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Abstract

We study numerical solutions to discrete time control problems under partial observation
when the state of the system is described by(X, Y, V α) with X signal process,Y observation
process andV α controlled process. The control processesα is required to be adapted with
respect to the observation filtration. The structure of the control problem is motivated with a
view towards financial applications. In particular we consider the problem of hedging a future
liability in the context of incomplete information. To copewith difficulties arising from partial
information, stochastic filtering is used and the filter process is discretized in order to obtain
a feasible numerical solution. This is done by performing a quantization of the pair process
filter-observation. Dynamic programming is finally appliedto solve the approximated filtered
control problem. Convergence results are given and numerical applications are presented and
discussed for the problem of hedging an European put (and call) option with unobservable
volatility.

Key words : hedging, partial observation, volatility, filtering, quantization numerical method,
dynamic programming.
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1 Introduction

This paper concerns numerically feasible approximations to discrete time stochastic control prob-
lems under partial observation. Such problems arise naturally in financial market models where
some model coefficients (volatility, drift, ...) may dependon stochastic factors that are not observ-
able. They were investigated in numerous papers, mostly from a theoretical viewpoint. However,
numerical tests are rarely performed due to computational difficulties, especially when observa-
tions are multiplicative noises and non gaussian, like in unobservable stochastic volatility models.

Here we consider a discrete time model where the signal process X is a Markov chain,
which may not be observable and takes value in a setE consisting of a finite number of points
{x1, ..., xm}. The observation processY takes values inRd and is such that the pair(X,Y ) is
a Markov chain. The control process, denoted byα, is adapted with respect to the observation
filtration, andV α is the controlled process.

The structure of our model is motivated with a view towards financial applications. Think
for example of the case whereY is the price of a risky asset,X is its unobservable volatility or
drift andV α is the wealth process. The investment strategy is represented by a control processα,
which gives the number of risky asset shares held in the portfolio. Denoting byFY = (FY

k )k the
filtration generated by the observation processY , the filter processΠ is given by :

Πi
k := P

[

Xk = xi|FY
k

]

, k ∈ N, i = 1, ...,m.

By using the filter process, the original control problem under partial observation is transformed
into an equivalent one under complete observation with observed state process given by the filter
Π instead of the unobservable signalX, and we may apply dynamic programming method, see
e.g. [1].

The numerical difficulty of this procedure concerns the filtered problem dimension because the
number of values taken by the filter is infinite even though theprocessX has only a finite number
of states. More precisely, as the state spaceE consists of a finite numberm of points{x1, ..., xm},
the filter is characterized by anm-vector with componentsΠi

k := P[Xk = xi|FY
k ] and it takes

values in them simplexKm of R
m. Therefore, in order to numerically solve the problem, the

filter has to be approximated with another process taking only a finite number of values inKm.
A classical approach (see for example [2]) is to discretize the observation processY by a process
Ŷ taking a finite numberN of values and then approximate for eachk the filterΠk by the filter
of Xk given Ŷ1, ..., Ŷk. The numerical drawback of this approach is that the number of possible
values taken by the approximating filter grows exponentially with the time step; in fact at timen
the approximated filter is identified by a random vector taking Nn possible values.

In this paper, we suggest an alternative approach, which hasbeen recently developed to nu-
merically solve optimal stopping time problems under partial observations (see [14]). The method
consists in approximating the Markov pair process(Π, Y ) by a process(Π̂, Ŷ ) taking at each time
stepk a finite number of valuesNk that is arbitrarily assigned. This approach relates to the field of
quantization methods, recently developed in numerical probability and applied to solve various fi-
nancial problems (see [12], [14], [13], [11]). In particular, by using results from [14], it is possible
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to make an optimal quantization, which for each time stepk minimizes the quantity :

E

[

∣

∣(Yk,Πk) − (Ŷk, Π̂k)
∣

∣

2
]

called quantization error or distorsion. The implementation of this optimal quantization is based on
a stochastic gradient descent method combined with Monte-carlo simulations of the pair(Π, Y ).
Once the problem has been discretized, we can solve it numerically by using dynamic program-
ming and we prove that whenNk grows the approximated solution converges towards the real
solution with rate dominated by the quantization error.

Finally we apply the method described above in order to solvea specific financial problem,
which consists in the hedging of a European put (and call) option. Since we are in an incom-
plete market setting, it is not possible to obtain a self financing and perfect hedging strategy, and
we consider as hedging criterion the expected value of a convex function applied to the residual
hedging error. In particular we will focus on the case of the quadratic criterion (see [6]) and the
shortfall risk criterion (see [5]).

The outline of the paper is as follows. In Section 2, we formulate the partial observation
discrete-time control problem. In Section 3, stochastic filtering is used to transform the original
control problem into a complete observation one that can be studied via the dynamic programming
method. We describe in Section 4 the numerical approximation by quantization to this control
problem, and we prove some convergence results. The financial application is presented in Section
5 where we study the problem of hedging a European put (and call) option with unobservable
volatility. Some numerical tests are finally performed and discussed.

Notations
In the sequel, we denote by|.|1 the l1 norm onR

l, by |.| the euclidean norm onRl and, for any
random variableX taking values inRl we denote:

‖X‖2 :=
(

E|X|2
)

1

2 and ‖X‖1 := E|X|1.

For any measurable functiong from D ⊂ R
l into R, we define :

[g]Sup := sup
x∈D

|g(x)| (1.1)

and

[g]Lip := sup
x,y∈D;x 6=y

|g(x) − g(y)|
|x − y|1

. (1.2)

2 Problem setup

Let us consider a discrete time dynamical system over a horizon {0, ..., n} with n fixed and with
state at timek (k = 0, ..., n) described by the variables(Xk, Yk, V

α
k ). In particular(Xk)k repre-

sents the signal process which may not be observable,(Yk)k is the observation process and(V α
k )k

is the process controlled by a processα adapted with respect to(FY
k ) the filtration generated by

(Yk)k.
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In a financial setting we can think of the case whereY is the price of a risky asset,X is its
unobservable volatility or drift andV α is the wealth process. The investment strategy is repre-
sented by a control processα representing the number of risky asset shares held in the portfolio,
and based on the information derived from the prices observations.

We assume that the process(Xk)k is a finite-state Markov chain taking values in the space
E = {x1, ..., xm}. Its probability transitionPk (from the periodk − 1 to the periodk) and initial
law µ are defined by :

µi = P[X0 = xi], i = 1, ...,m,

P ij
k = P[Xk = xj|Xk−1 = xi], i = 1, ...,m.

The process(Yk)k takes values inRd and is such that the pair(Xk, Yk)k is a Markov chain and
the conditional law ofYk given(Xk−1, Yk−1,Xk) admits a (known) bounded density:

y′ → gk(Xk−1, Yk−1,Xk, y
′).

For simplicity, we assume thatY0 is a known deterministic constant, fixed equal toy0. The control
process is denoted by(αk)k≥0, takes values inA ⊂ R

l, and is supposed to be adapted with respect
to the filtration(FY

k )k generated by(Yk). We denote byA the set of control processes. The
controlled process(V α

k )k takes values inR and is governed by a dynamics of the form:

V α
k+1 = H(V α

k , αk, Yk, Yk+1), (2.1)

whereH is a measurable function.
We are given a running (measurable) cost functionf on E × R

d × R × A, and a terminal
(measurable) cost functionh onE × R

d × R. Given an initial valuev0 for the controlled process,
an admissible controlα ∈ A, the expected cost function is defined by :

J(v0, α) = E

[

n−1
∑

k=0

f(Xk, Yk, V
α
k , αk) + h(Xn, Yn, V α

n )

]

(2.2)

and the goal is to choose a control process in order to minimize the costJ up to the time horizon
n :

Jopt(v0) = inf
α∈A

J(α). (2.3)

Financial Example

A typical financial example corresponds to the case whereY represents the price of a risky asset
andX is its unobservable volatility. Assume that a risklessn-maturity bond is available for trading,
yielding constant interest rater = 0 (for simplicity). We consider an economic agent over an
investment time horizonn. At time k = 0 the agent starts with an initial wealthv and then at each
instantk = 1, ..., n he rebalances his portfolio holdings by choosing the investment allocations
in the bond and in the risky asset. Under the assumption of self-financing the wealth processV
satisfies

V α
k+1 = V α

k + αk [Yk+1 − Yk] (2.4)
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whereαk represents the number of shares of risky asset held in the portfolio at timek. The process
(αk)k=1,...,n is supposed to be adapted with respect to the filtration generated by the price process
Y , i.e. the investment strategy is selected only on the basis of past observations of the security
prices.

