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Abstract

This paper relates to an approach described in [6] which, for the pricing
of bonds and bond derivatives, is alternative to the classical approach that
involves martingale measures and is based on the solution of a stochastic
control problem, thereby avoiding a change of measure. It turns out that
this approach can be extended to various situations where traditionally a
change of measure is involved via a change of numeraire. In the present
paper we study this extension for the case of Swap measures that are
relevant in the classical approach to the pricing of Swaps and Swaptions.

1 Introduction

In a recent paper [6], a new approach has been proposed for the derivation of
bonds and bond derivatives prices in a diffusion-type multivariate factor model
for the term structure of interest rates which, while yielding the same arbitrage
free prices, is alternative to the classical derivation. It is based on the solution
of a stochastic control problem and its key feature can be described as follows.
In the classical approach a fundamental tool are martingale measures that can
be obtained by a Girsanov-type measure transformation. The latter implies
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a change of drift in the dynamics of the factors which however preserves the
trajectories. Now, the drift of a diffusion-type factor process can also be changed
by a feedback control as it is done in stochastic control. With the latter approach
the trajectories are changed, but the measure remains unchanged.

An immediate implication of this key feature is the novel insight that it
becomes equivalent to compute prices either on the basis of a traditional measure
change or by solving an optimal stochastic control problem. In fact, since the
values that one ultimately observes are the prices, it is irrelevant whether these
values are generated by considering the same trajectories of the factors under
a different measure or by considering different trajectories (which one does not
even observe) under the same measure. What is relevant is that in both ways one
generates the same prices. The major novelty of our approach can thus be seen
in the linking of stochastic optimal control theory with the classical martingale
approach thereby providing an alternative representation of the prices of bonds
and interest rate derivatives under a multifactor term structure. The use of
system theoretic tools also allows for much simpler formulae for computing
bond derivatives prices.

In [6] the approach via a stochastic control interpretation is worked out
in detail for prices and forward prices of bonds and then generalized also to
forward measures in view of the pricing of more general derivative products.
This generalization to forward measures hints at the possibility to extend the
approach also to different situations. One such possible extensions concerns
Swap measures that are relevant in interest rate derivative pricing, in particular
for Swaps and Swaptions. The major purpose of the present paper is now to
work out this latter extension.

In order to describe the approach for Swap measures, it is unavoidable to
summarize the main steps of the approach in [6]. This is done in the first five
sections of the paper, where we also specify the model and the assumptions
and recall some basic facts from arbitrage pricing and stochastic control. Fur-
thermore, in addition to recalling in these five sections the approach in [6], in
subsection 5.1 we also present a control interpretation of expectations under
forward measures, which will then be useful also in the case of Swap measures.
Finally, sections 6 and 7 contain the novel part with respect to [6], namely the
stochastic control interpretation of Swap rates and of expectations under Swap
measures respectively.

2 Arbitrage-free term structure

Let (Ω,F ,Ft, Q) be a given filtered probability space. Consider the l-dimensional
Markovian factor process x(·), evolving under Q, according to the dynamics

dx(t) = f(t, x(t))dt + g(t, x(t))dwt, t ∈ [0, T ], x(0) = 0, (1)

where T > 0, f is an l-dimensional vector function and g is a matrix function
of dimensions l × k, w is a k-dimensional (Q,Ft) Wiener process.
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For the bond prices we consider a notation of the form p(t, T, x(t)), where
t is the time variable, T is the date of maturity and x(t) is the value of the
factor process x(·) at time t. Analogously, the forward rate corresponding to
p(t, T, x) will be denoted by f(t, T, x) := − ∂

∂T ln p(t, T, x) and the short rate by
r(t, x) := f(t, t, x).

We shall make the following

Assumption 2.1 There exists some constant M > 0 such that, uniformly in
t ∈ [0, T ]:

• ||f(t, x)|| ≤ M(1 + ||x||), ||g(t, x)|| ≤ M

• |r(t, x)| ≤ M(1 + ||x||2)

We have the well-known Term Structure Equation (see e.g. [1], [2])

Theorem 2.2 In an arbitrage-free bond market, with the filtered probability
space (Ω,F ,Ft, Q), the function p(t, T, x) is the unique solution (see Remark
2.3 below) of the PDE

∂
∂tp(t, T, x) + f ′(t, x)∇xp(t, T, x) + 1

2 tr(g′(t, x)∇xxp(t, T, x)g(t, x))

−r(t, x)p(t, T, x) = 0

p(T, T, x) = 1

(2)

Remark 2.3 It is possible to prove (see [3], Ch.6, section 4) that, under As-
sumption 2.1, the stochastic differential equation (1) has a unique strong so-
lution and that the solution to (2), if it exists, is unique within the class of
functions satisfying the growth condition |p(t, T, x)| ≤ CeC||x||2 for all t ≤ T
and all x ∈ Rl, where C is a positive constant possibly depending on T .

3 Stochastic control in interest rate derivative
pricing

As mentioned in the Introduction, the traditional pricing techniques are based
on measure changes, where the trajectories of the stochastic processes involved
are preserved, but a modification in their drift term is implicit in the measure
transformation.

