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Abstract

We study numerical solutions to discrete time control peaid under partial observation
when the state of the system is describedEyY, V%) with X signal process;” observation
process and’* controlled process. The control procesaeis required to be adapted with
respect to the observation filtration. The structure of thetil problem is motivated with a
view towards financial applications. In particular we calesithe problem of hedging a future
liability in the context of incomplete information. To copsth difficulties arising from partial
information, stochastic filtering is used and the filter @exis discretized in order to obtain
a feasible numerical solution. This is done by performingiargization of the pair process
filter-observation. Dynamic programming is finally appliedsolve the approximated filtered
control problem. Convergence results are given and nualexpplications are presented and
discussed for the problem of hedging an European put (amidogdlon with unobservable
volatility.

Key words : hedging, partial observation, volatility, filtering, qu&ation numerical method,
dynamic programming.



1 Introduction

This paper concerns numerically feasible approximatiordidcrete time stochastic control prob-
lems under partial observation. Such problems arise rBtimafinancial market models where
some model coefficients (volatility, drift, ...) may depesdstochastic factors that are not observ-
able. They were investigated in numerous papers, mosthy &oheoretical viewpoint. However,
numerical tests are rarely performed due to computatioifiididties, especially when observa-
tions are multiplicative noises and non gaussian, like imhservable stochastic volatility models.

Here we consider a discrete time model where the signal gsakeis a Markov chain,
which may not be observable and takes value in aisebnsisting of a finite number of points
{z',...,2™}. The observation proceds takes values ifR? and is such that the paitX,Y) is
a Markov chain. The control process, denotedahyis adapted with respect to the observation
filtration, andV* is the controlled process.

The structure of our model is motivated with a view towardsifficial applications. Think
for example of the case whet€ is the price of a risky assek is its unobservable volatility or
drift and V' is the wealth process. The investment strategy is represdayta control process,
which gives the number of risky asset shares held in thegiartfDenoting byFY = (]-“,f)k the
filtration generated by the observation procEsshe filter proces$l is given by :

I, :=P[X;, =27} ], keN, i=1,..,m.

By using the filter process, the original control problem empgartial observation is transformed
into an equivalent one under complete observation withwlesestate process given by the filter
II instead of the unobservable signgl and we may apply dynamic programming method, see
e.g. [1].

The numerical difficulty of this procedure concerns therdteproblem dimension because the
number of values taken by the filter is infinite even thoughgitoeessX has only a finite number
of states. More precisely, as the state spa@®nsists of a finite numben of points{z1, ..., z,, },
the filter is characterized by an-vector with componentsl; := P[X,, = z%|F}] and it takes
values in them simplex K,,, of R™. Therefore, in order to numerically solve the problem, the
filter has to be approximated with another process taking arflnite number of values ik, .

A classical approach (see for example [2]) is to discretigedbservation proceds by a process
Y taking a finite numbefV of values and then approximate for edekhe filter IT;, by the filter
of X}, givenYi, ..., Ys. The numerical drawback of this approach is that the numbpossible
values taken by the approximating filter grows exponentiaith the time step; in fact at time
the approximated filter is identified by a random vector tgkNi* possible values.

In this paper, we suggest an alternative approach, whictbéeas recently developed to nu-
merically solve optimal stopping time problems under pdubservations (see [14]). The method
consists in approximating the Markov pair procédsY’) by a procesSf[, Y) taking at each time
stepk a finite number of valued/, that is arbitrarily assigned. This approach relates to tid &f
guantization methods, recently developed in numericabadodity and applied to solve various fi-
nancial problems (see [12], [14], [13], [11]). In particylby using results from [14], it is possible



to make an optimal quantization, which for each time gtepinimizes the quantity :

E[\(Yk,ﬂk) - (Yk,ﬁk)\Q]

called quantization error or distorsion. The implemeptabf this optimal quantization is based on

a stochastic gradient descent method combined with Maare-simulations of the paif1l, Y').
Once the problem has been discretized, we can solve it ncaflgrby using dynamic program-
ming and we prove that whelN;, grows the approximated solution converges towards the real
solution with rate dominated by the quantization error.

Finally we apply the method described above in order to salgeecific financial problem,
which consists in the hedging of a European put (and callipoptSince we are in an incom-
plete market setting, it is not possible to obtain a self fonag and perfect hedging strategy, and
we consider as hedging criterion the expected value of aesofunction applied to the residual
hedging error. In particular we will focus on the case of thedratic criterion (see [6]) and the
shortfall risk criterion (see [5]).

The outline of the paper is as follows. In Section 2, we forteilthe partial observation
discrete-time control problem. In Section 3, stochastteriitg is used to transform the original
control problem into a complete observation one that carnumbed! via the dynamic programming
method. We describe in Section 4 the numerical approximaiip quantization to this control
problem, and we prove some convergence results. The finapgkcation is presented in Section
5 where we study the problem of hedging a European put (afdaglon with unobservable
volatility. Some numerical tests are finally performed arstassed.

Notations
In the sequel, we denote by; thel' norm onR!, by |.| the euclidean norm oR'’ and, for any
random variableX taking values ifR! we denote:

1
X2 == (E[X[*)? and |[X]|: = E|X].

For any measurable functionfrom D C R into R, we define :

(9] sup = sup lg(z)| (1.1)
and
[glLip ==  sup lo(z) — 9wl (1.2)

syeDay 1T — Yl

2 Problem setup

Let us consider a discrete time dynamical system over adwfig, ..., n} with n fixed and with
state at timék (k = 0, ...,n) described by the variabldsy;, Y}, V,%). In particular(X});, repre-
sents the signal process which may not be observabigy, is the observation process afid®),
is the process controlled by a processdapted with respect t(cﬂ-“,f ) the filtration generated by



In a financial setting we can think of the case whErés the price of a risky assek is its
unobservable volatility or drift and is the wealth process. The investment strategy is repre-
sented by a control processrepresenting the number of risky asset shares held in thtoor
and based on the information derived from the prices obtensa

We assume that the procesSky ), is a finite-state Markov chain taking values in the space
E = {z',...,2™}. Its probability transition?;, (from the periodk — 1 to the periodk) and initial
law 1. are defined by :

/’Li — P[XO g wiL 'l — ]., ...7m7
PY = PlX, =o)X =], i=1,..m.

The procesgY},), takes values iR? and is such that the pafiX}, Y},), is a Markov chain and
the conditional law ot} given (X1, Yx_1, X)) admits a (known) bounded density:

v — ge(Xp—1, Y1, Xi, v').

For simplicity, we assume thag is a known deterministic constant, fixed equalgo The control
process is denoted kjwy, ), >0, takes values il C R!, and is supposed to be adapted with respect
to the filtration (7)), generated byY;). We denote byA the set of control processes. The
controlled processV,);. takes values ifR and is governed by a dynamics of the form:

Vitin = H(Vi' g, Yig, Yit), (2.1)

whereH is a measurable function.

