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1 Introduction

In financial modeling it is typically the case that, in practice, not all quantities,
which determine the dynamics of security prices, can be fully observed. Some of
the factors that characterize the evolution of the market are hidden. For instance,
correlations between driving Wiener processes often change quite randomly after
certain periods of time. An example is the correlation between the fluctuations of
specific and general market risk, see Platen & Stahl (2003). However, these un-
observed factors and their correct calibration are essential to reflect in a financial
market model correctly the market dynamics that one empirically observes. This
leads naturally to a stochastic filtering problem. Given the available information,
corresponding filter methods determine the distribution, called filter distribution,
of the unobserved factors. For instance, this distribution allows then to compute
the expectation of quantities that are dependent on unobserved factors, including
derivative prices, optimal portfolio strategies and risk measures.

There is a growing literature in the area of filtering in finance. To mention
a few recent publications let us list Elliott & van der Hoek (1997), Fischer,
Platen & Runggaldier (1999), Elliott, Fischer & Platen (1999), Fischer & Platen
(1999), Landen (2000), Gombani & Runggaldier (2001), Frey & Runggaldier
(1999, 2001), Elliott & Platen (2001), Bhar, Chiarella & Runggaldier (2002, 2004)
and Chiarella, Pasquali & Runggaldier (2001). These papers provide examples,
where filter methods have been applied to dynamic asset allocation, interest rate
term structure calibration, risk premia estimation, volatility estimation and hedg-
ing under partial observation.

A key problem that arises in most filtering applications in finance is the deter-
mination of a suitable pricing measure. The results depend often significantly
on the assumptions made for choosing the pricing measure. Furthermore, it has
been demonstrated in Heath & Platen (2002b), Platen (2004b) and Breymann,
Kelly & Platen (2004) that any realistic parsimonious financial market model is
unlikely to have an equivalent risk neutral martingale measure. Moreover, it is
obvious that in filtering one has to deal with the real world probability measure
to extract from the observations via filters estimates for the hidden factors. It
is therefore highly important to explore methods that are purely based on the
real world probability measure and allow consistent filtering under partial infor-
mation for derivative pricing, portfolio optimization, risk measurement and other
applications.

In this paper we extend the benchmark approach proposed in Platen (2002, 2004a,
2004b) to filtering, where the benchmark or numeraire is chosen as the growth op-
timal portfolio (GOP). This extends work by Long (1990) and Bajeux-Besnainou
& Portait (1997) to the general case where no equivalent risk neutral measure
exists and a jump diffusion financial market with hidden factors is considered.
This paper provides therefore results for the case of partial information in an
incomplete market framework.
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The GOP has the economic interpretation of being the portfolio that maximizes
expected logarithmic utility. It is highly relevant in portfolio optimization, see
Korn & Schäl (1999), but also for derivative pricing, as we will see below. By
using the GOP as numeraire or benchmark under a given information structure,
one naturally obtains a fair derivative price system, where benchmarked deriva-
tive prices are martingales. This means, benchmarked derivative prices equal
their expected future benchmarked values. Even if equivalent risk neutral mar-
tingale measures are assumed to exist, this avoids the delicate involvement of
such measures under various information structures. In the special case of a com-
plete market, with an equivalent risk neutral martingale measure, it will turn out
that fair prices coincide with risk neutral prices. Furthermore, for an incomplete
market, with a minimal equivalent martingale measure in the sense of Föllmer &
Schweizer (1991), it will be shown that their prices coincide with the fair prices
obtained under the benchmark approach. For incomplete jump diffusion markets
under partial observation a much wider range of models is covered in this paper
than under traditional approaches. It will be shown that all portfolios, when
expressed in units of the GOP, turn out to be local martingales with respect to
the given real world measure and under partial information. In this way, delicate
issues that result from measure transformations under various information struc-
tures can not arise and major risk management tasks, such as hedging, portfolio
optimization and risk measurement can be performed consistently under the real
world probability measure. Moreover, in cases when no equivalent risk neutral
measure exists, the benchmark approach allows to overcome problems arising
under the risk neutral methodology, as, for instance, described in Delbaen &
Schachermayer (1995, 1998).

The paper is structured in the following way. It summarizes in Section 2 the
general filtering methodology for multi-factor jump diffusion models under partial
observation. Section 3 describes the proposed filtered benchmark model. The fair
pricing of derivatives is then studied in Section 4. This section also quantifies the
reduction of the variance for derivative prices when additional information is
available. The hedging under partial observation is subject of Section 5.

2 Filtered Multi-Factor Models

2.1 Factor Model

To build a financial market model with a sufficiently rich structure and high
computational tractability we introduce a multi-factor model. We aim to model
also market dynamics for which an equivalent risk neutral martingale measure
does not exist. This is practically important since it has been indicated in Platen
(2004d) that any realistic stock market model is unlikely to have an equivalent risk
neutral martingale measure. Along these lines, detailed analysis of intraday data
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reveals, see Breymann, Kelly & Platen (2004), that there exist natural parameter
processes that are only indirectly observable under some noise. For instance, the
correlation process between Wiener processes that drive different factors, provide
a typical example for such hidden quantities that are highly important for fund
management and derivative pricing.

We consider a multi-factor model with n ≥ 2 factors z1, z2, . . . , zn, forming the
vector process

z =
{

zt =
(
z1

t , . . . , z
k
t , zk+1

t , . . . , zn
t

)>
, t ∈ [0, T ]

}
. (2.1)

We shall assume that not all of the factors are observed. The unobserved factors
will be treated via filtering methods. More precisely, only the first k factors are
directly observed, while the remaining n − k are not. Here k is an integer with
1 ≤ k < n that we shall suppose to be fixed during most of this paper. However,
in Section 4.3 we shall discuss the implications of a varying k, that is a varying
degree of information. For fixed k we shall consider the following subvectors of
zt:

yt = (y1
t , . . . , y

k
t )> = (z1

t , . . . , z
k
t )> and xt = (x1

t , . . . , x
n−k
t )> = (zk+1

t , . . . , zn
t )>

(2.2)
with yt representing the observed and xt the unobserved factors. To be specific, we
assume that yt includes as components also the observed security prices. These
are given by d + 1 primary security account processes S(0), S(1), . . . , S(d), d ∈
{1, 2, . . . , k − 1}. We assume that a primary security account holds only units of
one security and the income or loss accrued from holding the units of this security
is always reinvested. In the case of shares this models the usual ownership of
productive units. Here S(0) is the savings account process S(0) = {S(0)

t , t ∈ [0, T ]},
where T is a fixed horizon. Note that the market can be incomplete. We shall
identify S

(j)
t with yj

t for j ∈ {1, 2, . . . , d} and the short rate rt with yd+1
t for

t ∈ [0, T ]. This means, we consider the short rate to be observable. Furthermore,
the dynamics of yj

t for j ∈ {1, 2, . . . , d + 1} are assumed to be such that these
observed quantities remain always nonnegative.

The following setup shall be relatively complex because we aim to provide a
general framework where Markovian jump diffusion market models with hidden
factors, driven by a finite number of Wiener and Poisson processes, are covered.
Let there be given a filtered probability space (Ω,AT ,A, P ), where A = (At)t∈[0,T ]

is a given filtration to which all the processes shall be adapted. We assume that
the observed and unobserved factors satisfy the system of stochastic differential
equations (SDEs)

dxt = at(zt) dt + bt(zt) dwt + gt−(zt−) dmt

dyt = At(zt) dt + Bt(yt) dvt + Gt−(yt−) dNt (2.3)

for t ∈ [0, T ] with given vector z0 = (y1
0, . . . , y

k
0 , x

1
0, . . . , x

n−k
0 )> of initial values.