Our approach, instead, makes this drift modification for the factor process
explicit, while maintaining the original martingale measure Q. Moreover, we
obtain drift changes by introducing a control process and choosing a suitable
objective function. We shall show that the prices arising from a suitable stochas-
tic control formulation are the same as those calculated by the usual methods.

These control problems are obtained in the following three steps, illustrated
here for the case of bond prices:
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• apply a logarithmic transform to the bond price;

• use the available pricing equations to obtain a PDE for the transformed
price;

• identify an HJB equation, and the corresponding stochastic control prob-
lem, associated to such a PDE.

As a first instance of our argument, in this section we investigate the connec-
tion between bond prices and stochastic optimal control, following the approach
in [4]. Here we assume that the factor process evolves, under the standard mar-
tingale measure Q, according to the general dynamics (1).

Now we put
W (t, T, x) := − ln p(t, T, x) (3)

Remembering (2), we obtain that the function W (t, T, x) in (3) satisfies

∂
∂tW (t, T, x) + f ′(t, x)∇xW (t, T, x)

− 1
2∇xW ′(t, T, x)gg′(t, x)∇xW (t, T, x)

+ 1
2 tr (g′(t, x)∇xxW (t, T, x)g(t, x)) + r(t, x) = 0

W (T, T, x) = 0

(4)

Remark 3.1 As usual, it is easy to check that the bond price p(t, T, x) is a
solution to (2) and, in view of Remark 2.3, it is unique. Notice then that (4)
is the equation satisfied by a one-to-one transformation of p(t, T, x), and thus it
also has a unique solution.

Consider next the following stochastic control problem:
dx(t) = [f(t, x(t)) + g(t, x(t))u(t)] dt + g(t, x(t))dwt

W (t, T, x) = inf
u(·)∈U

EQ
t,x

{∫ T

t

(
1
2
u′(s)u(s) + r(s, x(s))

)
ds

} (5)

where U denotes the class of admissible control laws, namely the control pro-
cesses for which the first equation in (5) has a unique solution in probabil-
ity law and the expected cost, namely J(t, T, x, u(·)) := EQ

t,x

{∫ T

t

(
1
2u′(s)u(s)

+ r(s, x(s))
)
ds

}
, has finite value.

It is possible to prove (see [4]) the following

Proposition 3.2 The bond price p(t, T, x) can be expressed as

p(t, T, x) = exp [−W (t, T, x)] ,

where W (t, T, x) is the optimal value function of the stochastic control problem
(5).
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In the field of stochastic control, we have the following (see [5])
Sufficient Condition for Admissibility: Given a process u(·), suppose that
there exist some constants M and K such that:

• ||u(t, x)|| ≤ M(1 + ||x||) for all (t, x) ∈ [0, T ]× Rl;

• for any bounded B ⊂ Rl and any T0 in (0, T ),

||u(t, x)− u(t, y)|| ≤ K||x− y||

for all x, y ∈ B and 0 ≤ t ≤ T0.

Then u(·) is an admissible control law. Notice that K may depend on B and
T0, while both M and K may depend on u(·).

Thus, a possible choice in order to have admissibility for the optimal control
law in (5) is to make the following

Assumption 3.3 The gradient of W (t, T, x), solution of (4), satisfies a linear
growth condition, i.e.

||∇xW (t, T, x)|| ≤ M(1 + ||x||) for all x ∈ Rl,

for some constant M > 0, uniformly in t ∈ [0, T ].

Remark 3.4 Notice that such a hypothesis is not void: it is satisfied, for ex-
ample, in the case of linear dynamics as discussed in [6].

Remark 3.5 Assumption 3.3 will turn out to be sufficient in order to assure
that the optimal control law of problem (5) is an admissible control law, in the
sense of the Sufficient Condition for Admissibility. However, such a hypoth-
esis is not strictly needed: it can be substituted by another one implying just
admissibility for the optimal control law.

4 Forward prices

Since now we have a complete control interpretation for the bond prices matur-
ing at a given T , we consider the more complex problem of pricing derivatives
on these bonds that have a maturity τ , with t ≤ τ ≤ T . For this purpose,
in this section we first consider computing the expected value at time t of the
T -bond price at time τ . We refer to such a quantity as the forward price of the
T -bond. More precisely, using the forward measure Qτ , the one with p(t, τ, x(t))
as numeraire, we want to calculate

EQτ

t,x {p(τ, T, x(τ))} (6)

Our purpose in this section is to obtain a control description for the forward
price (6). For this purpose we define the process xτ (t), with dynamics

dxτ (t) = [f(t, xτ (t))− gg′(t, xτ (t))∇xW (t, τ, xτ (t))] dt + g(t, xτ (t))dwt,

xτ (0) = 0, (7)
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where the function W (t, τ, x) is the unique solution of the PDE in (4), with
T = τ .