We are given a running (measurable) cost functfoan E x R¢ x R x A, and a terminal
(measurable) cost functidnon £ x R? x R. Given an initial valuey, for the controlled process,
an admissible contral € A, the expected cost function is defined by :

n—1
J(wo,0) = E | f(Xp, Vi, Vi ag) + (X, Yo, Vi) (2.2)
k=0
and the goal is to choose a control process in order to mimilthie cost/ up to the time horizon
n:

Jopt(UO) = 014161.?4 J(Oé) (23)

Financial Example

A typical financial example corresponds to the case wherepresents the price of a risky asset
andX isits unobservable volatility. Assume that a risklessaturity bond is available for trading,
yielding constant interest rate= 0 (for simplicity). We consider an economic agent over an
investment time horizon. Attime k& = 0 the agent starts with an initial wealthand then at each
instantk = 1,...,n he rebalances his portfolio holdings by choosing the imaest allocations
in the bond and in the risky asset. Under the assumption Bfisehcing the wealth proceds
satisfies

Vierr = Vi + o [Yieyr — Vi (2.4
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whereay, represents the number of shares of risky asset held in thf®lpmat timek. The process
(a)k=1,...n is supposed to be adapted with respect to the filtration géaby the price process
Y, i.e. the investment strategy is selected only on the bdgiast observations of the security
prices.
Given aloss functiod : R — R, the hedging criterion for a derivative asé¢t’,) of maturity
n, CONSists in minimizing the expected loss :
E|l(h(Yy) — V)

n

over all admissible portfolioa = (ay,)k=0,... n-

In order to prove convergence results, we shall make sorhaitad assumptions :
H1 The setA is compact;

H2 H is continuous, and there exists some positive congfdht;, s.t. for all (v, a,y,y’) and
(0,a,9,9) €ER x A x R% x R%:

‘H(’U, a,y, y/) - H({)7 a, :&a g/)

VS Hlp (lv=0l+ly—gh + 1y —9'h)

H3 Functionsf andh are bounded and Lipschitz;

H4 There exists some positive constdntsuch that foralk =1,...,n:

> p? / gk (@', y, 27,9 — gi(a®, 9,27,y )| dy' < Lgly — 91 Vy,5 € R

i,j=1

Remark 2.1. The hypothesi$i2 is verified by (2.4) in the previous example. Concerning the
hypothesiH4 we will see that it is satisfied for the model analyzed in theeical application
given in the last section.

3 Filtering and dynamic programming

Recalling that the state space(of) consists of a finite number of points and denoting(15y)
the filtration generated by the observation prodéss, the filter is defined as follows:

I, =P[X, =2'|FY] i=1,..,mand k=1,..,n

and is a random vector process, which takes values imtsanplex K, in R™ :

Km:{WZ(Wi)GRm:WiEO and ]77]1:Z7Ti:1}.

i=1



By using Bayes’ formula the filter process can be calculatetdriecursive way as follows (see

[9):

Iy = p
GP.(Yi—1,Ye) g1
|G Py, (Yi—1, Vi) "I |1

I, = Gip(I_1,Ye—1,Ys) = k>1 (3.1)

whereG Py (Yy,_1, Yx) is am x m random matrix given by :
GPk(Yk—bYk)Zy = gk(xyllg—la Yk—laévi)Yk)P]ijv 1< Za] <m,

and is the transpose. One can also show (see e.g. [14]) thatith@haY} ) is a Markov chain
with respect to the fiItratiomJ-“,g”);C and the conditional law);, of Yy, given (I1x_1, Y _1) admits
a density given by :

m
v = a1, Yi1,) = > gr(@’, Yoy, 27,y ) PTG, (3.2)
i,7=1
Relations (3.1)-(3.2) show that, although the probabtlignsition of the Markov chaiflly, Y} )
is not explicitly known, it can be simulated. This point isgortant when one needs Monte-Carlo
simulations of(TTy, Y), see paragraph 4.1.1.
By using the law of iterated conditional expectations, wereavrite the expected cost function
(2.2) as follows:

J(vo,) = E ZE[f(Xk,Yk,Vk“,awv,?]+E[h<Xn,YmVna>|fZ]]

[n—1 m

= EDDY @YV ) Hk+zhx Yo, Vil
Lk=0 i=1

[n—1

= E | (I, Vi, Vi an) + h(I,, Yo, Vi)
Lk=0

where

m

fryva) = [ fapvandn =Y e poar
=1

h(m,y,v) = /h(m,y,v)w(dx) = Zh(mi,y,fu)wi

=1
The original problem (2.3) can now be formulated as a prohlewher full observation with
state variableslly, Yy, Vi) :

n—1
Jopt(v0) = mf E [Z (g, Y, V& o) + ﬁ(Hn,Yn,Vrf‘) . (3.3)
k=
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Actually, recalling (2.1) and following the Dynamic Programing Algorithm (see e.g. [3]), for
solving the filtered problem (3.3), we define the sequenceruftions :

un(ﬂ-> Y, U) = h(ﬂ-v Y, U)

(DP) uk’(ﬂ->y>v) = ;Iel,fé; {f(w,y,v,a)

FE [ (Mo, Vi, H(v, 0., Vi) (I, Vi) = ()] }
k=0,...,n—1.

The following result shows that this backward proceduregihe solution fok = 0 to the original
problem (2.3).

Proposition 3.1. AssumeH1, H2, and H3. Then the algorithm (DP) provides the solution of
problem (2.3), i.e.:

uo (1, Yo,v0) = Jopt(v0).

Proof. See Appendix A.

4 Approximation by quantization and error analysis

4.1 The numerical approximation method

From a numerical viewpoint the formula given by th@ P) algorithm is still untractable since
the state variableZ; := (IIj, Y, V%) takes values in a continuous state space. In order to obtain
a numerical solution, the basic idea is to approximate at éate stepk the continuous state
variable Z¢ by a discrete state variablg taking a finite number of values. The main concern is
how to discretize in an efficient and feasible way the vaaall* that depend on the contral?

We deal separately with the approximation of the pair filteservationi? := (I1,Y") that
does not depend on the control, and the approximation ofdh&aled state variabl®&“. The
approximation of(IT, Y") is obtained following an optimal quantization method aslid][ The
approximation o’ is obtained by a classical uniform space discretizatiorilairto the Markov
chain method as in [8].

