x,y)≤ 0 and
z̄2(x,y)≥ 0 so that for z∈ [z̄1, z̄2] we have g(x,y,z)≤ g(x,y, z̄k)= R̃. For P1(0;T +∆)
we now obtain

P1(0;T +∆) = p(0,T +∆)

·
∫

M
eĀ+(κ+1)B1x+C22y2

(∫ z̄1(x,y)

−∞

(eC̄33z2 − eC̄33(z̄1)2
) f3(z)dz

+
∫ +∞

z̄2(x,y)
(eC̄33z2 − eC̄33(z̄2)2

) f3(z)dz

)
f2(y) f1(x)dydx.

(78)

Next, using the results of subsection 3.3 concerning the Gaussian distribution
f3(·) = f

Ψ 3
T
(·), we obtain the calculations in (79) below, where, recalling Lemma

5.1, we make successively the following changes of variables: ζ :=
√

1−2β̄ 3
TC̄33z,

θ := ᾱ3
T (1−1/

√
1−2β̄ 3

T C̄33)

β̄ 3
T

, s := ζ−(ᾱ3
T−θβ̄ 3

T )√
β̄ 3

T
and where di(x,y), i = 1, · · · ,4 are as de-

fined in (76)
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∫ z̄1(x,y)

−∞

eC̄33z2
f3(z)dz =

∫ z̄1(x,y)

−∞

eC̄33z2 1√
2πβ̄ 3

T

e
− 1

2
(z−ᾱ3

T )2

β̄3
T dz

=
∫ z̄1(x,y)

−∞

1√
2πβ̄ 3

T

e
− 1

2
(
√

1−2β̄3
T C̄33z−ᾱ3

T )2

β̄3
T e

−
ᾱ3

T (
√

1−2β̄3
T C̄33−1)

β̄3
T

z
dz

=
∫ √1−2β̄ 3

T C̄33 z̄1(x,y)

−∞

1√
2πβ̄ 3

T

e
− 1

2
(ζ−ᾱ3

T )2

β̄3
T e

−
ᾱ3

T (1−1/
√

1−2β̄3
T C̄33)

β̄3
T

ζ 1√
1−2β̄ 3

TC̄33
dζ

(79)

=
1√

1−2β̄ 3
TC̄33

∫ √1−2β̄ 3
T C̄33 z̄1(x,y)

−∞

1√
2πβ̄ 3

T

e
− 1

2
(ζ−ᾱ3

T )2

β̄3
T e−θζ dζ

=
e(

1
2 (θ)

2β̄ 3
T−ᾱ3

T θ)√
1−2β̄ 3

TC̄33

∫ d1(x,y)

−∞

1√
2π

e−
s2
2 ds=

e(
1
2 (θ)

2β̄ 3
T−ᾱ3

T θ)√
1−2β̄ 3

TC̄33
Φ(d1(x,y)).

On the other hand, always using the results of subsection 3.3 concerning the
Gaussian distribution f3(·) = f

Ψ 3
T
(·) and making this time the change of variables

ζ := (z−ᾱ3
T )√

β̄ 3
T

, we obtain

∫ z̄1(x,y)

−∞

eC̄33(z̄1)2
f3(z)dz = eC̄33(z̄1)2

∫ z̄1(x,y)

−∞

1√
2πβ̄ 3

T

e
− 1

2
(z−ᾱ3

T )2

β̄3
T dz

= eC̄33(z̄1)2
∫ d3(x,y)

−∞

1√
2π

e−
1
2 ζ 2

dζ = eC̄33(z̄1)2
Φ(d3(x,y)).

(80)

Similarly, we have∫ +∞

z̄2(x,y)
eC̄33z2

f3(z)dz =
1√

1−2β̄ 3
TC̄33

e(
1
2 (θ)

2β̄ 3
T−ᾱ3

T θ)
Φ(−d2(x,y))

∫ +∞

z̄2(x,y)
eC̄33(z̄1)2

f3(z)dz = eC̄33(z̄2)2
Φ(−d4(x,y)).

