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Abstract

We study an insurance model where the risk can be controlled by reinsurance and in-
vestment in the financial market. We consider a finite planning horizon where the timing
of the events, namely the arrivals of a claim and the change of the price of the underlying
asset(s), corresponds to a Poisson point process. The objective is the maximization of the
expected total utility and this leads to a nonstandard stochastic control problem with a
possibly unbounded number of discrete random time points over the given finite planning
horizon. Exploiting the contraction property of an appropriate dynamic programming oper-
ator, we obtain a value-iteration type algorithm to compute the optimal value and strategy
and derive its speed of convergence. Following Schäl(2004) we consider also the specific case
of exponential utility functions whereby negative values of the risk process are penalized thus
combining features of ruin minimization and utility maximization. For this case we are able
to derive an explicit solution. Results of numerical computations are also reported.
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1 Introduction

We study an insurance model where the risk/reserve process can be controlled by reinsurance
and investment in the financial market. In this context the usual aim is to minimize the ruin
probability over a given horizon. Inspired by Schäl(2004), in this paper we try to combine features
of ruin probability minimization with expected utility maximization by formulating an objective
function that consists in the maximization of the expected cumulative exponential utility from
the risk/reserve process over a given planning horizon; by maximizing expected exponential
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utility one penalizes in fact negative values of the risk/reserve process. An analogous purpose
appears partly in the recent paper Bai and Guo(2008), where the authors study the problem of
expected exponential utility of terminal wealth as well as that of the minimization of the ruin
probability for a reinsurance and investment model, but the two problems are studied separately
with one of the objectives being also to investigate the relationship between the two criteria.

Control problems for risk/reserve processes are commonly formulated in continuous time.
Schäl(2004) presents a formulation of the problem where events (arrivals of claims and asset
price changes) occur at discrete points in time that may be deterministic or random, but their
total number is fixed. This implies that in the case of random time points the horizon is random
as well. We feel that a more natural way to formulate the problem in case of random time points
is to consider a given fixed time horizon so that it is the number of event times that becomes
random and this makes the problem nonstandard. With random event times it is reasonable to
assume that also the control decisions (level of reinsurance and investment) correspond to these
random discrete time points. This is consistent both with the realistic impossibility of changing
the reinsurance contract continuously as well as with the fact that trading occurs generally only
at the times when quotes are updated in the market. Notice that this problem formulation can be
seen equivalently in discrete or continuous time. In fact, although the processes to be considered
are defined in discrete time as sequences of claims, price changes and controls, one has that by
means of piecewise constant interpolations, which for the controls have to be left continuous to
make them predictable, they can also be viewed as continuous time processes. In the problem
formulation below we shall rather naturally opt for the continuous time setup.

The problem results thus in a stochastic control problem that can be seen in discrete or
continuous time. A traditional approach in a continuous time setting is via the Hamilton-Jacobi-
Bellman (HJB) theory. To this effect see e.g. Schmidli(2002) and Luo et al.(2008) in an insurance
context where the criterion is the minimization of the ruin probability and, more recently, Bai
and Guo(2008) where both minimization of ruin probability as well as maximization of expected
exponential utility of terminal wealth are considered (for this latter criterion see also Cao and
Wan(2009)). The HJB theory, which traditionally was derived for diffusion-type processes, can
in fact be applied to discontinuous processes as well (for general references see e.g. Hipp(2004),
Schmidli(2008)). The HJB approach requires however appropriate regularity of the value function
as well as other properties that are not always easy to verify; furthermore, analytic solutions are
difficult to come by.

In the present paper we focus on value iteration that does not require these regularity as-
sumptions and in certain cases (see Section 4 below) allows for an analytic solution. In those
cases where an analytic solution may be difficult to obtain, it allows to compute the optimal
values and control to any degree of accuracy. In fact, the optimal value turns out to be the fixed
point of a suitable contraction operator. The solution involves thus the determination of this
fixed point that, thanks to the contraction property of the operator, can arbitrarily closely be
approximated by iterating sufficiently often this operator. In Section 4 it will be shown that, by
choosing an exponential utility function that fulfills our purpose of combining features of ruin
minimization and utility maximization, it is possible to obtain a semianalytic solution to the
problem in the sense that the solution to the fixed point problem can be expressed in terms of
two Volterra integral equations that can be solved explicitly; the controls are then determined
numerically.