Given a loss functionℓ : R → R, the hedging criterion for a derivative asseth(Yn) of maturity
n, consists in minimizing the expected loss :

E

[

ℓ(h(Yn) − V α
n )

]

over all admissible portfoliosα = (αk)k=0,...,n.

In order to prove convergence results, we shall make some technical assumptions :

H1 The setA is compact;

H2 H is continuous, and there exists some positive constant[H]Lip s.t. for all (v, a, y, y′) and
(v̂, a, ŷ, ŷ′) ∈ R × A × R

d × R
d:

∣

∣H(v, a, y, y′) − H(v̂, a, ŷ, ŷ′)
∣

∣

1
≤ [H]Lip

(

|v − v̂| + |y − ŷ|1 + |y′ − ŷ′|1
)

H3 Functionsf andh are bounded and Lipschitz;

H4 There exists some positive constantLg such that for allk = 1, . . . , n :

m
∑

i,j=1

P ij
k

∫

∣

∣gk(x
i, y, xj , y′) − gk(x

i, ŷ, xj , y′)
∣

∣ dy′ ≤ Lg|y − ŷ|1 ∀y, ŷ ∈ R
d.

Remark 2.1. The hypothesisH2 is verified by (2.4) in the previous example. Concerning the
hypothesisH4 we will see that it is satisfied for the model analyzed in the numerical application
given in the last section.

3 Filtering and dynamic programming

Recalling that the state space of(Xk) consists of a finite number of points and denoting by(FY
k )

the filtration generated by the observation process(Yk), the filter is defined as follows:

Πi
k = P[Xk = xi|FY

k ] i = 1, ...,m and k = 1, ..., n

and is a random vector process, which takes values in them-simplexKm in R
m :

Km =

{

π = (πi) ∈ R
m : πi ≥ 0 and |π|1 =

m
∑

i=1

πi = 1

}

.
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By using Bayes’ formula the filter process can be calculated in a recursive way as follows (see
[9]):

Π0 = µ

Πk = Ḡk (Πk−1, Yk−1, Yk) =
GPk(Yk−1, Yk)

⊺

Πk−1

|GPk(Yk−1, Yk)T Πk−1|1
, k ≥ 1 (3.1)

whereGPk(Yk−1, Yk) is am × m random matrix given by :

GPk(Yk−1, Yk)ij = gk(x
i
k−1, Yk−1, x

j
k, Yk)P

ij
k , 1 ≤ i, j ≤ m,

and⊺ is the transpose. One can also show (see e.g. [14]) that the pair (Πk, Yk)k is a Markov chain
with respect to the filtration(FY

k )k and the conditional lawQk of Yk given(Πk−1, Yk−1) admits
a density given by :

y′ → qk(Πk−1, Yk−1, y
′) :=

m
∑

i,j=1

gk(x
i, Yk−1, x

j , y′)P ij
k Πi

k−1 (3.2)

Relations (3.1)-(3.2) show that, although the probabilitytransition of the Markov chain(Πk, Yk)

is not explicitly known, it can be simulated. This point is important when one needs Monte-Carlo
simulations of(Πk, Yk), see paragraph 4.1.1.

By using the law of iterated conditional expectations, we can rewrite the expected cost function
(2.2) as follows:

J(v0, α) = E

[

n−1
∑

k=0

E
[

f(Xk, Yk, V
α
k , αk)|FY

k

]

+ E
[

h(Xn, Yn, V α
n )|FY

n

]

]

= E

[

n−1
∑

k=0

m
∑

i=1

f(xi, Yk, V
α
k , αk)Π

i
k +

m
∑

i=1

h(xi, Yn, V α
n )Πi

n

]

= E

[

n−1
∑

k=0

f̂(Πk, Yk, V
α
k , αk) + ĥ(Πn, Yn, V α

n )

]

where

f̂(π, y, v, a) :=

∫

f(x, y, v, a)π(dx) =
m

∑

i=1

f(xi, y, v, a)πi

ĥ(π, y, v) :=

∫

h(x, y, v)π(dx) =

m
∑

i=1

h(xi, y, v)πi

The original problem (2.3) can now be formulated as a problemunder full observation with
state variables(Πk, Yk, Vk) :

Jopt(v0) = inf
α∈A

E

[

n−1
∑

k=0

f̂(Πk, Yk, V
α
k , αk) + ĥ(Πn, Yn, V α

n )

]

. (3.3)
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Actually, recalling (2.1) and following the Dynamic Programming Algorithm (see e.g. [3]), for
solving the filtered problem (3.3), we define the sequence of functions :

(DP)



































un(π, y, v) = ĥ(π, y, v)

uk(π, y, v) = inf
a∈A

{

f̂(π, y, v, a)

+E

[

uk+1(Πk+1, Yk+1,H(v, a, y, Yk+1))
∣

∣

∣(Πk, Yk) = (π, y)
]}

k = 0, . . . , n − 1.

The following result shows that this backward procedure gives the solution fork = 0 to the original
problem (2.3).

Proposition 3.1. AssumeH1, H2, and H3. Then the algorithm (DP) provides the solution of
problem (2.3), i.e.:

u0(µ, y0, v0) = Jopt(v0).

Proof. See Appendix A.

4 Approximation by quantization and error analysis

4.1 The numerical approximation method

From a numerical viewpoint the formula given by the(DP ) algorithm is still untractable since
the state variableZα

k := (Πk, Yk, V
α
k ) takes values in a continuous state space. In order to obtain

a numerical solution, the basic idea is to approximate at each time stepk the continuous state
variableZα

k by a discrete state variablêZα
k taking a finite number of values. The main concern is

how to discretize in an efficient and feasible way the variablesZα
k that depend on the controlα?

We deal separately with the approximation of the pair filter-observationW := (Π, Y ) that
does not depend on the control, and the approximation of the controlled state variableV α. The
approximation of(Π, Y ) is obtained following an optimal quantization method as in [14]. The
approximation ofV α is obtained by a classical uniform space discretization similar to the Markov
chain method as in [8].

4.1.1 Optimal quantization of the pair filter-observation

In a first step, we discretize for eachk the pair(Πk, Yk) by approximating it by(Π̂k, Ŷk) taking
a finite number of values. The space discretization (or quantization) of the random vectorWk =

(Πk, Yk) valued inKm × R
d is constructed as follows. At initial timek = 0, recall thatW0 is

a known deterministic vector equal tow0 = (µ, y0), so we start from the grid with one point in
Km × R

d :

Γ0 = {w0 = (µ, y0)} .

At time k ≥ 1, we are given a gridΓk of Nk points inKm × R
d :

Γk =
{

w1
k = (πk(1), y

1
k), . . . , wNk

k = (πk(Nk), y
Nk

k )
}

,
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and we approximate the pairWk = (Πk, Yk) by Ŵk = (Π̂k, Ŷk) valued inΓk and defined as the
closest neighbour projection :

Ŵk = ProjΓk
(Wk) :=

Nk
∑

i=1

wi
k1Ci(Γk)(Wk),

where the so-called Voronoi tesselationsC1(Γk), . . ., CNk
(Γk) are Borel partitions ofKm × R

d

satisfying :

Ci(Γk) ⊂
{

w ∈ Km × R
d : |w − wi

k| = min
j=1,...,Nk

|w − wj
k|

}

, i = 1, . . . , Nk.

TheL2-error induced by this projection, calledL2-quantization error, is equal at timek to : ‖Wk−
Ŵk‖2

. As a function of the gridΓk identified with theNk-tuple(w1
k, . . . , w

Nk

k ) in Km × R
d, the

square of theL2-quantization error, called distorsion, is written as :

DWk

Nk
(Γk) = ‖Wk − ProjΓk

(Wk)‖2
2

= E

[

min
i=1,...,Nk

|Wk − wi
k|2

]

. (4.1)

Notice, by definition of the closest neighbour projection that theL2-quantization error is the min-
imum of theL2-error‖Wk − U‖

2
among all random variablesU taking values in the gridΓk.

In a second step, we approximate the probability transitions of the Markov chain(Wk) by the
following probability transition matrix :

r̂ij
k = P

[

Ŵk = wj
k

∣

∣

∣ Ŵk−1 = wi
k−1

]

=
P

[

Wk ∈ Cj(Γk),Wk−1 ∈ Ci(Γk−1)
]

P

[

Wk−1 ∈ Ci(Γk−1)
]

for all k = 1, . . . , n, i = 1, . . . , Nk−1, j = 1, . . . , Nk.
The gridsΓk are optimally chosen so as to minimize at each timek the distorsionDWk

Nk
(Γk).