Here
w =

{
wt =

(
w1

t , . . . , w
k
t , w

k+1
t , . . . , wn

t

)>
, t ∈ [0, T ]

}
(2.4)
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is an n-dimensional (A, P )-Wiener process and

vt =
(
w1

t , . . . , w
k
t

)>
(2.5)

is the subvector of its first k components. The process m = {mt = (m1
t , . . . , m

k
t ,

mk+1
t , . . . ,mn

t )>, t ∈ [0, T ]} is an n-dimensional (A, P )-jump martingale defined
as follows: Consider n counting processes N1, . . . , Nn having no common jumps.
These are at time t ∈ [0, T ] characterized by the corresponding vector of intensi-
ties λt(zt) = (λ1

t (zt), . . . , λ
n
t (zt))

>, where

λi
t(zt) = λ̃i

t(yt) (2.6)

for t ∈ [0, T ] and i ∈ {1, 2, . . . , k}. This means, we assume without loss of
generality that the jump intensities of the first k counting processes are observed.
The ith (A, P )-jump martingale is then defined by the stochastic differential

dmi
t = dN i

t − λi
t(zt−) dt (2.7)

for t ∈ [0, T ] and i ∈ {1, 2, . . . , n}. In (2.3) the vector

Nt =
(
N1

t , . . . , Nk
t

)>
(2.8)

denotes the vector of the first k counting processes at time t ∈ [0, T ]. Concerning
the coefficients in the SDE (2.3), we assume that the vectors at(zt), At(zt), λt(zt)
and the matrices bt(zt), Bt(yt), gt(zt) and Gt(yt) are such that a unique strong
solution of (2.3) exists that does not explode until time T , see Protter (1990).
Furthermore, the components y1

t , . . . , y
d+1
t are assumed to be nonnegative for all

t ∈ [0, T ]. We shall also assume that the k × k-matrix Bt(yt) is invertible for all
t ∈ [0, T ]. We furthermore assume that At(zt) and Bt(yt) in (2.3) are such that

∫ T

0

E (|At(zt)|) dt < ∞ and

∫ T

0

Bt(yt) Bt(yt)
> dt < ∞ (2.9)

P -a.s. Finally, gt(zt) may be any bounded function and the k × k-matrix Gt(yt)
is assumed to be a given function of yt that is invertible for each t ∈ [0, T ].
This latter assumption implies that, since there are no common jumps among
the components of Nt, by observing a jump of yt we can establish which of the
processes N i, i ∈ {1, 2, . . . , k}, has jumped.

In addition to the filtration A, which represents the complete information, we
shall also consider the subfiltration

Ãk = (Ãk
t )t∈[0,T ] ⊆ A, (2.10)

where Ãk
t = σ{ys = (z1

s , . . . , z
k
s )>, s ≤ t} represents the observed information

at time t ∈ [0, T ]. Thus Ãk provides the structure of the actually available
information in the market, which depends on the specification of the degree of
available information k.
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We shall be interested in the conditional distribution of xt, given Ãk
t , that we

call, according to standard terminology, the filter distribution at time t ∈ [0, T ].
There exist general filter equations for the dynamics described by the SDEs given
in (2.3), see Liptser & Shiryaev (1977). It turns out that these are SDEs for
the conditional expectations of integrable functions of the unobserved factors xt,
given Ãk

t . Notice that, in particular, exp[ıν xt] is, for given ν ∈ <k and with ı
denoting the imaginary unit, a bounded and thus integrable function of xt. Its
conditional expectation leads therefore to the conditional characteristic function
of the distribution of xt, given Ãk

t . The latter characterizes completely the entire
filter distribution. Considering conditional expectations of integrable functions
of xt is thus not a restriction for the identification of filter equations.

The general case of filter equations is beyond the scope of this paper. These
are, for instance, considered in Liptser & Shiryaev (1977). To keep the filter
reasonably tractable we assume that the SDEs given in (2.3) are such that the
corresponding filter distributions admit a representation of the form

P
(
zk+1

t ≤ zk+1, . . . , zn
t ≤ zn

∣∣ Ãk
t

)
= Fzk+1

t ,...,zn
t

(
zk+1, . . . , zn

∣∣ ζ1
t , . . . , ζ

q
t

)
(2.11)

for all t ∈ [0, T ]. This means that we have a finite-dimensional filter, characterized
by the filter state process

ζ =
{

ζt =
(
ζ1
t , . . . , ζ

q
t

)>
, t ∈ [0, T ]

}
, (2.12)

which is an Ãk
t -adapted process with a certain finite dimension q ≥ 1. We shall

denote by z̃k
t the resulting (k + q)-vector of observables

z̃k
t =

(
y1

t , . . . , y
k
t , ζ

1
t , . . . , ζ

q
t

)>
, (2.13)

which consists of the k observed factors and the q components of the filter state
process. Furthermore, we assume that the filter state ζt satisfies an SDE of the
form

dζt = Ct(z̃
k
t ) dt + Dt−(z̃k

t−) dyt (2.14)

with Ct(·) denoting a q-vector valued function and Dt(·) a (q × k)-matrix valued
function, t ∈ [0, T ].

There are various models of the type (2.3) that admit a finite-dimensional filter
with ζt satisfying an equation of the form (2.14). In the following two subsections
we recall two classical such models. These are the conditionally Gaussian model,
which leads to a generalized Kalman-filter and the finite-state jump model for x,
which is related to hidden Markov chain filters. Various combinations of these
models have finite-dimensional filters and can be readily applied in finance, as
demonstrated in the literature that we mentioned in the introduction.
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Example 2.1 : Conditionally Gaussian Filter Model

Assume that in the system of SDEs (2.3) the functions at(·) and At(·) are linear
in the factors and that bt(zt) ≡ bt is a deterministic function, while gt(zt) ≡
Gt(yt) ≡ 0. This means that the model (2.3) takes the form

dxt =
[
a0

t + a1
t xt + a2

t yt

]
dt + bt dwt

dyt =
[
A0

t + A1
t xt + A2

t yt

]
dt + Bt(yt) dvt, (2.15)

for t ∈ [0, T ] with given deterministic initial values x0 and y0. Here a0
t and A0

t are
column vectors of dimensions (n− k) and k, respectively, and a1

t , a2
t , bt, A1

t , A2
t ,

Bt(yt) are matrices of appropriate dimensions. Recall that w is an n-dimensional
(A, P )-Wiener process and v the vector of its first k components.

In this case the filter distribution is a Gaussian distribution with vector mean
µt = (µ1

t , . . . , µ
n−k
t )>, where

µi
t = E

(
xi

t

∣∣ Ãk
t

)
(2.16)

and covariance matrix ct = [c`,i
t ]`,i∈{1,2,...,n−k}, where

c`,i
t = E

((
x`

t − µ`
t

) (
xi

t − µi
t

) ∣∣ Ãk
t

)
(2.17)

for t ∈ [0, T ]. The dependence of µt and ct on k is for simplicity suppressed
in our notation. The above filter can be obtained from a generalization of the
well-known Kalman filter, see Liptser & Shiryaev (1977), namely

dµt =
[
a0

t + a1
t µt + a2

t yt

]
dt +

[
b̄t Bt(yt)

> + ct (A1
t )
>]

(Bt(yt) Bt(yt)
>)−1

· [
dyt −

(
A0

t + A1
t µt + A2

t yt

)
dt

]

dct =
(
a1

t ct + ct (a1
t )
> + (bt b

>
t )

− [
b̄t Bt(yt)

> + ct (A1
t )
>] (

Bt(yt) Bt(yt)
>)−1 [

b̄t Bt(yt)
> + ct (A1

t )
>]>)

dt,

(2.18)

where b̄t is the k-dimensional vector formed by the first k components of bt,
t ∈ [0, T ]. We recall that Bt(yt) is assumed to be invertible.