4.1.1 Optimal quantization of the pair filter-observation

In a first step, we discretize for eaéhthe pair(Il;, Y;,) by approximating it by(II;, Y;,) taking

a finite number of values. The space discretization (or geetitin) of the random vectdi,, =
(II, Y},) valued inkK,, x R? is constructed as follows. At initial timé = 0, recall thatlV is

a known deterministic vector equal t@y = (u,yo), SO we start from the grid with one point in
K x R?:

FO - {’wo = (lu‘vyO)} .
Attime k£ > 1, we are given a grid'y, of Vi points inkK,,, x R -
e {w}ﬁ:(ﬂ-k(l)’y%)”w/]f\h :(Wk(Nk)vyl]ch)}v
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and we approximate the pait, = (II;,Y}) by W;, = (II,Y},) valued inI', and defined as the
closest neighbour projection :

N
Wi = Prop, (Wy) = > wile,m,) (Wi,
i=1
where the so-called Voronoi tesselatiafigT';), . . ., Ci, (I';) are Borel partitions of(,,, x R?

satisfying :

Ci(I'y) C {wEKm xR :|jw—wi| = IlninN \w—wi\}, i=1,..., N
J=L NE
The L2-error induced by this projection, calldd-quantization error, is equal at timdo : ||}, —
Wi|l,. As a function of the grid’;, identified with theNy-tuple (w}, . .. ,w,]fk) in K,, x R?, the
square of thd.2-quantization error, called distorsion, is written as :
Wi, : . 4

DNHTY) = Wi —Projy, (Wi} = E[ _min [Wi—wif|. (@)
Notice, by definition of the closest neighbour projectioattthe L2-quantization error is the min-
imum of theL2-error||W}, — U||, among all random variablds taking values in the grid'y,.

In a second step, we approximate the probability transtfithe Markov chair{i¥) by the
following probability transition matrix :

P[Wk € Cj(Fk),Wk_l € Ci(rk—l)]

f,ij =P [Wk = ’wi‘ Wk—l = wz_l] =
P[Wk—1 € Ci(Fk—l)]
forallk=1,....,n,i=1,...,Ng_1,j=1,..., Ng.

The gridsI';, are optimally chosen so as to minimize at each tintbe distorsionD]V\‘,/: (Tk).

This relies on the property that the distorsion is diffelanie, with a gradient obtained by formal
differentiation in (4.1) :

VDYFIy) = 2 (E[(U}i - Wk)lwkeci(rk)D (4.2)

1<i<N;

The optimal grids and the associated probability transitizatrix are then processed and esti-
mated by a stochastic gradient descent method, known icohigxt as the Kohonen Algorithm,
and based on the integral representation (with respectetprbbability law ofiVy) (4.2). This

is achieved by Monte-Carlo simulations of the Markov ch@ifi,), = (Ilx, Yy ), through the
following simulation procedure : starting frofiil;_1, Y1),

e simulateY}, according to the density given in (3.2)
e computell;, by the formula (3.1).

We refer to [14] for the details and the practical implemgateof the optimal grids.



4.1.2 Space discretization of the controlled variable
We fix a bounded uniform grid on the state sp&cr the controlled procesg“. Namely, we set
'V .= (2v)ZN[-R,R],

wherev is the spatial step an& is the grid size. We denote by Pyoj the projection on the grid
I'V according to the closest neighbor rule. Recalling the dyesui.1) of the controlled process,
we approximate it as follows : given a contrele A, we discretize(f/,f“);‘C by the controlled
process valued iit¥', and evolving according to the dynamics :

Vko_ti_l = Pl'ijv(H(Vka,Oék,Yk,Y]H_l)). (43)

HereY}, is the quantization oF}, obtained in the previous paragraph.

4.1.3 Approximation of the control problem

We approximate the sequence of functi¢ng) by the sequence of functiah, defined o, xT'",
k=0,...,n, by adynamic programming type formula :
in(m,y,0) = h(m,y,v)

uk(ﬂ-7y>v) = ;gg {f(w,y,v,a)

+ E[@k+1(ﬂk+laYk+la PrOjFV(H(UaaayaYk—H)))|(ﬁkaYk) = (W,y)]}

From an algorithmic viewpoint, this is computed explicitlg follows :

dn(wh,v) = h(wh,v), wl=(m(i),y,) ETni=1,...,N,, velV
ﬁk(wf;,v) = inf {f(wf;,v,a) (4.4)
acA
Nii1

£ 3 Al (@, Proey (H (v, 4,9k, v, ) |
j=1
wh = (mp(i),ys) €Tgyi=1,..., Ny, ve TV,
o)

Forvg € TV, the solution/,, (vo) = uo (i, Yo, vo) to our control problem is then approximated by

Jquant(UO) - ﬁO(N@ZQOa”O)-
Moreover, this backward dynamic programming scheme allesvd compute at each stép=
0,...,n — 1, an approximate optimal contrél (w,v), w = (m,y) € I'x, v € T'V, by taking the
infimum in (4.4).

4.2 Error analysis and rate of convergence

We state an error estimation between the optimal cost fomcti,; and the approximated cost
function Jyyant, in terms of :

« the quantization errord;, = ||}, — Wj||, for the pairiV;, = (I, Y;), k= 0,...,n

o the spatial step and the grid sizez for V*, k =0, ..., n.



Theorem 4.1. UnderH1, H2, H3 andH4, we have for allyy € T'V :

n k

Jopt(v0) — jquam(vo)‘ < amd S v(v+ % + Aks), (4.5)
k=0 j=0

whereCy(n) = vm + d+ 1|2 (nLyf + M + 3L,h) (jLL_)l + F4 ], = max([f]sup, [f]Lip),
h = max([h]sup, [P]Lip), Ly = max(Ly,1), M = max([H]L;p, 1), C is the maximum value of
HoverTV x A x ULy, x Ugl'y, and ¥ = (2d + 1)[H] Lip-

Proof. See Appendix B.

Convergence of the approximation

As a consequence of Zador’s theorem (see [7]), which giveashimptotic behavior of the optimal
guantization error, when the number of grid points goes finitgr, we can derive the following
estimation on the optimal quantization error for the paiefibbservation (see [14]) :

27 ~
limsup ;" min  ||[Wy, — W3 < Ci(m,d),

whereCy.(m, d) is a constant depending on, d and the marginal density d&f;. Therefore, the
estimation (4.5) provides a rate of convergence for theamration of.J,,, of order

1 1
n?w"Cy(n) <1/ +=+ 71),
R Nwira

when N, = N is the number of points at each giiigl used for the optimal quantization &F}
= (I, Y), k = 1,...,n. We then get the convergence of the approximated cost ﬁmﬁfgham
to the optimal cost functiow/,,; whenv goes to zero, andV, R go to infinity. Moreover, by
extending the approximate contej, k = 0, ..., n—1, to the continuous state spakg, x R% xR

by :
dy(m,y,v) = d(Proj, (m,y),Projv (v)), V (my,v) € Kpn x R? xR,

and by setting (by abuse of notationy; = duy (I, Y, V,f), we get an approximate contr@l=
(ag)k in A, which ise-optimal for the original control problem (see [15]) in thense that for all
e>0:

J(vo, &) < Jopt(vo) + &,

wheneverN, R are large enough, andis small enough.

5 Financial application : European option hedging in a partially ob-
served stochastic volatility model

In this section we apply the methodologies described aboweder to study the problem of hedg-
ing an European put (or call) option in the context of incoatelinformation on the underlying
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price evolution model. Since we are in an incomplete margtirg), the perfect replication of the
claim is not possible and as hedging criterion we choosexpeated value of a convex loss func-
tion applied to the hedging error. In particular we will ciules the case of the quadratic criterion
and that of the shortfall risk criterion.