Value iteration is a natural approach to problems formulated in discrete time and is tra-
ditionally studied for the case of deterministic time points. Inspired by results in Kirch and
Runggaldier(2004), where hedging problems are considered, we extend it here to the case of
discrete random event times. In the context of portfolio optimization an analogous approach can
be found in Bäuerle and Rieder(2009) and DiMasi et al.(2006) (somewhat related are also the
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papers Pham and Tankov(2008) and Pham and Tankov(2009)).
The structure of the paper is as follows. In the next Section 2 we describe the model and

formulate the objective. In Section 3 we present the value iteration approach for general utility
functions. In Section 4 we discuss the solution of our problem via value iteration by presenting
first a semianalytic solution for the case of exponential utility functions and then discussing nu-
merical implementations of value iteration in the general case. Results of numerical calculations
are also reported.

2 Model and objective

Choosing a continuous time setup we consider a risk/reserve process of a company (in our
context we shall call it the wealth process) that results from deterministic premium and stochastic
claim payments as well as from investment in the financial market.

The stochastic elements that affect the evolution of the risk process are the timing and size of
the claims as well as the evolution of the prices of the assets in which the company is investing. We
allow for two possibilities to intervene in (control) the evolution of the risk process: reinsurance
and investment.

Given a time horizon, the objective is to choose over time the reinsurance level and the
amount of investment in order to maximize the expected cumulative utility.

Claims occur at random points in time and also their sizes are random, while asset price
evolutions are usually modeled as continuous time processes. Noticing that, on small time scales,
prices actually change at discrete random time points and vary by tick size, in our model we let
also asset prices change only at discrete random times with their sizes being random as well. For
simplicity and without loss of generality we shall assume that there is only one risky asset to
invest in. We furthermore assume that the sizes of both the claims and the prices are i.i.d. with
a positive probability mass at the value zero. This will allow us to consider the timing of the
events (arrival of a claim and change of the price) to be triggered by a same counting process
that we shall assume to be of the Poisson type. If then at an event time the size of a claim results
being equal to zero, it means that at that time only a price change may occur and viceversa.
Since between event times the situation for the company does not change, we shall determine
the controls (level of reinsurance and investment) only at event times.

2.1 Specific description of the model

2.1.1 Claims and price processes.

Let:

• [0, T ] be a given planning horizon, T < +∞;

• Nt: a Poisson process with deterministic intensity λt = λ that determines the timing of
the events (arrivals of claims and price variation of the asset to invest in);

• Ti: random time of occurrence of the i-th event:

Ti = inf{t ≥ 0 | Nt = i}
Ti+1 − Ti is exponentially distributed with parameter λ independently of i.

• YTi : claim (payment) at Ti. The sequence {YTi} is supposed to be i.i.d. with a point mass
at 0. For simplicity, and without loss of generality, assume just two values for the claim
sizes, namely YTi ∈ {0, y} with P[YTi = y] = p;
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• St: the discounted price process of the risky asset. For simplicity and without loss of
generality we consider only one asset to invest in. We assume that prices change only at
the event times Ti according to

STi − STi
−

STi
−

= eWTi − 1 (1)

where WTi is an i.i.d. sequence taking values in ∈ [w,w] with w < 0 < w and a point mass
at 0. Notice that, according to the given dynamics, prices can increase or decrease but,
given that eWTi −1 > −1, they remain always positive. For simplicity, we let WTi take only
three representative values, i.e. WTi ∈ {−d, 0, u} with probabilities p1, p2, p3 respectively
and with d, u > 0.

Instead of considering the above random sequences, we may also work with continuous time
processes. To the sequences YTi , WTi we may then equivalently associate the continuous
time processes Yt, Wt considering them to be piecewise constant interpolations of {YTn}n≥0

and {WTn}n≥0 respectively. The dynamics of St is then given by:

dSt = St−
(
eWt − 1

)
dNt

i.e.