This relies on the property that the distorsion is differentiable, with a gradient obtained by formal
differentiation in (4.1) :

∇DWk

Nk
(Γk) = 2

(

E

[

(wi
k − Wk)1Wk∈Ci(Γk)

])

1≤i≤Nk

. (4.2)

The optimal grids and the associated probability transition matrix are then processed and esti-
mated by a stochastic gradient descent method, known in thiscontext as the Kohonen Algorithm,
and based on the integral representation (with respect to the probability law ofWk) (4.2). This
is achieved by Monte-Carlo simulations of the Markov chain(Wk)k = (Πk, Yk)k through the
following simulation procedure : starting from(Πk−1, Yk−1),

• simulateYk according to the density given in (3.2)

• computeΠk by the formula (3.1).

We refer to [14] for the details and the practical implementation of the optimal grids.
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4.1.2 Space discretization of the controlled variable

We fix a bounded uniform grid on the state spaceR for the controlled processV α. Namely, we set

ΓV := (2ν)Z ∩ [−R,R],

whereν is the spatial step andR is the grid size. We denote by ProjΓV the projection on the grid
ΓV according to the closest neighbor rule. Recalling the dynamics (2.1) of the controlled process,
we approximate it as follows : given a controlα ∈ A, we discretize(V̂ α

k )k by the controlled
process valued inΓV , and evolving according to the dynamics :

V̂ α
k+1 = ProjΓV (H(V̂ α

k , αk, Ŷk, Ŷk+1)). (4.3)

HereŶk is the quantization ofYk obtained in the previous paragraph.

4.1.3 Approximation of the control problem

We approximate the sequence of functions(uk) by the sequence of function̂uk defined onΓk×ΓV ,
k = 0, . . . , n, by a dynamic programming type formula :

ûn(π, y, v) = ĥ(π, y, v)

ûk(π, y, v) = inf
a∈A

{

f̂(π, y, v, a)

+ E
[

ûk+1

(

Π̂k+1, Ŷk+1, ProjΓV (H(v, a, y, Ŷk+1))
)∣

∣(Π̂k, Ŷk) = (π, y)
]

}

From an algorithmic viewpoint, this is computed explicitlyas follows :

ûn(wi
n, v) = ĥ(wi

n, v), wi
n = (πn(i), yi

n) ∈ Γn, i = 1, . . . , Nn, v ∈ ΓV

ûk(w
i
k, v) = inf

a∈A

{

f̂(wi
k, v, a) (4.4)

+

Nk+1
∑

j=1

r̂ij
k+1ûk+1

(

ŵj
k+1, ProjΓV (H(v, a, yi

k, yj
k+1))

)

}

wi
k = (πk(i), y

i
k) ∈ Γk, i = 1, . . . , Nk, v ∈ ΓV .

Forv0 ∈ ΓV , the solutionJopt(v0) = u0(µ, y0, v0) to our control problem is then approximated by

Ĵquant(v0) = û0(µ, y0, v0).

Moreover, this backward dynamic programming scheme allowsus to compute at each stepk =

0, . . . , n − 1, an approximate optimal control̂αk(w, v), w = (π, y) ∈ Γk, v ∈ ΓV , by taking the
infimum in (4.4).

4.2 Error analysis and rate of convergence

We state an error estimation between the optimal cost function Jopt and the approximated cost
function Ĵquant, in terms of :

• the quantization errors∆k = ‖Wk − Ŵk‖2
for the pairWk = (Πk, Yk), k = 0, . . . , n

• the spatial stepν and the grid sizeR for V α
k , k = 0, . . . , n.

9



Theorem 4.1. UnderH1, H2, H3 andH4, we have for allv0 ∈ ΓV :

∣

∣

∣
Jopt(v0) − Ĵquant(v0)

∣

∣

∣
≤ C1(n)

n
∑

k=0

k
∑

j=0

Ψk
(

ν +
C2

R
+ ∆k−j

)

, (4.5)

whereC1(n) =
√

m + d + 1
[

2
(

nL̄gf̄ + M̄ + 3L̄gh̄
) (2L̄g)

n

2L̄g−1
+ f̄ + h̄

]

, f̄ = max([f ]Sup, [f ]Lip),

h̄ = max([h]Sup, [h]Lip), L̄g = max(Lg, 1), M̄ = max([H]Lip, 1), C2 is the maximum value of
H overΓV × A × ∪kΓk × ∪kΓk, andΨ = (2d + 1)[H]Lip.

Proof. See Appendix B.

Convergence of the approximation

As a consequence of Zador’s theorem (see [7]), which gives the asymptotic behavior of the optimal
quantization error, when the number of grid points goes to infinity, we can derive the following
estimation on the optimal quantization error for the pair filter-observation (see [14]) :

lim sup
Nk→∞

N
2

m−1+d

k min
|Γk|≤Nk

‖Wk − Ŵk‖2
2 ≤ Ck(m,d),

whereCk(m,d) is a constant depending onm,d and the marginal density ofYk. Therefore, the
estimation (4.5) provides a rate of convergence for the approximation ofJopt of order

n2ΨnC1(n)
(

ν +
1

R
+

1

N
1

m−1+d

)

,

whenNk = N is the number of points at each gridΓk used for the optimal quantization ofWk

= (Πk, Yk), k = 1, . . . , n. We then get the convergence of the approximated cost function Ĵquant

to the optimal cost functionJopt whenν goes to zero, andN , R go to infinity. Moreover, by
extending the approximate controlα̂k, k = 0, . . . , n−1, to the continuous state spaceKm×R

d×R

by :
α̂k(π, y, v) = α̂k(ProjΓk

(π, y), ProjΓV (v)), ∀ (π, y, v) ∈ Km × R
d × R,

and by setting (by abuse of notation) :α̂k = α̂k(Πk, Yk, V̂
α̂
k ), we get an approximate controlα̂ =

(α̂k)k in A, which isε-optimal for the original control problem (see [15]) in the sense that for all
ε > 0 :

J(v0, α̂) ≤ Jopt(v0) + ε,

wheneverN , R are large enough, andν is small enough.

5 Financial application : European option hedging in a partially ob-
served stochastic volatility model

In this section we apply the methodologies described above in order to study the problem of hedg-
ing an European put (or call) option in the context of incomplete information on the underlying
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price evolution model. Since we are in an incomplete market setting, the perfect replication of the
claim is not possible and as hedging criterion we choose the expected value of a convex loss func-
tion applied to the hedging error. In particular we will consider the case of the quadratic criterion
and that of the shortfall risk criterion.

5.1 The model

We consider a stochastic volatility model where for simplicity we have only one risky asset with
observable price(Sk) whose dynamics is given by :

Sk+1 = Sk exp

[(

r − 1

2
X2

k

)

δ + Xk

√
δǫk+1

]

, k = 1, ..., n

S0 = s0 > 0

where(ǫk)k is a Gaussian white noise sequence,Xk is the unobservable volatility process,δ =

1/n represents the discretization time step over the interval[0, 1], andr is the riskless interest rate
per unit of time.

We denote byS0 the riskless asset price with dynamics :

S0
k+1 = S0

kerδ.

Notice that the conditional law ofSk+1 given(Xk, Sk) has a density given by:

g(Xk, Sk, s
′) =

1

s′
√

2πδX2
k

exp

[

−
(

ln s′ − ln Sk − (r − 1
2X2

k)δ
)2

2X2
kδ

]

, s′ > 0,

and notice that, as the first derivative ofg with respect tos′ is bounded, the hypothesisH4 is
satisfied.

The volatility (Xk) is described by a Markov chain taking three possible valuesxb < xm < xh

in (0,∞). Its probability transition matrix is given by :

Pk =







1 − (pbm + pbh)δ pbmδ pbhδ

pmbδ 1 − (pmb + pmh)δ pmhδ

phbδ phmδ 1 − (phb + phm)δ






. (5.1)

The volatility (Xk) is a Markov-chain approximation à la Kushner (see [8]) of a mean-reverting
process :

dXt = λ(x0 − Xt)dt + ηdWt.

Denoting by∆ > 0 the spatial step, this corresponds to a probability transition matrix of the form
(5.1) with :

xb = x0 − ∆, xm = x0, xh = x0 + ∆,

11



and

pbm = λ +
η2

2∆2
, pbh = 0

pmb =
η2

2∆2
, pmh =

η2

2∆2

phb = 0, phm = λ +
η2

2∆2
,

with the condition that1 − λ − η2

2∆2 > 0 and1 − η2

∆2 > 0.
In order to hedge the European put option with strikeK, we invest an initial capitalv0 in the

risky asset following a self financing strategy. Recall thatthe wealth process is given by:

V α
k+1 = V α

k erδ + αk

[

Sk+1 − Ske
rδ

]

(5.2)

whereαk represents the number of shares of assetSk held in the portfolio at timek. Observe that
(5.2) verifies the hypothesisH2 and recall that the control process(αk) is adapted with respect to
the filtration (FS

k ) generated by the observation process.
In what follows we will work with the log-price instead of theprice and we setYk = ln Sk.