5.1 The model

We consider a stochastic volatility model where for simplieve have only one risky asset with
observable pricéS;) whose dynamics is given by :

1
Sky1 = Skexp |:<7“ - §X/3> 0+ Xk\/gek+1:|, k=1,...n
SO = Sp > 0

where(¢)r is @ Gaussian white noise sequendg, is the unobservable volatility process—=
1/n represents the discretization time step over the intééval, andr is the riskless interest rate
per unit of time.

We denote bys? the riskless asset price with dynamics :

0 _ o0 76
Sk+1_5ke .

Notice that the conditional law &1 given (X, Si) has a density given by:

1 Ins —InS, — (r — 1x2)5)?
g(Xk7Sk’S,) = 7exp [_ ( 07 . . 2(; . k) ) bl 3, > 07
3’1/2715X,3 2Xk

and notice that, as the first derivative @fwith respect tos’ is bounded, the hypothesid4 is
satisfied.

The volatility (X},) is described by a Markov chain taking three possible vatties 2™ < z"
in (0, 00). Its probability transition matrix is given by :

1 — (Pom + Pon)d Dm0 Poid
P, = Pmb0 1 — (Pmb + Pmn)o Pmh0 : (5.1)
DPhp0 Dhm? 1 — (phb + Phm)d

The volatility (X} ) is a Markov-chain approximation a la Kushner (see [8]) of ameeverting
process :

dXt = )\(l’o — Xt)dt + 77th

Denoting byA > 0 the spatial step, this corresponds to a probability tremmsinatrix of the form
(5.1) with :

m

2 = zo— A, 2™ = z9, 2" = g+ A,

11



and

pbm:/\+m, pon =0
n? 7’
Pmb = 2A2; Pmh 2A2
n?
Py = 0, Phm = /\+W’

with the condition that — A — 2%, > 0 and1 — %5 > 0,
In order to hedge the European put option with striikewe invest an initial capitad, in the
risky asset following a self financing strategy. Recall thatwealth process is given by:

Ve, =Vl + [5k+1 - Skeré] (5.2)

whereqy, represents the number of shares of asédield in the portfolio at tim&:. Observe that
(5.2) verifies the hypothests2 and recall that the control proce&s;,) is adapted with respect to
the filtration (7-',f ) generated by the observation process.

In what follows we will work with the log-price instead of tipeice and we seY}, = In S.

5.2 Hedging of an European put option: quadratic criterion

Using a quadratic loss criterion (see [6]), an optimal sggtis a solution to the optimization
problem :

inf B {((K — ey, - v,g)z] (5.3)

whereA is the control space.

Since the proces§X});—1.... » IS unobservable, the optimization problem described aimve
a control problem under partial information and can thustbdisd by using stochastic filtering
and approximation techniques as shown in the previousosectiAn approximated solution is in
particular obtained from the following steps:

1. Quantization. Denoting byl the filter process, we discretize the péif, Y;) by per-
forming an optimal quantization as explained in paragrafhl4 This procedure provides, for all
instantsk:

1. A Ng-point gridT';, which is a discretization of the state spacdldf,, Yy ). This discretiza-
tion is optimal in the sense specified in [12].

2. Amatrix {#{,i = 1,...,Ny_1,j = 1,..., Ny}, which approximates the probability tran-
sition of the Markov chairfIl, Y%).

The controlled one dimensional procé$5®) is discretized using a regula¥" -point grid of R
given by:
v = (2v)Z N [me, Vsup]

12



wherev is some discretization space step afg; andVs,, are the bounds of the grid size.
2. Dynamic Programming. Once the problem has been discretized, we use the dynamic
programming algorithm to calculate an approximated sofuti

o iyN\2 ; N

i) = (0 (K — %)) Vauh, = (ma(i), ) € Ty Vo €TV
Nig1 )

i i — inf NV J Proj ré yiH RV )

p(wr,v) = ;gAZrkHukH w1, Projov (ve’® + a(e e¥re’))
j=1

vwllv = (Trk(l)vy}g) €ly, Vo Grvv k=0,..,n—1

Numerical tests are performed by using the following patamealues :

Price at time) : Sy = 110;

Strike of the European put optiod’ = 110;

Riskless interest rate over the interf@l1] : » = 0.05;

Volatility : 2o = 0,15, A = 0,05, A= 0,1, 7 =0, 1.

Quantization ofI1, Y') : grids have same siz&¥ for each time period with step= % and they
are obtained by usint?® iterations of the procedure described in [14];

Discretization ofi’® : we use aVv" -point grid defined by = (2v)Z N [V, Vsup] Wherev,
Viny andVs,,, determined by performing some preliminary tests, arergise

35
o(NV — 1)’

UV =

‘/inf = —10, VSup = 15;

Approximation of the optimal control : golden search metfgek [10]) ondA = [—1, 1]

When not specified the number of time steps is 5

In order to study the effects of the quantization grid s\zand uniform grid sizeéV" we plot
the graph ofiy — inf,ea E((K — e¥n), — V,%)?) for different values ofV and NV (Figures 1
and 3).

As expected, the global shape of the graph is parabolic,athetquadratic hedging criterion
that we have used. The minimum is reached,gt, which can be considered as the "quadratic
hedging price" of our European put option.

Corresponding hedging strategies at titne- 0 are given in Tables 1 and 2, and Figure 2
displays the graph af( as a function of the initial wealthj. We can observe that the strategy is
nearly constant foiy € [2,4], where the non constant values may be due to numerical imprec
sion. This result can be explaineby observing that in our example the discounted price psces

'For more details concerning the quadratic hedging in theingmie case see [5].
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Sk = Spe "8 |k =0...,n,is amartingale and by applying the Kunita Watanabe decsitipo
to the discounted option payaff = ¢"(K — e¥),, we get:

F=E[F]+) afAS, + R], (5.4)
k=1

whereAS), := S;41 — S, of is an admissible control process, aRf is a martingale orthogonal
to Sy, i.e. E[RF AS] =0,k = 0,...,n. Recalling the dynamics (5.2) of the wealtlf', we can
write again the objective function as :

2 n .
EK(K V), vg) } _ e2fE[(F -y akASk)i]. (5.5)
k=0
By combining (5.4) and (5.5) and by exploiting the orthodipdetweenR” and.S we obtain

(zn:(ag —ak)AS'k)2 +E[(R)?] }

E[((K—eynn—vnaﬂ - 62’”{<E[F]—v0)2+E

which shows that the optimal control is alway¥* = ! regardless of.