St = S0 +
Nt∑

n=1

ST−n

(
eWTn − 1

)

• Nt, Yt, Wt are supposed to be independent. The independence between Y and W can
easily be relaxed as in all our calculations only their joint distribution is involved; also
independence with N can be relaxed but then the calculations get more involved.

• Let (Ω,F ,P) be the probability space on which all the stochastic processes to be considered
are defined, and let {Ft}t>0 ⊆ F be the smallest filtration that makes the processes Nt,
Yt, Wt measurable.

2.1.2 Controls: reinsurance and investment.

Control decisions are supposed to correspond to the event times and they have to be deter-
mined on the basis of information prior to the generic Ti, so they have to be left continuous
(“predictable”).

We consider a proportional reinsurance: for bTi ∈ [0, 1], the part of the claim paid by the
company is h(bTi , YTi) = bTi ·YTi . If b = 0 all the risk is reinsured, if b = 1 there is no reinsurance.

The control δTi represents the amount invested in the risky asset at the event time Ti. We
assume also that the company is not allowed to be indebted beyond a certain level, nor to
invest beyond a certain level: this leads to having δTi ∈ [−C1, C2] for all Ti for some constants
C1, C2 > 0. We shortly write φTi = (bTi , δTi) for the control in the interval (Ti−1, Ti]. and

U = [0, 1]× [−C1, C2]

for the compact control space.

2.1.3 Premium Rates.

Let c be the premium rate paid by the customer to the company, fixed in the contract. To
obtain the reinsurance, the company must pay to the reinsurer another premium rate, depending
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on the reinsurance level b, so let c(b) be the net income rate of the company. If h(b, y) represents
the part of the claim paid by the company (h(0, y) = 0), according to the expected value principle
with safety loading θ of the reinsurer, c(b) can be chosen as follows:

c(b) := c− (1 + θ)
E [Y − h(b, Y )]

E [Ξ]
(2)

where Ξ is the random time between two claims. Notice that, under proportional reinsurance,
c(b) is a continuous function of b and, clearly, c is chosen so that c(b) ≥ 0 ∀b ∈ [0, 1]. Since c(b)
is increasing in b one has c(0) 6 c(b) 6 c(1) = c so it suffices to choose

c = (1 + θ)
E [Y ]
E [Ξ]

(3)

Condition (3) also guarantees that for any b ∈ [0, 1] one has c(b) ≥ 0 and that, since h(0, y) = 0,
by taking b = 0 (complete reinsurance) the net income rate is c(b) = 0.

2.1.4 The wealth/reserve

Given an initial capital X0, let Xt be the discounted “risk/reserve process” at time t ∈ [0, T ]
that takes into account:

• the net premium rate collected so far;

• the amount invested at time t in the stock St

• the total claims paid by the company until time t

So the formula for Xt is:

Xt = X0 +
∫ t

0
c(bt)dt +

Nt∑

n=1

[
δTn

(
eWTn − 1

)− h (bTn , YTn)
]

(4)

Notice that δTn denotes the monetary amount invested in the risky asset at the event time Tn

and the controls have been assumed to be left continuous (predictable) i.e. δTn = δTn−. Denoting
then by αTn := δTn

STn−
the (also left continuous) number of units invested in the risky asset at the

event time Tn, from (1) we have for the generic term in the sum on the right hand side of (4)
that

δTn

(
eWTn − 1

)
= δTn

STn − STn−
STn−

= αTn (STn − STn−)

and this gives the (self financing) increment of the investment in the financial market due to the
change, from STn− to STn , in the asset price at the event time Tn.

In differential form (4) becomes

dXt = c(bt)dt +
[
δt

(
eWt − 1

)− h (bt, Yt)
]
dNt

Notice that, while bt, δt are left-continuous, Wt, Yt may be considered as right continuous.
We now have

Definition 1. The set Φ of admissible controls is

Φ =
{

φ = (b, δ) s.t. φ is a U-valued process, constant in (Ti−1, Ti] , i = 1, . . . , NT

}
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In what follows we shall denote by Xφ
t the solution of (4) corresponding to the control strategy

φt = (bt, δt).

