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Via Trieste 63, 35121 Padova, Italy

(cecilia.prosdocimi@gmail.com, runggal@math.unipd.it).

We consider the problem of computing some basic quantities such
as defaultable bond prices and survival probabilities in a credit risk
model according to the intensity based approach. We let the default
intensities depend on an external factor process that we assume is
not observable. We use stochastic filtering to successively update
its distribution on the basis of the observed default history. On
one hand this allows us to capture aspects of default contagion
(information-induced contagion). On the other hand it allows us
to evaluate the above quantities also in our incomplete information
context. We consider in particular affine credit risk models and
show that in such models the nonlinear filter can be computed via
a recursive procedure. This then leads to an explicit expression
for the filter that depends on a finite number of sufficient statistics
of the observed interarrival times for the defaults provided one
chooses an initial distribution for the factor process that is of the
Gamma type.
Key words: Credit risk, affine models, incomplete information,
pricing of credit derivatives, nonlinear filtering, finite dimensional
filters.

1. Introduction
We consider the problem of evaluating some basic quantities such as

defaultable bond prices and survival probabilities in a credit risky environ-
ment under incomplete information on the underlying model. We use the
reduced-form or intensity-based approach to credit risk with default times
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modeled as the jump times of a doubly stochastic Poisson process. In this
model class default intensities are driven by a common factor process Xt;
this is a convenient way for generating dependence between default events
of different firms. Typically it is assumed that Xt is not directly observable,
and this will also be the main setting here. In that case the distribution
of Xt can be updated on the basis of the observed default history and this
leads to what may be termed as information-induced contagion (see e.g.
[8]).

In the next section 2 we discuss our underlying model and describe
three examples of basic quantities in a credit risky environment (prices of
defaultable bonds with and without recovery and survival probabilities)
that we first evaluate under the assumption of full knowledge also of the
factor process with the main purpose of motivating the filtering problem
that arises in the evaluation of these same quantities when only the defaults
are observable, but not the values of Xt. In section 3 we discuss the filtering
problem and present its general solution. Although in explicit form, this
general solution will in most cases be difficult to compute and so the interest
arises to consider particular classes of models, for which the solution can
actually be computed. One such class corresponds to the case when Xt is
a finite-state Markov chain and this is discussed in [4] in a more general
context. In this paper we shall concentrate on the so-called affine case
and this is the subject of section 4, where we show that the filter can
be computed via a recursive algorithm. The actual computation of this
recursive algorithm is discussed in the last section 5, where we also show
that for a suitable choice of the initial distribution of the factor process the
filter can be computed as an explicit function of a finite number of sufficient
statistics of the observed default interarrival times.

In this paper we assume that the information available to an agent
comes only from observing the default history. More general information
structures can be envisaged such as in the case when agents can observe
also prices of defaultable bonds. This generalization is considered in [4],
but not for the affine case.

2. The model and some basic examples
Consider a market with m firms that may default and denote by τ j the

default time of firm j ∈ {1, · · · ,m}. The default state of the portfolio can be
summarized by the default indicator process

(1) Yt = (Yt,1, · · · ,Yt,m)t≥0 with Yt, j = 1{{τ j≤t}}

Given a filtered probability space (Ω,F ,Gt,P), all processes will be
Gt−adapted and τ j is an Gt−stopping time. Our intensity-based default
model implies that there are no common defaults among the firms, so that
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we may introduce the ordered default times 0 = T0 < T1 < · · · < Tm. One
may then also consider what can be called the default-identity process ξn
that denotes the identity of the firm defaulting at Tn. The default obser-
vation history Ht ⊂ Gt can then be given the following two equivalent
representations

(2) Ht = σ{Ys ; s ≤ t} = σ{(Tn, ξn) ; Tn ≤ t}

The factor process Xt ∈ R may be any Markov process (a specific such
process will be considered below, see (6)). We assume that default times are
conditionally independent, doubly stochastic random times (see [7], Sec-
tion 9.6); the default intensity of firm j at time t is given by λ j(Xt) for some
function λ j : R→ (0,∞). Formally, this means that default times are inde-
pendent given F X

∞ = σ(Xt : t ≥ 0) with conditional survival probabilities
given by

P(τ j > t | F X
∞ ) = exp

(
−

∫ t

0
λ j(Xs)ds

)
.