In Figure 4 and in the Table 3, we compare the European pubroptice under partial and
complete observation when we increase the number of oligersdi.e. the time step decreases
to zero). Denoting byVr y the number of grid points used in the partial observatior ¢tasnake
an optimal quantization of the paifl, Y'), by (N y) the number of grid points used in the total
observation case to make an optimal quantization of the(pait”), and byR = Vi, — Vi, the
grid size in the discretization of the controlled variabi&, we recall that the discretization error

is of order X
_ -1 1
Nd+7nfl -
(i 2ve3)

for the partial observation case. For the total observatase we have:

L +v+ l
NX7y R
whereNx y = mNy (see [14]). So, in order to obtain comparable results, gikieruniform grid

discretizing the variabl® ®, we perform an optimal quantization @fl,Y") and(X,Y") by using
grid sizesNy y andNx y = mNy such that :

1
~ d+m—1
Ny ~ N7

whered = 1 andm = 3. That is why we have chose¥; y = 1500 andNx y = 45.

We notice that when the number of observations increasej(i-e 0), the partial observation
price converges to the complete observation price; thisuestd the fact that with observation
performed in continuous time we are able to calculate thatiVity given by the quadratic variation
of the price procesg").
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Figure 5 shows that by working in a total observation settirgquadratic risk associated to a
given initial wealth is smaller than the corresponding eadbtained in the partial observation case.
This is consistent with the fact that the filtration geneddtg the observation price is included in
the full information filtration, and consequently the capending optimal cost function in the
partial information case is larger than the one in the futhimation case.

5.3 Hedging of an European put option: shortfall risk criterion

Using the shortfall risk criterion (see [5]), an optimalaségy is a solution to the optimization
problem :

inf E [((K — ), - vna)J (5.6)

whereA is the control space.
The Figure 6 and the Table 4 are obtained by applying the gdroeedescribed in the previous
section with
Ving = =15 and Vsup = 25

The Figure 6 shows the graph Bf — inf,e4 E((K — e¥") — V#),) in the partial and in
the total observation case. Notice that, as expected, twfahrisk given byinf,c4 E((K —
e¥n), — V&),) decreases with the initial capital and becomes zero forcaqupately the same
value ofVj in the partial and total observation case. Notice also thagitolerate a little risk we
can considerably reduce the requested initial capital.

Moreover, as in the quadratic hedging, for a given initidlied/, the shortfall risk obtained in
a partial observation setting is greater than the corrafipgrone in a context of total observation.

In Table 4 we compare the initial capital required to minieniae quadratic risk and the short-
fall risk associated with our European put option. As expeédhe initial capital necessary to
minimize the quadratic risk is bounded by the correspondimg in the shortfall risk case, which
is actually the super-hedging price.

Finally, Figure 7 displays the quadratic and shortfall fmkvarious values of the initial capital.

5.4 Hedging of an European call option

Quadratic Hedging: an optimal strategy is a solution to the optimization proble

2
: Yo R e
inf E [((e K), ~ Vs ] (5.7)
whereA is the control space. The procedure described in the prewection has been applied by
taking:
Ving = —20 and Vsup = 30
Figure 8 shows the graph &f — inf,ca E((e'" — K), — V.%)?) i.e. the quadratic risk
as a function of the initial capitdly. Notice that as expected the global shape of the graph is

parabolic; the initial capital corresponding to the minimgan be interpreted as the "quadratic
hedging price" of the European call option. Notice also #min the European put case, for a
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given initial wealth, the corresponding quadratic riskhig partial observation case is greater than
in the total observation case.

Figure 9 displays the graph of the optimal strategy at time 0 as a function of the initial
capital. As in the put case the optimal strategy is nearlystzont.

Finally, in Table 5 we compare the initial capital requestedninimize the quadratic risk
("quadratic hedging price") with the call price obtainedusing the put-call parity relation and
the "quadratic-hedging"” put price calculated in the presisection. We can observe that the two
prices are very close thus justifying further the expressguadratic hedging price".

Shortfall risk criterion: an optimal strategy is a solution to the optimization prabte

: Yo R e
inf E [((e K), - Vg )J (5.8)
whereA is the control space.
Figure 10 and Table 6 are obtained by applying the procedeserilbed in the previous sec-
tions with
Ving = =25 and Vsup = 35

In Figure 10 we observe that, as expected, the shortfalldéskeases with the initial capital and
becomes zero for approximatively the same initial valyéor the total and the partial observation
case. We also notice that if we tolerate a little risk, we aamsiderably reduce the requested initial
capital. Moreover the shortfall risk associated to a givatial value V; is greater in the partial
observation case with respect to the total observation case

In Table 6, we compare the initial capital requested to miménthe quadratic risk and the
shortfall risk associated to our European call option. Aseexed the initial capital necessary to
minimize the quadratic risk is bounded by the correspondimg in the shortfall risk case, which
is actually the super-hedging price.

N | European put price Optimal control strategyyg
300 3.04132 -0.2813
600 3.05965 -0.2813
1500 3.07098 -0.2813

Table 1: Quadratic hedging of an European put: European put price (defined as the initial
capital minimizing the risk) and optimal control strategtaulated for different quantization grid
sizes (V = 300, 600, 1500) and a fixed uniform grid sizeN"" = 400)
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Figure 1:Quadratic hedging of an European put: graph ofly — infoec 4 E((K —e¥n), —V,%)?)
for different quantification grid sizes\( = 300, 600, 1500) and a fixed uniform grid sizeN" =
400)

NV | European put price Optimal control strategyk
50 2.97501 -0.2813
100 3.04132 -0.2813
300 3.04132 -0.2813
400 3.04132 -0.2813

Table 2: Quadratic hedging of an European put: European put price (defined as the initial
capital minimizing the risk) and optimal control strategglaulated for different fixed uniform
grid sizes (V¥ = 50, 100, 200, 400) and a fixed quantization grid siz&/(= 300)
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Strategy

3 35
Initial capital

Figure 2:Quadratic hedging of an European put: graph ofly — a(V}) for a quantization grid
size of N = 300 and a fixed uniform grid size a¥"" = 400

Time step| Partial observation Partial observatiorn) Total observation Total observation
0 price strategy price strategy
1\5 2.9933 —0.2813 3.24459 —0.2734
1\10 3.5255 —0.3013 3.65515 —0.2422
1\20 3.9501 —0.3215 4.02799 —0.3614

Table 3: Quadratic hedging of an European put: comparison between partial and total ob-
servation price (defined as the initial capital minimizitg tquadratic risk) and strategies when
we increase the number of observations and consequenttintbestepd goes to0.Size grid for
V@ = 30 points, size grid fofe¥", IT) = 1500 points, size grid fofe", X) = 45 points

Case Quadratic hedging Shortfall hedging| Quadratic hedging Shortfall hedging
Umin Umin strategy strategy
Total Observation 3,5750 ~ 16 —0.2656 —0.98995
Partial Observation 3.07098 ~ 17.8 —0.2813 —0.99187

Table 4:European put option: comparison between quadratic hedgingnd shortfall hedging.
Umin 1S the initial capital requested to minimize the correspogdisk. Size grid forl’* = 100
points, size grid foke¥’, IT) = 1500 points, size grid fokeY’, X) = 45 points
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Figure 3:Quadratic hedging of an European put:graph ofly — infoc 4 E((K —e¥), —V%)?)
for different fixed uniform grid sizesN"" = 50, 100, 200, 400) and a fixed quantization grid size
(N = 300)