Remark 2. The optimal controls will later on be determined as feedback controls of the form
φ = φ(t, x) = (b(t, x), δ(t, x)) and, given our assumptions, will be continuous functions of their
arguments. In what follows, whenever it applies, we will thus implicitly consider the controls to
be of the feedback form.

Notice that, since c(bt) > 0, by choosing bt ≡ 0 ≡ δt (no investment and complete reinsur-
ance), the value of Xt cannot decrease. This is a trivial case that we do not consider, but it
ensures that Φ 6= ∅.

2.1.5 Value Function and The Objective.

We want to maximize the expected “cumulative utility” from our wealth process over the
given horizon [0, T ].

Although later on we shall more specifically consider exponential utility functions that, as
already mentioned, allow to combine features of classical ruin minimization and utility maxi-
mization, we formulate here our objective for general utility functions.

Given a (“running”) utility function g : R→ R and a (“terminal”) utility function G : R→ R,
consider for φ ∈ Φ the following Value Function:

V φ(t, x) := 1{t6T}E
φ
t,x




NT∑

k=Nt+1

g
(
Xφ

Tk

)
+ G

(
Xφ

T

)

 (5)

that represents the total/cumulative expected utility starting from time t with capital Xt = x

and using the control φ ∈ Φ (notice that Eφ
t,x is the mean under the conditional probability

P [A|Ft] , A ∈ F , taking into account that Xt is a Markov Process).

Notation 3. Henceforth we shall often use the notation

V φ(Tn, x) := 1{Tn6T}E
φ
Tn,x

[
NT∑

k=n+1

g
(
Xφ

Tk

)
+ G

(
Xφ

T

)]
(6)

with the following meaning: having observed the jump time Tn and the value XTn = x, V φ(Tn, x)
represents the total expected utility starting from time Tn with capital x. Formally, we may
consider V φ(Tn, x) as the function V φ(t, x) evaluated at t = Tn for the given XTn = x.

Recalling that the control decisions (reinsurance and investment level) correspond to event
times, we use the shorthand notation bh = bTh

, δh = δTh
for the controls to be applied in the

interval (Th−1, Th]. Analogously we shall also put Yh := YTh
,Wh := WTh

. Furthermore, letting

Zh+1 := Th+1 − Th h > 0

which are i.i.d. distributed according to a random variable Z that has a negative exponential
distribution with parameter λ, we have (see (4)) that at the generic jump time Tk the value of
Xφ

Tk
is

Xφ
Tk

= X0 +
k∑

h=1

[
c(bh)Zh − h(bh, Yh) + δh

(
eWh − 1

)]
(7)
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Noticing that, being Z is a continuous random variable, we are allowed to write 1{t+Z6T} =
1{t+Z<T} a.s., define the random set of integers

In(ω) :=

{
k ∈ N

∣∣∣∣∣
k∑

h=1

Zn+h(ω) < T − Tn

}

We then have the following explicit formula for V φ(Tn, x):

V φ(Tn, x)

= 1{Tn≤T}Eφ

[
∑

k∈In
g

(
x +

∑k
h=1

[
c(bn+h)Zn+h − h(bn+h, Yn+h) + δn+h

(
eWn+h − 1

)])

+G

(
x +

∑
h∈In

[
c(bn+h)Zn+h − h(bn+h, Yn+h) + δn+h

(
eWn+h − 1

)]

+c (bNT +1) (T − TNT
)
)]

(8)
where the expectation is with respect to the joint distribution of the independent random variables
(Zn+h, Yn+h,Wn+h) and we have used the fact that the controls are predictable (left continuous)
so that, see Definition 1, φn = (bn, δn) is the control on the interval (Tn−1, Tn] to be determined
in Tn−1. For this reason we also write bNT +1 for the reinsurance ratio to be applied in (TNT

, T ].

2.1.6 The Problem.

We want to maximize the total expected utility, i.e. determine φ∗ ∈ Φ s.t.

V ∗(Tn, x) := V φ∗(Tn, x) = sup
φ∈Φ

V φ(Tn, x) (9)

In particular, we are interested in V ∗(0, X0).