5.2 Hedging of an European put option: quadratic criterion

Using a quadratic loss criterion (see [6]), an optimal strategy is a solution to the optimization
problem :

inf
α∈A

E

[

(

(

K − eYn
)

+
− V α

n

)2
]

(5.3)

whereA is the control space.
Since the process(Xk)k=1,...,n is unobservable, the optimization problem described aboveis

a control problem under partial information and can thus be studied by using stochastic filtering
and approximation techniques as shown in the previous sections. An approximated solution is in
particular obtained from the following steps:

1. Quantization. Denoting byΠk the filter process, we discretize the pair(Πk, Yk) by per-
forming an optimal quantization as explained in paragraph 4.1.1. This procedure provides, for all
instantsk:

1. A Nk-point gridΓk which is a discretization of the state space of(Πk, Yk). This discretiza-
tion is optimal in the sense specified in [12].

2. A matrix
{

r̂ij
k , i = 1, . . . , Nk−1, j = 1, . . . , Nk}, which approximates the probability tran-

sition of the Markov chain(Πk, Yk).

The controlled one dimensional process(V α
k ) is discretized using a regularNV -point grid of R

given by:
ΓV = (2ν)Z ∩ [Vinf , VSup]
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whereν is some discretization space step andVinf andVSup are the bounds of the grid size.
2. Dynamic Programming. Once the problem has been discretized, we use the dynamic

programming algorithm to calculate an approximated solution:

ûn(wi
n, v) =

(

v − (K − eyi
n)+

)2 ∀wi
n = (πn(i), yi

n) ∈ Γn, ∀ v ∈ ΓV

ûk(w
i
k, v) = inf

a∈A

Nk+1
∑

j=1

r̂ij
k+1ûk+1

(

wj
k+1, ProjΓV

(

verδ + a(ey
j

k+1 − eyi
kerδ)

)

)

∀ wi
k = (πk(i), y

i
k) ∈ Γk, ∀ v ∈ ΓV , k = 0, ..., n − 1.

Numerical tests are performed by using the following parameter values :

- Price at time0 : S0 = 110;

- Strike of the European put option:K = 110;

- Riskless interest rate over the interval[0, 1] : r = 0.05;

- Volatility : x0 = 0, 15, ∆ = 0, 05, λ = 0, 1, η = 0, 1.

- Quantization of(Π, Y ) : grids have same sizeN for each time period with stepδ = 1
n

and they
are obtained by using106 iterations of the procedure described in [14];

- Discretization ofV α : we use aNV -point grid defined byΓV = (2ν)Z ∩ [Vinf , VSup] whereν,
Vinf andVSup, determined by performing some preliminary tests, are given by:

ν =
35

2(NV − 1)
, Vinf = −10, VSup = 15;

- Approximation of the optimal control : golden search method(see [10]) onA = [−1, 1]

- When not specified the number of time steps isn = 5

In order to study the effects of the quantization grid sizeN and uniform grid sizeNV we plot
the graph ofV0 7→ infα∈A E((K − eYn)+ − V α

n )2) for different values ofN andNV (Figures 1
and 3).

As expected, the global shape of the graph is parabolic, due to the quadratic hedging criterion
that we have used. The minimum is reached atvmin which can be considered as the "quadratic
hedging price" of our European put option.

Corresponding hedging strategies at timet = 0 are given in Tables 1 and 2, and Figure 2
displays the graph ofα0 as a function of the initial wealthV0. We can observe that the strategy is
nearly constant forV0 ∈ [2, 4], where the non constant values may be due to numerical impreci-
sion. This result can be explained1 by observing that in our example the discounted price process

1For more details concerning the quadratic hedging in the martingale case see [5].
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S̃k = Ske
−rkδ, k = 0 . . . , n, is a martingale and by applying the Kunita Watanabe decomposition

to the discounted option payoffF = e−r(K − eYn)+, we get:

F = E[F ] +

n
∑

k=1

αF
k ∆S̃k + RF

n , (5.4)

where∆S̃k := S̃k+1− S̃k, αF is an admissible control process, andRF is a martingale orthogonal
to S̃k, i.e. E[RF

k ∆S̃k] = 0, k = 0, . . . , n. Recalling the dynamics (5.2) of the wealthV α
n , we can

write again the objective function as :

E

[(

(K − eYn)+ − V α
n

)2]

= e2r
E

[

(

F − v0 −
n

∑

k=0

αk∆S̃k

)2

+

]

. (5.5)

By combining (5.4) and (5.5) and by exploiting the orthogonality betweenRF andS̃ we obtain

E

[(

(K − eYn)+ − V α
n

)2]

= e2r

{

(

E[F ] − v0

)2
+ E

[

(

n
∑

k=1

(αF
k − αk)∆S̃k

)2
]

+ E

[

(RF
n )2

]

}

,

which shows that the optimal control is alwaysαopt = αF regardless ofv.
In Figure 4 and in the Table 3, we compare the European put option price under partial and

complete observation when we increase the number of observations (i.e. the time stepδ decreases
to zero). Denoting byNΠ,Y the number of grid points used in the partial observation case to make
an optimal quantization of the pair(Π, Y ), by (NX,Y ) the number of grid points used in the total
observation case to make an optimal quantization of the pair(X,Y ), and byR = Vsup − Vinf the
grid size in the discretization of the controlled variableV α, we recall that the discretization error
is of order

(

N
−1

d+m−1

Π,Y + ν +
1

R

)

for the partial observation case. For the total observationcase we have:
(

1

NX,Y
+ ν +

1

R

)

whereNX,Y = mNY (see [14]). So, in order to obtain comparable results, giventhe uniform grid
discretizing the variableV α, we perform an optimal quantization of(Π, Y ) and(X,Y ) by using
grid sizesNΠ,Y andNX,Y = mNY such that :

NY ≃ N
1

d+m−1

Π,Y

whered = 1 andm = 3. That is why we have chosenNΠ,Y = 1500 andNX,Y = 45.
We notice that when the number of observations increase (i.e. δ → 0), the partial observation

price converges to the complete observation price; this is due to the fact that with observation
performed in continuous time we are able to calculate the volatility given by the quadratic variation
of the price process(eY ).
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Figure 5 shows that by working in a total observation settingthe quadratic risk associated to a
given initial wealth is smaller than the corresponding value obtained in the partial observation case.
This is consistent with the fact that the filtration generated by the observation price is included in
the full information filtration, and consequently the corresponding optimal cost function in the
partial information case is larger than the one in the full information case.

5.3 Hedging of an European put option: shortfall risk criterion

Using the shortfall risk criterion (see [5]), an optimal strategy is a solution to the optimization
problem :

inf
α∈A

E

[

(

(

K − eYn
)

+
− V α

n

)

+

]

(5.6)

whereA is the control space.
The Figure 6 and the Table 4 are obtained by applying the procedure described in the previous

section with
Vinf = −15 and VSup = 25

The Figure 6 shows the graph ofV0 7→ infα∈A E((K − eYn)+ − V α
T )+) in the partial and in

the total observation case. Notice that, as expected, the shortfall risk given byinfα∈A E((K −
eYn)+ − V α

T )+) decreases with the initial capital and becomes zero for approximately the same
value ofV0 in the partial and total observation case. Notice also that if we tolerate a little risk we
can considerably reduce the requested initial capital.

Moreover, as in the quadratic hedging, for a given initial valueV0, the shortfall risk obtained in
a partial observation setting is greater than the corresponding one in a context of total observation.

In Table 4 we compare the initial capital required to minimize the quadratic risk and the short-
fall risk associated with our European put option. As expected the initial capital necessary to
minimize the quadratic risk is bounded by the correspondingone in the shortfall risk case, which
is actually the super-hedging price.

Finally, Figure 7 displays the quadratic and shortfall riskfor various values of the initial capital.