Moreover, let us put

pτ (t, T, x) := EQ
t,x {p(τ, T, xτ (τ))} = EQ

t,x {exp [−W (τ, T, xτ (τ))]} , (8)

where the second equality comes from (3). The Kolmogorov backward equation
associated to (8) is

∂
∂tp

τ (t, T, x) + [f ′(t, x)− (∇xW )′(t, τ, x)gg′(t, x)]∇xpτ (t, T, x)

+ 1
2 tr (g′(t, x)∇xxpτ (t, T, x)g(t, x)) = 0

pτ (τ, T, x) = exp[−W (τ, T, x)]

(9)

Remark 4.1 Differently from what concerns equation (2), Assumption 2.1 is
not sufficient in order to guarantee uniqueness of the solution to (9). However,
since it is sufficient to require ∇xW (t, τ, x) to have at most linear growth in x,
under Assumption 3.3, we indeed have uniqueness.

Putting
W τ (t, T, x) := − ln pτ (t, T, x), (10)

analogously to what has been made in the previous section, the PDE (9) becomes

∂
∂tW

τ (t, T, x) + [f ′(t, x)− (∇xW )′(t, τ, x)gg′(t, x)]∇xW τ (t, T, x)

− 1
2 (∇xW τ )′ (t, T, x)gg′(t, x)∇xW τ (t, T, x)

+ 1
2 tr (g′(t, x)∇xxW τ (t, T, x)g(t, x)) = 0

W τ (τ, T, x) = W (τ, T, x)

(11)

For reasons of admissibility of the optimal control law (13) below, as explained
in Remark 3.5, we make the following

Assumption 4.2 The gradient of W τ (t, T, x), solution of (11), has at most
linear growth, i.e.

||∇xW τ (t, T, x)|| ≤ M(1 + ||x||) for all x ∈ Rl,

for some constant M > 0, uniformly in t ∈ [0, T ].

Since it has a similar structure to (4), also the PDE (11) can be seen as re-
sulting from a HJB equation, namely (dropping the arguments of the functions)

∂
∂tW

τ + infu∈Rk {[f ′ − (∇xW )′gg′ + u′g′]∇xW τ

+ 1
2 tr(g′∇xxW τg) + 1

2u′u
}

= 0,

W τ (τ, T, x) = W (τ, T, x)

(12)
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with the usual solution

u∗(t, x;W τ ) = −g′(t, x)∇xW τ (t, T, x) (13)

Thus, equation (12) is the HJB equation originating from the following
stochastic control problem

dxτ (t) =
[
f(t, xτ (t))− gg′(t, xτ (t))∇xW (t, τ, xτ (t))dt

+g(t, xτ (t))u(t)
]
+ g(t, xτ (t))dwt

W τ (t, T, x) = inf
u(·)∈U

EQ
t,x

{∫ τ

t

1
2
u′(s)u(s)ds + W (τ, T, xτ (τ))

} (14)

The symbol U denotes the class of the admissible control laws, for which the
first equation in (14) has a unique solution in probability law and the expected
cost J(t, τ, x, u(·)) := EQ

t,x

{∫ τ

t
1
2u′(s)u(s)ds + W (τ, T, xτ (τ))

}
has finite value.

Remark 4.3 For the well-poseness of a stochastic control problem, also a con-
dition on the terminal cost is needed. More precisely, we have to require it to
have at most polynomial growth (again, see [5]). Notice that, thanks to As-
sumption 3.3, the stochastic control problem (14) satisfies this requirement. If
we substitute Assumption 3.3 with another one implying just admissibility in (5),
we need to require additionally that W (t, T, x) has at most polynomial growth in
x.

Now we are ready to give the control interpretation promised above for
the forward prices, based on problem (14). Indeed, it is possible to prove the
following (see [6])

Proposition 4.4 For t ≤ τ , it holds

EQτ

t,x {p(τ, T, x(τ))} = pτ (t, T, x) = exp [−W τ (t, T, x)] (15)

5 Forward measures and a general pricing for-
mula

In this section we show the existence of a close connection between the factor
process xτ (·) defined in (7) and the forward measure Qτ , for each τ > 0. More
precisely, for a given expectation taken with respect to the forward measure Qτ ,
we are interested in expressing such an expected value by using the standard
martingale measure Q, by means of a suitable modification to the original factor
process x(·), evolving according to (1). This is specified in the following two
Propositions.

Proposition 5.1 Given τ > 0, let t be a fixed time-instant, with 0 ≤ t ≤ τ , and
let x be a fixed vector in Rl. Let x(s), s ∈ [t, τ ], be the process satisfying (1) with
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x(t) = x, and let xτ (s), s ∈ [t, τ ], be the process satisfying the dynamics in (14)
with xτ (t) = x. Then the random variable x(τ) has the same distribution under
the forward measure Qτ (the one with numeraire p(t, τ, x(t))) as the random
variable xτ (τ) under the standard martingale measure Q (the one with numeraire
B(t)).

This proposition can be proved analogously to Proposition 4.1. in [6].
The following proposition can now be obtained (see always [6]).