2.1 The affine case
We shall say that we are in the affine case if Xt satisfies a diffusion

equation

(3) dXt = µ(Xt)dt + σ(Xt)dwt

with

(4)


µ(Xt) = αXt + β

σ2(Xt) = γXt + δ

Furthermore, assuming for sake of generality that also the short rate is
driven by the factor process, i.e. rt = r(Xt),

(5)


λ j(Xt) = λ j Xt , λ j > 0

r(Xt) = r Xt , r > 0

In particular, for the process Xt we shall consider a Cox-Ingersoll-Ross
(CIR)-type model, i.e.

(6) dXt = (a − bXt) dt + σ
√

Xt dwt

with a, b, σ > 0 and a ≥ σ2

2 so that Xt > 0 a.s. which, by (5), will then also
imply that λ j(Xt) > 0, r(Xt) > 0 a.s. For this affine case in what follows
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we shall be able to derive explicit expressions both in the case of full as
well as of partial information. To this effect we recall here the following
proposition, which in its general form can e.g. be found in [6], section 6.2.2
by making the following identifications : t = T − t, λ = β, µ = λ̄, ψ(T − t) =
B(t,T),−aφ(T − t) = A(t,T). The particular case for β = 0 can also be found
in [7], section 9.5.2. The derivation is based on the Kolmogorov equation
for functionals of Markov processes.

Proposition 1. Let Xt satisfy (6) and define

(7) F(t, x) := Et,x

{
e−βXt exp

[
−

∫ T

t
λ̄Xsds

]}
for a generic β ≥ 0 and λ̄ > 0. In the present affine case this function F(t, x)
admits the representation

(8) F(t, x) = exp [A(t,T) − B(t,T)x]

where, for given T, the functions A(·,T),B(·,T) satisfy the following first order
ordinary differential equations in t ∈ [0,T]

(9)


Bt(t,T) = b B(t,T) + 1

2σ
2B2(t,T) − λ̄ , B(T,T) = β

At(t,T) = B(t,T) , A(T,T) = 0

and they have as solutions

(10)


B(t,T) =

β[γ + b + eγ(T−t)(γ − b)] + 2λ̄(eγ(T−t)
− 1)

βσ2(eγ(T−t) − 1) + γ − b + eγ(T−t)(γ + b)

A(t,T) =
2a
σ2 log

 2γe
(T−t)(γ+b)

2

βσ2(eγ(T−t) − 1) + γ − b + eγ(T−t)(γ + b)


with γ :=

√

b2 + 2σ2λ̄.

2.2 Examples
Of the following three examples the first two concern pricing under full

information and so the underlying probability measure P has to be seen as a
pricing (martingale) measure. The third one concerns survival probabilities
and there P represents then the historical/real world probability measure.
The basic quantities in these three examples may be considered as building
blocks for more important credit risky products.
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2.2.1 Example 1. Defaultable zero-coupon bond on firm j with matu-
rity T and zero recovery

Using standard results for pricing defaultable claims in models with
doubly-stochastic default times (see e.g. [7], section 9.4.3) the price at time
t ≤ T of a zero recovery bond on firm j can be expressed as

p j(t,T) = E
(
e−

∫ T
t r(Xs)ds(1 − YT, j) | Gt

)
(11)

= (1 − Yt, j)EXt

(
e−

∫ T
t R j(Xs) ds

)
:= Π j

1(Xt,Yt)

where

(12) R j(Xt) := r(Xt) + λ j(Xt)

It is thus a function Π j
1(Xt,Yt), parametrized by t,T that for simplicity we

drop from the notation, of the current values of the factor and the default
indicator processes.

From the previous section 2.1 it is easily seen that in the affine case the
function Π j

1(Xt,Yt) takes the following exponentially affine form

(13) Π
j
1(Xt,Yt) = (1 − Yt, j) exp

[
α j(t,T) − β j(t,T) x

]
where, for Xt satisfying the CIR model (6), the coefficients in (13) are given
by the formulae in (10) with β j(t,T) given by the expression for B(t,T)
there and α j(t,T) by that for A(t,T). Furthermore, for the present case the
coefficients in the right hand side of (10) have to be chosen as follows (we
may consider t,T as fixed): a, b, σ come from (6), β = 0, λ̄ = λ j + r; γ =
√

b2 + 2σ2λ̄.
2.2.2 Example 2. Recovery payment
Denote by Z j

τ j
1{τ j≤T} the recovery payment at the time τ j of default of

the j−th firm, where Z j
t is an F X

t − adapted process. It is well-known that
the value in t of the recovery payment is given by

