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Abstract

Building on [4] and [2] we consider the problem faced by a Central Bank to optimally control the exchange
rate, whereby the control is composed of a direct impulse control intervention and an indirect, continuously
acting intervention given by the control of the domestic interest rate. Similarly to [4] and [2] we formulate
the problem as a mixed classical-impulse control problem and the approach is based on a quasi-variational
inequality by considering a specific class of the optimal value functions and controls. As in [2], but differently
from [4], we consider a finite horizon that makes the problem time inhomogeneous and we do not have to
impose a smooth fit condition so that a fully analytical solution is possible. With respect to [2] we generalize
the problem by letting, more realistically, the drift in the dynamics of the exchange rate to be time varying
or even unobservable so that it has to be filter-estimated from observable data. Numerical illustrations are
presented as well.

Keywords: Exchange rate control, partial information, stochastic filtering, impulse control, quasi-variational
inequalities.

JEL Classification: C61, D81, F31, G15, E58

1 Introduction

The control of the foreign exchange rate by a Central Bank has been the object of several studies in the literature,
in particular also in the stochastic control literature. The setting is that of a so-called managed float or dirty
float regime. The actual exchange rate fluctuates from day to day and may achieve unacceptable levels. One
of the purposes of a Central Bank is therefore to intervene in order to keep the exchange rate at an acceptable
level. Following [4] and [3], which generalize previous studies on the subject, we assume that the Central Bank
can control the exchange rate by two non-excluding tools: direct intervention in the foreign exchange market
by buying and selling currencies, and indirect intervention through determination of the domestic interest rate
level. Interest rates have in fact an effect on the exchange rate through the attraction or deflection of foreign
capital. In choosing the intervention, the Central Bank has to aim at achieving a specified goal. According
to the idea of a target zone regime, the Central Bank has to guarantee that the exchange rate, as well as the
domestic interest rate, stay within a given band or, more specifically, stay as close as possible to a given target
that is usually established at higher levels of authority as result of negotiations or for political reasons and is
considered to be sustainable for a given period. Consequently it is reasonable to assume, as we shall do it here,
that these target levels are given as known constants or known time varying functions. On the other hand, any
type of intervention is costly with the cost that is increasing with the level of the intervention. Since, in order
to be effective, actual interventions are not frequent but of relatively large size (see e.g. [5]), as in [3] and [4]
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we consider both fixed and proportional costs with parameters that can be assumed to be relatively easy to
identify and to quantify.

The control of the interest rate is of the type of a continuously acting control, while the direct intervention on
the exchange rate is of the type of an impulse control. The problem thus concerns a mixed classical-impulse
stochastic control problem and the authors in [4] aim at determining this control in order to balance the purpose
of keeping the exchange rate as close as possible to the given target level and on the other hand to minimize the
expected total cost of the intervention. The control of the exchange rate as a purely impulse control problem
had been studied previously. One of the first such studies appears to be [8] which was then further developed
in [9]. Within a more general context of impulse control, the problem had more recently also been studied in
[11] (see [7] as well) over an infinite horizon and with a long-term average cost criterion. An additional indirect
intervention by using the control also of the interest rate, as we do it here, has been considered in [12].

As mentioned, without interventions the exchange rate fluctuates from day to day. Assuming small investors,
whose decisions do not affect the evolution of the exchange rate, following [15] and [3] we model its evolution
between intervention times as a geometric Brownian motion (see (1) below) with three parameters: i) the
parameter σ in the stochastic volatility that we assume to be known (can be estimated from historical data).
ii) The parameter K that represents the influence of the interest rate on the level of the exchange rate. In this
paper we assume it to be a given exogenous constant; our procedure works however equally well (see Remark 1
below) if it is a known time varying function and also if it is random and expressed as a known (time varying)
function of past and present values of the exchange rate. iii) There is finally the drift parameter µt that, at
the generic time t, represents the exogenous economic pressure on the level of the exchange rate and that in
the literature has so far been considered as constant and known. Here we consider it, as it appears to be
more natural, to be time varying or even not directly observable. In the latter case we apply filtering techniques
whereby the unobserved drift is filter-estimated on the basis of the past and present observations of the exchange
rate itself. In both cases one has thus a time varying drift, which complicates the approach in the sense that
the strategic boundaries that, as we shall show, determine the impulse control interventions, will depend not
only on time, but also on the current values (either observed or estimated) of the drift. Furthermore, the state
space in the optimization problem becomes three-dimensional (time, exchange rate, filtered drift) whereby the
pair (exchange rate, filtered drift) is Markov. In setting up the filter model, we shall for the sake of generality
introduce a prior dynamic evolution model for the drift µ in the form of a diffusion process with given drift
and diffusion parameters. We may however put all these parameters equal to zero so that the drift becomes
an unknown parameter and the filter reduces to a Bayesian-type updating of this unknown parameter (for a
pure impulse control problem with Bayesian parameter updating see e.g. [1]). The model thus depends on
various parameters. Some are assumed to be exogenously given and a justification for this has been presented
above; others are determined endogenously. Determining a solution for a given set of exogenously determined
parameter values, can then also allow for a sensitivity analysis of the solution with respect to the individual
parameter values. It also allows to investigate various scenarios and to understand up to what degree of precision
one should determine the values of the exogenous parameters.

The approach in [4] builds on the notion of a quasi-variational inequality (QVI). The control horizon in [4]
is infinite, which leads to a time-homogeneous solution and the authors search for such a solution within a
specific class, for which the value function has to be C1 throughout and C2 except for the boundary points.
They end up with six conditions on four parameters, which makes the problem difficult to solve analytically,
but they nevertheless come up with a solution by using partly a numerical approach. The results in [4] have
been generalized in [2] in two directions:

i) The value function is not required to be C1 throughout (the numerical results in section 6 below show in
fact that on the boundary of the continuation region it is in general not C1). This allows one to avoid a
smooth fit condition and to end up with only four conditions on the four parameters thus leading to an
analytic solution.

ii) The horizon is finite, which appears to be more natural in economic-financial applications, where one
wants to achieve a goal within a finite, foreseeable amount of time; at the end of the planning period the
problem may have to be reformulated anew. This is for example relevant in our context where, as it was
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done mostly in the relevant literature, we limit ourselves to two currencies: the given domestic one and
one specific foreign currency. This specific foreign currency may in fact be of interest only over a given
horizon, after which the interest may shift to another one thus changing the problem. On the other hand
a finite horizon causes the problem to become time inhomogeneous and therefore more complex.

As in [4], also in [2] the solution is obtained within a specific class of value functions and controls. It consists in
an indirect intervention through a continuously acting control of the domestic interest rate when the exchange
rate is in a specific interval, namely the continuation region that in the finite-horizon case depends on the current
time. On the other hand, the impulse control intervenes when the exchange rate reaches either one of the two
boundaries of that interval, namely when it enters the intervention region. At that point the Central Bank is
supposed to intervene directly by pushing the exchange rate to yet another interval, the preferred region.

Here we follow this latter line and consider a restricted form of impulse control where the determination of the
control action reduces thus to the determination of the boundaries of the continuation region and of the amount
by which the exchange rate is pushed back when it reaches either one of the two boundaries. More precisely,
the solution is supposed to be given by four continuous functions a(·) < α(·) < β(·) < b(·) with β(·) > 0, where
a(·) and b(·) represent the boundaries of the continuation region, while α(·) and β(·) represent the boundaries
of the preferred region, namely the values to which the exchange rate is shifted when it reaches a(·) or b(·)
respectively. We shall call these functions “strategic boundaries”. For an infinite horizon setup as in [4] these
functions reduce to constants, in the finite horizon setup of [2] they become time varying functions. Notice also
that in much of the previous target zone literature the boundaries were chosen exogenously, while here they will
be determined endogenously.

Finding a fully optimal solution within the specific class mentioned above is still not possible in a purely
analytical way and this is why in [4] the solution was obtained by a combination with a numerical approach.
In the search for a completely analytical solution, in [2] the authors make a further assumption, namely that
the value function is given, within the continuation region, by a quadratic solution of the implied HJB equation
and is linear outside this region. They also show that this assumption is well motivated, in particular it is
consistent with the solution obtained in [4] for the infinite-horizon case. In the present paper we also make
this quadratic Ansatz for the solution of the implied HJB equation. We want to point out however that, by
restricting the solution of the HJB equation within the continuation region to be a quadratic function, implies
that our optimal solution may actually be only an upper bound to the true optimal solution; it leads however
to an explicitly computable value function as well as controls. The true optimal solution, even with controls in
the specific class, may have a very complicated structure within the continuation region and we do not know of
any result to this effect in the literature.

In the next Section 2 we formulate the model and the problem, building mainly on [4] and [2]. In Section 3 we
describe the specific class of value functions and controls. In Section 4 we compute the optimal value function
and controls within the specific class by assuming that the solution satisfies a given weak quasi-variational
inequality (QVI). Finally, in section 5 we prove the optimality, within the given class, of the solution derived in
section 4. This is done in two steps: in subsection 5.1 we prove, via a verification theorem, that the candidate
solution is an optimal solution if it is a weak QVI solution. Then, in subsection 5.2 we show that the candidate
is indeed a weak QVI solution. Finally, some numerical illustrations are provided in section 6.