Case Call price by Call price by | Difference
quadratic hedging call-put parity
Total Observation 8.74596 8.91377 0.1678
Partial Observatior 8.55202 8.38009 0.1719

Table 5: European call option: comparison between quadratic hedgig and put-call parity.
Size grid forV® = 100 points, size grid fore¥, IT) = 300 points, size grid fofe’, X) = 45
points

Case Quadratic hedging Shortfall hedging| Quadratic hedging Shortfall hedging
Umin Umin strategy strategy
Total Observation 8.74596 ~ 23.5 0.6973 0.6972
Partial Observation 8.55202 ~ 24 0.6625 0.6250

Table 6:European call option: comparison between quadratic hedgig and shortfall hedging.
Umin IS the initial capital requested to minimize the correspogdisk. Size grid forl’* = 100
points, size grid foke¥, IT) = 1500 points, size grid fofeY’, X) = 45 points
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Figure 4: Quadratic hedging of an European put: distance between total and partial observa-
tion European put prices (defined as the initial capital mining the risk) when we increase the
number of observations (axis of abscissae) and consegubettime step) goes to0. Size grid

for Vo = 30 points, size grid fofe¥", II) = 1500 points, size grid fofe’, X) = 45 points
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Quadratic risk

Total observation
Partial observation

25 3 35 4 45 5 55 6
Initial capital

Figure 5:Quadratic hedging of an European put graph ofVjy +— inf,e 4 E((K —e¥*)y —V;,)?)
in the partial and total observation case. Size grid fer Y00 points, size grid fofe¥”, IT) = 1500
points, size grid foke¥’, X) = 45 points.

1.5 T
Partial Observation
Total Observation
1 - .
4
1]
x
=
5]
<
0
0.5 B
0 Il Il Il
2 4 6 8 10 12 14

Initial capital

Figure 6: European put option. Shortfall risk criterion: graph of V) — inf,cs E((K —
e¥n), — V), ) in the partial and total observation case. Size grid fo=M00 points, size grid
for (¥, II) = 600 points, size grid fofe¥’, X) = 45 points.
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Figure 7:European put option: comparison between quadratic hedgingnd shortfall hedg-
ing: graph ofVy — inf,e4 E((K — e¥), — V%)) in the partial observation case.Size grid for
V@ = 100 points, size grid foke¥’, IT) = 600 points.

35—
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25}

20

Quadratic risk
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Figure 8: Quadratic Hedging of an European call: graph ofVy — infoeq E((e¥» — K), —
V.9)2). Size grid forV® = 100 points, size grid fofe¥’, IT) = 600 points
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Figure 9: Quadratic Hedging of an European call: graph of Vj, — « (V). Size grid for
Ve =100 points, size grid fofe¥’, IT) = 600 points.

Partial observation|
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O | | | |
4 6 8 10 12 14

Initial capital

Figure 10: European call option. Shortfall risk criterion: graph ofVy — inf,c4 E((e¥ —
K)y — V%).). Size grid forV® = 100 points, size grid fofe¥’, IT) = 600.
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Appendix A: Proof of Proposition 3.1

We begin with a definition and a preliminary result:

Definition A.1. Leta = (o), be afixed control process. Function$ (k = 0, ...,n) are defined
recursively by:

up(m,y,v) = h(r,y,v)

ug(ﬂ-v Y, U) = f(ﬂ-v Y,v, Oék) +E [U%+1 (Hk+17 Yk+l7 H(Uv ar, Y, Yk-i—l)) (Hk7 Yk) = (7T7 y)

Lemma A.1. AssumeH1, H2 andH3. Then there exists a control process= (ay ), € A, such
thatforallk=0,...,n—1:

u(m,y,v) = ud(m,y,v), (m,y,0) € Ky x RE xR,

Proof. The functionuy, is defined by:
u(m,y,0) = inf { £(m,9,0,0) + E [up1 (s, Yirr, B, 0,9, Yern) | (0 Yi) = (m.9)| }

and we see that the terms in brackets are continuous fusatigh respect tqv, a, y). Indeed, f
is Lipschitz, and the second term can be written as follows:

[
(w1 (i1, Yirr, H (v, 0,9, Yie1)) | FY ]
[E (w1 Mhg1, Vg1, H (v, 0,9, Yiy1)) | Fie) ‘7'-13/]

= E[/Zuk+1 (Grs1 (my,y) 0 H (v, 0,9, Yir1)) g1 (Xe,y,27,9/)
i=1

P[ X1 = o7 | X ] dy/

f{]

m
= / Z Uk4-1 (Gk-i-l (777 Y, y/) 7y/7 H (v7 a,y, Yk-l—l)) 9k4+1 (wia Y, ‘Tj7 y/) P]:;i-lnylledy/a
7,j7=1

which is a continuous function with respect(to, y, v, a).
By exploiting this fact we build the requested control psx®llowing a backward recursion:

un(ﬂ-y Y, U) = B(ﬂ-v Y, U)

A

Up—1(m,y,v) = ;Ielg {f(ﬂ,y,v,a) +E {un(Hn,Yn,H (v,a,9y,Y,))| (-1, Y1) = (ﬂ,y)] }

= 1I1£ |:f(7T,y,’U,CL) +Fn—1(ﬂ-7y7v7a):|
ac

24



SinceA is a compact set and the argument of the infimum is a continfumaesion with respect to
(m,y,v,a), we deduce the existence of

&n—l(ﬂ—7 Y, U) € arg mlg f(ﬂa Y, v, CL) + Fn—l(ﬂ—7 Y, v, a)]
ac

for almost every(r,y,v) € K,, x R x R, which may be chosen to be Borel measurable by a
classical measurable selection theorem (see propositBhirT [4]). By using the same argument,
at the generic time stelp we have :

wn(my.v) = inf | F(ry0,0) + B [ue (e, Ve H (0,0, Yir)| (e, Ye) = (m,9)|

= f(my,v,0u(m,y,0)) + Fie(m, y, 0, (7, y, 0).
Finally we define ther" -adapted process as follows:
& = (ap(Mg, Yi, Vi),
and we obtain by construction:

ug(m,y,v) = ul(m,y,v) forallk >0

U
Proof of Proposition 3.1
We shall prove that
;25 ug (1, 90,v0) = w0, y0,v0) = Jopt(vo)- (A.1)
First, we easily show by induction that :
up(my,v) < ug(my,v), k=0,...,n, acA, (A.2)

for all (7, y,v). Now, fix some arbitrary contral € A. By taking expectation in the definition of
uj, we have:

E[uf (1L, Yy, V)] = E [f(nk, Ya, V,f‘,ozk)] +E[ug+1(nk+1,yk+l, Vka+1)], k=0,... n—1.