(14)
(1 − Yt, j)E

(
e−

∫ τ j
t r(Xs)dsZ j

τ j
1{τ j≤T} | Gt

)
= (1 − Yt, j)EXt

( ∫ T

t Z j
sλ j(Xs)e−

∫ s
t R(Xu) duds

)
:= Π j

2(Xt,Yt) ;

see again [7] for a proof.
From these building blocks the price of many credit derivatives is ob-

tained in a straightforward manner. For instance, the price of a zero-coupon



October 16, 2006 12:40 Proceedings Trim Size: 9in x 6in Ritsumeikan1˙ru

6

bond with recovery is simply given by the sum of the price without re-
covery and the value of the recovery payment, and also spreads of credit
default swaps are easily computed. In the affine case alsoΠ j

2(Xt,Yt) can be
given a more explicit form that is partly of the exponentially affine type.
We do not discuss this in detail here referring the reader to [7], section 9.5.3
or directly to the original paper [3].

2.2.3 Example 3. Survival probabilities
As already mentioned, in this example the underlying probability P is

the historical/real world probability measure. We want in fact to compute
the probability, given our information, that firm j does not default prior to
a given time T. A similar argument as in the derivation of (11) immediately
gives

(15) P
(
τ j > T | Gt

)
= (1 − Yt, j) EXt

{
exp

[
−

∫ T

t
λ j(Xs)ds

]}
:= Π j

3(Xt,Yt)

Notice that the expression of Π j
3(Xt,Yt) is completely analogous to that of

Π
j
1(Xt,Yt) in (11) so that in the affine case it can be given an expression of

the exponentially affine form like Π j
1(Xt,Yt) in (13).

3. Incomplete information (the filtering problem)
In the examples of the previous section we have seen that, under full

information also of the factor process Xt, the values of the basic quantities
of interest can be expresses as an explicit function Π(Xt,Yt) of the current
values of the factor and the default indicator processes. If agents do not
have access to the full information represented by the filtrationGt, but only
to that corresponding toHt, i.e. the information represented by the default
history then, based on iterated conditional expectations, it appears natural
to consider as corresponding values for the basic quantities the following

(16) Πt(Yt) := E
{
Π(Xt,Yt) | Ht

}
where the expectation is under the measure P that is a pricing (martingale)
measure in the case of the first two examples and the historical measure
in the third. For the third example there is no problem with the definition
(16), but in the case of the pricing examples one has to make sure that
(16) leads to arbitrage-free prices. To this effect we can state the following
simple lemma

Lemma 2. Assume the short rate is Ht−adapted, in particular determinis-
tic. Then, taking as numeraire the money-market account Bt := exp

[∫ t

0 rsds
]
,

formula (16) leads to arbitrage-free prices in the sense that B−1
t Πt(Yt) is a

(P,Ht)−martingale.
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Proof : Let s ≤ t; then

E
{
Πt(Yt)
Bt
| Hs

}
= E

{
E
{
Π(Xt,Yt)
Bt

| Ht

}
| Hs

}
= E

{
Π(Xt,Yt)
Bt

| Hs

}
= E

{
E
{
Π(Xt,Yt)
Bt

| Gs

}
| Hs

}
= E

{
Π(Xs,Ys)
Bs

| Hs

}
=
Πs(Ys)
Bs

where we have used the fact that P is a pricing (martingale) measure for
the numeraire Bt in the sense that B−1

t Π(Xt,Yt) is a P−martingale in the
full filtration Gt.

3.1 The filtering problem
We have seen that the problem of computing values of risk-sensitive

products under incomplete information about the factor process amounts
to that of computing conditional expectations as in (16). Since Yt ∈ Ht, in
what follows we shall for simplicity drop the dependence on Yt so that the
right hand side of (16) becomes of the form E

{
f (Xt) | Ht

}
where f (·) is a

generic (bounded) function of the factor process. Denoting by πt(dx) the
conditional distribution of Xt given Ht, (16) leads then to the problem of
computing

(17) πt( f ) := E
{
f (Xt) | Ht

}
=

∫
f (x)πt(dx)

which is a nonlinear filtering problem of a diffusion process, given point
process observations.
3.2 General solution of the filtering problem

Let us first introduce the global default intensity

(18) λ̄(Xt,Yt) :=
m∑

j=1

(1 − Yt, j)λ j(Xt)

which is the sum of the default intensities of the still surviving firms. Note
that, for Tn ≤ t < Tn+1, λ̄(Xt,Yt) is the intensity of Tn+1.