Although for t ∈ [0, T ], ct is defined as a conditional expectation, it follows from
(2.18) that if Bt(yt) does not depend on the observable factors yt, then ct can
be computed off-line. Notice that the computation of ct is contingent upon the
knowledge of the coefficients in the second equation of (2.18). These coefficients
are given deterministic functions of time, except for Bt(yt) that depends also on
observed factors. The value of Bt(yt) becomes known only at time t. However,
this is sufficient to determine the solution of (2.18) at time t. The model (2.15)
is in fact of the type of a conditionally Gaussian filter model, where the filter
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process ζ is given by the vector process µ = {µt, t ∈ [0, T ]} and the upper
triangular array of the elements of the matrix process c = {ct, t ∈ [0, T ]} with

q = (n− k) [3+(n−k)]
2

. Note by (2.17) that the matrix ct is symmetric. Obviously,
in the case when Bt(yt) does not depend on yt for all t ∈ [0, T ], then we have a
Gaussian filter model.

Example 2.2 : Finite-State Jump Model

Here we assume that the unobserved factors form a continuous time, (n − k)-
dimensional jump process x = {xt = (x1

t , . . . , x
n−k
t )>, t ∈ [0, T ]}, which can take

a finite number M of values. More precisely, given an appropriate time t and
zt-dependent matrix gt(zt), and an intensity vector λt(zt) = (λ1

t (zt), . . . , λ
n
t (zt))

>

at time t ∈ [0, T ] for the vector counting process N̄ = {N̄t = (N1
t , . . . , Nn

t )>,
t ∈ [0, T ]}, we consider the particular case of the model equations (2.3), where in
the xt-dynamics we have at(zt) = gt(zt)λt(zt) and bt(zt) ≡ 0. Thus, by (2.3) and
(2.7) we have

dxt = gt−(zt−) dN̄t (2.19)

for t ∈ [0, T ]. Notice that the process x of unobserved factors has here only
jumps and is therefore piecewise constant. On the other hand, for the vector yt

of observed factors we assume that it satisfies the second equation in (2.3) with
Gt(yt) ≡ 0. This means that the process of observed factors y is only perturbed
by continuous noise and does not jump.

In this example, the filter distribution is completely characterized by the vector of
conditional probabilities pt = (p1

t , . . . , p
M
t )>, where M is the number of possible

states η1, . . . , ηM of the vector xt and

pj
t = P

(
xt = ηj

∣∣ Ãk
t

)
, (2.20)

for t ∈ [0, T ] and j ∈ {1, 2, . . . , M}. Let āi,j
t (y, ηh) denote the transition kernel

for x at time t to jump from state i into state j given yt = y and xt = ηh, see
Liptser & Shiryaev (1977). The components of the vector pt satisfy the following
dynamics

dpj
t =

(
ãt(yt, pt)

> pt

)j
dt + pj

t

[
At(yt, η

j)− Ãt(yt, pt)
] (

Bt(yt) Bt(yt)
>)−1

·
[
dyt − Ãt(yt, pt) dt

]
, (2.21)

where

(
ãt(yt, pt)

> pt

)j
=

M∑
i=1

(
M∑

h=1

āi,j
t (yt, η

h) ph
t

)
pi

t

At(yt, η
j) = At(yt, xt)

∣∣
xt=ηj

Ãt(yt, pt) =
M∑

j=1

At(yt, η
j) pj

t (2.22)
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for t ∈ [0, T ], j ∈ {1, 2, . . . , M}. The filter state process ζ = {ζt = (ζ1
t . . . , ζq

t )
>,

t ∈ [0, T ]} for the finite state jump model is thus given by the vector process
p = {pt = (p1

t , . . . , p
q
t )
>, t ∈ [0, T ]} with q = M − 1. Since the probabilities add

up to one, we need only M − 1 probabilities to characterize the filter.

2.2 Markovian Representation

As in the two previous examples we have, in general, in our filter setup to deal
with the quantity E(At(zt) | Ãk

t ), assuming that it exists. This is the conditional
expectation of the coefficient At(zt) = At(y

1
t , . . . , y

k
t , x

1
t , . . . , x

n−k
t ), that appears

in (2.3), with respect to the filter distribution at time t for the unobserved factors
xt. Since the filter is characterized by the filter state process ζ, we obtain for this
conditional expectation the representation

Ãt(z̃
k
t ) = E

(
At(zt)

∣∣ Ãk
t

)
, (2.23)

where the vector z̃k
t is as defined in (2.13). Note that we deal here in our financial

market context with conditional expectations under the real world probability
measure. This is an essential observation to understand the theoretical and prac-
tical benefits of the benchmark approach that we will pursue later on.

Notice that, in the case of Example 2.1, namely the conditionally Gaussian model,
the expression Ãt(z̃

k
t ) takes the particular form

Ãt(z̃
k
t ) = A0

t + A1
t µt + A2

t yt. (2.24)

Furthermore, for Example 2.2, namely the finite-state jump model, Ãt(z̃
k
t ) can

be represented as

Ãt(z̃
k
t ) = Ãt(yt, pt) =

M∑
j=1

At(yt, η
j) pj

t (2.25)

for t ∈ [0, T ], see (2.22).

In Appendix A we prove the following generalization of Theorem 7.12 in Liptser
& Shiryaev (1977), which provides an important representation of the SDE for
the observed factors.

Proposition 2.3 Let At(zt) and the invertible matrix Bt(yt) in (2.3) be such
that (2.9) holds. Then there exists a k-dimensional Ãk-adapted Wiener process
ṽ = {ṽt, t ∈ [0, T ]} such that the process y = {yt, t ∈ [0, T ]} of observed factors
in (2.3) satisfies the SDE

dyt = Ãt(z̃
k
t ) dt + Bt(yt) dṽt + Gt−(yt−) dNt (2.26)

with Ãt(z̃
k
t ) as in (2.23).
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Instead of the original factors zt = (y1
t , . . . , y

k
t , x

1
t , . . . , x

n−k
t )> = (z1

t , . . . , z
n
t )>,

where xt = (x1
t , . . . , x

n−k
t )> is unobserved, we may now base our analysis on the

components of the vector z̃k
t = (y1

t , . . . , y
k
t , ζ

1
t , . . . , ζq

t )
>, see (2.13), that are all

observed. Just as was the case with z = {zt, t ∈ [0, T ]}, also the vector process
z̃k = {z̃k

t , t ∈ [0, T ]} has a Markovian dynamics. In fact, replacing dyt in (2.14)
by its expression resulting from (2.26), we obtain

dζt =
[
Ct(z̃

k
t ) + Dt(z̃

k
t ) Ãt(z̃

k
t )

]
dt + Dt(z̃

k
t ) Bt(yt) dṽt + Dt−(z̃k

t−) Gt−(yt−) dNt

= C̃t(z̃
k
t ) dt + D̃t(z̃

k
t ) dṽt + G̃t−(z̃k

t−) dNt, (2.27)

whereby we implicitly define the vector C̃t(z̃
k
t ) and the matrices D̃t(z̃

k
t ) and G̃t(z̃

k
t )

for compact notation.

From equations (2.26) and (2.27) we immediately obtain the following result.

Corollary 2.4 The dynamics of the vector z̃k
t = (yt, ζt)

> can be expressed by
the system of SDEs

dyt = Ãt(z̃
k
t ) dt + Bt(yt) dṽt + Gt−(yt−) dNt

dζt = C̃t(z̃
k
t ) dt + D̃t(z̃

k
t ) dṽt + G̃t−(z̃k

t−) dNt. (2.28)

From Corollary 2.4 it follows that the process z̃k = {z̃k
t , t ∈ [0, T ]} is Markovian.

Due to the existence of a Markovian filter dynamics we have our original Marko-
vian factor model, given by (2.3), projected into a Markovian model for the
observed quantities. Here the driving observable noise ṽ is an (Ãk, P )-Wiener
process and the observable counting process N is generated by the first k com-
ponents N1, N2, . . . , Nk of the n counting processes.