Remark 4. For exponential utility functions that (see Section 4, in particular 4.1) we shall take
of the form g(x) = 1 − γe−βx, G(x) = 1 − µe−βx, we may interpret our objective function also
as aiming at maximizing expected exponential utility from terminal wealth while keeping as low
as possible the probability of occurrence of negative values of the risk process before the terminal
time horizon. (In this context see also Bai and Guo(2008)).

2.1.7 Possible approaches

Hamilton-Jacobi-Bellman (HJB) approach

Our problem has been formulated as a stochastic control problem in continuous time. As
mentioned in the Introduction, a traditional approach to such problems is the Hamilton-Jacobi-
Bellman(HJB) approach (see Hipp(2004), Schmidli(2008)). For our specific problem we shall
now mention the formal derivation of of the Hamilton-Jacobi-Bellman equation by following the
usual approach based on the Principle of Optimality. Assuming that all the required regularity
properties hold, by using the generalized Ito formula for jump-diffusion processes and the fact
that, being Nt a Poisson process with deterministic intensity λt ≡ λ, one has

E

[
NT∑

k=n+1

g
(
Xφ

Tk

)]
= E

[∫ T

Tn+1

g(Xφ
s−)dNs

]
= E

[∫ T

Tn+1

λ · g
(
Xφ

s

)
ds

]
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the following equation for the optimal value function V ∗(t, x) can rather straightforwardly be
obtained (details are in Edoli (2009))

∂tV
∗(t, x) + g(x)+ sup

(b,δ)∈Φ

{
c(b)∂xV ∗(t, x)+

+ λE
[
V ∗ (

t, x + δ(eW − 1)− h(b, Y )
)− V ∗(t, x)

]}
= 0

(10)

with terminal condition V ∗(T, x) = G(x).
To solve (10) one has first to take the supremum over b and δ for a hypothetical V ∗, thus

obtaining b and δ in terms of V ∗ and its derivatives. Then one replaces these expressions in
formula (10) to obtain a PDE. Finally, to make sure that the controls so obtained as well as V ∗

are optimal, a "verification theorem" has to be invoked.
Although the HJB approach can be used under restrictive assumptions also for our problem

setting, it turns out that Value Iteration is a much more convenient approach.

Value Iteration

One of the weaknesses of the classical HJB approach are the regularity requirements for the
value function V (t, x). Although existence and uniqueness can be obtained also under weaker
assumptions, the determination of the optimal controls via HJB still requires the existence of
the partial derivatives of the solution.

Valuer iteration, which is the approach that we are going to follow, allows to overcome these
problems and to actually determine the optimal value and the optimal controls to any degree
of accuracy. In fact, differentiability of the value function is not needed and its existence and
uniqueness follow from the contraction property of a suitable operator on a metric space. While
for general utility functions it allows one to obtain the control (reinsurance and investment) to
any level of suboptimality, provided the operator is iterated sufficiently often, for exponential
utility functions we shall also provide a full solution that can be explicitly obtained by combining
analytical and numerical techniques.

3 The Value Iteration Approach

In this section we study the value iteration approach to solve the problem formulated in sec-
tion 2. The specific approach that we are going to use is inspired by Kirch and Runggaldier(2004).

3.1 Mappings/operators

We first recall the value functions.

Definition 5. Let φ ∈ Φ, x ∈ R, Tn ∈ R+, n ∈ N, g : R→ R, G : R→ R.
Given the Notation 3, recall the following functions:

V φ(Tn, x) := 1{Tn6T}E
φ
Tn,x

[
NT∑

k=n+1

g
(
Xφ

Tk

)
+ G

(
Xφ

T

)]
(11)

V ∗(Tn, x) := sup
φ∈Φ

V φ (Tn, x) (12)

φ∗ (Tn, x) := arg

(
sup
φ∈Φ

V φ (Tn, x)

)
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with the meaning that, if n + 1 > NT , then
NT∑

k=n+1

g
(
Xφ

Tk

)
= 0 and where φ∗ is now given in

feedback form (see Remark 2).

Assumption 6. The functions g : R→ R and G : R→ R are increasing, concave, and bounded
(i.e. |g(x)| 6 G and |G(x)| 6 G for some positive constant G).
Definition 7. We denote by B (R+ × R) the space of bounded functions on R+ × R and by
CB(R+ × R) the space of continuous and bounded functions on R+ × R endowed with the sup-
norm (for details see Section 3.3).