In deriving our filtering results we distinguish the cases between default
times and at a default time.

3.2.1 Filter between defaults
Let Tn be the generic n−th default time and let t ∈ [Tn,Tn+1). It follows

from the general filtering equations (Kushner-Sratonovich equations) for
point process observations by the so-called innovations method (see [5],
[2]) that for πt( f ) as defined in (17) one has

(19) πt( f ) = πTn ( f ) +
∫ t

Tn

[
πs(L f ) − πs(λ̄ f ) + πs(λ̄)πs( f )

]
ds
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where L is the generator that corresponds to the diffusion process Xt.
Furthermore, noticing that for t ∈ [Tn,Tn+1) one has Yt = YTn , whenever
t ∈ [Tn,Tn+1) we shall consider λ̄ as a function of x alone, i.e.

(20) λ̄(x) = λ̄(x,YTn )

with λ̄(x,y) as in (18).

Proposition 3. Assume the conditions for the uniqueness of the solution of (19)
as described e.g. in Appendix 2 of [2] hold. The solution to (19) is then for
t ∈ [Tn,Tn+1) and an integrable (bounded) f given by

(21) πt( f ) =
%t( f )
%t(1)

where %t( f ), the unnormalized conditional expectation of f , can be obtained
as

(22) %t( f ) =
∫
ψt(Tn, x)( f )πTn (dx)

with

(23) ψt(Tn, x)( f ) := ETn,x

{
f (t,Xt) e−

∫ t
Tn
λ̄(Xs)ds

}
and λ̄(Xt) according to (20).

Remark 4. This proposition shows that, between defaults, the filter evolves
deterministically and its evolution is determined by the Markovian semigroup
ψt(Tn, x)( f ) in (23).

Proof : Although the proof can be obtained from that of Proposition 3.4 in
[2], we present here a direct derivation.

By Ito’s formula we have

f (t,Xt) e−
∫ t

Tn
λ̄(Xs)ds

− f (Tn,XTn )

=
∫ t

Tn
e−

∫ s
Tn
λ̄(Xu)du [

(L f )(s,Xs) − λ̄(Xs) f (s,Xs)
]

ds

+
∫ t

Tn
e−

∫ s
Tn
λ̄(Xu)du σ

√
Xs

∂ f
∂x (s,Xs)dws

Assuming the conditions for applying Fubini’s theorem are satisfied, let us
take on the left and right hand sides the expectation conditional on XTn = x
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thus obtaining

ETn,x

{
f (t,Xt)e

−

∫ t
Tn
λ̄(Xs)ds

}
− f (Tn, x)

=
∫ t

Tn
ETn,x

{
e−

∫ s
Tn
λ̄(Xu)du [

(L f )(s,Xs) − λ̄(Xs) f (s,Xs)
]

ds
}

Using the definition of ψt in (23) this last relation can be rewritten as

ψt(Tn, x)( f ) − ψTn (Tn, x)( f ) =
∫ t

Tn

[
ψs(Tn, x) (L f ) − ψs(Tn, x) (λ̄ f )

]
ds

Integrating with respect to πTn (dx), taking into account (22) and applying
once more Fubini, one arrives at

%t( f ) − %Tn ( f ) =
∫ t

Tn

[
%s(L f ) − %s(λ̄ f )

]
ds

From here one obtains then immediately

dπt( f ) = d
(
%t( f )
%t(1)

)
= πt(L f ) dt − πt(λ̄ f ) dt + πt( f )πt(λ̄) dt

from which the result follows by the assumed uniqueness of the solution
of (19).

3.2.2 Filter at a default
Consider now a generic default time Tn. Again from the general filtering

equations of the innovations approach ([5],[2]) one has

(24) πTn ( f ) =
πT−n (λξn f )
πT−n (λξn )

,

where we implicitly use that πT−n (λξn ) > 0 a.s. The expression πT−n ( f )
denotes here the left hand limit of πTn ( f ) in Tn, which exists by (19).

Concluding this section 3.2 one sees that the crucial point to obtain a
solution of the filtering equations is the possibility of explicitly computing
the semigroup ψt in (23) and in the next Section 4 we shall address this
issue in the case of an affine model.