Proposition 5.2 Given a date of maturity τ and a τ -claim F (x(τ)), its arbitrage-
free price at time t, with t ≤ τ , is

π(t) = EQ
t,x

{
exp

[
−

∫ τ

t

r(s, x(s))ds

]
· F (x(τ))

}
= p(t, τ, x) · EQτ

t,x {F (x(τ))}

Then, if W (t, τ, x) is the unique solution of (4) with T = τ , we have the follow-
ing representation for π(t):

π(t) = exp [−W (t, τ, x)] · EQ
t,x {F (xτ (τ))}

5.1 Control interpretation for expectations under forward
measures

Proposition 5.1 allows one to obtain a control description for expected values
with respect to forward measures. It will be achieved by introducing a further
control problem, obtained by adding a control term to the dynamics (7), i.e. by
adding a second control term to the original factor process dynamics (1) (indeed,
dynamics (7) originate from problem (5)). The result in this section somehow
generalizes what has been made in Section 4 for forward prices. More precisely,
we have the following: considering expectations under a forward measure, let
Y (x) be a real-valued positive function and define

d(t, τ, x) := EQτ

t,x {Y (x(τ))} (16)

Thanks to Proposition 5.1, we get an alternative representation for d(t, τ, x),
namely

d(t, τ, x) = EQ
t,x {Y (xτ (τ))} (17)

The Kolmogorov backward equation associated to (17) is
∂
∂td(t, τ, x) + [f ′(t, x)− (∇xW )′(t, τ, x)gg′(t, x)]∇xd(t, τ, x)

+ 1
2 tr (g′(t, x)∇xxd(t, τ, x)g(t, x)) = 0

d(τ, τ, x) = Y (x)

(18)

As usual, we apply the logarithmic transform to d(t, τ, x), and so we define

WY (t, τ, x) := − ln d(t, τ, x) (19)
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We have the following PDE for WY (t, τ, x)

∂
∂tW

Y (t, τ, x) + [f ′(t, x)− (∇xW )′(t, τ, x)gg′(t, x)]∇xWY (t, τ, x)

− 1
2 (∇xWY )′(t, τ, x)gg′(t, x)∇xWY (t, τ, x)

+ 1
2 tr

(
g′(t, x)∇xxWY (t, τ, x)g(t, x)

)
= 0

WY (τ, τ, x) = − lnY (x)

(20)

As in the previous sections, also this PDE results from a HJB equation, in
particular the one originating from the stochastic control problem

dxτ (t) =
[
f(t, xτ (t))− gg′(t, xτ (t))∇xW (t, τ, xτ (t))

+g(t, xτ (t))u(t)
]
dt + g(t, xτ (t))dwt

WY (t, τ, x) = inf
u(·)∈U

EQ
t,x

{∫ τ

t

1
2
u′(s)u(s)ds− lnY (xτ (τ))

} (21)

where U denotes the class of the control processes for which the first equa-
tion in (21) has a unique solution in probability law and the expected cost
J(t, τ, x, u(·)) := EQ

t,x

{∫ τ

t
1
2u′(s)u(s)ds− lnY (xτ (τ))

}
has finite value.

Thus
d(t, τ, x) = exp

[
−WY (t, τ, x)

]
,

with WY (t, τ, x) the optimal value function in (21).

Remark 5.3 Notice that we need to assume that Y (x) is regular enough in
order for − lnY (x) to have at most polynomial growth and for ∇xWY (t, τ, x) to
have at most linear growth (for reasons of well-poseness of the stochastic control
problem (21) and admissibility of the resulting optimal control law, see Remarks
3.5 and 4.3).

6 Swap rates

The main purpose of this paper is to apply the previous control approach to
swap measures. We use notations taken from [1] (see also [2]). Given a set of
increasing dates T0, T1, . . . , TN and choosing n ∈ {0, . . . , N − 1}, a fundamental
quantity arising in this context is the so-called swap rate Rn,N (t, x(t)), given by

Rn,N (t, x(t)) :=
p(t, Tn, x(t))− p(t, TN , x(t))

Cn,N (t, x(t))
,

where

Cn,N (t, x(t)) :=
N∑

i=n+1

αi · p(t, Ti, x(t)),
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with αi := Ti − Ti−1. Let Qn,N be the swap measure, namely a probability
measure, equivalent to Q, under which Rn,N (t, x(t)) is a martingale. We thus
have

EQn,N

t,x

{
Rn,N (Tn, x(Tn))

}
=

p(t, Tn, x)− p(t, TN , x)
Cn,N (t, x)

(22)

Remark 6.1 In what follows we shall assume that

p(t, Tn, x) > p(t, TN , x) for all (t, x) ∈ [0, Tn]× Rl

This hypothesis is not restrictive at all, since (remember that p(t, Tn, x) ≥
p(t, TN , x) if r(t, x) ≥ 0) we have p(t, Tn, x) = p(t, TN , x) if and only if r(s, x(s)) =
0 a.e. in [Tn, TN ]. In other words, the above assumption is always satisfied in
the real world.

We are interested in obtaining a control description for (22). First of all, we
prove the following

Lemma 6.2 Let T0, T1, . . . , TN be a set of increasing maturities and let p(t, Ti, x)
be the price of the zero-coupon Ti-bond at time t, for i = 0, 1, . . . , N . Let
k ∈ {0, 1, . . . , N − 1} and let P (t, x) be an arbitrary linear combination of bonds
evaluated at time t for x(t) = x, i.e.