(81)

Case ii): We come next to the case (x,y) ∈Mc, for which g(x,y,z)≥ g(x,y,0)> R̃.
For P2(0;T +∆) we obtain
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P2(0;T +∆) = p(0,T +∆)
∫

Mc×R

(
eĀ+(κ+1)B1x+C22y2+C̄33z2 − R̃

)
· f3(z) f2(y) f1(x)dzdydx

= p(0,T +∆)
(

eĀ
∫

Mc
e(κ+1)B1x+C22y2

f1(x) f2(y)dxdy
∫
R

eC̄33z2
f3(z)dz

− R̃QT+∆ [(Ψ 1
T ,Ψ

2
T ) ∈Mc]

)
= p(0,T +∆)

(
eĀ
[∫

Mc
e(κ+1)B1x+C22y2

f1(x) f2(y)dxdy
]e(

1
2 (θ

3)2β̄ 3
T−ᾱ3

T θ 3)√
1−2β̄ 3

TC̄33

− R̃QT+∆ [(Ψ 1
T ,Ψ

2
T ) ∈Mc]

)
,

(82)

where we computed the integral over R analogously to (79).
Adding the two expressions derived for Cases i) and ii), we obtain the statement

of the proposition. ut

5.2 Swaptions

We start by recalling some of the most relevant aspects of a (payer) swaption. Con-
sidering a swap (see subsection 4.2) for a given collection of dates 0 ≤ T0 < T1 <
· · · < Tn, a swaption is an option to enter the swap at a pre-specified initiation date
T ≤ T0, which is thus also the maturity of the swaption and that, for simplicity of
notation, we assume to coincide with T0, i.e. T = T0. The arbitrage-free swaption
price at t ≤ T0 can be computed as

PSwn(t;T0,Tn,R) = p(t,T0)ET0
{(

PSw(T0;Tn,R)
)+ |Ft

}
, (83)

where we have used the shorthand notation PSw(T0;Tn,R) = PSw(T0;T0,Tn,R).
We first state the next Lemma, that follows immediately from the expression for

ρ3(t,Tk) and the corresponding expression for h3
k in (65).

Lemma 5.2 We have the equivalence

ρ
3(t,Tk)> 0⇔ h3

k /∈
(

0,
1

4(σ3)2e2b3(Tk−t)

)
. (84)

This lemma prompts us to split the swaption pricing problem into two cases:

Case 1): 0 < h3
k <

1
4(σ3)2e2b3(Tk−t)

Case 2): h3
k < 0 or h3

k >
1

4(σ3)2e2b3(Tk−t)
.

(85)
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Note from the definition of ρ3(t,Tk) that h3
k 6=

1
4(σ3)2e2b3(Tk−t)

and that h3
k = 0 would

imply C̄33
k = 0 which corresponds to a trivial case in which the factor Ψ 3 is not

present in the dynamics of the spread s, hence the inequalities in Case 1) and Case
2) above are indeed strict.

To proceed, we shall introduce some more notions. In particular, instead of only
one function g(x,y,z) as in (70), we shall consider also a function h(x,y), more
precisely, we shall define here the continuous functions

g(x,y,z) :=
n

∑
k=1

D0,ke−A0,k e−B̃1
0,kx−C̃22

0,ky2−C̃33
0,kz2

(86)

h(x,y) :=
n

∑
k=1

(Rγ +1)e−A0,k e−B1
0,kx−C22

0,ky2
, (87)

with the coefficients given by (67) for t = T0. Note that by a slight abuse of notation
we write D0,k for DT0,k and similarly for other coefficients above, always meaning
t = T0 in (67). We distinguish the two cases specified in (85):

For Case 1) we have (see (67) and Lemma 5.2) that C̃33
0,k = ρ̄3(T0,Tk)< 0 for all

k = 1, · · · ,n, and so the function g(x,y,z) in (86) is, for given (x,y), monotonically
increasing for z≥ 0 and decreasing for z < 0 with

lim
z→±∞

g(x,y,z) = +∞.