2 The model and problem setting

Our model corresponds to that in [4] and [2] that we recall in this section. Let (Ω,F , {Ft}t≥0,P) be a filtered
probability space and W be a one dimensional Ft-Brownian motion. Consider a given foreign currency (e.g. the
Dollar) and a domestic currency (e.g. the Euro) and define, for each t ∈ R+ the exchange rate at time t as

Xt := units of domestic currency for one unit of foreign currency.
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Suppose that X = (Xt) is an adapted stochastic process satisfying the following dynamics that are slightly
different from [4] and [2], namely

Xt = x+

∫ t

0

(
µs +K us

)
Xs ds+ σ

∫ t

0

Xs dWs +
∞∑

n=1

1{τn≤t}ξn, (1)

where the various quantities have the following meaning: x is the initial value of the exchange rate. The process
µ = (µt) represents the exogenous economic pressure on the level of the exchange rate so that µt > 0 indicates
a pressure towards a devaluation of the domestic currency, while µt < 0 indicates the opposite situation. The
continuously acting control ut := (Xt)

−1 log rt
r̄ , where rt is the domestic interest rate and the constant r̄ is its

target, measures the ratio with respect to the current value Xt of the log-relationship between the interest rate
level set by the Central Bank and the target r̄. We shall consider the control ut to be admissible if (see also
Definition 1 below) it is adapted and mean square integrable (in Lemma 7 below we shall show that the optimal
continuously acting control ût is indeed mean square integrable). The parameter K ∈ (−∞, 0) represents the
influence of the interest rate on the level of the exchange rate. As mentioned in the Introduction, here we assume
it exogenously given (see however Remark 1 below). Finally, the constant σ ∈ (0,∞) is the exogenous volatility
of the exchange rate. Coming to the impulse controls, τn is the time of the n-th intervention of the Central
Bank and ξn represents the amount of the n-th intervention. Below we shall work with the process xt = logXt

(see (2)) so that Xt > 0 a.s. implying that, if rt > r̄, then ut is positive thus pushing Xt downwards while, if
rt < r̄, then the opposite happens. The justification for this is given by the fact that r̄ is perceived as a natural
equilibrium rate on the long run (long-term sustainable rate) and deviations from this rate make the domestic
assets more or less attractive.

One difference of the above model with respect to [4] and [2] is that ut is here the ratio of log rt
r̄ with respect

to Xt. In this way Xt becomes a factor in the drift in (1) which implies that the solution Xt of (1) is positive
between two successive impulse times. We can thus pass to logarithms of Xt thus simplifying some of the
derivations below and allowing the filtering problem to be solved more easily. The main difference however is
that we allow the drift µt to be time-varying or even not directly observable. We shall thus consider two possible
situations for µt according to

Assumption 1. The process µt is supposed to be either one of the following

µt is

{
i) an observable adapted process
ii) unobservable and has to be estimated from observable data.

It is in fact realistic to assume that the drift µt may not be directly observable. In view of estimating (filtering)
µt from observations of the exchange rate Xt itself, consider the dynamics of the latter between two successive
intervention times by putting xt := logXt, namely

dxt =

([
µt −

σ2

2

]
+K ut

)
dt+ σ dWt := (mt +K ut) dt+ σ dWt (2)

and thereby defining implicitly mt := µt − σ2

2 . Whether observable or not, we assume that the factor process
mt is a diffusion given by

dmt = (Amt + a) dt+ Λ dBt , m0 a given Gaussian r.v. (3)

where Λ = (Λ1,Λ2) and Bt = (βt,Wt)
′ with βt a scalar Ft−Wiener process, independent of Wt, and so there is

correlation between the two driving Wiener processes Wt and Bt. As already mentioned in the Introduction, in
our filtering context (see the filter model (5) below), that can be interpreted as a dynamic version of Bayesian
statistics, the dynamics in (3) can be seen as prior dynamics for mt (the posterior dynamics are given by the
dynamics of m̂t in (6) below) with the coefficients some prior constants that are exogenously given. It is not
necessary to assign a full prior dynamics for mt; by putting all the parameters in (3) equal to zero, the prior
process mt reduces to the random variable m0, whose Gaussian distribution becomes (from a Bayesian point of
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view) the prior distribution of the constant but unknown drift (even if mt is a priori a constant, a posteriori it
is always the process m̂t, adapted to the filtration generated by the observations xt).

With some abuse of notation we shall now denote by the same ξn the amount of intervention on xt = logXt,
i.e. ξn = xτn+ − xτn and by the same x the initial value x0. Rather than on (1) we shall thus base ourselves on
the following dynamic model

xt = x+

∫ t

0

(
ms +K us

)
ds+ σWt +

∞∑
n=1

1{τn≤t}ξn. (4)

In the case when mt is observable we can determine the strategy ut, τn and ξn using information coming from
observing xt and mt. When µt, and thus mt is not directly observable, but only xt is observable then, defining
Fx

t := σ{xs , 0 ≤ s ≤ t}, we need to decide our strategy ut, τn and ξn on the basis of the information Fx
t . This

means that ut has to be an Fx
t -adapted process, τn an Fx

t -stopping time and ξn an Fx
τn -measurable random

variable. To distinguish for the moment the control ut in the full and partial information setting, we denote it
by ūt in the latter case. We can now consider the following filter model{

dmt = (Amt + a) dt+ Λ dBt, m0 a given r.v.
dxt = (mt +K ūt) dt+ σ dWt , x0 = x.

(5)

Given the assumption of mean square integrability of ut, the above system is a well defined stochastic system.
Always with this assumption, the system (5) becomes a linear, conditionally Gaussian filter system to which
one can apply an extended form of the Kalman filter to obtain the dynamics of the conditional mean m̂t :=
E {mt | Fx

t } , and conditional variance Γt := E
{
(mt − m̂t)

2 | Fx
t

}
. Theorem 12.1 in [10] leads in fact to the

following solution {
dm̂t = (Am̂t + a) dt+

(
Λ2 +

Γt

σ

)
dνt , m̂0 = m0

dΓt =
(
2
[
A− Λ2

σ

]
Γt + Λ1

2 − Γt
2

σ2

)
dt , Γ0 = V ar(m0),

(6)

where the filter variance Γt can be computed off-line and therefore considered to be a deterministic time function,
while

dνt := σ−1 [dxt − (m̂t +K ūt) dt] (7)

is an Fx
t ⊂ Ft Wiener process called innovations process.

Remark 1. An important fact is that, in our setup, the filter solution does not depend on the continuously acting
control ut. According to Theorem 12.1 in [10] we could apply the extended Kalman filter for the conditionally
Gaussian case to our model also when the parameter K is unobservable with a given prior Gaussian distribution.
Instead of the dynamics only for the posterior filtered process m̂t, we would then obtain also a dynamic equation
for K̂t := E {K | Fx

t }. The problem with this is that then the entire filter solution becomes dependent on the
continuously acting control ut which is not acceptable since the control in turn depends on the filter (see (19)
and (22), (23) below). This problem arises in general when the control affects the observations; it does not
happen in the case of an impulse control when, as in our case, after the impulse the filter can be re-initialized
at its pre-impulse value (see the second bullet of Remark 4 below). An analogous situation occurs also in [1]
where the control is only of the impulsive type. While we cannot allow K to be unobservable, we could however
allow it to be an Fx

t -adapted process that is observable; also in this latter more general case the filter would be
independent of the control.

From the preceding development and considering also Section 3 in [14], we have the following immediate

Lemma 1. The filtered drift process m̂t and the observed log-exchange rate process xt satisfy{
dm̂t = (Am̂t + a) dt+

(
Λ2 +

Γt

σ

)
dνt , m̂0 = m0

dxt = (m̂t +K ūt) dt+ σ dνt , x0 = x.
(8)
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Notice that the models (5) and (8) are completely analogous, only the volatility for the factor process changes.
In what follows we shall therefore study in a possibly unified way both the cases when mt is observable and
when it is not, where in the latter case it is replaced by m̂t. For this purpose we shall use the notation mj

t with

j ∈ {f, p}, where f stands for “full information” (of mt) and p for partial information, so that mf
t = mt and

mp
t = m̂t. Also set uf

t = ut and up
t = ūt. Similarly, we shall also denote various other quantities with a sub- or

super-script j depending on whether they refer to the situation when mt is observable and when it is not (when
it matters we shall also write xj

t ).

Definition 1. A mixed classical-impulse stochastic control with j = f, p is a triple

(u, T , ξ)j = (uj ; τ j1 , τ
j
2 , τ

j
3 , . . . , τ

j
n, . . . ; ξ

j
1, ξ

j
2, ξ

j
3, . . . , ξ

j
n, . . .).