P (t, x) =
N∑

i=k

βi · p(t, Ti, x),

for some βi ∈ R, i = k, . . . , N . Then P (t, x) is the unique solution of the PDE
∂
∂tP (t, x) + f ′(t, x)∇xP (t, x) + 1

2 tr (g′(t, x)∇xxP (t, x)g(t, x))

−r(t, x)P (t, x) = 0

P (Tk, x) =
∑N

i=k βi · p(Tk, Ti, x)

Proof: From Theorem 2.2, each function p(t, Ti, x) satisfies

∂
∂tp(t, Ti, x) + f ′(t, x)∇xp(t, Ti, x) + 1

2 tr (g′(t, x)∇xxp(t, Ti, x)g(t, x))

−r(t, x)p(t, Ti, x) = 0

Since P (t, x) is a linear combination of them, it is solution of the same PDE.
The choice of the boundary condition is obvious, while the uniqueness of the
solution comes from Assumption 2.1.

Using Lemma 6.2, Cn,N (t, x) satisfies (from now on, we shall omit the su-
perscript n, N in all the PDEs)

∂
∂tC(t, x) + f ′(t, x)∇xC(t, x) + 1

2 tr (g′(t, x)∇xxC(t, x)g(t, x))

−r(t, x)C(t, x) = 0

C(Tn, x) =
∑N

i=n+1 αi · p(Tn, Ti, x)

(23)
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Let us put (making explicit the dependence on the instant Tn)

Zn,N (t, Tn, x) := − lnCn,N (t, x) (24)

From (23), Zn,N (t, Tn, x) is the unique (for the same reasons as in Remark
2.3) solution of

∂
∂tZ(t, Tn, x) + f ′(t, x)∇xZ(t, Tn, x)

− 1
2 (∇xZ)′ (t, Tn, x)gg′(t, x)∇xZ(t, Tn, x)

+ 1
2 tr (g′(t, x)∇xxZ(t, Tn, x)g(t, x)) + r(t, x) = 0

Z(Tn, Tn, x) = − ln
∑N

i=n+1 αi · p(Tn, Ti, x)

(25)

It is easy to recognize that this PDE has the same form as (4), except for the
terminal condition. Thus one can carry out the same arguments as in the proof
of Proposition 3.2 (given in [6]), observing that (25) can be seen as originating
from the HJB equation (dropping the arguments of the functions)

∂

∂t
Z + inf

u∈Rk

{
[f ′ + u′g′]∇xZ +

1
2
tr (g′ ∇xxZ g) +

1
2
u′u + r

}
= 0, (26)

whose optimal control is

u∗(t, x;Zn,N ) = −g′(t, x)∇xZn,N (t, Tn, x) (27)

In order to guarantee admissibility for such a control law, in the sense of the
Sufficient Condition for Admissibility in Section 3, we make the following

Assumption 6.3 The gradient of Zn,N (t, Tn, x), solution of (25), satisfies a
linear growth condition, i.e.

||∇xZn,N (t, Tn, x)|| ≤ M(1 + ||x||) for all x ∈ Rl,

for some constant M > 0, uniformly in t ∈ [0, T ].

Such a hypothesis is not too restrictive. Indeed, we have the following

Lemma 6.4 Under Assumption 3.3, and supposing that r(t, x) ≥ 0, Zn,N (t, Tn, x)
has at most quadratic growth.

Proof: Given two dates of maturity T1, T2, with T1 < T2, since the spot
rate is non-negative, we have p(t, T1, x) ≥ p(t, T2, x). Using this fact, we get

p(t, TN , x)
N∑

i=n+1

αi ≤ Cn,N (t, x) =
N∑

i=n+1

αi · p(t, Ti, x) ≤ p(t, Tn+1, x)
N∑

i=n+1

αi

So, remembering (3), we obtain

− ln
N∑

i=n+1

αi + W (t, Tn+1, x) ≤ Zn,N (t, Tn, x) ≤ − ln
N∑

i=n+1

αi + W (t, TN , x)

11



Since Assumption 3.3 implies that W (t, Tn+1, x) and W (t, TN , x) have at most
quadratic growth, the proof is concluded.

The function Zn,N (t, Tn, x) in (24) is now the optimal value function of the
stochastic control problem

dx(t) = [f(t, x(t)) + g(t, x(t))u(t)] dt + g(t, x(t))dwt

Zn,N (t, Tn, x)
= infu(·)∈U EQ

t,x{
∫ Tn

t

(
1
2u′(s)u(s) + r(s, x(s))

)
ds

− ln
∑N

i=n+1 αi · p(Tn, Ti, x(Tn))}

(28)

where U is the class of the admissible control laws, for which the first equa-
tion in (28) has a unique solution in probability law and the expected cost
J(t, Tn, x, u(·)) := EQ

t,x{
∫ Tn

t

(
1
2u′(s)u(s) + r(s, x(s))

)
ds − ln

∑N
i=n+1 αi

· p(Tn, Ti, x(Tn))} has finite value.
Substituting (27) into the dynamics in (28), we obtain

dxn,N (t) =
[
f(t, xn,N (t))− gg′(t, xn,N (t))∇xZn,N (t, Tn, xn,N (t))