Remark 8. Given the Assumption 6, V φ (Tn, x) is increasing in x and bounded; in fact −E[NT ]·
G 6 V φ (Tn,−K) 6 V φ(Tn, x

)
6 E[NT ] · G, ∀Tn ∈ [0, T ] with E[NT ] = λT , hence V φ(Tn, x

) ∈
B (R+ × R).

Now we define the two main mappings/operators.

Definition 9. Given g, G : R → R satisfying Assumption 6, for φ ∈ Φ and Z ∼ Exp(λ) for
some λ > 0, define the operators T φ, T ∗ : B (R+ × R) → B (R+ × R) by

(
T φv

)
(t, x) := Eφ

t,x

[
1{t+Z6T} g

(
Xφ

t+Z

)
+ v

(
t + Z,Xφ

t+Z

)
+

+ 1{t6T<t+Z}G
(
Xφ

T

)] (13)

where we want to point out that, given t and Xφ
t = x, the dependence on φ of Xφ

t+Z as well as of
Xφ

T for the event t 6 T < t + Z is only through its value φNt. This justifies the next definition,
namely

(T ∗v) (t, x) := sup
φNt=(bNt ,δNt )∈U

(
T φv

)
(t, x) (14)

Again, we denote

φ∗ (t, x) = arg

(
sup

φNt∈U

(
T φv

)
(t, x)

)
(15)

assuming it exists (see Proposition 15 below).

Definition 10. Let G : R → R satisfy Assumption 6, φ ∈ Φ, x ∈ R, t ∈ [0, T ]. We define the
sequence

{
vφ
m (t, x)

}
m∈N

⊆ B (R+ × R) as:





vφ
0 (t, x) := 1{t6T}G

(
x + c(b) (T − t)

)

vφ
m (t, x) :=

(
T φvφ

m−1

)
(t, x)

(16)

and the sequence {v∗m (t, x)}m∈N ⊆ B (R+ × R) as:




v∗0 (t, x) := 1{t6T} sup
b∈[0,1]

G
(
x + c(b) (T − t)

)

v∗m (t, x) :=
(
T ∗v∗m−1

)
(t, x)

(17)

The next subsection shows the relations between the value functions and the operators.
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3.2 Fixed point characterization of the value functions

Theorem 11. Let φ ∈ Φ, x ∈ R, Tn ∈ [0, T ], λ > 0, Z ∼ Exp(λ). We have:

i)
V φ (Tn, x) = Eφ

Tn,x

[
1{Tn+Z6T}g

(
Xφ

Tn+Z

)
+ V φ

(
Tn + Z, Xφ

Tn+Z

)
+

+1{Tn6T<Tn+Z}G
(
Xφ

T

)]
=

=
(
T φV φ

)
(Tn, x)

ii)

V ∗ (Tn, x) = sup
φTn∈Φ

{
Eφ

Tn,x

[
1{Tn+Z6T}g

(
Xφ

Tn+Z

)
+

+V ∗
(
Tn + Z,Xφ

Tn+Z

)
+1{Tn6T<Tn+Z}G

(
Xφ

T

)]}
=

= (T ∗V ∗) (Tn, x)

Proof. Part (i) Given the representation of Xφ
Tk

in (7) and that Zn are i.i.d. ∼ Z which is an exponential
random variable with parameter λ, we have Tn+1 = Tn + Zn+1 and {Tn + Z 6 T} ⊂ {Tn 6 T}, i.e.
1{Tn6T}1{Tn+Z6T} = 1{Tn+Z6T}, the expression for V φ(Tn, x) in (8) can be rewritten as

V φ(Tn, x) = 1{Tn≤T}Eφ


1{Tn+Zn+1≤T}


g

(
Xφ

Tn+Zn+1

)
+

∑

h∈In+1

g(Xφ
h )


 + G(Xφ

T )