For efficient notation, given k, we write for the vector of observables z̃k
t = z̄t =

(z̄1
t , z̄

2
t , . . . , z̄k+q

t )> the corresponding system of SDEs in the form

dz̄`
t = α`(t, z̄1

t , z̄
2
t , . . . , z̄

k+q
t ) dt +

k∑
r=1

β`,r(t, z̄1
t , z̄

2
t , . . . , z̄

k+q
t ) dṽr

t

+
k∑

r=1

γ`,r
(
t−, z̄1

t−, z̄2
t−, . . . , z̄k+q

t−
)

dN r
t (2.29)

for t ∈ [0, T ] and ` ∈ {1, 2, . . . , k + q}. The functions α`, β`,r and γ`,r follow
directly from Ã, B, G, C̃, D̃ and G̃, appearing in (2.28).

We also have as an immediate consequence of the Markovianity of z̃k = z̄, as well
as property (2.11), the following result.
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Corollary 2.5 Any expectation of the form E(u(t, zt) | Ãk
t ) < ∞ for a given

function u : [0, T ]×<n → < and given k ∈ {1, 2, . . . , n− 1} can be expressed as

E
(
u(t, zt)

∣∣ Ãk
t

)
= ũk(t, z̃k

t ) = ũk(t, z̄t) (2.30)

with a suitable function ũk : [0, T ]×<k+q → <.

Relation (2.30) in Corollary 2.5 is of significant practical importance, in particu-
lar, for contingent claim pricing, as we shall see later on.

3 Benchmark Model

3.1 Primary Security Accounts and Portfolios

Recall from Section 2.1 that we have in our Markovian jump-diffusion market
model with observable and hidden factors, d + 1 primary security account pro-
cesses S(0), . . . , S(d) with d < k, all of which are observable. This means that the
vector process S = {St = (S

(0)
t , . . . , S

(d)
t )>, t ∈ [0, T ]} is Ãk-adapted. We have

set in Section 2.1
yj

t = z̄j
t = S

(j)
t

for j ∈ {1, 2, . . . , d} and
yd+1

t = z̄d+1
t = rt

for t ∈ [0, T ].

Since the d + 1 primary security account processes coincide with the observable
factors y1, . . . , yd+1, we can write their dynamics in a form corresponding to (2.29).
To this effect let by analogy to (2.7)

dm̃i
t =

1√
λ̃i

t−(z̄t−)

(
dN i

t − λ̃i
t−(z̄t−) dt

)
(3.1)

for i ∈ {1, 2, . . . , k} be the normalized compensated ith (Ãk, P )-jump martingale
relative to the filtration Ãk. Here, with some abuse of notation, we have denoted
by λ̃i

t(z̄t) the compensating jump intensity for N i with respect to Ãk. For sim-
plicity of notation, in what follows we shall often use z̄t for z̃k

t , see (2.29). Let us
now rewrite (2.29) more concisely in vector form as

dz̄t = ᾱ(t, z̄t) dt + β(t, z̄t) dṽt + γ(t−, z̄t−)

√
λ̃t−(z̄t−) dm̃t (3.2)

with

ᾱ(t, z̄t) = α(t, z̄t) + γ(t−, z̄t−)

√
λ̃t−(z̄t−), (3.3)

11



where m̃ and λ̃ are the k-vectors with components m̃i and
√

λ̃i, respectively. Here
α(t, z̄t) is a (k + q)-column vector and β(t, z̄t) as well as γ(t, z̄t) are ((k + q)× k)-
matrices.

Since we have assumed d < k, the primary security accounts do not necessarily
span the entire observable uncertainty of the market. Think, for instance, of
asset price models with stochastic volatility, where the volatilities are driven
by stochastic processes that are independent from those that directly drive the
evolution of the asset prices. It is therefore reasonable to assume that among
the driving random processes ṽi for i ∈ {1, 2, . . . , k} and m̃` for ` ∈ {1, 2, . . . , k},
those that directly drive the fluctuations of the asset prices S

(j)
t , j ∈ {1, 2, . . . , d},

are exactly d in number. We shall thus assume that for any j ∈ {1, 2, . . . , d} the
dynamics of the jth primary security account is given by the SDE

dS
(j)
t = ᾱj(t, z̄t) dt +

h1∑
i=1

βj,i(t, z̄t) dṽi
t +

h2∑

`=1

γj,`(t−, z̄t−)

√
λ̃`

t−(z̄t−) dm̃`
t (3.4)

for t ∈ [0, T ], where h1 + h2 = d.

We assume that all model specifications are such that a unique strong solution
of the system of SDEs (3.2) – (3.4) exists, see Protter (1990). For efficient and
more transparent notation we now rewrite the SDE (3.4) in the form

dS
(j)
t = S

(j)
t−

(
rt dt +

h1∑
i=1

bj,i
t

(
dṽi

t + θi
t dt

)
+

d∑

`=h1+1

bj,`
t−

(
dm̃`−h1

t + θ`
t− dt

)
)

(3.5)

for t ∈ [0, T ] with S
(j)
t > 0, j ∈ {0, 1, . . . , d}. Here we set S

(0)
0 = 1 and b0,i

t = 0
for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}, where rt is the short rate. Above in (3.5) we
have for i ∈ {1, 2, . . . , h1} the volatility

bj,i
t =

βj,i(t, z̄t)

S
(j)
t

(3.6)

and for i ∈ {h1 + 1, . . . , d} the jump coefficient

bj,i
t− =

γj,i−h1(t−, z̄t−)
√

λ̃i−h1
t− (z̄t−)

S
(j)
t−

(3.7)

for t ∈ [0, T ] and j ∈ {1, 2, . . . , d}. We assume that the matrix bt = [bj,i
t ]dj,i=1

is invertible for all t ∈ [0, T ]. This allows us to write the market price for risk
vector θt = (θ1

t , . . . , θ
d
t )
> in the form

θt = b−1
t [at − rt 1] (3.8)

for t ∈ [0, T ]. Here 1 = (1, . . . , 1)> is the corresponding unit vector and at =
(a1

t , . . . , a
d
t )
> is the appreciation rate vector with

aj
t =

ᾱj(t, z̄t)

S
(j)
t

(3.9)

12



for t ∈ [0, T ] and j ∈ {1, 2, . . . , d}. Notice that in the dynamics (3.5) all the
coefficients can be determined on the basis of the observables z̄t. The interest
rate rt was in fact identified with yd+1

t and, by (3.6) – (3.9), the matrix bt and
the market price for risk vector θt are given functions of observables.

Let us form portfolios of primary security accounts. We say that an Ãk-predictable
stochastic process δ = {δt = (δ0

t , . . . , δ
d
t )
>, t ∈ [0, T ]} is a self-financing strategy,

if δ is S-integrable, see Protter (1990), and the corresponding portfolio value

Vδ(t) =
d∑

j=0

δj
t Sj

t (3.10)

at time t satisfies the SDE

dVδ(t) =
d∑

j=0

δj
t− dSj

t (3.11)

for all t ∈ [0, T ]. The jth component δj
t , j ∈ {0, 1, . . . , d}, of the self-financing

strategy δ expresses the number of units of the jth primary security account
held at time t in the corresponding portfolio. Under a self-financing strategy no
outflow or inflow of funds occurs for the corresponding portfolio. All changes in
the value of the portfolio are due to gains from trade in the primary security
accounts. Since we will only deal with self-financing portfolios and strategies we
omit in the following the phrase “self-financing”.

As is shown in Platen (2004b), to avoid portfolios with infinite growth potential
we need to assume that √

λ̃`−h1
t (z̄t) > θ`

t (3.12)

for all t ∈ [0, T ] and ` ∈ {h1 + 1, . . . , d}.

3.2 Growth Optimal Portfolio

In a financial market model it is advantageous for derivative pricing and other
risk management tasks to choose an appropriate reference unit, numeraire or
benchmark. Under the benchmark approach, see Platen (2002, 2004a, 2004b,
2004d), we use the growth optimal portfolio (GOP) as benchmark, which is the
self-financing portfolio that achieves maximum expected logarithmic utility from
terminal wealth. We denote by Vδ(t) the value of the GOP at time t ∈ [0, T ].
It has been shown in Platen (2004a, 2004c) that, under realistic assumptions, a
global diversified portfolio is a good proxy for the GOP. This makes it a readily
observable financial quantity, which can be used in various ways for risk manage-
ment.