]
dt

+g(t, xn,N (t))dwt (29)

In order to give an idea of the significance of the dynamics (29), we compute
the Girsanov kernel Ln,N of the measure transformation from Q to the forward
measure Qn,N . By using (25), we first have

dZ(t, Tn, x) =
∂

∂t
Z(t, Tn, x) dt + f ′(t, x)∇xZ(t, Tn, x) dt (30)

+
1
2
tr (g′(t, x)∇xxZ(t, Tn, x)g(t, x)) dt

+(∇xZ)′(t, Tn, x)g(t, x) dwt

=
[
1
2
(∇xZ)′(t, Tn, x)gg′(t, x)∇xZ(t, Tn, x)− r(t, x)

]
dt

+(∇xZ)′(t, Tn, x)g(t, x) dwt

Thus

dC(t, x) = de−Z(t,Tn,x) = −C(t, x) dZ(t, Tn, x) + (31)
1
2

C(t, x)(∇xZ)′(t, Tn, x)gg′(t, x)∇xZ(t, Tn, x) dt

= −C(t, x)
[
1
2
(∇xZ)′(t, Tn, x)gg′(t, x)∇xZ(t, Tn, x)− r(t, x)

]
dt

−C(t, x)(∇xZ)′(t, Tn, x)g(t, x) dwt

+
1
2

C(t, x)(∇xZ)′(t, Tn, x)gg′(t, x)∇xZ(t, Tn, x) dt

= C(t, x)r(t, x) dt− C(t, x)(∇xZ)′(t, Tn, x)g(t, x) dwt,

12



and so, recalling (see [1]) that Ln,N (t) is given by Ln,N (t) = C(t,x)
B(t) C(0,0) , namely

by the normalized ratio of the numeraires,

dLn,N (t) = d

(
C(t, x)

B(t)C(0, 0)

)
=

dC(t, x)
B(t)C(0, 0)

+
C(t, x)
C(0, 0)

d

(
1

B(t)

)
(32)

=
C(t, x)

B(t)C(0, 0)
r(t, x) dt− C(t, x)

B(t)C(0, 0)
(∇xZ)′(t, Tn, x)g(t, x) dwt

− C(t, x)
B(t)C(0, 0)

r(t, x) dt

= −Ln,N (t)(∇xZ)′(t, Tn, x)g(t, x) dwt

Then the Girsanov kernel is exactly −g′(t, x(t))∇xZn,N (t, Tn, x(t)), i.e. the
minimizer (27). It follows that (29) represents the factor process dynamics
under the forward measure Qn,N . This leads us to claim that the expected
value

EQn,N

t,x

{
Rn,N (Tn, x(Tn))

}
can be computed as an expectation with respect to the standard martingale
measure Q, assuming that the factor process evolves according to (29), instead
of (1), x(·) and xn,N (·) having the same initial condition x and Zn,N (t, Tn, x)
being the solution of (25).

Indeed, defining the quantity

Rn,N (t, x) := EQ
t,x

{
Rn,N (Tn, xn,N (Tn))

}
, (33)

we can prove the following

Proposition 6.5 For t ≤ Tn, it holds

EQn,N

t,x

{
Rn,N (Tn, x(Tn))

}
= Rn,N (t, x) (34)

Proof: From (22), we have to show that

Rn,N (t, x) =
p(t, Tn, x)− p(t, TN , x)

Cn,N (t, x)
(35)

Inspired by the proof of Proposition 4.4 (given in [6]), let M(t, x) := p(t, Tn, x)−
p(t, TN , x). From Lemma 6.2, M(t, x) satisfies

∂
∂tM(t, x) + f ′(t, x)∇xM(t, x) + 1

2 tr (g′(t, x)∇xxM(t, x)g(t, x))

−r(t, x)M(t, x) = 0

M(Tn, x) = p(Tn, Tn, x)− p(Tn, TN , x) = 1− p(Tn, TN , x)
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Defining (notice that, according to Remark 6.1, we may assume M(t, x) > 0)

D(t, x) := − lnM(t, x), (36)

this D(t, x) is the solution of
∂
∂tD(t, x) + f ′(t, x)∇xD(t, x)− 1

2 (∇xD)′ (t, x)gg′(t, x)∇xD(t, x)

+ 1
2 tr (g′(t, x)∇xxD(t, x)g(t, x)) + r(t, x) = 0

D(Tn, x) = − ln (1− p(Tn, TN , x))

(37)

Moreover, the Kolmogorov backward equation associated to Rn,N (t, x) is (we
write only R instead of Rn,N )

∂
∂tR(t, x) + [f ′(t, x)− (∇xZ)′(t, x)gg′(t, x)]∇xR(t, x)

+ 1
2 tr (g′(t, x)∇xxR(t, x)g(t, x)) = 0

R(Tn, x) = 1−p(Tn,TN ,x)PN
i=n+1 αi·p(Tn,Ti,x)

Again, applying a logarithmic transform to Rn,N (t, x) and making explicit the
dependence on the time-instant Tn, we put