For Case 2) we have instead that C̃33
0,k = ρ̄3(T0,Tk)> 0 for all k = 1, · · · ,n and so

the nonnegative function g(x,y,z) in (86) is, for given (x,y), monotonically decreas-
ing for z≥ 0 and increasing for z < 0 with

lim
z→±∞

g(x,y,z) = 0.

Analogously to Definition 5.1 we next introduce the following objects

Definition 5.2 Let a set M̄ ⊂ R2 be given by

M̄ := {(x,y) ∈ R2 | g(x,y,0)≤ h(x,y)}. (88)

Since g(x,y,z) and h(x,y) are continuous, M̄ is closed, measurable and connected.
Let M̄c be its complement. Furthermore, we define two functions z̄1(x,y) and z̄2(x,y)
distinguishing between the two Cases 1) and 2) as specified in (85).

Case 1) If (x,y) ∈ M̄, we have g(x,y,0) < h(x,y) and so there exist z̄1(x,y) ≤ 0
and z̄2(x,y)≥ 0 for which, for i = 1,2,

g(x,y, z̄i) =
n

∑
k=1

D0,ke−A0,k e−B̃1
0,kx−C̃22

0,ky2−C̃33
0,k(z̄

i)2

=
n

∑
k=1

(Rγ +1)e−A0,k e−B1
0,kx−C22

0,ky2
= h(x,y)

(89)
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and, for z 6∈ [z̄1, z̄2], one has g(x,y,z)≥ g(x,y, z̄i).
If (x,y) ∈ M̄c, we have g(x,y,0) > h(x,y) so that g(x,y,z) ≥ g(x,y,0) > h(x,y)
for all z and we have no points corresponding to z̄1(x,y) and z̄2(x,y) above.

Case 2) If (x,y)∈ M̄, we have, as for Case 1), g(x,y,0)< h(x,y) and so there exist
z̄1(x,y)≤ 0 and z̄2(x,y)≥ 0 for which, for i = 1,2, (89) holds. However, this time
it is for z ∈ [z̄1, z̄2] that one has g(x,y,z)≥ g(x,y, z̄i).
If (x,y) ∈Mc, then we are in the same situation as for Case 1).

Starting from (83) combined with (66) and taking into account the set M̄ ac-
cording to Definition 5.2, we can obtain the following expression for the swaption
price at t = 0. As for the caps, here too we consider the joint Gaussian distribution
f(Ψ 1

T0
,Ψ 2

T0
,Ψ 3

T0
)(x,y,z) of the factors under the T0−forward measure QT0 and we have

PSwn(0;T0,Tn,R) = p(0,T0)ET0
{(

PSw(T0;Tn,R)
)+ |F0

}
= p(0,T0)

∫
R3

[ n

∑
k=1

D0,ke−A0,k exp(−B̃1
0,kx−C̃22

0,ky2−C̃33
0,kz2)

−
n

∑
k=1

(Rγ +1)e−A0,k exp(−B1
0,kx−C22

0,ky2)
]+

f(Ψ 1
T0
,Ψ 2

T0
,Ψ 3

T0
)(x,y,z)dxdydz

= p(0,T0)
∫

M̄×R

[ n

∑
k=1

D0,ke−A0,k exp(−B̃1
0,kx−C̃22

0,ky2−C̃33
0,kz2)

−
n

∑
k=1

(Rγ +1)e−A0,k exp(−B1
0,kx−C22

0,ky2)
]+

f(Ψ 1
T0
,Ψ 2

T0
,Ψ 3

T0
)(x,y,z)dxdydz

+p(0,T0)
∫

M̄c×R

[ n

∑
k=1

D0,ke−A0,k exp(−B̃1
0,kx−C̃22

0,ky2−C̃33
0,kz2)

−
n

∑
k=1

(Rγ +1)e−A0,k exp(−B1
0,kx−C22

0,ky2)
]+

f(Ψ 1
T0
,Ψ 2

T0
,Ψ 3

T0
)(x,y,z)dxdydz

=: P1(0;T0,Tn,R)+P2(0;T0,Tn,R).