Here uj is as described previously and represents a classical stochastic control, namely uj : R+ × Ω → R
is an F j

t -adapted stochastic process that we have already assumed to be mean square integrable and where

Ff
t = σ(xs,ms, 0 ≤ s ≤ t) and Fp

t = σ(xs, 0 ≤ s ≤ t). Furthermore, the pair (T , ξ)j is an impulse control,
namely 0 ≤ τ j1 < τ j2 < τ j3 < . . . < τ jn . . . is an increasing sequence of stopping times and {ξjn}n∈N is a sequence
of random variables such that ξjn : Ω → R is F j

τn-measurable. The Central Bank (the controller) decides to
act at time τ jn adding the quantity ξjn to the value of the log-exchange rate at that moment of time, namely
xj
τn+ = xj

τn + ξjn, where xj
t is the process xt with control (u, T , ξ)j .

Remark 2. From the results below it will follow that the optimal controls are of the Markovian type, namely
functions of (xj

t ,m
j
t ). It then follows from (5) and (8) that, with Markovian controls, both (xf

t ,m
f
t ) = (xj

t ,mt)
and (xp

t ,m
p
t ) = (xj

t , m̂t) are Markov.

Next we introduce a cost functional to be minimized with respect to the controls (u, T , ξ)j . We consider a finite
planning horizon T > 0 so that τ ji ≤ T and call generically admissible the mixed classical-impulse stochastic
control (u, T , ξ)j as specified so far and denote their class by Ag,j . For the given horizon T > 0, and assuming
that we stand at a generic time t ∈ [0, T ] with values (xj ,mj) of the Markov process (xj

t ,m
j
t ), define as cost-to-go

function for a given control (u, T , ξ)j the following

V
(u,T ,ξ)j

j (t, x,m) := Et,x,m

{∫ T

t

e−λ(s−t)f(xj
s, u

j
s) ds+ e−λ(T−t)h(xj

T )

+
∞∑

n=1

e−λ(τj
n−t)g(ξjn) 1{t≤τj

n≤T}

}
,

(9)

where j ∈ {f, p}, λ > 0 is a discount factor, f(x, u) is a running cost penalizing both the quadratic deviation of
xj
t from a given target ρ > 0 as well as uj

t in the square, namely

f(x, u) := (x− ρ)2 + k u2 (k ≥ 0). (10)

Analogously, h(x) is a terminal cost, also of the quadratic form h(x) = ℓ (x− ρ)2, and g(ξ) represents a cost for
the amount ξ of the intervention that, similarly to [4] and [2], we assume to be of the form

g(ξ) :=


C + c ξ if ξ > 0

min(C, D) if ξ = 0

D − d ξ if ξ < 0

, (11)

where k, ℓ, λ, ρ, C, c,D, d are positive constants. Notice that k penalizes the use of the continuous control ut;
the fact that in (10) we consider its square, implies that deviations of rt from r̄ are penalized equally, whether
they exceed or fall short of r̄. On the other hand, C and D denote fixed intervention costs for a push upwards
or downwards respectively and c, d are proportional costs. Notice, furthermore, that a penalization by (X− ρ̄)2,
with X the actual exchange rate, is not equivalent to (x − ρ)2, with x = logX, even if we put ρ = log ρ̄. In
a sense, (x − ρ)2 may be preferable since, when x and ρ are close to one, as it may often be the case, then
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the squared difference (X − ρ)2 becomes negligible and therefore not significant, while (logX − log ρ)2 is not.
Finally, as pointed out in [7], an exchange rate is not an asset and so the functions f, h, g do not represent a
tangible cost leaving a discount factor without a clear economic interpretation. We still keep the discount factor
here just for the sake of generality.

Remark 3. Since all the entries in the cost-to-go function in (9) are Fx
t -adapted, the value function for the

full and partial information cases, i.e. for both j = f, p, are the same and this further justifies the possibility of
studying the full and partial information problem in a unified way.

An optimal control is now a control (u∗, T ∗, ξ∗)j , for the moment in Ag,j , for which at the initial time t = 0
with values x,m of the Markov process (xj

t ,m
j
t )

Jj(0, x,m) = V
(u∗,T ∗,ξ∗)j

j (0, x,m) := inf
(u,T ,ξ)j

V
(u,T ,ξ)j

j (0, x,m) ; j ∈ {f, p}. (12)

In its full generality as described above, the problem of choosing (u, T , ξ)j inAg,j to minimize V
(u,T ,ξ)j

j (0, x,m) , j =
f, p is very difficult to solve and so, as in [2], we shall look for an optimal solution within a subclass of strategies
and value functions that is however still rather general, contains the optimal solution in [4], and above all admits
an analytical solution. This subclass is the subject of the next section.

3 Specific class

3.1 The specific class of value functions and admissible controls

As suggested by the results in [4] and generalizing to the model of the present paper the class considered in [2],
we conjecture that, for j = f, p, the optimal value function

V j(t, x,m) = inf
(u,T ,ξ)j

V
(u,T ,ξ)j

j (t, x,m) (13)

has the following structure: for given continuous functions

aj(t,m) < αj(t,m) < βj(t,m) < bj(t,m) (14)

that below we shall call “strategic boundaries” let

V j(t, x,m) =


Φj(t, αj(t,m),m) + C + c(αj(t,m)− x) if x ≤ aj(t,m)

Φj(t, x,m) if aj(t,m) < x < bj(t,m)

Φj(t, βj(t,m),m) +D + d(x− βj(t,m)) if x ≥ bj(t,m)

(15)

where, for j = f, p, the Φj(t, x,m) satisfy the HJB-type equation(
Φj

t + Lûj

j Φj
)(
t, x,m

)
+ f

(
x, ûj

)
= Φj

t

(
t, x,m

)
+ inf

u∈R

{
Lu
jΦ

j
(
t, x,m

)
+ f

(
x, u

)}
= 0

Φj(T, x,m) = h(x) = ℓ (x− ρ)2
(16)

with ûj a control achieving the inf on the right hand side in (16). According to (5) (respectively (8)), the
generator Lu

j is, for a sufficiently regular function Φj : [0, T ]× R2 → R+, given by

Lu
jΦ

j(t, x,m) :=
(
m+Ku

)
Φj

x(t, x,m) +
(
Am+ a

)
Φj

m(t, x,m) + σ2

2 Φj
xx(t, x,m)

+Σj
1(t)Φ

j
xm(t, x,m) + Σj

2(t)Φ
j
mm(t, x,m)− λΦj(t, x,m)

(17)
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where the subscripts in Φj(·) denote partial derivatives and where

Σj
1(t) :=

{
σΛ2 for j = f
σΛ2 + Γt for j = p

, Σj
2(t) :=

{
Λ2

1+Λ2
2

2 for j = f
(Λ2+

Γt
σ )

2

2 for j = p
(18)

Due to the quadratic structure of f(x, u) the optimal continuous control ûj exists and is, for j = f, p and for
each t ∈ [0, T ], given by

ûj
t = −K

2k
Φj

x

(
t, xj

t ,m
j
t

)
(19)

where xj
t has here to be considered as the process xt in (2) corresponding to the continuous control ûj

t . Conse-
quently, the corresponding optimal interest rate is

r̂jt = r̄ exp

(
−K x̂j

t

2k
Φj

x

(
t, xj

t ,m
j
t

))
, j = f, p (20)

With u = ûj as in (19), the HJB-equation (16) becomes

Φj
t (t, x,m) +mΦj

x(t, x,m) +
(
Am+ a

)
Φj

m(t, x,m) + σ2

2 Φj
xx(t, x,m)− K2

4k

(
Φj

x(t, x,m)
)2

+Σj
1(t)Φ

j
xm(t, x,m) + Σj

2(t) Φ
j
mm(t, x,m)− λΦj(t, x,m) + (x− ρ)2 = 0,

Φj(T, x,m) = ℓ(x− ρ)2.

(21)

Concerning the impulse control, given always the continuous functions aj(·) < αj(·) < βj(·) < bj(·), we let the
impulse part (T , ξ) of the control be, for j = f, p, of the form

τ jn = inf
{
t > τ jn−1 | xj

t /∈
(
aj(t,mj

t ), b
j(t,mj

t )
)}

, (τ j0 = 0) (22)

xj

τj
n+

= xj

τj
n
+ ξjn = βj(τ jn,m

j

τj
n
)1{bj(τj

n,m
j

τ
j
n

)}(x
j

τj
n
) + αj(τ jn,m

j

τj
n
)1{aj(τj

n,m
j

τ
j
n

)}(x
j

τj
n
). (23)

Since, modulo a slight adjustment, the optimal solution obtained by [4] belongs to the class described above,
we shall restrict the original class of generic admissible controls Ag,j to the subclass Aj of admissible controls
according to the above specifications and search for an optimal solution within this class, namely

Definition 2. We say that for each j = f, p, a mixed classical-impulse stochastic control (u, T , ξ)j is admissible
if uj is of the form as in (19) and there exist four continuous functions aj(·) < αj(·) < βj(·) < bj(·) such that

(22) and (23) are satisfied. Furthermore, V
(u,T ,ξ)j

j (t, x,m) defined in (9) has to be finite. We shall denote by

Aj this class of admissible mixed classical-impulse stochastic controls for the process xj
t .