For the diffusion case without jumps the SDE for the GOP is well known, see for
instance, Long (1990) or Karatzas & Shreve (1998). In the case with jumps the
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derivation of the SDE for the GOP is more involved, using first order conditions
for the maximization of the drift of the logarithm of the portfolio, which leads to

dVδ(t) = Vδ(t−)

(
rt dt +

h1∑
i=1

θi
t (θi

t dt + dṽi
t)

+
d∑

i=h1+1

θi
t−

1− θi
t−√

λ̃
i−h1
t− (z̄t−)

(
θi

t− dt + dm̃i−h1
t

)

 (3.13)

for t ∈ [0, T ] with Vδ(0) = 1, as described in Platen (2004b). Here m̃i
t denotes

the ith component of the jump martingale m̃ defined in (3.1).

In what follows we shall call benchmarked prices the prices when they are ex-
pressed in units of the GOP. This means that, for j ∈ {0, 1, . . . , d}, the jth

benchmarked primary security account Ŝ(j) = {Ŝ(j)
t , t ∈ [0, T ]} has at time t the

value

Ŝ
(j)
t =

Sj
t

Vδ(t)
, (3.14)

which satisfies by (3.5), (3.13) and application of the Itô formula the SDE

dŜ
(j)
t = Ŝ

(j)
t−

(
h1∑
i=1

(bj,i
t − θi

t) dṽi
t

+
d∑

i=h1+1


bj,i

t−


1− θi

t−√
λ̃i−h1

t− (z̄t−)


− θi

t−


 dm̃i−h1

t


 (3.15)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}, see Platen (2004b).

Similarly, by application of the Itô formula it can be shown that the benchmarked
portfolio V̂δ = {V̂δ(t), t ∈ [0, T ]} with

V̂δ(t) =
Vδ(t)

Vδ(t)
(3.16)

satisfies the SDE

dV̂δ(t) = V̂δ(t−)

(
h1∑
i=1

(
d∑

j=1

δj
t Ŝ

(j)
t

V̂δ(t)
bj,i
t − θi

t

)
dṽi

t

+
d∑

i=h1+1



(

d∑
j=1

δj
t− Ŝ

(j)
t−

V̂δ(t−)
bj,i
t−

)
1− θi

t−√
λ̃i−h1

t− (z̄t−)


− θi

t−


 dm̃i−h1

t




(3.17)
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for t ∈ [0, T ], see Platen (2004b). Notice that all the coefficients in (3.17) are
given functions of observables.

Note furthermore that the jth benchmarked primary security account Ŝ(j) and all
benchmarked portfolios are driftless and thus (Ãk, P )-local martingales. There-
fore, any nonnegative benchmarked portfolio process is an (Ãk, P )-supermartingale.
This means that it is impossible for a nonnegative portfolio to generate, with
strictly positive probability, strictly positive wealth from zero initial capital. This
shows that the given benchmark framework does not permit arbitrage in the sense
of Platen (2004a).

In the literature, there exist various mathematical definitions of arbitrage. The
benchmark approach allows us to consider a more general class of models than is
possible, for instance, under the no free lunch with vanishing risk concept devel-
oped in Delbaen & Schachermayer (1995, 1998), which links no-arbitrage directly
to the existence of an equivalent risk neutral measure. Such a measure needs
not to exist in our framework. In the given benchmark model a free lunch with
vanishing risk arises, for instance, when the benchmarked savings account forms a
strict (Ãk, P )-local martingale, as is, for instance, the case for models, described
in Heath & Platen (2002a, 2002c) and Breymann, Kelly & Platen (2004).

4 Fair Pricing of Derivatives

4.1 Derivative Price Processes as Martingales

We emphasize that benchmarked security prices are in our framework, in general,
not (Ãk, P )-martingales. However, we assume that any benchmarked derivative
price process is fair, which means it is an (Ãk, P )-martingale. By choosing the
GOP as numeraire, the real world probability measure becomes the unique pricing
measure for derivatives. We stress the fact that, even if there does not exist an
equivalent martingale measure, then it is possible to operate with the GOP as
numeraire and with the real world probability measure as pricing measure, as will
be explained in what follows.

We called above a price process V = {V (t), t ∈ [0, T ]} fair if its benchmarked

value V̂ (t) = V (t)
Vδ(t)

forms an (Ãk, P )-martingale under the available information

represented by Ãk. Recall that benchmarked nonnegative portfolios are (Ã, P )-
supermartingales and benchmarked primary security accounts can be strict su-
permartingales. Using the GOP as numeraire, we assumed that benchmarked
derivative prices are fair and therefore (Ãk, P )-martingales. This puts buyers
and sellers in comparable positions and generalizes the risk neutral approach, as
we shall see below.

Note that Ãk
t describes the information, which is available at time t, whereas At is
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the complete information at time t that determines the original model dynamics
including also the unobserved factors. This means that observed derivative prices
may, in general, not be (A, P )-martingales.

To provide an intuitive link between fair pricing and standard risk neutral pricing,
let us study a candidate risk neutral probability measure P k. We introduce its
Radon-Nikodym derivative process Λ = {Λt, t ∈ [0, T ]} as the benchmarked
savings account

Λt =
dP k

dP

∣∣∣∣
At

=
S

(0)
t

Vδ(t)
= Ŝ

(0)
t (4.1)

for t ∈ [0, T ]. We can do this because if an equivalent risk neutral martingale
measure P k were to exist, then the standard risk neutral pricing methodology
and (4.1) would yield the relations

S
(j)
t = S

(0)
t EP k

(
S

(j)
τ

S
(0)
τ

∣∣∣∣At

)
= S

(0)
t

E
(
Λτ

S
(j)
τ

S
(0)
τ

∣∣∣At

)

E
(
Λτ

∣∣At

)

= S
(0)
t

E
(

S
(j)
τ

Vδ(τ)

∣∣∣At

)

S0
t

Vδ(t)

= Vδ(t) E

(
S

(j)
τ

Vδ(τ)

∣∣∣∣At

)
(4.2)

for τ ∈ [0, T ], t ∈ [0, τ ] and j ∈ {0, 1, . . . , d}, where EP k
denotes expectation

with respect to P k. It turns out that the measure P k above is under appropriate
assumptions the minimal equivalent martingale measure in the sense of Föllmer
& Schweizer (1991). However, since we do not assume that Λ is an (Ã, P )-
martingale and P k may not be equivalent to P the first and second equalities in
(4.2) may break down.

Notice that for any time instant t ∈ [0, T ], the value Vδ(t) of the GOP represents

that of a tradable portfolio, see (3.10), with the Ãk-predictable strategy δ. This
portfolio invests in the primary security accounts that are all observable. It fol-
lows, as already mentioned earlier, that the GOP Vδ(t) is Ãk

t -measurable. This
implies that the Radon-Nikodym derivative Λt, see (4.1), is observable at time t
and so, for the special case when P k is an equivalent risk neutral martingale mea-
sure, Λ = {Λt, t ∈ [0, T ]} is not only an (A, P )- but also an (Ãk, P )-martingale.
Relation (4.2) then holds with Ãk

t replacing At, that is

S
(j)
t = Vδ(t) E

(
S

(j)
τ

Vδ(τ)

∣∣∣∣ Ãk
t

)
(4.3)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. In this special case it follows from (4.2)
and the corresponding relation (4.3) with Ãk

t instead of At that the triplets
(S(0), P k,A) and (Vδ, P,A) as well as (S(0), P k, Ãk) and (Vδ, P, Ãk) define the
same pricing systems, respectively. In our general situation this is not always
the case. However, as we will show below, filtering and derivative pricing is still
possible in a consistent manner under the benchmark approach.
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4.2 Derivative Prices

In what follows denote by Tt,T the set of stopping times with values in [t, T ]. For
a given maturity date τ , which is assumed to be an Ãk-stopping time, we consider
a contingent claim U(τ, yτ ) as a nonnegative function of τ and the corresponding
values of observed factors yτ , where we assume that

E

(
U(τ, yτ )

Vδ(τ)

∣∣∣∣ Ãk
t

)
< ∞ (4.4)

for all τ ∈ Tt,T and t ∈ [0, T ]. There is no point to let the payoff function depend
on any other than observed factors. Otherwise, the payoff would not be verifiable
at time τ on the basis of available information.