By adding up fork running from O ton — 1, we get :

n—1

f(Hk7Yk7 Vkav Oék) + ug(Hna Ya, Vna)

(]

ug‘(/%y(])UO) = E

i
— o

= E = J(vo,a). (A.3)

f(Hk7 Yk7 Vkaa ak) + E(HTH YTM Vna)
0

=
i

From (A.2)-(A.3), we then get :
uo (1, Yo, vo) < OiéleliJ(Uo’Oé) = Jopt(v0)- (A.4)

Moreover, from Lemma A.1, there exists some= A such thatug(u, yo, vo) = ug“(u,yo,vo).
Together with (A.3)-(A.4), this proves (A.1). O
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Appendix B: Proof of Theorem 4.1

We first give some estimations on the functiarfsdefined in (A.1).

Lemma B.1. AssumeéH2, then we have foralk =0,...,n,anda € A :

[ug]Sup <(n- k)f+ h

where

£ o= max((flsup: [fliip) and b i= mas([Blsup, [h]1ip).

Proof. By definition ofug, we clearly have

[Ug]Suz) < f"’[ug-i-l]sw

and so by induction :
[uplsup < (n— k)f"‘ [uplsup < (n — k)f+ h

O

RIXRIXRXR,acA:
Bi(k,m, @, y,9,0,0,a) = / ‘u§+1(ék+1(my7y’),y’, H(v,ar,y,y))
_ug—i-l (ék+1(ﬁ7 :ga y/)7 y/7 H({)a af, :ga y/)) ‘Qk-‘rl(ﬂ—7 Y, dy/)

where Q;, (I1,_1, Y_1,dy’) denotes the conditional law af; given (II;_1,Y;_1) and Gy, is
defined in (3.1). Then, we have

A~ A

Bl(k7ﬂ77%7y7yav7v7a) S 2[“’%—‘,—1][/7;]0 (Lg’y_g]l""uﬂ'_ﬁ”l)
+ [H]ip (o = o1 + [y — 911).

Proof. Under assumptiofi2, we have :
By (k, 7, 7, y, 9,0, 0,a) = /‘U%H(Gkﬂ(my,y'),y’,H(v,ak,y,y')) (B.1)
= 1 (G (7. 5,9). o/ H 0, 00, 3,9')) [ Qe (7,3, )
< (el [ [Gun (mt)) = Gon (7,5, Qe (m )
+/‘H(U7ak,y,y/) —H(f%ak,Q,y/)‘lQHl(?ﬂy,dy/)

< (el [ [Gen (mt)) = G (7,3, Qe (..

+ [H]zip(lv = 0+ ly — 9h). (B.2)
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Now, from (3.1) and (3.2), we have :
/ ‘Gk-i-l(ﬂ-v Y, y/) - Gk-ﬁ-l (ﬁ-) g) y/)‘le+l(7T7 Y, dy/)

/ ‘ék—i-l(ﬂ-a Y, y/) - Gk—l—l (7%7 :g7 y,)‘lqk+1(ﬂ7 Y, y,)dy/

IN

gk-i—l 7y73:]7y )PJ ‘ gk-i—l(l'ivg)xjvy/)P]i]ﬁ-i ’ ’
Z Qi1 (m,y, 9 )dy

e Qet1(m,9,y") Q1 (7,9, Y)

< Z P]zjﬁ']/ 9k+1($27y7$]ay/)Qk+1(ﬁ'7@7y/) _gk+1(wl7g7x]7y/)Qk+1(7T7yay/) dyl

=1 qk+1 (777 Y, y/) qk+1 (ﬁ'? g? y/)

m
+ Z|ﬂ_i_ﬁ_z

< ZP /!gk+1x o2l y') = gra (2,9, 20y ) | dy'
1,j=1

/\qkﬂﬂyy)—qkﬂﬂ 9,9 |dy +Z|7r

< 2y p’ / g1 (@' v, 27, 0) = grr (2, 9,27 0 |dy' + 2 |7t — 7). (B.3)
i,j=1 i=1
Plugging (B.3) into (B.2), and using assumpti@iy), we get the required result. O

Lemma B.3. Assuméd4 and set for allk =0, ..., n, (7, 7,y,9,v,0) € K, x K, x RT x R? x
RxR,acA:

Ballm . 30.0,0) = [ [ufss (Gua(hdw) o' o,

Qi1 (3. dy') — Qusa (.9, )]

Then, we have
BQ(kr,ﬂ,fr,y,@),v,f),a) < [ug—kl]sup Lg|y _g]l + [ug—i-l] Sup |7T _ﬁ-|1
Proof. From (3.2), we have :

BQ(k77T77%7y7g7vaﬁﬂa) S [ug-i-l]Sup/ ‘Qk+1(ﬁ7:g7y,) - Qk+1(777y7y,)|dy,

< [uk-i-l Sup Z P /‘gk-i-l 7y7 7y) gk-i—l( 7y7 7y ‘dy
i,j=1

Fuii1]sup Z ‘Wi - ﬁi’a
=1
and we conclude witkl4. O
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Lemma B.4. LetH2, H3 andH4 hold. Then for allk = 0,...,n, the functionuy is Lipschitz,
uniformly with respect tex and
[uk]Lip < Lk
where
(2Lg)""
2Lg -1
and f := max([f]sup, [f]Lip), b := max([h]sup, [MLip) , Ly := max(Lgy, 1), M := max([H]Lip, 1).

(I;f( )+M+3Lh>

Proof. We denote :

z = (my,v), 2:=(m9,0), Zg:= 1, Y V)

and we have :
il < (o + + [E (up (Z8) | 22 = Z)]Lip
= [flep + )wip (B.4)

where
We have for all(m, 7,5, 9, v, §,a) € X K, X K x REx REx R x R x A),

Frgvion) = faivieen| = | [ fapvann - [ s

IN

/ ’f(x,y,v,()ék) - f(l',:g,f},()ék)’ W(dx)
+ [ 15G.9.0,00)] 15 — 7 (@2

[flLip (ly — g1y + v —9]y) + [f]Sup [T =y
flz =2

<
<

wheref := max ([f] [f]L,-p>. Thereforef]1;, < f. Let us now consider now tterm Is.