We shall show below (see Remark 6) that, for our model and the class of controls as specified above, V
(u,T ,ξ)j

j (t, x,m)
is indeed finite.

Limiting ourselves to the class of solutions as specified above, we shall consider, for each j = f, p, as “continuation
region” the subset Cj of the state space Σ := {(t, x,m) ∈ [0, T ]× R2} defined as

Cj =
{
(t, x,m) ∈ Σ : aj(t,m) < x < bj(t,m)

}
(24)

and, consequently, the intervention region Ij is then its complement in Σ.

Given the quadratic form of the cost functions we shall make a quadratic Ansatz for Φj(t, x,m) as solution of
the HJB equation (21), more precisely we make the following

Assumption 2. The optimal value function V j(t, x,m) is supposed to be given, for each j = f, p and within
the continuation region Cj , by V j(t, x,m) = Φj(t, x,m) where Φj(t, x,m) is a quadratic function of the type

Φj(t, x,m) = pjxx(t)x
2 + pjxm(t)xm+ pjmm(t)m2 + pjx(t)x+ pjm(t)m+ pj(t) (25)

where, here, the pedices do not denote partial derivatives, but are simply indexes.
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Remark 4.

• Thanks to the particular structure of our class of admissible impulse controls, namely by defining them
through the strategic boundaries aj(·) < αj(·) < βj(·) < bj(·) as well as to the structure of the value
function in (15), in the proof of the verification result in Proposition 1 below we do not need to use Ito’s
formula on the entire state space. We only need to apply it in the open interval (aj(t,mj

t ), b
j(t,mj

t )),
which allows us to avoid having regularity throughout as required by the smooth fit condition in general
stopping and impulse control problems (see e.g. [13]).

• In the case of partial information we apply the filter in (6) that is initialized by m̂0 = mp
0 = m0, Γ0 =

V ar(m0). This filter is run up to the first impulse intervention time τp1 , where xp
τp
1
is pushed to xp

τp
1
+ ξp1 .

Both τp1 and ξp1 are Fp
t −adapted with Fp

t = Fx
t the observation filtration, with respect to which the filter

is determined. In particular, by (22) and (23), they depend on Fp
t via mp

t that, see (6), between impulse
times does not depend on the continuously acting control ut. The control ut does therefore not change
the observation filtration Fp

t and so at every intervention time τpn we therefore re-initialize the filter with
the values (m̂τp

n
,Γτp

n
) that are obtained from (6) at time τpn.

.

3.2 (Weak) Quasi-variational inequality

As in [4], also our methodology builds on the notion of a quasi-variational inequality (QVI) that we use here
in a weaker form. First we introduce the minimal cost operator M that we define for each continuous function
ϕ : Σ → R as

Mϕ(t, x,m) := inf{ϕ(t, x+ η,m) + g(η) | η ∈ R}, (26)

where g(·) is the cost function for the impulse interventions as defined in (11).

Definition 3. We say that, for j = f, p, a function v : Σ −→ R+ satisfies the (weak) quasi-variational inequality
(QVI) for the problem specified in Section 2 if

i) vt(t, x,m) + infu∈R
{
Lu
j v(t, x,m) + f(x, u)

}
≥ 0

∀t ∈ [0, T ), m ∈ R, x ∈ (aj(t,m), bj(t,m)),
and v(T, x,m) = h(x) ∀m ∈ R, x ∈ (aj(T,m), bj(T,m)),

ii)Mv(t, x,m)− v(t, x,m) ≥ 0 everywhere.

(27)

Furthermore, at least one of the two inequalities in i) and ii) holds as an equality.

Notice that equality in point i) may also hold in the intervention region Ij .

We shall choose the strategic boundaries (see Section 4.2 below) in such a way that the optimal value function
V j(t, x,m) satisfies QVI. The continuation region Cj in (24) can then, for j = f, p, also be expressed as

Cj =

{
(t, x,m) ∈ Σ | V j(t, x,m) < MV j(t, x,m), V j

t (t, x,m) + inf
u∈R

{
Lu
j V

j(t, x,m) + f(x, u)
}
= 0

}
,

while the intervention region then becomes

Ij =
{
(t, x,m) ∈ Σ | V j(t, x,m) = MV j(t, x,m)

}
.

In sub-section 5.1 below we shall show by a verification result that a certain value function V j(t, x,m) is optimal
by assuming that it satisfies the QVI of Definition 3. We shall thus also have to verify that the candidate solution
satisfies QVI and this will be done in sub-section 5.2; on the other hand the QVI property turns out to be useful
in determining the optimal strategic boundaries as will be shown in the next Section 4.
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4 Computing the optimal value function and strategic boundaries

We first study the solution Φj(t, x,m), j = f, p of the HJB equation (21) that will give us (see (15) and
Assumption 2) the optimal value function in Cj . This will be the subject of subsection 4.1. In subsection 4.2 we
shall then determine the strategic boundaries so that the value function V j(t, x,m) in (15) is a QVI solution.
Finally, in subsection 4.3 we derive some estimates that will be crucial in the verification results in section 5

and will also guarantee that V
(u,T ,ξ)j

j (0, x,m) is finite for all admissible strategies (u, T , ξ)j .

4.1 Solution of the HJB equation

Recall from sub-section 3.1 that, for the optimal continuous control as given in (19), the function Φj(t, x,m) has
to satisfy, for each j = f, p, the Cauchy problem in (21). On the other hand, by Assumption 2 it follows that
the coefficients in (25) have to satisfy the system of equations in (28) below that is obtained from computing the
various derivatives of Φj(·) in the form of (25), plugging them into (21) and putting equal to zero the coefficients
of the resulting 2nd order polynomial in (x,m). We have in fact

ṗjxx(t)− K2

k (pjxx(t))
2 − λpjxx(t) + 1 = 0, pjxx(T ) = ℓ,

ṗjxm(t) +
(
A− λ− K2

k pjxx(t)
)
pjxm(t) + 2pjxx(t) = 0, pjxm(T ) = 0,

ṗjmm(t) + (2A− λ)pjmm(t) + pjxm(t)− K2

4k (p
j
xm(t))2 = 0, pjmm(T ) = 0,

ṗjx(t)−
(
λ+ K2

k pjxx(t)
)
pjx(t) + apjxm(t)− 2ρ = 0, pjy(T ) = −2ℓρ,

ṗjm(t) + (A− λ) pjm(t) + pjx(t) + 2apjmm(t)− K2

2k p
j
xm(t)pjx(t) = 0, pjm(T ) = 0,

ṗj(t)− λpj(t) + apjm(t) + σ2pjxx(t)− K2

4k (p
j
x(t))

2 +Σj
1(t)p

j
xm(t) + 2Σj

2(t)p
j
mm(t) + ρ2 = 0, pj(T ) = ℓρ2.

(28)
These are first order linear ODEs, for which an analytic solution may be obtained as described in Section 4.1 of
[2]. However, for our purposes below and, in particular, for the numerical results it suffices to obtain a numerical
solution after a discretization of the various equations. We shall nevertheless recall here from Section 4.1 of [2]
the solution of the first, a Riccati equation, namely

pjxx(t) =
k

K2

(
−λ−∆

2
+

∆

C1e∆t + 1

)
, (29)

where ∆ :=
√

λ2 + 4K2

k and C1 :=

(
2∆

2K2

k ℓ+λ+∆
− 1

)
e−∆T . For the given solution one can obtain a lower

bound that is derived in the next lemma and that will be useful later on.

Lemma 2. One has

pjxx(t) > min

[
ℓ,

1

∆

]
> 0 , j = f, p. (30)

where ℓ corresponds to the terminal cost h(x) = ℓ (x− ρ)2 and ∆ is as in (29).

Proof. First of all notice that C1 > −1. If C1 ≥ 0 then pjxx(t) is non-increasing in t so that pjxx(t) ≥ pjxx(T ) = ℓ.
If C1 ∈ (−1, 0], then pjxx(t) is non-decreasing so that, for t ∈ [0, T ],

pjxx(t) ≥ pjxx(0) =
k

K2

(
−λ−∆

2
+

∆

C1 + 1

)
=

k

K2

∆− λ

2
=

k

K2

∆2 − λ2

2 (∆ + λ)
=

2

∆ + λ
≥ 2

2∆
=

1

∆
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where we have used the definition of ∆, which also implies that ∆ > λ. Combining the two cases of positive
and negative C1 we obtain the result.

4.2 Determining the strategic boundaries

We have already seen that, in order that the optimal value function V j(t, x,m) is a QVI solution, in the
intervention region Ij it has to satisfy, for j = f, p, point ii) of Definition 3 as an equality which implies that

V j(t, x,m) = inf{V j(t, x+ η,m) + g(η), η ∈ R}. (31)

On the other hand, from (15) and (22) as well as (23) we have that, for x ≤ aj(t,m), the inf in (31) is obtained
for x+ η = αj(t,m), while for x ≥ bj(t,m) it is obtained for x+ η = βj(t,m). This allows us to determine the
optimal strategic boundaries as shown in the next two lemmas.