4. Filtering in affine models
As mentioned at the end of the previous section, in this section we shall

derive an explicit representation of the semigroupψt in (23) for affine mod-
els and this will then lead to an explicit solution of the filtering problem.
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Recall that for an affine model we have postulated an affine dynamics for
Xt that we take here as given by the CIR model (6). Furthermore, as in (5),
we shall assume λ j(Xt) = λ jXt, which by (18) and (20) then implies that
also λ̄(Xt,Yt) = λ̄(Yt) · Xt; for the short rate we assume that it is constant,
i.e. r(Xt) ≡ r. Finally, we shall assume f (t, x) to be exponentially affine,
analogously to F(t, x) in (8), namely of the form

(25) f (t, x) = exp
[
α(t,T) − β(t,T)x

]
and its specific form depends on the specific problem at hand (see the
examples in section 2.2). Notice next that with f (t, x) of the form (25) the
semigroup ψt becomes

(26)

ψt(Tn, x)( f ) = ETn,x

{
eα(t,T)−β(t,T)Xt e−λ̄

∫ t
Tn

Xsds
}

= eα(t,T) ETn,x

{
e−β(t,T)Xt e−λ̄

∫ t
Tn

Xs ds
}

where we have simply written λ̄ for λ̄(Yt) since Yt = YTn . The crucial
quantity becomes therefore the second factor in the rightmost expression
in (26). We have now the following proposition, the proof of which follows
immediately from Proposition 1

Proposition 5. Under the assumptions of this section one has

(27) ETn,x

{
e−β(t,T)Xt e−λ̄

∫ t
Tn

Xs ds
}
= exp

[
A(Tn, t; β) − B(Tn, t; β)x

]
|β=β(t,T)

where A(Tn, t; β) and B(Tn, t; β) are given by

(28)


A(Tn, t; β) =

2a
σ2 log

 2γe
(t−Tn )(γ+b)

2

βσ2(eγ(t−Tn) − 1) + γ − b + eγ(t−Tn)(γ + b)


B(Tn, t; β) =

β[γ + b + eγ(t−Tn)(γ − b)] + 2λ̄(eγ(t−Tn)
− 1)

βσ2(eγ(t−Tn) − 1) + γ − b + eγ(t−Tn)(γ + b)

with γ :=
√

b2 + 2σ2λ̄

4.1 Filter between defaults
Combining Propositions 3 and 5 and noticing that the constant 1 can

be expressed as the function f (t, x) in (25) for α(t,T) = β(t,T) = 0, one
immediately obtains
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Proposition 6. The filter πt( f ) is, for t ∈ [Tn,Tn+1), given by

(29) πt( f ) = η(Tn; t,T)

∫
e−B(Tn,t;β(t,T))xπTn (dx)∫

e−B(Tn,t;0)xπTn (dx)

where

(30) η(Tn; t,T) = eα(t,T) exp
[
A(Tn, t; β(t,T)) − A(Tn, t; 0)

]
Remark 7. It follows from (28) that B(Tn, t; β) is, for t ≥ Tn, nonnegative
whenever β ≥ β̄(t) where

(31) β̄(t) = − min
[

2λ̄(eγ(t−Tn)
− 1)

γ + b + eγ(t−Tn)(γ − b)
,
γ − b + eγ(t−Tn)(γ + b)

σ2(eγ(t−Tn) − 1)

]
Thus β̄(t) is strictly positive for t > Tn and it is equal to zero for t = Tn. From
the examples in section 2.2 it follows that the value of β(t,T) to be used for
the parameter β in the numerator of the right hand side in (29) (as well as in
(34) below) is strictly positive, while in the denominator of the same formulae it
is equal to zero. Consequently the corresponding value of B(Tn, t; β) is always
nonnegative. In (34) below we shall also need the derivative of B(Tn, t; β) with
respect to β, evaluated at β = β(Tn+1,T) and at β = 0. Since Tn+1 > Tn and thus
β̄(Tn+1) < 0, not only β = β(Tn+1,T), but also β = 0 are interior points of the
domain of positivity for B(Tn, t; β) and in this domain it is easily seen from (28)
that B(Tn, t; β) is differentiable with respect to β. Recall now also that Xt as given
by (6) for a ≥ σ2

2 has its a-priori support in the positive half line and this implies
that also all conditional distributions πt(dx) have their support in the positive half
line. It follows that the two integrals in the right hand side of (29) are well defined
and finite.