5.4 Hedging of an European call option

Quadratic Hedging: an optimal strategy is a solution to the optimization problem :

inf
α∈A

E

[

(

(

eYn − K
)

+
− V α

n

)2
]

(5.7)

whereA is the control space. The procedure described in the previous section has been applied by
taking:

Vinf = −20 and VSup = 30

Figure 8 shows the graph ofV0 7→ infα∈A E((eYn − K)+ − V α
n )2) i.e. the quadratic risk

as a function of the initial capitalV0. Notice that as expected the global shape of the graph is
parabolic; the initial capital corresponding to the minimum can be interpreted as the "quadratic
hedging price" of the European call option. Notice also thatas in the European put case, for a
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given initial wealth, the corresponding quadratic risk in the partial observation case is greater than
in the total observation case.

Figure 9 displays the graph of the optimal strategy at timet = 0 as a function of the initial
capital. As in the put case the optimal strategy is nearly constant.

Finally, in Table 5 we compare the initial capital requestedto minimize the quadratic risk
("quadratic hedging price") with the call price obtained byusing the put-call parity relation and
the "quadratic-hedging" put price calculated in the previous section. We can observe that the two
prices are very close thus justifying further the expression "quadratic hedging price".

Shortfall risk criterion: an optimal strategy is a solution to the optimization problem :

inf
α∈A

E

[

(

(

eYn − K
)

+
− V α

n

)

+

]

(5.8)

whereA is the control space.
Figure 10 and Table 6 are obtained by applying the procedure described in the previous sec-

tions with
Vinf = −25 and VSup = 35

In Figure 10 we observe that, as expected, the shortfall riskdecreases with the initial capital and
becomes zero for approximatively the same initial valueV0 for the total and the partial observation
case. We also notice that if we tolerate a little risk, we can considerably reduce the requested initial
capital. Moreover the shortfall risk associated to a given initial valueV0 is greater in the partial
observation case with respect to the total observation case.

In Table 6, we compare the initial capital requested to minimize the quadratic risk and the
shortfall risk associated to our European call option. As expected the initial capital necessary to
minimize the quadratic risk is bounded by the correspondingone in the shortfall risk case, which
is actually the super-hedging price.

N European put price Optimal control strategyα0

300 3.04132 -0.2813

600 3.05965 -0.2813

1500 3.07098 -0.2813

Table 1: Quadratic hedging of an European put: European put price (defined as the initial
capital minimizing the risk) and optimal control strategy calculated for different quantization grid
sizes (N = 300, 600, 1500) and a fixed uniform grid size (NV = 400)
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Figure 1:Quadratic hedging of an European put:graph ofV0 7→ infα∈A E((K−eYn)+−V α
n )2)

for different quantification grid sizes (N = 300, 600, 1500) and a fixed uniform grid size (NV =

400)

NV European put price Optimal control strategyα0

50 2.97501 -0.2813

100 3.04132 -0.2813

300 3.04132 -0.2813

400 3.04132 -0.2813

Table 2: Quadratic hedging of an European put: European put price (defined as the initial
capital minimizing the risk) and optimal control strategy calculated for different fixed uniform
grid sizes (NV = 50, 100, 200, 400) and a fixed quantization grid size (N = 300)
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Figure 2:Quadratic hedging of an European put:graph ofV0 7→ α0(V0) for a quantization grid
size ofN = 300 and a fixed uniform grid size ofNV = 400

Time step Partial observation Partial observation Total observation Total observation
δ price strategy price strategy

1\5 2.9933 −0.2813 3.24459 −0.2734

1\10 3.5255 −0.3013 3.65515 −0.2422

1\20 3.9501 −0.3215 4.02799 −0.3614

Table 3: Quadratic hedging of an European put: comparison between partial and total ob-
servation price (defined as the initial capital minimizing the quadratic risk) and strategies when
we increase the number of observations and consequently thetime stepδ goes to0.Size grid for
V α = 30 points, size grid for(eY ,Π) = 1500 points, size grid for(eY ,X) = 45 points

Case Quadratic hedging Shortfall hedging Quadratic hedging Shortfall hedging
vmin vmin strategy strategy

Total Observation 3, 5750 ∼ 16 −0.2656 −0.98995

Partial Observation 3.07098 ∼ 17.8 −0.2813 −0.99187

Table 4:European put option: comparison between quadratic hedgingand shortfall hedging.
vmin is the initial capital requested to minimize the corresponding risk. Size grid forV α = 100

points, size grid for(eY ,Π) = 1500 points, size grid for(eY ,X) = 45 points
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Figure 3:Quadratic hedging of an European put:graph ofV0 7→ infα∈A E((K−eYn)+−V α
n )2)

for different fixed uniform grid sizes (NV = 50, 100, 200, 400) and a fixed quantization grid size
(N = 300)

Case Call price by Call price by Difference
quadratic hedging call-put parity

Total Observation 8.74596 8.91377 0.1678

Partial Observation 8.55202 8.38009 0.1719

Table 5:European call option: comparison between quadratic hedging and put-call parity.
Size grid forV α = 100 points, size grid for(eY ,Π) = 300 points, size grid for(eY ,X) = 45

points

Case Quadratic hedging Shortfall hedging Quadratic hedging Shortfall hedging
vmin vmin strategy strategy

Total Observation 8.74596 ∼ 23.5 0.6973 0.6972

Partial Observation 8.55202 ∼ 24 0.6625 0.6250

Table 6:European call option: comparison between quadratic hedging and shortfall hedging.
vmin is the initial capital requested to minimize the corresponding risk. Size grid forV α = 100

points, size grid for(eY ,Π) = 1500 points, size grid for(eY ,X) = 45 points
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Figure 4:Quadratic hedging of an European put: distance between total and partial observa-
tion European put prices (defined as the initial capital minimizing the risk) when we increase the
number of observations (axis of abscissae) and consequently the time stepδ goes to0. Size grid
for V α = 30 points, size grid for(eY ,Π) = 1500 points, size grid for(eY ,X) = 45 points
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Figure 5:Quadratic hedging of an European put: graph ofV0 7→ infα∈A E((K−eYn)+−Vn)2)

in the partial and total observation case. Size grid for V= 100 points, size grid for(eY ,Π) = 1500

points, size grid for(eY ,X) = 45 points.
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Figure 6: European put option. Shortfall risk criterion: graph ofV0 7→ infα∈A E((K −
eYn)+ − Vn)+) in the partial and total observation case. Size grid for V= 100 points, size grid
for (eY ,Π) = 600 points, size grid for(eY ,X) = 45 points.
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Figure 7:European put option: comparison between quadratic hedgingand shortfall hedg-
ing: graph ofV0 7→ infα∈A E((K − eYn)+ − V α

n )+) in the partial observation case.Size grid for
V α = 100 points, size grid for(eY ,Π) = 600 points.
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Figure 8: Quadratic Hedging of an European call: graph ofV0 7→ infα∈A E((eYn − K)+ −
V α

n )2). Size grid forV α = 100 points, size grid for(eY ,Π) = 600 points
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Figure 9: Quadratic Hedging of an European call: graph ofV0 7→ α0(V0). Size grid for
V α = 100 points, size grid for(eY ,Π) = 600 points.
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Figure 10: European call option. Shortfall risk criterion: graph ofV0 7→ infα∈A E((eYn −
K)+ − V α

n )+). Size grid forV α = 100 points, size grid for(eY ,Π) = 600.
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Appendix A: Proof of Proposition 3.1

We begin with a definition and a preliminary result:

Definition A.1. Letα = (αk)k be a fixed control process. Functionsuα
k (k = 0, ..., n) are defined

recursively by:










uα
n(π, y, v) := ĥ(π, y, v)

uα
k (π, y, v) := f̂(π, y, v, αk) + E

[

uα
k+1 (Πk+1, Yk+1,H(v, αk, y, Yk+1))

∣

∣

∣(Πk, Yk) = (π, y)
]

Lemma A.1. AssumeH1, H2 andH3. Then there exists a control processα̃ = (α̃k)k ∈ A, such
that for all k = 0, . . . , n − 1:

uk(π, y, v) = uα̃
k (π, y, v), (π, y, v) ∈ Km × R

d × R.