Since, as mentioned in Section 4.1, Vδ(τ) is Ãk
τ -measurable, it can be considered

as a function of zs for s ≤ τ . Furthermore, since yτ is a subvector of zτ and z =
{zt, t ∈ [0, T ]} is a Markov process, we can define the process u = {u(t, zt), t ∈
[0, T ]} as

u(t, zt) = E

(
Vδ(t)

Vδ(τ)
U(τ, yτ )

∣∣At

)
(4.5)

for τ ∈ Tt,T and t ∈ [0, T ], which at time t exploits the complete information
characterized by the σ-algebra At. Next, we consider

ũk(t, z̃k
t ) = E

(
u(t, zt)

∣∣ Ãk
t

)
(4.6)

for t ∈ [0, T ], which by Corollary 2.5 can be computed on the basis of the filtering
results of Section 2. Combining (4.5) with (4.6) and using the fact that Vδ(t) is

Ãk
t -measurable, we obtain

ũk(t, z̃k
t )

Vδ(t)
= E

(
U(τ, yτ )

Vδ(τ)

∣∣∣∣ Ãk
t

)
(4.7)

for τ ∈ Tt,T and t ∈ [0, T ]. This means that the benchmarked value
ũk(t,z̃k

t )

Vδ(t)
,

stopped at the maturity τ , forms for t ∈ [0, T ] a (P, Ãk)-martingale. Obviously,

it is the only (P, Ãk)-martingale that coincides at time τ with U(τ,yτ )
Vδ(τ)

. Thus

ũk(t, z̃k
t ) is the fair price at time t ≤ τ of the claim U(τ, yτ ) for the information

represented by Ãk
t .

The above concept of fair pricing, which can be applied generally, see Platen
(2004a), extends the well-known concept of risk neutral pricing and avoids not
only the assumption on the existence of an equivalent risk neutral measure, see
Platen (2002), but also some delicate issues that arise from measure changes under
different filtrations in filtering applications, see Bhar, Chiarella & Runggaldier
(2002). Therefore, under the benchmark approach we enter not only a richer
modeling world but avoid also a number of technical issues that require typically
particular assumptions.
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To illustrate again the special case when there exists an equivalent martingale
measure P k then, corresponding to (4.2) and using (4.5), we have

S
(0)
t EP k

(
U(τ, yτ )

S
(0)
τ

∣∣∣∣At

)
= Vδ(t) E

(
U(τ, yτ )

Vδ(τ)

∣∣∣∣At

)
= u(t, zt) (4.8)

for τ ∈ Tt,T and t ∈ [0, T ]. In this special case the same arguments as for relation
(4.3), with Ãk

t replacing At, lead then to

S
(0)
t EP k

(
U(τ, yτ )

S
(0)
τ

∣∣∣∣ Ãk
t

)
= Vδ(t) E

(
U(τ, yτ )

Vδ(τ)

∣∣∣∣ Ãk
t

)
= ũk(t, z̃k

t ), (4.9)

for τ ∈ Tt,T and t ∈ [0, T ], using (4.5) and (4.6). Therefore, if there exists an
equivalent martingale measure P k, this implies that corresponding to (4.7), we
have

ũk(t, z̃k
t )

S
(0)
t

= EP k

(
U(τ, yτ )

S
(0)
τ

∣∣∣∣ Ãk
t

)
= EP k

(
u(t, zt)

S
(0)
t

∣∣∣∣ Ãk
t

)
(4.10)

for τ ∈ Tt,T and t ∈ [0, T ]. This means that the discounted derivative price

process
ũk(t,z̃k

t )

S
(0)
t

, stopped at the maturity τ , forms for t ∈ [0, T ] in this particular

case a (P k, Ãk)-martingale. Furthermore, the last equality in (4.10) implies, just
as in (4.6), that we also have

ũk(t, z̃k
t ) = EP k

(
u(t, zt)

∣∣ Ãk
t

)
(4.11)

for t ∈ [0, T ] if an equivalent risk neutral martingale measure exists. We em-
phasize in this case that the expectations, under different measures, in (4.6) and
(4.11) lead to the same result due to the fact that Λ is a martingale not only with
respect to the filtration A but also Ãk. In general, this does not hold under the
described benchmark framework.

Notice that if we would not consider fair pricing using the GOP and could use
an equivalent risk neutral martingale measure, then we may try to perform the
computations on the basis of formula (4.11). Although similar to the right hand
side of (4.6), the right hand side of (4.11) is considerably more difficult to com-
pute. This is due to the fact that in order to filter the process zt on the basis
of the information contained in Ãk

t we have in any case to work under the real
world probability measure P . Fortunately, since by (4.9) the quantity ũk(t, z̃k

t )
computed according to (4.11) is the same as that in (4.6), we can perform the
computations according to fair pricing using (4.5) and (4.6), thereby obtaining
the derivative price ũk(t, z̃k

t ) under the information represented by Ãk
t . This shows

that when it comes to actual computations the real world measure plays a crucial
and dominant role. Therefore, we suggest in this paper to work in filtering in
finance totally under the real world probability measure. Most importantly, this
approach is still applicable in the case when (4.11) fails to hold due to the fact
that one wants to use a realistic market model for which no equivalent martingale
measure exists.
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Note that the expression in (4.6) fits perfectly the one for the filtered factor model
given in (2.30). The actual computation of the conditional expectation in (4.6)
is therefore equivalent to the solution of the filtering problem for the unobserved
factors.

4.3 Variance of Benchmarked Prices

From a financial modeling point of view it is important to be able to model and
understand different degrees of available information. This is related to questions
on insider trading but also for the valuation of information. As already mentioned
in Section 2.1, the degree of available information is indexed by the parameter k.
A larger value of k means that more factors are observed, providing thus more
information in Ãk.

Let us now investigate the impact of varying degrees of information k concerning
the factors zt = (z1

t , . . . , z
n
t )> that underly our model dynamics, see (2.2) –

(2.3). We use now the notation z̃k
t for the vector of observables defined in (2.13),

where we stress its dependence on k and recall that, by (2.28), the process z̃k is
Markovian. Consider then a contingent claim

U(τ, yτ ) = U(τ, y1
τ , y

2
τ , . . . , y

r
τ ) (4.12)

for some fixed r ∈ {1, 2, . . . , n−1}, where we assume that the number of observed
factors that influence the claim equals r. For k ∈ {r, r +1, . . . , n−1} let ũk(t, z̃k

t )
be the corresponding fair price at time t under the information Ãk

t , as given
by (4.6). Recall that, by (4.6), ũk(t, z̃k

t ) is the conditional expectation, under
the real world probability measure, of u(t, zt) given Ãk

t . This implies that the
corresponding conditional variance

Vark
t (u) = E

((
u(t, zt)− ũk(t, z̃k

t )
)2 ∣∣ Ãk

t

)
(4.13)

at time t ∈ [0, T ) is the minimal value of the, conditional on Ãk
t , mean square

error corresponding to the deviation from u(t, zt) of any Ãk
t -measurable random

variable. This conditional variance is computed under the real world probabil-
ity measure. It would not make sense if computed under any other probability
measure since the market participants are affected by the real difference between
u(t, z) and ũk(t, z̃k

t ).