 =

= Eφ

[
1{Tn+Zn+1≤T}g

(
Xφ

Tn+Zn+1

)
+ 1{Tn6T<Tn+Zn+1}G

(
Xφ

T

)]
+

+Eφ


1{Tn+Zn+1≤T}E


 ∑

h∈In+1

g(Xφ
h ) + G(Xφ

T )

∣∣∣∣∣Zn+1, X
φ
Tn+Zn+1





 =

= Eφ
[
1{Tn+Zn+1≤T}g

(
Xφ

Tn+Zn+1

)
+ V φ

(
Tn + Zn+1, X

φ
Tn+Zn+1

)
+

+ 1{Tn6T<Tn+Zn+1}G
(
Xφ

T

)]
=

=
(
TφV φ

)
(Tn, x)

(18)

Part (ii). Using part (i) and the DP-principle, which states that if a control is optimal on a whole
sequence of periods than it has to be optimal on every single period, we obtain:

V ∗ (Tn, x) = supφ∈Φ V φ (Tn, x) = supφ∈Φ TφV φ (Tn, x) =

= supφ∈ΦE
φ
Tn,x

[
1{Tn+Z6T}g

(
Xφ

Tn+Z

)
+ V φ

(
Tn + Z, Xφ

Tn+Z

)
+ 1{Tn6T<Tn+Z}G

(
Xφ

T

)]
=

= supφTn∈U E
φTn

Tn,x

[
1{Tn+Z6T}g

(
X

φTn

Tn+Z

)
+ 1{Tn6T<Tn+Z}G

(
X

φTn

T

)
+

+supφ={φTi}i∈{n+1,...,NT }∈Φ V φ
(
Tn + Z, X

φTn

Tn+Z

)]
=

= supφTn∈U E
φTn

Tn,x

[
1{Tn+Z6T}g

(
X

φTn

Tn+Z

)
+ 1{Tn6T<Tn+Z}G

(
X

φTn

T

)
+ V ∗

(
Tn, X

φTn

Tn+Z

)]
=

= (T ∗V ∗) (Tn, x)

Corollary 12. V φ is a fixed point for the map T φ and V ∗ is a fixed point for the map T ∗.
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Example 13. With the assumptions of Section 2, if we denote the joint probability distribution
function of the discrete random variables (W,Y ) by

µ(w, y) := P [W = w, Y = y] = P [W = w] ·P [Y = y]

the expanded form of formula (13) with v(t, x) = V φ (t, x) is:
(
T φV φ

)
(t, x) =

∫ T−t
0 λe−λξ

(
∑

y ∈ {0, ȳ}
w ∈ {−d, 0, u}

µ(w, y) · [g (x + c (b) ξ − by + δ (ew − 1))+

+V φ (t + ξ, x + c (b) ξ − by + δ (ew − 1))
]
)

dξ+

+
∫ +∞
T−t λe−λξG (x + c(b) (T − t)) dξ =

=
∫ T−t
0 λe−λξ

(
∑

y, w µ(w, y) ·
[
g
(
x + c (b) ξ − by + δ (ew − 1)

)
+

+V φ
(
t + ξ, x + c (b) ξ − by + δ (ew − 1)

)])
dξ+

+e−λ(T−t)G (x + c(b) (T − t))

(19)

Notice that, even if “a priori” formula (13) requires an integration of v(t + ξ, XTn+1) for ξ ∈
[0,∞], thanks to the definition of V φ(t, x) in formula (11), we can integrate V φ(t+ ξ, XTn+1) for
ξ ∈ [0, T − t], having V φ(t + ξ,XTn+1) = 0 when t + ξ > T .

3.3 Contraction property of the operators

This section is devoted to show that the operators T φ and T ∗ are contraction mappings on
the metric space B (R+ × R) endowed with the sup-norm

‖v‖∞ = sup
(t,x)∈R+×R

|v(t, x)|

We recall that a map T is a contraction if there is a real number q < 1 such that for all functions
v, v′ ∈ B (R+ × R) one has: ∥∥Tv − Tv′

∥∥
∞ 6 q · ∥∥v − v′

∥∥
∞

For brevity we denote CB = CB (R+ × R) and ‖ ∗ ‖ = ‖ ∗ ‖∞.