(90)

We can now state and prove the main result of this subsection consisting in a
pricing formula for swaptions for the Gaussian exponentially quadratic model of
this paper. We have

Proposition 5.2 Assuming that the parameters in the model are such that, for h3
k in

(65) we have 0 < h3
k <

1
8(σ3)2e2b3(Tk−t)

, the arbitrage-free price at t = 0 of the swap-

tion with payment dates T1 < · · · < Tn such that γ = γk := Tk−Tk−1 (k = 1, · · · ,n),
with a given fixed rate R and a notional N = 1, can be computed as follows where
we distinguish between the Cases 1) and 2) specified in Definition 5.2.

Case 1) We have
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PSwn(0;T0,Tn,R) = p(0,T0)

{
n

∑
k=1

e−A0,k

[∫
M̄

D0,kexp(−B̃1
0,kx−C̃22

0,ky2)

·

(
e
( 1

2 (θk)
2 β̄3

T0
−ᾱ3

T0
θk)√

1+2β̄ 3
T0

C̃33
0,k

Φ(d1
k (x,y))− e−C̃33

0,k(z̄
1)2

Φ(d2
k (x,y))

+ e
( 1

2 (θk)
2 β̄3

T0
−ᾱ3

T0
θk)√

1+2β̄ 3
T0

C̃33
0,k

Φ(−d3
k (x,y))− e−C̃33

0,k(z̄
2)2

Φ(−d4
k (x,y))

)
f2(y) f1(x)dydx

+
∫

M̄c

(
D0,ke−B̃1

0,kx−C̃22
0,ky2 e(

1
2 (θk)

2β̄ 3
T0
−ᾱ3

T0
θk)√

1+2β̄ 3
T0

C̃33
0,k

− (Rγ +1)e−B1
0,kx−C22

0,ky2)
f2(y) f1(x)dydx

]}
.

(91)
Case 2) We have

PSwn(0;T0,Tn,R) = p(0,T0)

{
n

∑
k=1

e−A0,k[∫
M̄

D0,kexp(−B̃1
0,kx−C̃22

0,ky2)
(e(

1
2 (θk)

2β̄ 3
T0
−ᾱ3

T0
θk)√

1+2β̄ 3
T0

C̃33
0,k

[
Φ(d3

k (x,y))−Φ(d1
k (x,y))

]
−e−C̃33

0,k(z̄
1)2[

Φ(d4
k (x,y))−Φ(d2

k (x,y))
])

f2(y) f1(x)dydx

+
∫

M̄c

(
D0,ke−B̃1

0,kx−C̃22
0,ky2 e(

1
2 (θk)

2β̄ 3
T0
−ᾱ3

T0
θk)√

1+2β̄ 3
T0

C̃33
0,k

− (Rγ +1)e−B1
0,kx−C22

0,ky2)
f2(y) f1(x)dydx

]}
.

(92)
The coefficients in these formulas are as specified in (67) for t = T0, f1(x), f2(x)

are the Gaussian densities corresponding to (68) for T = T0 and the functions
di

k(x,y), for i = 1, . . . ,4 and k = 1, . . . ,n, are given by

d1
k (x,y) :=

√
1+2β̄ 3

T0
C̃33

0,k z̄1(x,y)−(ᾱ3
T0
−θkβ̄ 3

T0
)√

β̄ 3
T0

d2
k (x,y) :=

z̄1(x,y)−ᾱ3
T0√

β̄ 3
T0

d3
k (x,y) :=

√
1+2β̄ 3

T0
C̃33

0,k z̄2(x,y)−(ᾱ3
T0
−θkβ̄ 3

T0
)√

β̄ 3
T0

d4
k (x,y) :=

z̄2(x,y)−ᾱ3
T0√

β̄ 3
T0

(93)

with θk :=
ᾱ3

T0

(
1−1/

√
1+2β̄ 3

T0
C̃33

0,k

)
β̄ 3

T0

, for k = 1, . . . ,n, and where z̄1 = z̄1(x,y), z̄2 =

z̄2(x,y) are solutions in z of the equation g(x,y,z) = h(x,y).
In addition, the mean and variance values for the Gaussian factors (Ψ 1