Note that for larger k we have more information available, which naturally should
reduce the above conditional variance. We can prove the following practically
relevant proposition, which quantifies the reduction in conditional variance. It
can also be seen as a generalization of the celebrated Rao-Blackwell theorem
towards filtering in incomplete markets under the benchmark approach.
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Proposition 4.1 For m ∈ {0, 1, . . . , n − k} and k ∈ {r, r + 1, . . . , n − 1} we
have

E
(
Vark+m

t (u)
∣∣ Ãk

t

)
= Vark

t (u)−Rk+m
t , (4.14)

where
Rk+m

t = E
((

ũk+m(t, z̃k+m
t )− ũk(t, z̃k

t )
)2 ∣∣ Ãk

t

)
(4.15)

for t ∈ [0, T ).

Proof: For t ∈ [0, T ) and k ∈ {r, r + 1, . . . , n− 1} we have

(
u(t, zt)− ũk(t, z̃k

t )
)2

=
(
u(t, zt)− ũk+m(t, z̃k+m

t )
)2

+
(
ũk+m(t, z̃k+m

t )− ũk(t, z̃k
t )

)2

+ 2
(
u(t, zt)− ũk+m(t, z̃k+m

t )
)(

ũk+m(t, z̃k+m
t )− ũk(t, z̃k

t )
)
.

(4.16)

By taking conditional expectations with respect to Ãk
t on both sides of the above

equation it follows that

Vark
t (u) = E

(
Vark+m

t (u)
∣∣ Ãk

t

)
+ Rk+m

t + 2 E
( (

ũk+m(t, z̃k+m
t )− ũk(t, z̃k

t )
)

·E
((

u(t, zt)− ũk+m(t, z̃k+m
t )

) ∣∣ Ãk+m
t

) ∣∣∣ Ãk
t

)
. (4.17)

Since the last term on the right hand side is equal to zero by definition, we obtain
(4.14).

5 Hedging Under Partial Observation

To determine in the given incomplete market a hedging strategy we have to
use a hedging criterion. It turns out that the fair pricing and hedging concept,
developed in Platen (2004b), can be generalized to our situation. Already under
the existence of an equivalent risk neutral martingale measure it is known that
there exist various hedging possibilities. In Platen (2004b) it has been pointed
out that under the more general benchmark approach, even in a complete market
setting, there may exist different self-financing hedge portfolios that replicate
a contingent claim. In general, under the benchmark approach, nonnegative
benchmarked portfolios are (Ãk, P )-supermartingales, see (3.17). The smallest
possible supermartingale, which replicates the hedgable part, is known to be a
martingale. Therefore, among possible hedge portfolios the fair portfolio process
that replicates the hedgable part turns out to be special. It is the minimal
portfolio that replicates the hedgable part because its benchmarked value forms
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a martingale. To see this in more detail, let us introduce the benchmarked pricing
function

û(t, z̃k
t ) =

ũk(t, z̃k
t )

Vδ(t)
(5.1)

for t ∈ [0, T ]. We introduce for i ∈ {1, 2, . . . , k} the operator

Li û(t, z̃k
t ) =

k+q∑

`=1

β`,i(t, z̄1
t , . . . , z̄

k+q
t )

∂û(t, z̃k
t )

∂z̄`
(5.2)

and the jump operator

∆i
û

(
t−, z̃k

t−
)

= û
(
t, z̄1

t− + γ1,i
(
t−, z̄1

t−, . . . , z̄k+q
t−

)
, . . . ,

z̄k+q
t− + γk+q,i

(
t−, z̄t−, . . . , z̄k+q

t−
))

−û
(
t−, z̄1

t−, . . . , z̄k+q
t−

)
(5.3)

with β`,i and γ`,i, as in (2.29). For simplicity, we assume that the above bench-
marked pricing function û(·, ·) in (5.1) is differentiable with respect to time and
twice differentiable with respect to the observables. Then we obtain with (2.29),
(5.2) and (5.3) by the Itô formula for the (Ãk, P )-martingale û = {û(t, z̃k

t ), t ∈
[0, τ ]}, where τ ∈ Tt,T and t ∈ [0, T ], the following representation

U(τ, yτ )

Vδ(τ)
= û(τ, z̃k

τ )

= û(t, z̃k
t ) + Ît,τ + R̂t,τ , (5.4)

with hedgable part, see (3.4),

Ît,τ =

h1∑

`=1

∫ τ

t

L` û(s, z̃k
s ) dṽ`

s +

h2∑

`=1

∫ τ

t

∆`
û(s−, z̃k

s−)

√
λ̃`

s−(z̄s−) dm̃`
s (5.5)

and unhedgable part

R̂t,τ =
k∑

`=h1+1

∫ τ

t

L` û(s, z̃k
s ) dṽ`

s +
k∑

`=h2+1

∫ τ

t

∆`
û(s−, z̃k

s−)

√
λ̃`

s−(z̄s−) dm̃`
s. (5.6)

Note that (5.4) is an (Ãk, P )-martingale representation for the benchmarked
contingent claim. Obviously, there is no way to hedge by the traded securi-
ties any fluctuations that arise in the unhedgable part. One can now search
for a fair benchmarked portfolio process V̂δU

with self-financing hedging strategy
δU = {δU(t) = (δ0

U(t), δ1
U(t), . . . , δd

U(t))>, t ∈ [0, τ ]} that matches the hedgable
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part Ît,τ . This means that we compare the SDE (3.17) for V̂δU
(t) with that of the

hedgable part Ît,τ , see (5.5), where we use the jth proportion

πj
δU

(t) =
δj
U(t) Ŝ

(j)
t

V̂δU
(t)

(5.7)

of the value of the corresponding hedging portfolio that has to be invested into
the jth primary security account, j ∈ {0, 1, . . . , d}, provided τ ∈ Tt,T at time t.
By this comparison it follows that one needs to satisfy for i ∈ {1, 2, . . . , h1} the
equation

d∑
j=1

πj
δU

(t) bj,i
t − θi

t =
Li û(t, z̃k

t )

V̂δU
(t)

(5.8)

and for i ∈ {1, . . . , h2} the relation

(
d∑

j=1

πj
δU

(t−) bj,i
t−

)
1− θi

t−√
λ̃i−h1

t− (z̄t−)


− θi

t− =
∆i

û(t−, z̃k
t−)

V̂δU
(t−)

. (5.9)

The equations (5.8) and (5.9) lead with eU(t) = (e1
U(t), . . . , ed

U(t))>, where

e`
U(t−) =





L` û(t−,z̃k
t−)

V̂δU
(t−)

+ θ`
t− for ` ∈ {1, 2, . . . , h1}

√
λ̃

i−h1
t− (z̄t−)

(
∆i

û(t−,z̃k
t−)

V̂δU
(t−)

+θi
t−

)

√
λ̃

i−h1
t− (z̄t−)−θi

t−
for ` = h1 + i ∈ {h1 + 1, . . . , d}

(5.10)
and πδU

(t) = (π1
δU

(t), . . . , πd
δU

(t))> to the vector equation

eU(t−) =
(
π>δU

(t−) bt−
)>

. (5.11)

Consequently, we can formulate the following statement.

Proposition 5.1 The hedgable part of the contingent claim U can be replicated
by the portfolio VδU

with proportions

πδU
(t) =

(
eU(t)> b−1

t

)>
(5.12)

for t ∈ [0, T ] and τ ∈ Tt,T .

Notice that the elements of the vector eU(t) and the matrix bt are given functions
of observables. Since part of the latter are the results of filtering, this shows the
usefulness of filtering also for hedging under partial observation.

Note furthermore that the driving martingales in the unhedgable part R̂t,τ , see
(5.6), are orthogonal to the martingales that drive the primary security accounts
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and thus orthogonal to the hedgable part Ît,τ , see (5.5). The above fair hedging
strategy minimizes the quadratic variation of the resulting benchmarked profit
and loss process under the real world probability measure. In Platen (2004e) it is
derived as fluctuation minimization hedge. Obviously, to perform the fair hedge,
the corresponding initial capital at time t needs to equal the fair price ũk(t, z̃k

t ),
see (4.6), of the contingent claim.