Lemma 3. For any t > 0 and m ∈ R, the strategic boundaries αj(t,m) and βj(t,m) have to satisfy, for j = f, p,

V j
x (t, x,m) =

{
−c for x ≤ aj(t,m)
d for x ≥ bj(t,m)

(32)

and, given the quadratic Ansatz for Φj(t, x,m) in (25) of Assumption 2, they are explicitly given by

αj(t,m) = −c+ pjx(t) +mpjxm(t)

2pjxx(t)
, βj(t,m) =

d− pjx(t)−mpjxm(t)

2pjxx(t)
, j = f, p. (33)

Proof. As mentioned before the statement of the lemma, for x ≤ aj(t,m), the minimal value of x+η is obtained
for x + η = αj(t,m), while for x ≥ bj(t,m) it is obtained for x + η = βj(t,m). Both lie in the interior of
the continuation region Cj , where V j(t, x,m) = Φj(t, x,m) and is thus differentiable. A necessary condition is
therefore that, for all x ≤ aj(t,m),

0 =
∂

∂η

[
V j(t, x+ η,m) + g(η)

]
|η=αj(t,m)−x

= V j
x (t, α

j(t,m),m) + c,

where we have taken into account the structure of the cost function g(η) in (11). Analogously for βj(t,m).
This and the structure of V j(t, x,m) in (15) then gives us (32). Form here and, again, from the structure of
V j(t, x,m) as well as from the quadratic Ansatz in Assumption 2 one then obtains immediately also (33).

Lemma 4. The optimal boundary functions aj(t,m) and bj(t,m) are, for j = f, p, given by

aj(t,m) = − c+pi
x(t)+mpj

xm(t)+2
√

Cpj
xx(t)

2pj
xx(t)

= αj(t,m)−
√

C

pj
xx(t)

,

bj(t,m) =
d−pj

x(t)+mpj
xm(t)+2

√
Dpj

xx(t)

2pj
xx(t)

= βj(t,m) +
√

D

pj
xx(t)

.

(34)

Proof. The structure given by (15) to V j(t, x,m) leads, for j = f, p, to Φj(t, aj(t,m),m) = Φj(t, αj(t,m),m) + C + c(αj(t,m)− aj(t,m)),

Φj(t, bj(t,m),m) = Φj(t, βj(t,m),m) +D + d(bj(t,m)− βj(t,m)).
(35)

Since the case of bj(t,m) is completely analogous to that of aj(t,m), we present the details only for the latter.
For convenience we also put

Gj(t,m) := pjx(t) +mpjxm(t).

11



Due to the quadratic structure in (25) of Φj(t, x,m), the first relation in (35) then implies that

(aj(t,m))2 pjxx(t) + aj(t,m)Gj(t,m) + aj(t,m) c

−(αj(t,m))2 pjxx(t)− αj(t,m)Gj(t,m)− αj(t,m) c− C = 0.

For given αj(t,m) this then leads to the following two possible expressions for aj(t,m) that are the solutions of
the above quadratic equation

aj1,2(t,m) =
−(Gj(t,m) + c)±

√
[(Gj(t,m) + c) + 2αj(t,m)pjxx(t)]2 + 4C pjxx(t)

2pjxx(t)
.

Substituting for αj(t,m) its expression from (33), we end up with

aj1,2(t,m) =
−(Gj(t,m) + c)± 2

√
C pjxx(t)

2pjxx(t)
= αj(t,m)±

√
C

pjxx(t)
, (36)

which is well defined since C and (see (30)) pjxx(t) are positive. To conform with the requirement that aj(t,m) <
αj(t,m), one has to choose the minus sign on the right of (36).

Remark 5. The relations (33) and (34) determine completely the optimal strategic boundaries, which are
continuous as assumed in (14). Notice also that the analytic form of the strategic boundaries is a consequence
of the Assumption 2 of a quadratic Ansatz for the solution of the HJB equation (21).

4.3 Resulting estimates

Having obtained the solution of the HJB equation and the analytic expressions for the strategic boundaries, we
shall now derive in the form of lemmas some estimates that will be important for the verification result in the
next Section 5. In the lemmas below we use the fact that all the coefficients in the quadratic expression (25)
as well as the solution Γt of (6) are continuous and thus bounded on [0, T ]. For simplicity we shall also write
generically xt and ut instead of xj

t and uj
t .

Lemma 5. For the process mj
t satisfying (5) for j = f and (8) for j = p we have

E

{∫ T

0

e−λt
∣∣∣mj

t

∣∣∣k dt} ≤ E

{∫ T

0

∣∣∣mj
t

∣∣∣k dt} ≤ Ck

(
1 + E

{∣∣∣mj
0

∣∣∣k}) < ∞

for all λ > 0, all positive integers k for which for the initial condition mj
0 = m0 one has E

{
|mj

0|k
}

< ∞ and

where Ck is a constant depending on k and T as well as on the constant A in equations (5) and (8).

Proof. Since the drift in equations (5) and (8) has linear growth, from Theorem 4.2 in Chapter 5 of [6] we have

E

{∣∣∣mj
t

∣∣∣k} ≤ C̄k

(
1 + E

{∣∣∣mj
0

∣∣∣k}) ,

where C̄k depends on k, T and A. This implies that E

{∫ T

0

∣∣∣mj
t

∣∣∣k dt} is finite for each k for which E

{∣∣∣mj
0

∣∣∣k} <

∞. Since |mj
t | > 0, a.s., we can apply Fubini’s Theorem concluding that

E

{∫ T

0

e−λt
∣∣∣mj

t

∣∣∣k dt} ≤ E

{∫ T

0

∣∣∣mj
t

∣∣∣k dt} ≤ TC̄k

(
1 + E

{∣∣∣mj
0

∣∣∣k})
and thus obtaining the statement of the lemma for Ck := T C̄k.
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Below we shall assume that Lemma 5 holds at least for k ≤ 4. It is in fact reasonable to assume that m̂0 = m0

has finite moments up to at least k = 4.

Lemma 6. We have E

{∫ T

0

x2
tdt

}
< ∞.

Proof. By (34), (30) and the fact that pjx(t), pjxm(t) are continuous in t, we have for all t ∈ [0, T ] and j ∈ {f, p}

|aj(t,mj
t )| ≤

∣∣∣∣∣c+ pjx(t)

2pjxx(t)

∣∣∣∣∣+ |mj
t |

∣∣∣∣∣ pjxm(t)

2pjxx(t)

∣∣∣∣∣+
√

C

pjxx(t)
≤ K̄|mj

t |+ H̄ a.s.

for some positive constants K̄ and H̄ and, analogously, for |bj(t,mj
t )|. Since xt ∈

[
aj(t,mj

t ), b
j(t,mj

t )
]
, it then

also follows that
|xt| ≤ K̄ |mj

t |+ H̄ a.s. (37)

so that, for suitable and positive constants K1,K2,H1 one has E{x2
t} ≤ K2E{(mj

t )
2}+K1E{|mj

t |}+H1. The
result then follows from Lemma 5 using again Fubini’s theorem.

Lemma 7. For the optimal control ût given in (19), we have E

{∫ T

0

û2
tdt

}
< ∞.

Proof. The continuous control ût is acting only in the continuation region Cj , j = f, p, where

|ût| =
∣∣∣∣−K

2k
Φj

x

(
t, x̂j

t ,m
j
t

)∣∣∣∣ = K

2k

∣∣∣2x̂j
tp

j
xx(t) +mj

tp
j
xm(t) + pjx(t)

∣∣∣ ≤ K3|x̂j
t |+K4|mj

t |+K0 a.s.

for K3, K4 > 0, so that

E

{∫ T

0

û2
tdt

}
≤ 3K2

3E

{∫ T

0

(x̂j
t )

2dt

}
+ 3K2

4E

{∫ T

0

|m̂t|2 dt

}
+ TK2

0

which is bounded by Lemmas 5 and 6 (in this latter lemma for xt = xj
t with j = f, p).

Notice that by Lemmas 6 and 7 we also have

E

{∫ T

0

e−λtx2
tdt

}
< ∞ ; E

{∫ T

0

e−λtû2
tdt

}
< ∞.

Remark 6. From the definitions of the cost function in (10) we have

|f(x, u)| ≤ 2(x2 + ρ2) + ku2 , |h(x)| ≤ 2ℓ(x2 + ρ2)

Furthermore, since ξn is either equal to αj(τ jn,m
j

τj
n
) − aj(τ jn,m

j

τj
n
) or bj(τ jn,m

j

τj
n
) − βj(τ jn,m

j

τj
n
), from (11) and

(34) and using the inequality (30) we obtain

|g(ξ)| ≤ max[C,D] + max[c, d] |ξ| ≤ max[C,D] + max[c, d]

√
max[C,D]

min
[
ℓ, 1

∆

] .
Finally, from Lemma 8 below we have E

{∑∞
n=1 e

−λτn1{τn≤T}
}
< ∞. Lemmas 6 and 7 then imply that for all

controls in the specific class, which in Definition 2 we have denoted by Aj , we have that V
(u,T ,ξ)j

j (t, x,m) in (9)

is finite. The class Aj consists therefore indeed of admissible controls according to the Definition 2.
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Lemma 8. We have E

{ ∞∑
n=1

e−λτj
n1{τj

n≤T}

}
< ∞ for j = f, p.