Sup
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By definition of Q.1 andV?, ;, we have

‘E[U%H(Z,‘jﬂ)‘zg =z| —E[ug, 1 (Z00)| 28 = 2]

= ‘/u%+1(ék+1(7r,y,y’),y’,H(v,ak,%y/))QkH(my,dy’)+

- /ug—l—l(ék—l-l(ﬁ-ayyy,)7y,7H(®7ak7gay/))Qk+l(ﬁ- y y)
< /‘U%+1(Gk+1(ﬂ',y,y/),y,,H(U,OZk,y,y/))
- u%—}-l (Gk-i-l(ﬁ-vgvy/))Z/)H(@?Oékvgvyl)) ‘Qk-ﬁ-l(ﬂ-vyv dy,)

+ / ‘u%+1 (Gk-i-l(ﬁ-) 9, Z/)) y,7 H(QA}? ak, Y, y,)) ‘ |:Qk+1(ﬁ-7 9, dy,) - Qk+1(7T7 Y, dy,)

= Bl(kv T, ﬁ-) Y, gv v, {}7 Oék) + BQ(kv T, 7%7 Y, gv v, @7 Oék). (BS)

By using lemmas B.2 and B.3, we then get

‘E[u&rl(z&l)‘z’? =z — Elug(Z¢0)| 28 = 2]

< (2o + [ialsup ) (Lo Iy = 3l I = 71,
+ [H]Lip (v = o + Iy = 911
< (2[ug+1]up + [ug+1]5up> |z — 2, Eg + M|z~ 2|y

whereL, := max(Lgy, 1) andM := max([H]L;, 1), and we deduce that :
o) ip < (2 ia)rip + [0 i)sup ) Lo + 3. (.6)
Plugging (B.6) into (B.4) yields :
[Wflcip < F + M + Lo (21t ]ip + [ufsalow

so that from lemmaB.1:

[uplripy < f+ M+ 2Lg[uf 1 Lip + Lgh + Lg(n — k — 1)
< 2Lglufiyq]nip + M+ Lgh + Ly(n — k) f
< 2Ly {Lyln— k= V) + M+ BLy + 2L [uf o], b + M+ BLg + Ly(n — k)F

Lyf [(n— k) +2Lg(n — k= 1)] + (M + hLg) [1+2Ly] + (2L,)" [ufys] ;. -
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By induction, this yields :

n—k—1 n—k—1

Wy < Lof (2Lg)'(n — k — ) + (M + Lyh) (2L,) + (2L,)" " h
=0 1=0
< (ng(n —k)+ M + I;g/_z) <(2E2‘7L_):__k1 > +h(2L,)" "
< (ng(n —k)+ M+ Lyh+ h(2L, — 1)) <(22§§)j_1k>
< (Lof(n—k)+ M +3Lyh) (jij)j_lk
Therefore,
Ly < (ng(n —k)+ M+ 3Zgi3> %
and the required result follows. O

We now study estimations for the approximated cost funct®imilarly as in Definition A.1,
we introduce the following sequence of functions :

Definition B.1. Leta = (ay)x be a control process inl. Functionsiy', k = 0, ..., n, are defined
recursively by :

~

wl(myy,v) = h(m,y,v)

A

ﬁ’g(ﬂ-ayav) = f(ﬂ-ayav7ak) +E |:'&2+1 (ﬂk+17Yk+17 V]ﬁ;.l) ‘ (ﬂk7?k7vka) = (7T,y,’l)) .

and we notice by same arguments as in Proposition 3.1 (s&§ (Aat

;Iel&ﬁg(M?yOaUO) = Uo(,Y0,v0) = Jquant(v0)- (B.7)

For anya € A, we denoteZy = (II, Yy, V) and Z¢ = (11, V3., V&), k= 0,...,n.
Lemma B.5. Assume H1, H2, H3 and H4. Then, we have foka# 0,...,n,a € A:

lug (2) =i (Z0)], < M (B.8)
with:
n o B o 2[: n—i - - R
M](fO = \/m—i-d—i-qz 2(Lgf(n—i)+M+3Lgh)%+f+h ‘qu_ a )
i=k 9
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< lrze) - g (20)|), + ||k (20) - Blug (z0)122], + |[Elus (z0)1 2] - a2(Zp)]|,
< 2||up(2p) - (22) |, + |E[f (2] 20] - ag (Zg)]|,
= h+1D (B.9)
with:
1= 2||ug (2) — g (27) |,
and
I = ||B[ug (20)] 28] - g ()] -
Consider now the ternf:
I = E[f(Zg,a)+E[ug+1|Z,§‘]‘Z,§‘]— f(Zg,a)+E[ak+1|Z,‘j]l
= |Elf(200) = (2 0) + uita (Zi0) - i (220 | 22 |
< |7@0) - F(Zpe)| +||uia (Z20) - i (ZR0)]
< Flze -z, + fura(ZRn) - aa(Z00)|, (B.10)
Concerning the ternf; we have :
L < 2EkHZ;?—21?H1 (B.11)

where we have used the proposition B.4.
Plugging (B.11) and (B.10) into (B.9) yields :

e (Z50) = ™ (22 |ly

< o+ h) |z - 2|+ ura (Zen) - o (Ze0)]),
< (et )|z - 22| + L+ )]
n—1
< Z‘Zﬁ—Zﬁ 1(2£i+f)+B‘Zn—Zn X
1=k
< Z[Q(Lgf(n—i)+M+3Lgh) (2259) ; +f+h ‘
ik 9

and the required result is proved by using the Cauchy-Schimaguality on‘

zZe— 79

Zigy1 — Zl?+1H1 + H“?Jrz (Zi12) — W42 (Zkt2) H1

1

ze—ze| . O

1

The term||Z* — Z||» represents the discretization error at tinand is bounded with the

following estimation :
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Lemma B.6. AssumeéH2 holds. Then, for each time stép=0,...,n, anda € A, we have

k k
5 . , C ,
« « k i 2 i
128 — 7%, < WF|ug — Projpv (v)| + ;:0 AW+ (v 4+ 22) ;:0 U (B.12)

whereV := [H];y(2d + 1), Cy is the maximum value df overl’ x A x UpI'y, x Uiy, and Ay,
is the L? quantization error at the time stejp:

Ay = ||, Y) — (T, V).
Proof. By Minkowski’s inequality, we have :
128 = Zge < Vi@ = V&|l, + A (B.13)
Recalling the dynamics (2.1) and (4.3), we have :
Ve =vielly, < |l HE = [l + |[F = Projp A,

whereH := H(Vi® |, a1, Y 1, Vi) andHY := H(V;® |, o1, Vi1, ). UnderH2, and by
using Minkowski’'s and Cauchy-Schwarz’ inequalities, wé ge

(B.14)

i = fgll, < H]up(2d+ ) (Vi = Vil + [ Fia = Yieall, + ¥ = i )
< v <H‘7ka—1 — Vi, + Akt + Ak) ,
and so by (B.14) :
Ve =Vl + Ak < @ (H‘A/kaq -Vl + Ak-1)
+ (U +1)A, + || HY — Projp Hy |,
Hence, a direct backward induction yields :
k
Ve =Vl + Ak < ©Ffog — Proje (vo)| + Y Ay
i=0
+ Y W H, — ProjpHY ), (B.15)
i=0
By noting that|v — Projpv (v)| < max(|v| — R,0) + v, for allv € R, we have
Hﬁl?—z - Projl“ﬁl?—iuz < v+ Hﬁ?—il{HgﬁER}Hz (8-16)
Lyrs a
< v o|lAR,
< v+ %Cz, (B.17)
where we used Markov inequality. The requested result iggurdy plugging (B.17) and (B.15)
into (B.13). O

Proof of Theorem 4.1

This follows directly from the estimations (B.8) and (B.18) £ = 0, and from the relations (A.1)
and (B.7).
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