In the special case when an equivalent risk neutral martingale measure exists, the
resulting hedging strategy equals the local risk minimizing strategy in the sense
of Föllmer & Schweizer (1991) and the pricing measure is the minimal equivalent
martingale measure, see Hofmann, Platen & Schweizer (1992). The martingale
representation (5.4) is in this special case the corresponding benchmarked version
of the Föllmer-Schweizer decomposition. We want to point out that, to the best of
our knowledge, in the literature concerning local risk minimization under partial
information, see Schweizer (1994), Fischer, Platen & Runggaldier (1999) and
Frey & Runggaldier (1999), the authors assume from the outset that everything
is defined under a risk neutral measure. This unpleasant assumption is avoided
in our approach, which makes filtering more practicable.

Conclusions

We constructed a jump-diffusion financial market model with hidden variables
and specified as benchmark the growth optimal portfolio. The random driving
processes are Wiener and Poisson jump processes. For this incomplete market
model with partial observation a consistent price system has been established
without assuming the existence of an equivalent risk neutral martingale measure.
Benchmarked fair derivative prices are obtained as martingales under the real
world probability measure. Filtering has been described as an essential method
for implementing fair pricing and hedging under partial information in the given
incomplete market. The reduction of the conditional variance of fair derivative
prices, when the available information increases, is quantified via a generalization
of the Rao-Blackwell theorem.

A Appendix

Proof of Proposition 2.3

Denote by yc the continuous part of the observation process y, that is

yc
t = yt −

∑
τj≤t

Gτj−(yτj−) ∆ Nτj
, (A.1)

where the τj denote the jump times of N = {Nt, t ∈ [0, T ]} and ∆ Nτj
= Nτj

−
Nτj− is the vector (∆ N1

τj−, . . . , ∆ Nk
τj−)>. Let us now define the k-dimensional
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Ãk-adapted process ṽ = {ṽt, t ∈ [0, T ]} by

Bt(yt) dṽt = dyc
t − Ãt(z̃

k
t ) dt. (A.2)

From (2.3), (A.1) and (A.2) it follows that

dṽt = dvt + Bt(yt)
−1

[
At(zt)− Ãt(z̃

k
t )

]
dt. (A.3)

From this we find, by the multi-variate Itô formula with ν ∈ <k a row vector and
ı the imaginary unit, that

exp [ıν (ṽt − ṽs)] = 1 + ıν

∫ t

s

exp [ıν (ṽu − ṽs)] dvu

+ ıν

∫ t

s

exp [ıν (ṽu − ṽs)] B−1
u (yu)

(
Au(zu)− Ãu(z̃

k
u)

)
du

− ν ν>

2

∫ t

s

exp [ıν (ṽu − ṽs)] du. (A.4)

Recalling that v is an Ãk-measurable Wiener process, notice that

E

(∫ t

s

exp [ıν (ṽu − ṽs)] dvu

∣∣ Ãk
s

)
= 0 (A.5)

and that, by our assumptions, the boundedness of exp [ıν (ṽu − ṽs)] and the Ãk
t -

measurability of B−1
u (yn)

E

(∫ t

s

exp [ıν (ṽu − ṽs)] B−1
u (yu)

(
Au(zu)− Ãu(z̃

k
u)

)
du

∣∣ Ãk
s

)
=

E

(∫ t

s

exp [ıν (ṽu − ṽs)] B
−1
u (yu)E

((
Au(zu)− Ãu(z̃

k
u)

) ∣∣ Ãk
u

)
du

∣∣∣ Ãk
s

)
= 0.

(A.6)

Taking conditional expectations on the left and the right hand sides of (A.4) we
end up with the equation

E
(
exp (ıν [(ṽt − ṽs)])

∣∣ Ãk
s

)
= 1− ν ν ′

2

∫ t

s

E
(
exp [ıν (ṽu − ṽs)]

∣∣ Ãk
s

)
du, (A.7)

which has the solution

E
(
exp [ıν (ṽt − ṽs)]

∣∣ Ãk
s

)
= exp

[
−ν ν>

2
(t− s)

]
(A.8)

for 0 ≤ s ≤ t ≤ T . We can conclude that (ṽt − ṽs) is a k-dimensional vector
of independent Ãk

t -measurable Gaussian random variables, each with variance
(t − s) and independent of Ãk

s . By Levy’s theorem, ṽ is thus a k-dimensional
Ãk-adapted standard Wiener process.
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Föllmer, H. & M. Schweizer (1991). Hedging of contingent claims under in-
complete information. In M. Davis and R. Elliott (Eds.), Applied Stochas-

25



tic Analysis, Volume 5 of Stochastics Monogr., pp. 389–414. Gordon and
Breach, London/New York.

Frey, R. & W. J. Runggaldier (1999). Risk minimizing hedging strategies under
restricted information: The case of stochastic volatility models observable
only at random discrete times. Math. Methods Oper. Res. 50, 339–350.

Frey, R. & W. J. Runggaldier (2001). A nonlinear filtering approach to volatility
estimation with a view towards high frequency data. Int. J. Theor. Appl.
Finance 4(2), 199–210.

Gombani, A. & W. J. Runggaldier (2001). A filtering approach to pricing in
multifactor term structure models. Int. J. Theor. Appl. Finance 4(2), 303–
320.

Heath, D. & E. Platen (2002a). Consistent pricing and hedging for a modified
constant elasticity of variance model. Quant. Finance. 2(6), 459–467.

Heath, D. & E. Platen (2002b). Perfect hedging of index derivatives under a
minimal market model. Int. J. Theor. Appl. Finance 5(7), 757–774.

Heath, D. & E. Platen (2002c). Pricing and hedging of index derivatives under
an alternative asset price model with endogenous stochastic volatility. In
J. Yong (Ed.), Recent Developments in Mathematical Finance, pp. 117–126.
World Scientific.

Hofmann, N., E. Platen, & M. Schweizer (1992). Option pricing under incom-
pleteness and stochastic volatility. Math. Finance 2(3), 153–187.

Karatzas, I. & S. E. Shreve (1998). Methods of Mathematical Finance, Vol-
ume 39 of Appl. Math. Springer.

Korn, R. & M. Schäl (1999). On value preserving and growth-optimal portfo-
lios. Math. Methods Oper. Res. 50(2), 189–218.

Landen, C. (2000). Bond pricing in a hidden Markov model of the short rate.
Finance Stoch. 4, 371–385.

Liptser, R. & A. Shiryaev (1977). Statistics of Random Processes: I. General
Theory, Volume 5 of Appl. Math. Springer.

Long, J. B. (1990). The numeraire portfolio. J. Financial Economics 26, 29–69.

Platen, E. (2002). Arbitrage in continuous complete markets. Adv. in Appl.
Probab. 34(3), 540 – 558.

Platen, E. (2004a). A benchmark framework for risk management. In Stochastic
Processes and Applications to Mathematical Finance, Proceedings of 2003
Symposium at Ritsumeikan Univ., pp. 305 – 335. World Scientific. to appear.

Platen, E. (2004b). A class of complete benchmark models with intensity based
jumps. J. Appl. Probab. 41(1), 19–34.

Platen, E. (2004c). Diversified portfolios with jumps in a benchmark frame-
work. Technical report, University of Technology, Sydney. QFRC Research
Paper 129.

26



Platen, E. (2004d). Modeling the volatility and expected value of a diversified
world index. Int. J. Theor. Appl. Finance 7(4). to appear.

Platen, E. (2004e). Pricing and hedging for incomplete jump diffusion bench-
mark models. In AMS-IMS-SIAM Summer Conf on Mathematics of Fi-
nance (2003). University of Technology, Sydney, QFRG Research Paper
110 (2003).

Platen, E. & G. Stahl (2003). A structure for general and specific market risk.
Computational Statistics 18(3), 355 – 373.

Protter, P. (1990). Stochastic Integration and Differential Equations. Springer.

Schweizer, M. (1994). Risk minimizing hedging strategies under restricted in-
formation. Math. Finance 4(4), 327–342.

27