Proof. Recall that the generic n−th impulse time τ jn was defined in (22) as

τ jn = inf
{
t > τ jn−1 | xj

t /∈
(
aj(t,mj

t ), b
j(t,mj

t )
)}

, (τ j0 = 0)

where the optimal strategic boundaries aj(t,mj
t ), b

j(t,mj
t ) are as given in (33) of Lemma 2 and can therefore

be represented in the form

aj(t,mj
t ) = Kj(t)mj

t +Hj(t) ; bj(t,mj
t ) = K̄j(t)mj

t + H̄j(t)

for suitable functions Kj(t),Hj(t), K̄j(t), H̄j(t). We can then rewrite τ jn as

τ jn = inf
{
t > τ jn−1 | xj

t ≤ Kj(t)mj
t +Hj(t) or xj

t ≥ K̄j(t)mj
t + H̄j(t)

}
Consider next, for j = f, p, the stopping time

τ j = inf
{
s > 0 | xj

s ≤ Kj(s)mj
s +Hj(s) or xj

s ≥ K̄j(s)mj
s + H̄j(s)

}
Then, since xj

t and mj
t are diffusion processes, we have γj

t,T := P{t ≤ τ j ≤ T} < 1 for all t ∈ [0, T ]. And,

γj
t2,T

≤ γj
t1,T

≤ γj
0,T < 1 for t1 < t2.

Returning to the sequence of impulse times 0 < τ j1 < τ j2 < · · · < τ jn < · · · , we then have P{τ j1 ≤ T} = γj
0,T < 1

and

P{τ j2 ≤ T} = E
{
1{τj

2≤T}

}
= E

{
E
{
1{τj

2≤T} | τ j1
}}

= E
{
E
{
1{τj

1<τj
2≤T} | τ j1

}}
= E

{
γj

τj
1 ,T

1{τj
1≤T}

}
≤ γj

0,TP{τ j1 ≤ T} =
(
γj
0,T

)2
Proceeding by induction, assume that P{τ jn−1 ≤ T} ≤

(
γj
0,T

)n−1

. We then have

P{τ jn ≤ T} = E
{
E
{
1{τj

n≤T} | τ jn−1

}}
= E

{
E
{
1{τj

n−1<τj
n≤T} | τ jn−1

}}
= E

{
γj

τj
n−1,T

1{τj
n−1≤T}

}
≤ γj

0,T

(
γj
0,T

)n−1

=
(
γj
0,T

)n
so that, for all positive integers n, we have P{τ jn ≤ T} ≤

(
γj
0,T

)n
with γj

0,T < 1. It follows that

lim
n→∞

P{τ jn ≤ T} = lim
n→∞

(
γj
0,T

)n
= 0

and that

E

{ ∞∑
n=1

e−λτj
n1{τj

n≤T}

}
≤ E

{ ∞∑
n=1

1{τj
n≤T}

}
=

∞∑
n=1

P{τ jn ≤ T} <
∞∑

n=0

(
γj
0,T

)n
=

1

1− γj
0,T

< ∞

thus concluding the proof of the lemma.

5 Verification Theorem and optimality of the solution

In this section we present a verification result proving that the solution described in sections 3 and 4 is indeed
optimal for our problem. In subsection 5.1 we present some preliminaries and show a first verification result
assuming that the candidate solution is a QVI solution in the weak sense of Definition 3. In subsection 5.2 we
then present the main verification theorem showing that the candidate solution is indeed such a QVI solution.
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5.1 A preliminary verification result

We start with a couple of preliminary lemmas.

Lemma 9. For j = f, p, we have E

{∫ T

0

(
V j
x (t, x

j
t ,m

j
t )
)2

dt

}
< ∞.

Proof. By the boundedness, over [0, T ], of pjxx(t), p
j
xm(t), pjx(t) and the fact that in Cj one has V j

x (·) = Φj
x(·),

from (25) one first has |Vx(t, xt,m
j
t )| ≤ c1|xt|+ c2|mj

t |+ c3, ci > 0 so that, using also (37),(
V j
x (t, xt,m

j
t )
)2

≤ (c1|xt|+ c2|mj
t |+ c3)

2 ≤
[
c1(K̄ |mj

t |+ H̄) + c2|mj
t |+ c3

]2
≤ L(mj

t )
2 +M |mj

t |+N

for suitable constants L,M,N > 0. The proof can now be concluded by using Lemma 5

Lemma 10. For j = f, p we have

E

{∫ T

0

(
σ̄j
tV

j
m(t, xt,m

j
t )
)2

dt

}
< ∞,

where

E

{∫ T

0

(
σ̄j
tV

j
m(t, xt,m

j
t )
)2

dt

}
=


E

{∫ T

0

(
V f
m(t, xt,m

f
t )
)2 (

Λ2
1 + Λ2

2

)
dt

}
for j = f,

E

{∫ T

0

(
V p
m(t, xt,m

p
t )

(
Λ2 +

Γt

2

))2

dt

}
for j = p.

Proof. Analogously to the proof of the previous Lemma 9, since in Cj we have V j
m(·) = Φj

m(·), from (25) it
follows that |V j

m(t, xt,m
j
t )| ≤ d̄1|xt| + d̄2|mj

t | + d̄3, di > 0 (i = 1, 2, 3) with (see (37)) |xt| ≤ K̄ |mj
t | + H̄.

Furthermore, since Γt is solution of a Riccati equation and therefore continuous in [0, T ], we have Γt ≤ Γ for
t ∈ [0, T ] and with Γ > 0. One can thus conclude that there exist positive constants d1, d2, d3 such that

E

{∫ T

0

(
σ̄j
tV

j
m(t, xt,m

j
t )
)2

dt

}
≤ E

{
d1

∫ T

0

|mj
t |2dt+ d2

∫ T

0

|mj
t |dt

}
+ d3 , j = f, p,

where the right hand is finite by Lemma 5.

We come now to the preliminary verification result, namely

Proposition 1. For j = f, p, let Φj(t, x,m) be a solution of the HJB equation (21) and let (u, T , ξ)j be a mixed
classical-impulse control according to (19) as well as (22), (23), where aj(·), αj(·), βj(·), bj(·) satisfy (33) and
(34). Then V j(t, x,m) defined according to (15) is the optimal value function for our problem and (u, T , ξ)j is
an optimal control provided V j(t, x,m) is a weak QVI solution according to Definition 3.

Proof. Given an arbitrary integer n > 0 and t ∈ [0, T ], we first derive, for j = f, p, an expression for

e−λ(t∧τj
n)V j(t ∧ τ jn, x(t∧τj

n)+
,mj

(t∧τj
n)+

)− V (0, x,mj
0) for which, analogously to the proofs of the classical verifi-

cation theorems, we apply the Itô formula to the function e−λtV j(t, xj
t ,m

j
t ), but only between two successive

impulse shifts, thereby obtaining

V j(t ∧ τ jn, x(t∧τj
n)+

,mj

(t∧τj
n)
)− V (0, x,mj

0)

=

n∑
i=1

[∫ t∧τj
i

t∧τj
i−1

(
V j
t + Lus

j V j
)
(s, xj

s,m
j
s) ds+ σ

∫ t∧τj
i

t∧τj
i−1

V j
x (s, x

j
s,m

j
s) dw

j
s

+

∫ t∧τj
i

t∧τj
i−1

σ̄j
sVm(s, xj

s,m
j
s)

]
+

n∑
i=1

1{τj
i ≤t}

[
V j(τ ji , xτj

i +
,mj

τj
i

)− V (τ ji , x
j

τj
i

,mj

τj
i

)
]
,

(38)
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where

wj
t =

{
Wt for j = f
νt for j = p

, bjt =

{
Bt for j = f
νt for j = p

, σ̄j
t =

{
Λ for j = f
Λ2 +

Γt

σ for j = p

with Bt and Wt the original Wiener processes in (5) and νt the innovations Wiener process in (7).

Next we use the assumption that V j(·) is a QVI-solution. Inequality i) in Definition 3 implies(
V j
t + Lut

j V j
)
(t, xj

t ,m
j
t ) ≥ −f(xj

t , u
j
t ) on (aj(t,mj), bj(t,mj))

Furthermore, inequality ii) in Definition 3 implies

V j(τ ji , x
j

τj
i +

,mj

τj
i +

)− V (τ ji , xτj
i
,mj

τj
i

) = M V j(τ ji , x
j

τj
i

,mj

τj
i

))− V j(τ ji , x
j

τj
i

,mj

τj
i

))− g(ξji ) ≥ −g(ξji ) ∀ i ∈ N.

Therefore, for each t ∈ [0, T ] and n ∈ N we obtain

e−λ(t∧τj
n)V j(t ∧ τ jn, x

j

(t∧τj
n)+

,mj

(t∧τj
n)+

)− V (0, x,mj
0)

≥ −
n∑

i=1

[∫ t∧τj
i

t∧τj
i−1

e−λsf(xj
s, u

j
s) ds+ σ

∫ t∧τj
i

t∧τj
i−1

V j
x (s, x

j
s,m

j
s) dw

j
s

+

∫ t∧τj
i

t∧τj
i−1

σ̄j
sV

j
m(s, xj

s,m
j
s) db

j
s

]
−

n∑
i=1

1{{τj
i ≤t}}e

−λτj
i g(ξji ).