Proof. The functionuk is defined by:

uk(π, y, v) = inf
a∈A

{

f̂(π, y, v, a) + E

[

uk+1(Πk+1, Yk+1,H(v, a, y, Yk+1)
∣

∣

∣
(Πk, Yk) = (π, y)

]}

and we see that the terms in brackets are continuous functions with respect to(v, a, y). Indeed,f̂
is Lipschitz, and the second term can be written as follows:

Fk(π, y, v, a) :=

= E

[

uk+1 (Πk+1, Yk+1,H(v, a, y, Yk+1))
∣

∣

∣(Πk, Yk) = (π, y)
]

= E
[

uk+1

(

Πk+1, Yk+1, V
α
k+1

) ∣

∣FY
k

]

= E
[

uk+1 (Πk+1, Yk+1,H (v, a, y, Yk+1))
∣

∣FY
k

]

= E

[

E
[

uk+1 (Πk+1, Yk+1,H (v, a, y, Yk+1))
∣

∣Fk

]

∣

∣

∣FY
k

]

= E

[
∫ m

∑

i=1

uk+1

(

Ḡk+1

(

π, y, y′
)

, y′,H (v, a, y, Yk+1)
)

gk+1

(

Xk, y, xj , y′
)

P
[

Xk+1 = xj |Xk

]

dy′
∣

∣

∣

∣

FY
k

]

=

∫ m
∑

i,j=1

uk+1

(

Ḡk+1

(

π, y, y′
)

, y′,H (v, a, y, Yk+1)
)

gk+1

(

xi, y, xj , y′
)

P ij
k+1Π

i
kdy′,

which is a continuous function with respect to(π, y, v, a).
By exploiting this fact we build the requested control process following a backward recursion:

un(π, y, v) = ĥ(π, y, v)

un−1(π, y, v) = inf
a∈A

{

f̂(π, y, v, a) + E

[

un(Πn, Yn,H (v, a, y, Yn))
∣

∣

∣(Πn−1, Yn−1) = (π, y)
] }

= inf
a∈A

[

f̂(π, y, v, a) + Fn−1(π, y, v, a)
]
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SinceA is a compact set and the argument of the infimum is a continuousfunction with respect to
(π, y, v, a), we deduce the existence of

α̃n−1(π, y, v) ∈ arg min
a∈A

[

f̂(π, y, v, a) + Fn−1(π, y, v, a)
]

for almost every(π, y, v) ∈ Km × R
d × R

l, which may be chosen to be Borel measurable by a
classical measurable selection theorem (see proposition 7.33 in [4]). By using the same argument,
at the generic time stepk, we have :

uk(π, y, v) = inf
a∈A

[

f̂(π, y, v, a) + E

[

uk+1(Πk+1, Yk+1,H (v, a, y, Yk+1))
∣

∣

∣
(Πk, Yk) = (π, y)

]]

= f̂(π, y, v, α̃k(π, y, v)) + Fk(π, y, v, α̃k(π, y, v).

Finally we define theFY -adapted process̃α as follows:

α̃ :=
(

α̃k(Πk, Yk, Vk)
)

k

and we obtain by construction:

uk(π, y, v) = uα̃
k (π, y, v) for all k ≥ 0

Proof of Proposition 3.1
We shall prove that

inf
α∈A

uα
0 (µ, y0, v0) = u0(µ, y0, v0) = Jopt(v0). (A.1)

First, we easily show by induction that :

uk(π, y, v) ≤ uα
k (π, y, v), k = 0, . . . , n, α ∈ A, (A.2)

for all (π, y, v). Now, fix some arbitrary controlα ∈ A. By taking expectation in the definition of
uα

k , we have:

E[uα
k (Πk, Yk, V

α
k )] = E

[

f̂(Πk, Yk, V
α
k , αk)

]

+E

[

uα
k+1

(

Πk+1, Yk+1, V
α
k+1

)

]

, k = 0, . . . , n−1.

By adding up fork running from 0 ton − 1, we get :

uα
0 (µ, y0, v0) = E

[

n−1
∑

k=0

f̂
(

Πk, Yk, V
α
k , αk

)

+ uα
n

(

Πn, Yn, V α
n

)

]

= E

[

n−1
∑

k=0

f̂
(

Πk, Yk, V
α
k , αk

)

+ ĥ
(

Πn, Yn, V α
n

)

]

= J(v0, α). (A.3)

From (A.2)-(A.3), we then get :

u0(µ, y0, v0) ≤ inf
α∈A

J(v0, α) = Jopt(v0). (A.4)

Moreover, from Lemma A.1, there exists someα̃ ∈ A such thatu0(µ, y0, v0) = uα̃
0 (µ, y0, v0).

Together with (A.3)-(A.4), this proves (A.1).
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Appendix B: Proof of Theorem 4.1

We first give some estimations on the functionsuα
k defined in (A.1).

Lemma B.1. AssumeH2, then we have for allk = 0, . . . , n, andα ∈ A :

[uα
k ]Sup ≤ (n − k)f̄ + h̄

where
f̄ := max([f ]Sup, [f ]Lip) and h̄ := max([h]Sup, [h]Lip).

Proof. By definition ofuα
k , we clearly have

[uα
k ]Sup ≤ f̄ + [uα

k+1]Sup

and so by induction :

[uα
k ]Sup ≤ (n − k)f̄ + [uα

n]Sup ≤ (n − k)f̄ + h̄

Lemma B.2. AssumeH2 andH4 , and set for allk = 0, . . . , n, (π, π̂, y, ŷ, v, v̂) ∈ Km × Km ×
R

d × R
d × R × R, α ∈ A :

B1(k, π, π̂, y, ŷ, v, v̂, α) =

∫

∣

∣

∣
uα

k+1

(

Ḡk+1(π, y, y′), y′,H(v, αk, y, y′)
)

−uα
k+1

(

Ḡk+1(π̂, ŷ, y′), y′,H(v̂, αk, ŷ, y′)
)

∣

∣

∣
Qk+1(π, y, dy′)

whereQk (Πk−1, Yk−1, dy′) denotes the conditional law ofYk given (Πk−1, Yk−1) and Ḡk is
defined in (3.1). Then, we have

B1(k, π, π̂, y, ŷ, v, v̂, α) ≤ 2[uα
k+1]Lip (Lg|y − ŷ]1 + ‖π − π̂‖1)

+ [H]Lip

(

|v − v̂|1 + |y − ŷ|1
)

.

Proof. Under assumptionH2, we have :

B1(k, π, π̂, y, ŷ, v, v̂, α) =

∫

∣

∣

∣
uα

k+1

(

Ḡk+1(π, y, y′), y′,H(v, αk, y, y′)
)

(B.1)

− uα
k+1

(

Ḡk+1(π̂, ŷ, y′), y′,H(v̂, αk, ŷ, y′)
)

∣

∣

∣
Qk+1(π, y, dy′)

≤ [uα
k+1]Lip

∫

∣

∣

∣
Ḡk+1(π, y, y′) − Ḡk+1(π̂, ŷ, y′)

∣

∣

∣

1
Qk+1(π, y, dy′)

+

∫

∣

∣

∣H(v, αk, y, y′) − H(v̂, αk, ŷ, y′)
∣

∣

∣

1
Qk+1(π, y, dy′)

≤ [uα
k+1]Lip

∫

∣

∣

∣Ḡk+1(π, y, y′) − Ḡk+1(π̂, ŷ, y′)
∣

∣

∣

1
Qk+1(π, y, dy′)

+ [H]Lip

(

|v − v̂|1 + |y − ŷ|1
)

. (B.2)
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Now, from (3.1) and (3.2), we have :
∫

∣

∣

∣Ḡk+1(π, y, y′) − Ḡk+1(π̂, ŷ, y′)
∣

∣

∣

1
Qk+1(π, y, dy′)

=

∫

∣

∣

∣Ḡk+1(π, y, y′) − Ḡk+1(π̂, ŷ, y′)
∣

∣

∣

1
qk+1(π, y, y′)dy′

≤
m

∑

i,j=1

∫

∣

∣

∣

gk+1(x
i, y, xj , y′)P ij

k πi

qk+1(π, y, y′)
− gk+1(x

i, ŷ, xj , y′)P ij
k π̂i

qk+1(π̂, ŷ, y′)

∣

∣

∣qk+1(π, y, y′)dy′

≤
m

∑

i,j=1

P ij
k π̂j

∫

∣

∣

∣

gk+1(x
i, y, xj , y′)qk+1(π̂, ŷ, y′)

qk+1(π, y, y′)
− gk+1(x

i, ŷ, xj , y′)qk+1(π, y, y′)

qk+1(π̂, ŷ, y′)

∣

∣

∣
dy′

+

m
∑

i=1

|πi − π̂i|

≤
m

∑

i,j=1

P ij
k

∫

∣

∣gk+1(x
i, y, xj , y′) − gk+1(x

i, ŷ, xj , y′)
∣

∣dy′

+

∫

∣

∣qk+1(π, y, y′) − qk+1(π̂, ŷ, y′)
∣

∣dy′ +

m
∑

i=1

|πi − π̂i|

≤ 2

m
∑

i,j=1

P ij
k

∫

∣

∣gk+1(x
i, y, xj , y′) − gk+1(x

i, ŷ, xj , y′)
∣

∣dy′ + 2

m
∑

i=1

|πi − π̂i|. (B.3)

Plugging (B.3) into (B.2), and using assumption(H4), we get the required result.