T0
,Ψ 2

T0
,Ψ 3

T0
)

are here given by
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ᾱ1
T0
= e−b1T0Ψ 1

0 −
(σ1)2

2(b1)2 e−b1T0(1− e2b1T0)− (σ1)2

(b1)2 (1− eb1T0)
]

β̄ 1
T0
= e−2b1T0(e2b1T0 −1) (σ

1)2

2(b1)

ᾱ2
T0
= e−b2T0Ψ 2

0

β̄ 2
T0
= e−2b2T0

∫ T0

0
e2b2u+4(σ2)2C̄22(u,T0)(σ2)2du

ᾱ3
T0
= e−b3T0Ψ 3

0

β̄ 3
T0
= e−2b3T0 (σ3)2

2b3 (e2b3T0 −1).

(94)

Remark 5.2 A remark analogous to Remark 5.1 applies here too concerning the
sets M̄ and M̄c.

Proof. First of all notice that, since 0< h3
k <

1
8(σ3)2e2b3(Tk−t)

implies 1+2β̄ 3
T0

C̃33
0,k ≥ 0,

the square-root of the latter expression in the various formulas of the statement of
the proposition is well-defined. This can be checked, similarly as in the proof of
Lemma 5.1, by direct computation taking into account the definitions of β̄ 3

T0
in (94)

and of C̃33
0,k in (67) and (65) for t = T0.

We come now to the statement for the
Case 1. We distinguish between whether (x,y) ∈ M̄ or (x,y) ∈ M̄c and compute
separately the two terms in the last equality in (90).

i) For (x,y) ∈ M̄ we have from Definition 5.2 that there exist z̄1(x,y) ≤ 0 and
z̄2(x,y)≥ 0 so that, for z 6∈ [z̄1, z̄2], one has g(x,y,z)≥ g(x,y, z̄i). Taking into account
that, under QT0 , the random variables Ψ 1

T0
,Ψ 2

T0
,Ψ 3

T0
are independent, so that we shall

write f(Ψ 1
T0
,Ψ 2

T0
,Ψ 3

T0
)(x,y,z) = f1(x) f2(y) f3(z) (see also (68) and the line following it),

we obtain

P1(0;T0,Tn,R) = p(0,T0)
[ n

∑
k=1

D0,ke−A0,k

∫
M

exp(−B̃1
0,kx−C̃22

0,ky2)

·
(∫ z̄1(x,y)

−∞

exp(−C̃33
0,kz2) f3(z)dz−

∫ z̄1(x,y)

−∞

exp(−C̃33
0,k(z̄

1)2) f3(z)dz

+
∫ +∞

z̄2(x,y)
exp(−C̃33

0,kz2) f3(z)dz−
∫ +∞

z̄2(x,y)
exp(−C̃33

0,k(z̄
2)2) f3(z)dz

)
f2(y) f1(x)dydx

]
.