From the above Remark 7 we have that, for all values of interest for β,
B(Tn, t; β) is strictly positive. Given that Xt > 0 anyway, this leads us to
define the moment generating function of the conditional distribution πt(dx)
of Xt by

(32) χt(φ) := πt

(
e−φXt

)
φ > 0

From Proposition 6 one then obtains immediately

Corollary 8. For t ∈ [Tn,Tn+1) and f (t, x) as in (25) we have that the filter value
πt( f ) is given by

(33) πt( f ) = η(Tn; t,T)
χTn (B(Tn, t; β(t,T))
χTn (B(Tn, t; 0))

where η(·) is as in (30), χTn (·) as in (32) and B(Tn, t; β) is given by (28).
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4.2 Filter at a default time
Based on the general formula (24) for the filter at a generic default time

Tn, we can now show the following (since for the case between defaults we
considered the interval [Tn,Tn+1), here we take Tn+1 to denote the generic
default time)

Proposition 9. Assuming the conditions are fulfilled to differentiate under the
integral sign, at the generic default time Tn+1 we have

(34) πTn+1 ( f ) = eα(Tn+1,T)
·

∂
∂β

[
eA(Tn,Tn+1;β)χTn (B(Tn,Tn+1; β))

]
| β=β(Tn+1,T)

∂
∂β

[
eA(Tn,Tn+1;β)χTn (B(Tn,Tn+1; β))

]
| β=0

where A(Tn,Tn+1; β) and B(Tn,Tn+1; β) are given by (28), β(Tn+1,T) corresponds
to the exponentially affine representation of f (t, x) in (25) and χTn (·) is as defined
in (32).

Proof : Starting from (24) for the default time Tn+1 and noticing thatπT−n+1
( f )

is the limit, for t ↑ Tn+1, of the filter πt( f ) when t ∈ [Tn,Tn+1), using
Proposition 3 with f (t, x) as in (25) and with the semigroup ψt(·) as in
(26) combined with Proposition 5, we obtain the following sequence of
equalities, where we use differentiation under the integral sign in two
instances

πTn+1 ( f ) =
πT−n+1

{λξn+1 ·XTn+1 f (Tn+1,XTn+1 )}

πT−n+1
{λξn+1 ·XTn+1 }

=
eα(Tn+1 ,T)

∫
ETn ,x

{
XTn+1 e−β(Tn+1 ,T)·XTn+1 e

−λ̄
∫ Tn+1
Tn

Xu du
}
πTn (dx)∫

ETn ,x

{
XTn+1 e

−λ̄
∫ Tn+1
Tn

Xudu
}

}
πTn (dx)

= eα(Tn+1,T)

∫
∂
∂β ETn ,x

{
eβXTn+1 e

−λ̄
∫ Tn+1
Tn

Xu du
}

}
|β=−β(Tn+1 ,T)

πTn (dx)

∫
∂
∂β ETn ,x

{
eβXTn+1 e

−λ̄
∫ Tn+1
Tn

Xu du
}
|β=0

πTn (dx)

= eα(Tn+1,T)

∫
∂
∂β {exp[A(Tn,Tn+1;β)−B(Tn,Tn+1;β) x]}

|β=β(Tn+1 ,T) πTn (dx)∫
∂
∂β {exp[A(Tn,Tn+1;β)−B(Tn,Tn+1;β) x]}

|β=0 πTn (dx)

= eα(Tn+1,T)
∂
∂β [eA(Tn ,Tn+1;β) χTn (B(Tn,Tn+1;β))]

|β=β(Tn+1 ,T)
∂
∂β [eA(Tn ,Tn+1;β) χTn (B(Tn,Tn+1;β))]

|β=0

Notice that, by the considerations in Remark 7 all the above quantities are
well defined.
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Remark 10. Notice that in the filter update at Tn+1 only the information about
the timing Tn+1 of the (n + 1)−st default is being used and not also that of the
defaulting firm ξn+1; in fact, the factor λξn+1 , which contains this information,
drops out due to the normalization. This happens however only because of our
affine form of the dependence of the default intensity on the factor process and the
fact that the latter is taken to be scalar. In any case, the information about ξn+1 is
not lost as it becomes part of YTn+1 .