Lemma B.3. AssumeH4 and set for allk = 0, . . . , n, (π, π̂, y, ŷ, v, v̂) ∈ Km ×Km ×R
d ×R

d ×
R × R, α ∈ A :

B2(k, π, π̂, y, ŷ, v, v̂, α) =

∫

∣

∣

∣uα
k+1

(

Ḡk+1(π̂, ŷ, y′), y′,H(v̂, αk, ŷ, y′)
)

∣

∣

∣

[

Qk+1(π̂, ŷ, dy′) − Qk+1(π, y, dy′)
]

.

Then, we have

B2(k, π, π̂, y, ŷ, v, v̂, α) ≤
[

uα
k+1

]

Sup
Lg|y − ŷ]1 +

[

uα
k+1

]

Sup
|π − π̂|1.

Proof. From (3.2), we have :

B2(k, π, π̂, y, ŷ, v, v̂, α) ≤ [uα
k+1]Sup

∫

∣

∣qk+1(π̂, ŷ, y′) − qk+1(π, y, y′)
∣

∣dy′

≤ [uα
k+1]Sup

m
∑

i,j=1

P ij
k

∫

∣

∣gk+1(x
i, y, xj , y′) − gk+1(x

i, ŷ, xj , y′)
∣

∣dy′

+[uα
k+1]Sup

m
∑

i=1

|πi − π̂i|,

and we conclude withH4.
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Lemma B.4. Let H2, H3 and H4 hold. Then for allk = 0, . . . , n, the functionuα
k is Lipschitz,

uniformly with respect toα and
[uα

k ]Lip ≤ Lk

where

Lk :=
(

L̄gf̄(n − k) + M̄ + 3L̄gh̄
)

(

2L̄g

)n−k

2L̄g − 1

andf̄ := max([f ]Sup, [f ]Lip), h̄ := max([h]Sup, [h]Lip) , L̄g := max(Lg, 1) , M̄ := max([H]Lip, 1).

Proof. We denote :

z := (π, y, v), ẑ := (π̂, ŷ, v̂), Zα
k := (Πk, Yk, V

α
k )

and we have :

[uα
k ]Lip ≤ [f̂ ]Lip +

[

E
(

uα
k+1

(

Zα
k+1

)

| Zα
k = z

)]

Lip

= [f̂ ]Lip + [I2]Lip (B.4)

where
I2 := E

[

uα
k+1

(

Zα
k+1

)

| Zα
k = z

]

.

We have for all(π, π̂, y, ŷ, v, ŷ, a) ∈ × Km × Km × R
d × R

d × R × R × A),

∣

∣

∣
f̂(π, y, v, αk) − f̂(π̂, ŷ, v̂, αk)

∣

∣

∣
=

∣

∣

∣

∣

∫

f(x, y, v, αk)π(dx) −
∫

f(x, ŷ, v̂, αk)π̂(dx)

∣

∣

∣

∣

≤
∫

|f(x, y, v, αk) − f(x, ŷ, v̂, αk)| π(dx)

+

∫

|f(x, ŷ, v̂, αk)| |π̂ − π| (dx)

≤ [f ]Lip (|y − ŷ|1 + |v − v̂|1) + [f ]Sup |π̂ − π|1
≤ f̄ |z − ẑ|1

wheref̄ := max
(

[f ]Sup , [f ]Lip

)

. Therefore,[f̂ ]Lip ≤ f̄ . Let us now consider now theterm I2.
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By definition ofQk+1 andV α
k+1, we have

∣

∣

∣

∣

E
[

uα
k+1(Z

α
k+1)

∣

∣Zα
k = z

]

− E
[

uα
k+1(Z

α
k+1)

∣

∣Zα
k = ẑ

]

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

uα
k+1

(

Ḡk+1(π, y, y′), y′,H(v, αk, y, y′)
)

Qk+1(π, y, dy′) +

−
∫

uα
k+1

(

Ḡk+1(π̂, ŷ, y′), y′,H(v̂, αk, ŷ, y′)
)

Qk+1(π̂, ŷ, dy′)

∣

∣

∣

∣

≤
∫

∣

∣

∣
uα

k+1

(

Ḡk+1(π, y, y′), y′,H(v, αk, y, y′)
)

− uα
k+1

(

Ḡk+1(π̂, ŷ, y′), y′,H(v̂, αk, ŷ, y′)
)

∣

∣

∣
Qk+1(π, y, dy′)

+

∫

∣

∣

∣
uα

k+1

(

Ḡk+1(π̂, ŷ, y′), y′,H(v̂, αk, ŷ, y′)
)

∣

∣

∣

[

Qk+1(π̂, ŷ, dy′) − Qk+1(π, y, dy′)
]

= B1(k, π, π̂, y, ŷ, v, v̂, αk) + B2(k, π, π̂, y, ŷ, v, v̂, αk). (B.5)

By using lemmas B.2 and B.3, we then get
∣

∣

∣

∣

E
[

uα
k+1(Z

α
k+1)

∣

∣Zα
k = z

]

− E
[

uα
k+1(Z

α
k+1)

∣

∣Zα
k = ẑ

]

∣

∣

∣

∣

≤
(

2[uα
k+1]Lip + [uα

k+1]Sup

)(

Lg |y − ŷ|1 |π − π̂|1
)

+ [H]Lip

(

|v − v̂|1 + |y − ŷ|1
)

≤
(

2[uα
k+1]Lip + [uα

k+1]Sup

)

|z − ẑ|1 L̄g + M̄ |z − ẑ|1

whereL̄g := max(Lg, 1) andM̄ := max([H]Lip, 1), and we deduce that :

[I2]Lip ≤
(

2[uα
k+1]Lip + [uα

k+1]Sup

)

L̄g + M̄ . (B.6)

Plugging (B.6) into (B.4) yields :

[uα
k ]Lip ≤ f̄ + M̄ + L̄g

(

2[uα
k+1]Lip + [uα

k+1]Sup

)

so that from lemma B.1 :

[uα
k ]Lip ≤ f̄ + M̄ + 2L̄g[u

α
k+1]Lip + L̄gh̄ + L̄g(n − k − 1)

≤ 2L̄g[u
α
k+1]Lip + M̄ + L̄gh̄ + L̄g(n − k)f̄

≤ 2L̄g

{

L̄g(n − k − 1)f̄ + M̄ + h̄L̄g + 2L̄g

[

uα
k+2

]

Lip

}

+ M̄ + h̄L̄g + L̄g(n − k)f̄

= L̄gf̄
[

(n − k) + 2L̄g(n − k − 1)
]

+ (M̄ + h̄L̄g)
[

1 + 2L̄g

]

+
(

2L̄g

)2 [

uα
k+2

]

Lip
.
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By induction, this yields :

[uα
k ]Lip ≤ L̄gf̄

n−k−1
∑

i=0

(

2L̄g

)i
(n − k − i) + (M̄ + L̄gh̄)

n−k−1
∑

i=0

(

2L̄g

)i
+

(

2L̄g

)n−k
h̄

≤
(

L̄gf̄(n − k) + M̄ + L̄gh̄
)

(

(

2L̄g

)n−k − 1

2L̄g − 1

)

+ h̄
(

2L̄g

)n−k

≤
(

L̄gf̄(n − k) + M̄ + L̄gh̄ + h̄(2L̄g − 1)
)

(

(

2L̄g

)n−k

2L̄g − 1

)

≤
(

L̄gf̄(n − k) + M̄ + 3L̄gh̄
)

(

2L̄g

)n−k

2L̄g − 1
.

Therefore,

[uα
k ]Lip ≤

(

L̄gf̄(n − k) + M̄ + 3L̄gh̄
)

(

2L̄g

)n−k

2L̄g − 1

and the required result follows.

We now study estimations for the approximated cost function. Similarly as in Definition A.1,
we introduce the following sequence of functions :

Definition B.1. Letα = (αk)k be a control process inA. Functionsûα
k , k = 0, . . . , n, are defined

recursively by :











ûα
n(π, y, v) := ĥ(π, y, v)

ûα
k (π, y, v) := f̂(π, y, v, αk) + E

[

ûα
k+1

(

Π̂k+1, Ŷk+1, V̂
α
k+1

)

| (Π̂k, Ŷk, V̂
α
k ) = (π, y, v)

]

.

and we notice by same arguments as in Proposition 3.1 (see (A.1)) that

inf
α∈A

ûα
0 (µ, y0, v0) = û0(µ, y0, v0) = Ĵquant(v0). (B.7)

For anyα ∈ A, we denoteZα
k = (Πk, Yk, V

α
k ) andẐα

k = (Π̂k, Ŷk, V̂
α
k ), k = 0, . . . , n.