This inequality is an equality for the control specified in the statement. From Lemma 8 we deduce that

e−λ(t∧τj
n)V j(t ∧ τ jn, x(t∧τj

n)+
,mj

(t∧τj
n)+

)
n→∞−−−−→ e−λtV j(t, xj

t+,m
j
t+) a.s..

Taking expectations, we obtain

V j(0, x,mj
0)− E

{
e−λtV j(t, xj

t+,m
j
t+)
}
≤ E

{ ∞∑
i=1

∫ t∧τj
i

t∧τj
i−1

e−λsf(xj
s, u

j
s) ds

+σ

∫ t∧τj
i

t∧τj
i−1

e−λsV j
x (s, x

j
s,m

j
s) dw

j
s +

∫ t∧τj
i

t∧τj
i−1

e−λsσ̄j
sV

j
m(s, xj

s,m
j
s) db

j
s −

n∑
i=1

1{{τj
i ≤t}}e

−λτj
i g(ξji )

}
.

with equality for the control described in the statement. Lemmas 9 and 10 imply that both e−λtV j
x (t, x

j
t ,m

j
t )

as well as e−λtσ̄j
tV

j
m(t, xj

t ,m
j
t ) are in L2([0, T ]× Ω). Therefore

E

{∫ t∧τj
i

t∧τj
i−1

e−λsV j
x (s, x

j
s,m

j
s) dw

j
s

}
= E

{∫ t∧τj
i

t∧τj
i−1

e−λsσ̄j
sV

j
m(s, xj

s,m
j
s) db

j
s

}
= 0

Consequently

V j(0, x,mj
0)− E

{
e−λtV j(t, xj

t+,m
j
t+)
}
≤ E

{∫ t

0

e−λsf(xj
s, u

j
s) ds+

∞∑
i=1

1{{τj
i ≤t}}e

−λτj
i g(ξji )

}
,

with equality for the control described in the statement. Finally, substituting T for t and recalling that
V j(T, x,m) = h(x), we get

V j(0, x,mj
0) ≤ inf E

{∫ T

0

e−λsf(xj
s, u

j
s) ds+ e−λTh(xj

T ) +

∞∑
i=1

1{{τj
i ≤T}}e

−λτj
i g(ξji )

}
= Jj(0, x,m

j
0),

with Jj(0, x,m
j
0) as in (12) and where one has equality for the control described in the statement. The conclusion

then follows.
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5.2 Main verification result

Before mentioning our main theorem, we introduce some more notations: based on (33) let

αj(t,m) = −c+ pjx(t) +mpjxm(t)

2pjxx(t)
=: αj

1(t) + αj
2(t)m, βj(t,m) =

d− pjx(t)−mpjxm(t)

2pjxx(t)
=: βj

1(t) + βj
2(t)m,

We can now state and prove our main verification result, namely

Theorem 1. Let, for j = f, p, the function V j(t, x,m) satisfy (15). Let the continuous and differentiable
functions aj(t,m), αj(t,m), βj(t,m), bj(t,m) be given by (33) and (34). Let the control (u, T , ξ) be given by
(19) as well as (22), (23). Then V j(t, x,mj) is, for j = f, p, the optimal value function of our problem, namely
it is optimal among the value functions that are quadratic in the continuation region and such that (see (12)
and (13))

V j(0, x,mj) = inf
{
V

(u,T ,ξ)j

j (0, x,mj) : (u, T , ξ) ∈ Aj
}
. (39)

Furthermore, the above strategy is optimal in the sense that it achieves the infimum in (39).

Proof. (In the proof we shall simply write m for mj). Given Proposition 1, we have to show that V j(t, x,m), j =
f, p, satisfies the QVI conditions i.e., see (27) in Definition 3, that for all t ∈ [0, T ], m ∈ R and all x ∈
(aj(t,m), bj(t,m)),

V j
t (t, x,m) + inf

u

[
LuV j(t, x,m) + f(x, u)

]
≥ 0 (40)

as well as
MV j(t, x,m)− V j(t, x,m) ≥ 0 ∀(t, x,m) (41)

We start from (40) recalling that, for x ∈ Cj = (aj(t,m), bj(t,m)) we have that V j(t, x,m) = Φj(t, x,m) and so
it satisfies the HJB equation (21), namely

V j
t (t, x,m) + infu

[
LuV j(t, x,m) + f(x, u)

]
= V j

t (·) + σ2

2 Vxx(·) + Σj
1V

j
xm(·) + Σj

2V
j
mm(·)

−K2

4k (V
j
x )

2(·) +mV j
x (·) + (Am+ a)V j

m(·)− λV j(·) + (x− ρ)2 = 0
(42)

where (·) stands for (t, x,m).

It remains to show that also (41) holds. To this effect notice that, by the convexity of Φj(t, x,m) in x for each
(t,m) and and by (32) in Lemma 3, we have that

Φj
x(t, x,m)

 ≤ −c for x ≤ αj(t,m)
∈ (−c, d) for x ∈ (αj(t,m), βj(t,m))
≥ d for x ≥ βj(t,m).

(43)

Given that for x in the continuation region Cj = (aj(t,m), bj(t,m)) we have V j(t, x,m) = Φj(t, x,m), this also
implies that, for the minimal cost operator MV (t, x, y) (see (26)), we have

MV j(t, x,m) =


Φj(t, αj(t,m),m) + C + c(αj(t,m)− x) if x ≤ αj(t,m)

Φj(t, x,m) + min(C,D) if x ∈ (αj(t,m), bj(t,m))

Φj(t, βj(t,m),m) +D + d(x− βj(t,m)) if x ≥ βj(t,m)

(44)

Taking then into account (15) and (44), we immediately have that (41) holds outside of the intervals (aj(t,m), αj(t,m))
and (βj(t,m), bj(t,m)). Concerning these two intervals, we consider here just the case of (aj(t,m), αj(t,m))
since the case of (βj(t,m), bj(t,m)) is completely analogous.

We first recall that on (aj(t,m), αj(t,m)), which is part of the continuation region, the function V j(t, x,m) and
the operator MV j(t, x,m) are, for j = f, p, given by (see (15), (25))

V j(t, x,m) = x2pjxx(t) +m2pjmm(t) + xmpjxm(t) + x pjx(t) +mpjm(t) + pj(t),
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MV j(t, x,m) = (αj(t,m))2pjxx(t) +m2pjmm(t) + αj(t,m)mpjxm(t) + αj(t,m) pjx(t)
+mpjm(t) + pj(t) + C + c(αj(t,m)− x).

It follows that

V j(t, x,m)−MV j(t, x,m) = (x2 − (αj(t,m))2) pjxx(t) + (mpjxm(t) + pjx(t) + c)(x− αj(t,m))− C

= (x− αj(t,m))2pjxx(t) + (2αj(t,m) pjxx(t) +mpjxm(t) + pjx(t) + c)(x− αj(t,m))− C

:= (zj)2pjxx(t) + zj (2αj(t,m) pjxx(t) +mpjxm(t) + pjx(t) + c)− C

where we have put zj := x − αj(t,m). Taking now into account the expressions for αj(t,m) and aj(t,m) in

(33) and (34), by which aj(t,m) − αj(t,m) = −
√

C

pj
xx(t)

, we have that the range of zj is zj ∈
[
−
√

C

pj
xx(t)

, 0
]

and that 2αj(t,m) pjxx(t) + mpjxm(t) + pjx(t) + c = 0. It follows that, on (aj(t,m), αj(t,m)), the difference
V j(t, x,m)−MV j(t, x,m) can be expressed as the function

V̄ j(t, zj) = (zj)2pjxx(t)− C

This latter function is defined on zj ∈
[
−
√

C

pj
xx(t)

, 0
]
, where the derivative is negative, and so its maximum is

achieved in −
√

C

pj
xx(t)

. It thus follows that

V j(t, x,m)−MV j(t, x,m) ≤ V̄ j

(
t,−

√
C

pjxx(t)

)
= 0

showing that (41) also holds in the interval (aj(t,m), αj(t,m)) and, by analogy, also in (βj(t,m), bj(t,m)).

Finally, since in the continuation region Cj = (aj(t,m), bj(t,m)) we have

V j
t (t, x,m) + inf

u

[
LuV j(t, x,m) + f(x, u)

]
= 0

and in the intervention region Ij (its complement) we have M V j(t, x,m) = V j(t, x,m), at least one among the
(40) and (41) hold as equality.

6 Numerical Illustrations

In this section we present some numerical results to illustrate the characteristics of the optimal solution obtained
from our approach. The results are grouped into four sub-sections. Subsections 6.1 and 6.2 are intended to
convey an idea of the behavior of the optimal strategic boundaries and of the optimal continuous control
respectively. Subsections 6.3 and 6.4 then describe the behavior of the value function and of the optimal log-
exchange rate as well as of the drift (factor) process for the cases when the drift mt is fully observed and when
it is not and thus replaced by its filtered value m̂t. This allows one to see differences that arise between the full
and partial information cases.