From Corollary 8 and Proposition 9 it now follows that the crucial
quantity for computing the filter in the affine case is the moment generating
function χt(φ) in (32), which we need to compute only for the values of
t corresponding to the default times and for any φ > 0. Notice also that
χt(φ) is nothing but the filter πt( f ) for f (t, x) when this latter function
has the exponentially affine form in (25) with α(t,T) = 0 and β(t,T) = φ.
Combining these remarks with the results of Proposition 9 one obtains
immediately

Corollary 11. Under the assumptions of Proposition 9 one has

(35) χTn+1 (φ) =

∂
∂β

[
eA(Tn,Tn+1;β)χTn (B(Tn,Tn+1; β))

]
|β=φ

∂
∂β

[
eA(Tn,Tn+1;β)χTn (B(Tn,Tn+1; β))

]
|β=0

On the basis of the previous results we can now write down an algo-
rithm to compute recursively the filter in the affine case, which we do in
the next subsection.
4.3 Filter algorithm
i) Start at T0 = 0 with a given χ0(φ).

ii) At the generic Tn+1 compute (see Corollary 11)

χTn+1 (φ) =

∂
∂β

[
eA(Tn,Tn+1;β)χTn (B(Tn,Tn+1; β))

]
|β=φ

∂
∂β

[
eA(Tn,Tn+1;β)χTn (B(Tn,Tn+1; β))

]
|β=0

iii) For t ∈ [Tn,Tn+1) and with f (t, x) = exp[α(t,T) − β(t,T)x] the filter is
then given by (see Corollary 8)

πt( f ) = η(Tn; t,T)
χTn (B(Tn, t; β(t,T))
χTn (B(Tn, t; 0))

where η(Tn; t,T) is given in (30) and B(Tn, t; β) in (28).

iv) For t = Tn+1 the filter is (see Proposition 9 and Corollary 11)

πTn+1 ( f ) = eα(Tn+1,T) χTn+1 (β(Tn+1,T))
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Step ii) above is a recursive formula to compute the moment generating
function χTn that then leads to an explicit filter solution according to Steps
iii) and iv). Although recursive in nature, this Step ii) may become increas-
ingly difficult to compute since the analytic expression for χTn (φ) might
become more and more involved with every step. A natural question then
arises to see whether, with a suitable choice of the initial χ0(φ), the recur-
sions remain at a level that allows for feasible computations. This will be
the subject of the next Section 5, where we also show that, although a pri-
ori the filter is not finite-dimensional in the traditional sense, for a suitable
choice of the initial distribution it can be parametrized by a finite number
of sufficient statistics.

Remark 12. We conclude this section by pointing out that our filter results may
have a wider scope than only what we have described here by showing that the filter
can be computed by computing the conditional moment generating function and
that this can be done recursively according to (35). In fact, since this conditional
moment generating function is related to the Laplace transform of the conditional
(filter) distribution, one can, at least in theory, invert this conditional moment
generating function thereby recovering the filter distribution itself. This would
then allow to compute conditional expectations not only of exponentially affine
functions of the factor process but also of any integrable function thereof.

5. Finite dimensional computation of the filter
In this section we exhibit a choice for χ0(φ) that allows Step ii) in the

filter algorithm of the previous subsection 4.3 to remain computable at
every step.

For this purpose recall that the recursions in Step ii) correspond to the
recursive formula (35), where the coefficients A(Tn,Tn+1; β),B(Tn,Tn+1; β)
are given in (28). Introduce the shorthand notations

(36)



Rn+1 = γ + b + eγ(Tn+1−Tn)(γ − b)

Sn+1 = 2 λ̄
(
eγ(Tn+1−Tn)

− 1
)

Un+1 = σ2
(
eγ(Tn+1−Tn)

− 1
)

Vn+1 = γ − b + eγ(Tn+1−Tn)(γ + b)

Wn+1 = 2γ e
(Tn+1−Tn ) (γ+b)

2

that, since γ =
√

b2 + 2 σ2 λ̄, are all positive quantities. The coefficients
A(Tn,Tn+1; β) and B(Tn,Tn+1; β) from (28) can then be given the following
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representation

(37)


A(Tn,Tn+1; β) = 2 a

σ2 log
(

Wn+1
βUn+1+Vn+1

)
B(Tn,Tn+1; β) = βRn+1+Sn+1

βUn+1+Vn+1

Choosing as distribution for the initial value X0 of the factor process a spe-
cific Gamma-type distribution, we shall now prove the following theorem
that gives an explicit computable representation for χt(φ) at the various
default times t = Tn.