Lemma B.5. Assume H1, H2, H3 and H4. Then, we have for allk = 0, . . . , n, α ∈ A :

∥

∥uα
k

(

Zα
k

)

− ûk
α
(

Ẑα
k

)∥

∥

1
≤ M(α)

k (B.8)

with:

M(α)
k :=

√

m + d + q
n

∑

i=k

[

2
(

L̄gf̄(n − i) + M̄ + 3L̄gh̄
)

(

2L̄g

)n−i

2L̄g − 1
+ f̄ + h̄

]

∥

∥

∥
Zα

i − Ẑα
i

∥

∥

∥

2

30



Proof.
∥

∥

∥
uα

k

(

Zα
k

)

− ûk
α
(

Ẑα
k

)

∥

∥

∥

1

≤
∥

∥

∥
uα

k

(

Zα
k

)

− uα
k

(

Ẑα
k

)

∥

∥

∥

1
+

∥

∥

∥
uα

k

(

Ẑα
k

)

− E
[

uα
k

(

Zα
k

)∣

∣Ẑα
k

]

∥

∥

∥

1
+

∥

∥

∥
E

[

uα
k

(

Zα
k

)∣

∣Ẑα
k

]

− ûα
k

(

Ẑα
k

)

∥

∥

∥

1

≤ 2
∥

∥

∥
uα

k

(

Zα
k

)

− uα
k

(

Ẑα
k

)

∥

∥

∥

1
+

∥

∥

∥
E

[

uα
k

(

Zα
k

)∣

∣Ẑα
k

]

− ûα
k

(

Ẑα
k

)

∥

∥

∥

1

= I1 + I2 (B.9)

with:
I1 := 2

∥

∥

∥
uα

k

(

Zα
k

)

− uα
k

(

Ẑα
k

)

∥

∥

∥

1

and
I2 :=

∥

∥

∥
E

[

uα
k

(

Zα
k

)∣

∣Ẑα
k

]

− ûα
k

(

Ẑα
k

)

∥

∥

∥

1
.

Consider now the termI2:

I2 =

∥

∥

∥

∥

E

[

f̂
(

Zα
k , α

)

+ E
[

uα
k+1

∣

∣Zα
k

]

∣

∣

∣Ẑα
k

]

− f̂
(

Ẑα
k , α

)

+ E
[

ûα
k+1

∣

∣Ẑα
k

]

∥

∥

∥

∥

1

=

∥

∥

∥

∥

E

[

f̂
(

Zα
k , α

)

− f̂
(

Ẑα
k , α

)

+ uα
k+1

(

Zα
k+1

)

− ûα
k+1

(

Ẑα
k+1

)

∣

∣

∣
Ẑα

k

]

∥

∥

∥

∥

1

≤
∥

∥

∥
f̂
(

Zα
k , α

)

− f̂
(

Ẑα
k , α

)

∥

∥

∥

1
+

∥

∥

∥
uα

k+1

(

Zα
k+1

)

− ûα
k+1

(

Ẑα
k+1

)

∥

∥

∥

1

≤ f̄
∥

∥

∥
Ẑα

k − Zα
k

∥

∥

∥

1
+

∥

∥

∥
uα

k+1

(

Zα
k+1

)

− ûα
k+1

(

Ẑα
k+1

)

∥

∥

∥

1
(B.10)

Concerning the termI1 we have :

I1 ≤ 2Lk

∥

∥

∥Zα
k − Ẑα

k

∥

∥

∥

1
(B.11)

where we have used the proposition B.4.
Plugging (B.11) and (B.10) into (B.9) yields :

∥

∥uα
k

(

Zα
k

)

− ûk
α
(

Zα
k

)∥

∥

1

≤
(

2Lk + f̄
)

∥

∥

∥
Zα

k − Ẑα
k

∥

∥

∥

1
+

∥

∥

∥
uα

k+1

(

Zα
k+1

)

− ûα
k+1

(

Ẑα
k+1

)

∥

∥

∥

1

≤
(

2Lk + f̄
)

∥

∥

∥
Zα

k − Ẑα
k

∥

∥

∥

1
+

(

2Lk+1 + f̄
)

∥

∥

∥
Zα

k+1 − Ẑα
k+1

∥

∥

∥

1
+

∥

∥

∥
uα

k+2 (Zk+2) − ûα
k+2

(

Ẑk+2

)

∥

∥

∥

1

≤
n−1
∑

i=k

∥

∥

∥
Zα

i − Ẑα
i

∥

∥

∥

1

(

2Li + f̄
)

+ h̄
∥

∥

∥
Zn − Ẑn

∥

∥

∥

1

≤
n

∑

i=k

[

2
(

L̄gf̄(n − i) + M̄ + 3L̄gh̄
)

(

2L̄g

)n−i

2L̄g − 1
+ f̄ + h̄

]

∥

∥

∥Zα
i − Ẑα

i

∥

∥

∥

1

and the required result is proved by using the Cauchy-Schwarz inequality on
∥

∥

∥
Zα

i − Ẑα
i

∥

∥

∥

1
.

The term‖Zα
k − Ẑα

k ‖2 represents the discretization error at timek and is bounded with the
following estimation :
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Lemma B.6. AssumeH2 holds. Then, for each time stepk = 0, . . . , n, andα ∈ A, we have

‖Zα
k − Ẑα

k ‖2 ≤ Ψk|v0 − ProjΓV (v0)| +
k

∑

i=0

∆k−iΨ
i +

(

ν +
C2

R

)

k
∑

i=0

Ψi (B.12)

whereΨ := [H]Lip(2d + 1), C2 is the maximum value ofH overΓ ×A ×∪kΓk ×∪kΓk and∆k

is theL2 quantization error at the time stepk :

∆k =
∥

∥(Π̂k, Ŷk) − (Πk, Yk)
∥

∥

2
.

Proof. By Minkowski’s inequality, we have :

‖Zα
k − Ẑα

k ‖2 ≤
∥

∥V α
k − V̂ α

k

∥

∥

2
+ ∆k. (B.13)

Recalling the dynamics (2.1) and (4.3), we have :
∥

∥V α
k − V̂ α

k

∥

∥

2
≤

∥

∥Hα
k − Ĥα

k

∥

∥

2
+

∥

∥Ĥα
k − ProjΓĤα

k

∥

∥

2
, (B.14)

whereHα
k := H(V α

k−1, αk−1, Yk−1, Yk) andĤα
k := H(V̂ α

k−1, αk−1, Ŷk−1, Ŷk). UnderH2, and by
using Minkowski’s and Cauchy-Schwarz’ inequalities, we get :

∥

∥Hα
k − Ĥα

k

∥

∥

2
≤ [H]Lip(2d + q)

(

∥

∥V̂ α
k−1 − V α

k−1

∥

∥

2
+

∥

∥Ŷk−1 − Yk−1

∥

∥

2
+

∥

∥Ŷk − Yk

∥

∥

2

)

≤ Ψ
(

∥

∥V̂ α
k−1 − V α

k−1

∥

∥

2
+ ∆k−1 + ∆k

)

,

and so by (B.14) :
∥

∥V α
k − V̂ α

k

∥

∥

2
+ ∆k ≤ Ψ

(

∥

∥V̂ α
k−1 − V α

k−1

∥

∥

2
+ ∆k−1

)

+ (Ψ + 1)∆k +
∥

∥Ĥα
k − ProjΓĤα

k

∥

∥

2

Hence, a direct backward induction yields :

∥

∥V α
k − V̂ α

k

∥

∥

2
+ ∆k ≤ Ψk|v0 − ProjΓV (v0)| +

k
∑

i=0

∆k−iΨ
i

+

k
∑

i=0

Ψi
∥

∥Ĥα
k−i − ProjΓĤα

k−i

∥

∥

2
. (B.15)

By noting that|v − ProjΓV (v)| ≤ max(|v| − R, 0) + ν, for all v ∈ R, we have
∥

∥Ĥα
k−i − ProjΓĤα

k−i

∥

∥

2
≤ ν +

∥

∥Ĥα
k−i1{Ĥα

k−i
≥R}

∥

∥

2
(B.16)

≤ ν +
1

R

∥

∥Ĥα
k−i

∥

∥

2

≤ ν +
1

R
C2, (B.17)

where we used Markov inequality. The requested result is proved by plugging (B.17) and (B.15)
into (B.13).

Proof of Theorem 4.1

This follows directly from the estimations (B.8) and (B.12)for k = 0, and from the relations (A.1)
and (B.7).
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