WR(t, Tn, x) := − lnRn,N (t, x) (38)

The function WR(t, Tn, x) satisfies

∂
∂tW

R(t, Tn, x) + [f ′(t, x)− (∇xZ)′(t, Tn, x)gg′(t, x)]∇xWR(t, Tn, x)

− 1
2 (∇xWR)′(t, Tn, x)gg′(t, x)∇xWR(t, Tn, x)

+ 1
2 tr

(
g′(t, x)∇xxWR(t, Tn, x)g(t, x)

)
= 0

WR(Tn, Tn, x) = − ln 1−p(Tn,TN ,x)PN
i=n+1 αi·p(Tn,Ti,x)

(39)

In order to prove (35), it suffices to show that

exp
[
−WR(t, Tn, x)

]
=

exp [−D(t, x)]
exp [−Zn,N (t, Tn, x)]

,

i.e. that
WR(t, Tn, x) + Zn,N (t, Tn, x) = D(t, x) (40)

Let
W̃ (t, x) := WR(t, Tn, x) + Zn,N (t, Tn, x)

14



From equations (39) for WR(t, Tn, x) and (25) for Zn,N (t, Tn, x), we have

− ∂

∂t
W̃ = − ∂

∂t
WR − ∂

∂t
Z = f ′∇xWR − (∇xZ)′ gg′∇xWR

−1
2

(
∇xWR)′

gg′∇xWR +
1
2
tr

(
g′∇xxWRg

)
+f ′∇xZ − 1

2
(∇xZ)′ gg′∇xZ +

1
2
tr (g′∇xxZg) + r =

= f ′
[
∇xWR +∇xZ

]
+

1
2
tr

(
g′

[
∇xxWR +∇xxZ

]
g
)

−1
2

[
∇xWR +∇xZ

]′
gg′

[
∇xWR +∇xZ

]
+ r =

= f ′∇xW̃ +
1
2
tr(g′∇xxW̃g)− 1

2
(∇xW̃ )′gg′∇xW̃ + r

The boundary condition is

W̃ (Tn, x) = WR(Tn, Tn, x) + Zn,N (Tn, Tn, x)

= − ln
1− p(Tn, TN , x)∑N

i=n+1 αi · p(Tn, Ti, x)
− ln

N∑
i=n+1

αi · p(Tn, Ti, x)

= − ln (1− p(Tn, TN , x))
= D(Tn, x)

Thus, W̃ (t, x) satisfies the same PDE as D(t, x), namely the PDE in (37), and
has the same terminal value. Since the equation in (37) has unique solution (for
the same reasons as in Remark 2.3) and is satisfied by both W̃ (t, x) and D(t, x),
we get

D(t, x) = W̃ (t, x) = WR(t, Tn, x) + Zn,N (t, Tn, x) for t ≤ Tn

Proposition 6.5 leads to a control interpretation for expectations on swap
rates as in (22). As in Sections 3 and 4, in order to have also for (28) an
admissible control problem we make the following

Assumption 6.6 The gradient of WR(t, Tn, x), solution of (39), has at most
linear growth, i.e.

||∇xWR(t, Tn, x)|| ≤ M(1 + ||x||) for all x ∈ Rl,

for some constant M > 0, uniformly in t ∈ [0, T ].

The PDE in (39) can be seen as resulting from the HJB equation

∂

∂t
WR + inf

u∈Rk
{[f ′ − (∇xZ)′gg′ + u′g′]

∇xWR +
1
2
tr

(
g′∇xxWRg

)
+

1
2
u′u

}
= 0
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Thus, we obtain

EQn,N

t,x

{
Rn,N (Tn, x(Tn))

}
= exp

[
−WR(t, Tn, x)

]
,

where WR(t, Tn, x) is the optimal value function of the stochastic control prob-
lem

dxn,N (t) = [f(t, xn,N (t))− gg′(t, xn,N (t))∇xZn,N (t, Tn, xn,N (t))

+g(t, xn,N (t))u(t)]dt + g(t, xn,N (t))dwt

WR(t, Tn, x)
= infu(·)∈U EQ

t,x

{∫ Tn

t
1
2u′(s)u(s)ds− ln 1−p(Tn,TN ,xn,N (Tn))PN

i=n+1 αi·p(Tn,Ti,xn,N (Tn))

}
with U denoting again the class of the admissible control laws, for which the
first equation in the control problem above has a unique solution in prob-
ability law and the expected cost J(t, Tn, x, u(·)) := EQ

t,x

{∫ Tn

t
1
2u′(s)u(s)ds

− ln 1−p(Tn,TN ,xn,N (Tn))PN
i=n+1 αi·p(Tn,Ti,xn,N (Tn))

}
has finite value.