Theorem 13. Let

(38) χ0(φ) =
(

1
1 + φ

) 2a
σ2

= (1 + φ)−
2a
σ2 , φ > 0

which according to (32) corresponds to the moment generating function of a
Gamma distribution for X0 with parameters

(
2a
σ2 , 1

)
. Then

(39) χTn (φ) = cn(φHn + Kn)−
2a
σ2 −npn(φ)

where Hn and Kn satisfy the recursions

(40)


Hn = RnHn−1 +UnKn−1 , H0 = 1

Kn = SnHn−1 + VnKn−1 , K0 = 1

the coefficient cn is given by

(41) cn =
[
K
−

2a
σ2 −n

n pn(0)
]−1

and pn(φ) is a polynomial of degree n − 1 given by
(42)

pn(φ) =



1 for n = 0 and n = 1(
−

2a
σ2 − n + 1

)
Hn(φUn + Vn) p̂n(φ)

+Un(φHn + Kn)̂pn(φ) + (φHn + Kn)(φUn + Vn) ∂
∂φ p̂n(φ)

for n ≥ 2

with

(43) p̂n(φ) = (φUn + Vn)n−2pn−1

(
φRn + Sn

φUn + Vn

)
, n ≥ 2
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Proof : The statement is clearly true for n = 0. We show it first for n = 1
and then inductively for all n ≥ 2.

i) the case n = 1 : by (35),(36), (37) and the recursions in (40) we have

(44)

χT1 (φ) =

∂
∂β

( W1
βU1+V1

) 2a
σ2
χT0

(
βR1+S1
βU1+V1

)
|β=φ

∂
∂β

( W1
βU1+V1

) 2a
σ2
χT0

(
βR1+S1
βU1+V1

)
|β=0

=

∂
∂β

( W1
βU1+V1

) 2a
σ2

(
βH1+K1
βU1+V1

)− 2a
σ2


|β=φ

∂
∂β

( W1
βU1+V1

) 2a
σ2

(
βH1+K1
βU1+V1

)− 2a
σ2


|β=0

=
(φH1+K1)

−
2a
σ2 −1

K
−

2a
σ2 −1

1

which indeed corresponds to (39) with (41) and (42).

ii) the general case n ≥ 2 : assume (39) holds for n − 1. Then, always by
(35), (36), (37) and (40) we obtain

(45)

χTn (φ) =
∂
∂β

{(
Wn

βUn+Vn

) 2a
σ2 χTn−1

(
βRn+Sn
βUn+Vn

)}
|β=φ

∂
∂β

{(
Wn

βUn+Vn

) 2a
σ2 χTn−1

(
βRn+Sn
βUn+Vn

)}
|β=0

=

∂
∂β

{(
1

βUn+Vn

) 2a
σ2

(
βHn+Kn
βUn+Vn

)− 2a
σ2 −n+1

pn−1

(
βRn+Sn
βUn+Vn

)}
|β=φ

∂
∂β

{(
1

βUn+Vn

) 2a
σ2

(
βHn+Kn
βUn+Vn

)− 2a
σ2 −n+1

pn−1

(
βRn+Sn
βUn+Vn

)}
|β=0

Taking into account that, by (43),

(46) pn−1

(
βRn + Sn

βUn + Vn

)
= (βUn + Vn)2−np̂n(β)

the numerator in the rightmost expression of (45) becomes
(47)
∂
∂β

{
(βUn + Vn)(βHn + Kn)−

2a
σ2 −n+1p̂n(β)

}
|β=φ

= (βHn + Kn)−
2a
σ2 −n

{
Un(βHn + Kn)̂pn(β)

+
(
−

2a
σ2 − n + 1

)
Hn(βUn + Vn )̂pn(β) + (βUn + Vn)(βHn + Kn) ∂

∂β p̂n(β)
}
|β=φ

= (φHn + Kn)−
2a
σ2 −npn(φ)
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where we have used the definition of pn(φ) in (42). Returning to (45)
and recalling that the denominator in the rightmost expression of
(45) is the same as the numerator except for putting β = 0, one finally
obtains

(48) χTn (φ) =
(φHn + Kn)−

2a
σ2 −npn(φ)

K
−

2a
σ2 −n

n pn(0)
= cn(φHn + Kn)−

2a
σ2 −npn(φ)

Remark 14. It follows from Theorem 13 that, for a choice of the initial distribution
corresponding to χ0(φ) in (38), the sequence χTn (φ) and therefore (see Steps iii)
and iv) in Section 4.3) the entire filter is parameterized by a same finite number
of sufficient statistics, namely the pairs (Hn,Kn) and the polynomial functions
pn(φ), all of which can be computed recursively on the basis of the functions
Rn,Sn,Un,Vn of the interarrival times of the defaults.
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