(95)
By means of calculations that are completely analogous to those in the proof of
Proposition 5.1, we obtain, corresponding to (79), (80) and (81) respectively and
with the same meaning of the symbols, the following explicit expressions for the
four integrals in the second and the third line of (95), namely

∫ z̄1(x,y)

−∞

e−C̃33
0,kz2

f3(z)dz =
e(

1
2 (θk)

2β̄ 3
T0
−ᾱ3

T0
θk)√

1+2β̄ 3
T0

C̃33
0,k

Φ(d1
k (x,y)), (96)

∫ z̄1(x,y)

−∞

e−C̃33
0,k(z̄

1)2
f3(z)dz = e−C̃33

0,k(z̄
1)2

Φ(d2
k (x,y)), (97)
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and, similarly,

∫ +∞

z̄2(x,y)
e−C̃33

0,kz2
f3(z)dz =

e(
1
2 (θk)

2β̄ 3
T0
−ᾱ3

T0
θk)√

1+2β̄ 3
T0

C̃33
0,k

Φ(−d3
k (x,y)),

∫ +∞

z̄2(x,y)
e−C̃33

0,k(z̄
2)2

f3(z)dz = e−C̃33
0,k z̄2

Φ(−d4
k (x,y)),

(98)

where the di
k(x,y), for i = 1, . . . ,4 and k = 1, . . . ,n, are as specified in (93).

ii) If (x,y) ∈ M̄c then, according to Definition 5.2 we have g(x,y,z) ≥ g(x,y,0) >
h(x,y) for all z. Noticing that, analogously to (96),

∫
R

e−C̃33
0,kζ 2

f3(ζ )dζ =
e(

1
2 (θk)

2β̄ 3
T0
−ᾱ3

T0
θk)√

1+2β̄ 3
T0

C̃33
0,k

we obtain the following expression

P2(0;T0,Tn,R) = p(0,T0)
n

∑
k=1

e−A0,k
[∫

M̄c×R

(
D0,ke−B̃1

0,kx−C̃22
0,ky2−C̃33

0,kz2

−(Rγ +1)e−B1
0,kx−C22

0,ky2)
f3(z) f2(y) f1(x)dzdydx

]
= p(0,T0)

n

∑
k=1

e−A0,k
[
D0,k

(∫
Mc

e−B̃1
0,kx−C̃22

0,ky2
f2(y) f1(x)dydx

)e(
1
2 (θk)

2β̄ 3
T0
−ᾱ3

T0
θk)√

1+2β̄ 3
T0

C̃33
0,k

−(Rγ +1)
(∫

M̄c
e−B1

0,kx−C22
0,ky2

f2(y) f1(x)dydx
)]

.

(99)
Adding the two expressions in i) and ii) we obtain the statement for the Case 1.
Case 2). Also for this case we distinguish between whether (x,y)∈ M̄ or (x,y)∈ M̄c

and, again, compute separately the two terms in the last equality in (90).
i) For (x,y)∈ M̄ we have that there exist z̄1(x,y)≤ 0 and z̄2(x,y)≥ 0 so that, contrary
to Case 1), one has g(x,y,z)≥ g(x,y, z̄i) when z ∈ [z̄1, z̄2]. It follows that
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P1(0;T0,Tn,R) = p(0,T0)

[
n

∑
k=1

D0,ke−A0,k

∫
M̄

exp(−B̃1
0,kx−C̃22

0,ky2)

·

(∫ z̄2(x,y)

z̄1(x,y)
exp(−C̃33

0,kz2) f3(z)dz−
∫ z̄2(x,y)

z̄1(x,y)
exp(−C̃33

0,k(z̄
1)2) f3(z)dz

)
f2(y) f1(x)dydx

]

= p(0,T0)

[
n

∑
k=1

D0,ke−A0,k

∫
M̄

exp(−B̃1
0,kx−C̃22

0,ky2)

·

(
e
( 1

2 (θk)
2 β̄3

T0
−ᾱ3

T0
θk)√

1+2β̄ 3
T0

C̃33
0,k

(
Φ(d3

k (x,y))−Φ(d1
k (x,y))

)
−e−C̃33

0,k(z̄
1)2 (

Φ(d4
k (x,y))−Φ(d2

k (x,y))
))

f2(y) f1(x)dydx

]
,

(100)
where we have made use of (96) and (97), (98).

ii) For (x,y) ∈ M̄c we can conclude exactly as we did it for Case 1) and, by adding
the two expressions in i) and ii), we obtain the statement also for Case 2). ut
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