7 Swap measures and a general pricing formula

Analogously to what has been made in Section 5, it is possible to establish a
connection between the factor process xn,N (·) and the swap measure Qn,N ; more
precisely, such a process is the key element in order to calculate expectations
under Qn,N by using the standard martingale measure Q. Indeed, we have the
following

Proposition 7.1 Let T0, T1, . . . , TN be a set of increasing maturities. Fix a
vector x in Rl, n ∈ {0, 1, . . . , N − 1} and a time-instant t, with 0 ≤ t ≤ Tn. Let
x(s), s ∈ [t, Tn], be the process satisfying (1) with x(t) = x, and let xn,N (s),
s ∈ [t, Tn], be the process satisfying (29) with xn,N (t) = x. Then the random
variable x(Tn) has the same distribution under the swap measure Qn,N (the
one with numeraire Cn,N (t, x(t))) as the random variable xn,N (Tn) under the
standard martingale measure Q (the one with numeraire B(t)).

Proof: The proof is analogous to the one of Proposition 4.1. in [6] and we
outline here its main steps. We recall that (see (32))

dLn,N (s) = −Ln,N (s)(∇xZ)′(s, Tn, x)g(s, x) dws,

i.e. the Girsanov kernel of the measure transformation from Q to Qn,N is

σ(s) = −g′(s, x(s))∇xZn,N (s, Tn, x(s))

Thus, the process wQn,N

s , defined by

dwQn,N

s = dwQ
s + g′(s, x(s))∇xZn,N (s, Tn, x(s))ds, (41)
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is a Wiener process under Qn,N . Consider the factor process x(·), satisfying
(1) under Q. Substituting (41) into (1), we get (29) under Qn,N . Since x(t) =
xn,N (t) = x, the distribution is the same.

We also deduce a pricing equation in the following analog of Proposition 5.2.

Proposition 7.2 Given a date of maturity Tn, a Tn-claim F (x(Tn)), whose
arbitrage-free price at time t, with t ≤ Tn, is

π(t) = EQ
t,x

{
exp

[
−

∫ Tn

t

r(s, x(s))ds

]
· F (x(Tn))

}

= Cn,N (t, x) · EQn,N

t,x

{
F (x(Tn))

Cn,N (Tn, x(Tn))

}
,

this price π(t) admits a representation of the form

π(t) = exp
[
−Zn,N (t, Tn, x)

]
· EQ

t,x

{
F (xn,N (Tn))

Cn,N (Tn, xn,N (Tn))

}
,

where Zn,N (t, Tn, x) is the unique solution of (25).

7.1 Control interpretation for expectations under swap
measures

By proceeding exactly as in subsection 5.1, it is possible to obtain a control
description for expectations with respect to swap measures. Given a positive
function V (x), we put

E(t, Tn, x) := EQn,N

t,x {V (x(Tn))}

and making use of Proposition 7.1, we get

E(t, Tn, x) = EQ
t,x

{
V (xn,N (Tn))

}
(42)

Following the standard procedure, we write the Kolmogorov backward equa-
tion associated to (42), and then put

WV (t, Tn, x) := − ln E(t, Tn, x) (43)

The function WV satisfies

∂
∂tW

V (t, Tn, x)+[
f ′(t, x)− (∇xZn,N )′(t, Tn, x)gg′(t, x)

]
∇xWV (t, Tn, x)

− 1
2 (∇xWV )′(t, Tn, x)gg′(t, x)∇xWV (t, Tn, x)

+ 1
2 tr

(
g′(t, x)∇xxWV (t, Tn, x)g(t, x)

)
= 0

WV (Tn, Tn, x) = − lnV (x)

(44)
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Our control interpretation is given by the fact that WV (t, Tn, x) can be seen
also as the optimal value function of the stochastic control problem

dxn,N (t) = [f(t, xn,N (t))− gg′(t, xn,N (t))∇xZn,N (t, Tn, xn,N (t))

+g(t, xn,N (t))u(t)]dt + g(t, xn,N (t))dwt

WV (t, Tn, x) = inf
u(·)∈U

EQ
t,x

{∫ Tn

t

1
2
u′(s)u(s)ds− lnV

(
xn,N (Tn)

)}(45)

where U denotes the class of the control processes for which the first equa-
tion in (45) has a unique solution in probability law and the expected cost
J(t, Tn, x, u(·)) := EQ

t,x

{∫ Tn

t
1
2u′(s)u(s)ds− lnV

(
xn,N (Tn)

)}
has finite value.

As in subsection 5.1, we need to assume that V (x) is regular enough in order to
have a well-posed stochastic control problem and an admissible optimal control
law, i.e. in order for − lnV (x) to have at most polynomial growth and for the
gradient of WV (t, Tn, x) to have at most linear growth.

Remark 7.3 It is easy to see that the entire argument in Sections 6 and 7
works exactly as for the forward measures. Indeed, in both cases:

• the logarithm of the numeraire is the optimal value function of a stochas-
tic control problem (see (5) for forward measures and (28) for swap mea-
sures);

• the optimal control law u∗(·) coincides with the Girsanov kernel of the
measure transformation from Q to the new martingale measure, when dis-
cussing forward prices and swap rates respectively;

• the optimally controlled factor process is distributed under Q as the original
factor process under the equivalent martingale measure (compare Proposi-
tions 5.1 and 7.1);

• a second control problem (see (21) and (45)), obtained by further con-
trolling the factor process, permits to give a control interpretation to all
expectations.
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