For the numerical calculations we had to choose numerical values for the various parameters and they are given
in Table 1 below. In our simulations we use a (backward) Euler approximation for a uniform time discretization
with step 0.01 to obtain numerical solutions of the ODEs (28) with their terminal conditions. Furthermore,
to simulate the sample paths in subsection 6.4, we use the Euler approximation for ODEs (28) and the Euler-
Maruyama approximation for the SDEs (5) with time discretization step 0.005.

6.1 Optimal strategic boundaries

First we discuss our strategic boundaries aj(t,m), αj(t,m), βj(t,m), bj(t,m) given by (33) and (34). As one
can easily see from (33), (34) and (28), the structures of these optimal strategic boundaries are completely
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Table 1: parameters

parameter notation size

target interest rate r̄ 0.04
coefficient of continuous control K −0.51
volatility of exchange rate σ 1
drift of factor A −0.1
drift of factor a 0.01
volatility of factor Λ = (Λ1,Λ2) (1.5, 2)
target level of log-exchange rate ρ 2
coefficient of running cost k 6
penalty of impulse (fixed cost for lower bound) C 0.24
penalty of impulse (proportional cost for lower bound) c 1.5
penalty of impulse (fixed cost for upper bound) D 0.5
penalty of impulse (proportional cost for upper bound) d 3
coefficient of terminal condition ℓ 1.5
discount factor λ 0.05
maturity T 1
variance of initial value of factor V ar(m0) 0.5

the same in the two cases of full and partial information. In fact, for j = f, p, all coefficients of the first five
equations in (28) are the same while the coefficients Σj

1(t) and Σj
2(t) of the last equation in (28) are different

in the two cases. However, the solution of the last equation in (28) is not used for the strategic boundaries
aj(t,m), αj(t,m), βj(t,m), bj(t,m) given in (33) and (34). Hence the values of the optimal strategic boundaries
differ in the two cases only because the value of m is different. In the case of full information we insert the
observed factor value for m, in the case of partial information we insert instead its filtered value m̂.

The features of the strategic boundaries are shown in Figure 1. One of typical characteristics of the strategic
boundaries is that for a fixed t, they are linear and parallel in the factor value m. This can be seen from the
Figure but it follows also from (33) and (34). Another characteristic is that, since the coefficient ℓ = 1.5 in the
terminal cost is not very large, the central bank does not try too hard to push the exchange rate to its target
level by using the interventions. The width between aj(t,m) and bj(t,m) becomes thus wider as time progresses
to the maturity t = 1.

Figures 2, 3, 4 are extracts of a part of Figure 1, namely for m = −1, 0, 1 respectively. From these Figures
we find that, when the factor values are neutral, i.e. m = 0, the upper strategic boundary bj(t,m) is further
away from the target level of the exchange rate ρ than the lower strategic boundary aj(t,m) and this is due to
the fact that the fixed cost D for an upper intervention is larger than that for the lower intervention, namely
C. However, this is not always true when the factor values are not zero, that is, the exchange rate has a trend.
For example, in Figure 4, the upper strategic boundary bj(t,m) is closer to the target level of the exchange rate
than the lower strategic boundary aj(t,m) since the trend of the exchange rate is strongly positive and, in order
to keep the values close to the target level of the exchange rate, the central bank needs to intervene more often
in the market when the exchange rate becomes larger. From Figures 2, 3, 4, one might guess that the strategic
boundaries have a monotonicity property, but this is not always the case.
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Figure 1: Strategic boundaries a(t,m), b(t,m), α(t,m),
β(t,m)
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Figure 2: Strategic boundaries a(t,−1), b(t,−1),
α(t,−1), β(t,−1) at m = −1
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Figure 3: Strategic boundaries a(t, 0), b(t, 0), α(t, 0),
β(t, 0) at m = 0
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Figure 4: Strategic boundaries a(t, 1), b(t, 1), α(t, 1),
β(t, 1) at m = 1
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6.2 Optimal continuous control

In this subsection, we show some characteristics of our optimal continuous control ûj
t given in (19) with (25):

when aj(t,mj
t ) < xj

t < bj(t,mj
t ),

ûj
t = −K

2k

(
2pjxx(t)x

j
t + pjxm(t)mj

t + pjx(t)
)
. (45)

Analogously to the behavior of the strategic boundaries as functions of t and m, also the structure of the optimal
continuous control is completely the same in the two cases of full and partial observation of the drift factor. As
shown in subsection 6.4, the differences will however appear from the values of the controlled process xj

t and
of the factor process given by the observed drift mt or its filtered value m̂t respectively. Figures 5, 6, 7 show
graphs of uj

t as functions in t and x when m = −1, 0, 1 respectively. From the graphs and (45), we find that
the function is linear in x, but non-linear in t. Also from (45) this function turns out to be linear in m. We
furthermore find that the slope in x at the maturity t = 1 is not sharper than the one at the beginning in t = 0
in all the figures since, as mentioned in the previous sub-section, the coefficient of the terminal cost ℓ = 1.5
for the exchange rate is not large in comparison with the running cost, and so we find that the central bank
does not try to control too strongly the exchange rate towards the target level neither by using the continuous
control.
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Figure 5: Optimal continuous control at m = −1
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Figure 6: Optimal continuous control at m = 0

6.3 Value functions

In this subsection, we consider the shapes of our value functions. Unlike the previous two sub-sections, the
value functions in the two cases of full and partial information have some differences since they depend on
the function pj(t) for which in equation (28) the parameters Σj

1(t) and Σj
2(t) are different in the two cases.

Figures 8, 10, 12 show the features of the value functions under full information at the times t = 0, 0.5, 0.9
respectively. Figures 9, 11, 13 show instead the features of the value functions under partial information at
the same times t = 0, 0.5, 0.9 respectively. In all the figures, the features of the value functions outside of
the strategic boundaries aj(t,m) and bj(t,m) are, in line with their formulas, linear in x, while between two
boundaries, they have quadratic forms in x.

The slope on the outside of the upper strategic boundary is shaper than that on the outside of the lower strategic
boundary since in our parameter set the proportional cost d for the upper intervention is larger than that for
lower intervention, namely c. Comparing the two value functions at each time t (it might be difficult to see it
from the following figures), the value function under full information is naturally lower than that under partial
information. As time progresses, the values of each value function become gradually smaller at each point.
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Figure 7: Optimal continuous control at m = 1
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Figure 8: Value function at time t = 0 under full infor-
mation

 0  0.5  1  1.5  2  2.5  3  3.5  4 -1
-0.5

 0
 0.5

 1

 0
 2
 4
 6
 8

 10
 12
 14
 16

va
lu

e 
fu

nc
tio

n

log-exchange rate in 0 (x)

a
alpha
beta

b

filtered m

va
lu

e 
fu

nc
tio

n

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18

Figure 9: Value function at time t = 0 under partial
information
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Figure 10: Value function at time t = 0.5 under full
information
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Figure 11: Value function at time t = 0.5 under partial
information
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Figure 12: Value function at time t = 0.9 under full
information
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Figure 13: Value function at time t = 0.9 under partial
information
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6.4 Sample paths

Finally, in this subsection we present sample paths of the log-exchange rate xt, of the strategic boundaries, of the
factor process, namely the drift of xt, and of the optimal continuous control in the two cases of full and partial
information and look at their fluctuations. Figure 14 shows sample paths of the log-exchange rate and of the
four strategic boundaries under full information together with the points where an intervention occurs. Figure
15 shows the same for the partial information case. Figure 16 shows sample paths of the factor process, namely
of the drift mt and of the corresponding filtered process m̂t. Figure 17 shows sample paths of the continuous
controls in both cases.

From Figure 14 we find that, in the case of full information, the fluctuations of the strategic boundaries are
larger than those of the exchange rate due to the values of each volatility. Note that the fluctuations of the
factor process can be seen from Figure 16. On the other hand, in Figure 15, the fluctuations of the strategic
boundaries under partial information are small due to small fluctuations in the filtered values given in Figure 16.
Due to the difference of the controls, the fluctuations of the exchange rate in the two cases are rather different
and also the intervention times are different. From Figure 16, we find that the fluctuations of the filtered process
are smaller than those of the factor process since the filtered value is given as the conditional expectation of
the factor process, so that their fluctuations are reduced. This reduction of fluctuations has an impact on the
fluctuations of the strategic boundaries in Figure 15 and of the continuous controls in Figure 17. In Figure 16
and 17, the fluctuations of the factor process and of the filtered process as well as the shape of the fluctuations
of the continuous controls in the two cases are very different, however their values do not have great differences.
The filtered values and the continuous controls under partial information seem to be the averaged values of the
factor values and the continuous control under full information respectively.
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Figure 14: Sample paths of exchange rate and bound-
aries under full information
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Figure 15: Sample paths of exchange rate and bound-
aries under partial information
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