Assumption 14. The functions g and G satisfy Assumption 6 and are continuous.

Proposition 15. Let v ∈ CB. Under Assumption 14 the following hold:

i. for all φ ∈ Φ that are continuous functions of their arguments, namely φ = φ(t, x) a continuous
function of (t, x), one has T φv ∈ CB, i.e. T φ : CB −→ CB.

ii. the optimal control φ∗ (t, x) = arg sup
φNt∈U

(T φv)(t, x) exists and is a continuous function of its

arguments.

iii. for all m ∈ N one has v∗m(t, x) ∈ CB, where the functions v∗m(t, x) are defined in formula
(17).

11



Proof. Given t ∈ [0, T ] and a sequence tn ∈ [0, T ] such that limn→∞ tn = t, notice first that, thanks to
the fact that Z is a continuous random variable, we are allowed to write:

lim
n→+∞

1{tn+Z<T} = 1{t+Z6T} = 1{t+Z<T} a.s. (20)

Part (i). Let ψ ∈ R+ s.t. ‖v‖ 6 ψ; then Tφ is bounded:

‖ (
Tφv

)∥∥ =
∥∥∥Eφ

t,x

[
1{t+Z<T} g

(
Xφ

t+Z

)
+ v

(
t + Z, Xφ

t+Z

)
+ 1{t6T<t+Z}G

(
Xφ

T

)]∥∥∥ 6

6 Eφ
t,x

[
∥∥1{t+Z}<T}

∥∥ ·
∥∥∥g

(
Xφ

t+Z

)∥∥∥ +
∥∥∥v

(
t + Z, Xφ

t+Z

)∥∥∥+

+
∥∥1{t6T<t+Z}

∥∥ ·
∥∥∥G

(
Xφ

T

)∥∥∥
]

6 G + ψ + G

To prove the continuity of Tφv, it suffices to show that for each {(tn, xn)}n∈N ⊂[0, T ] × R s.t.
lim

n→∞
(tn, xn) = (t, x) one has lim

n→∞
(
Tφv

)
(tn, xn) =

(
Tφv

)
(t, x). Notice first that we can exchange the

limit with the expected value by the dominated convergence theorem because by assumption g, G and
so also v are bounded. Using also formula (20) and the continuity of c(b) we obtain:

lim
n→∞

(
Tφv

)
(tn, xn) =

= lim
n→∞

(
Eφ

tn,xn

[
1{tn+Z<T} g

(
Xφ

tn+Z

)
+ v

(
tn + Z,Xφ

tn+Z

)
+ 1{tn6T<tn+Z}G

(
Xφ

T

)])
=

= lim
n→∞

(
E

[
1{tn+Z<T} g

(
xn + c(b(tn, xn))Z − b(tn, xn)Y + δ(tn, xn)

(
eW − 1

))

+ v
(
tn + Z, xn + c(b(tn, xn))Z − b(tn, xn)Y + δ(tn, xn)

(
eW − 1

))

+1{tn6T<tn+Z}G (xn + c(b(tn, xn))(T − tn)
]
)

=

=E
[
1{t+Z<T} g

(
x + c(b(t, x))Z − b(t, x)Y + δ(t, x)

(
eW − 1

))
+

+ v
(
t + Z, x + c(b(t, x))Z − b(t, x)Y + δ(t, x)

(
eW − 1

))

+1{t6T<t+Z}G (x + c(b(t, x))(T − t)
)]

=

=Eφ
t,x

[
1{t+Z<T} g

(
Xφ

t+Z

)
+ v

(
t + Z,Xφ

t+Z

)
+ 1{t6T<t+Z}G

(
Xφ

T

)]
=

(
Tφv

)
(t, x)

Having assumed that φ = φ(t, x) is a continuous function of its arguments and recalling from Remark
2 that φ(t, x) = (b(t, x), δ(t, x)), the expressions b(tn, xn), δ(tn, xn) used in the above formula are simply
the continuous functions b(t, x), δ(t, x) evaluated at (tn, xn).

Part (ii). First of all note that φ ∈ U and U = [0, 1] × [−C1, C2] is compact. So, if we show that
∀(t, x) ∈ [0, T ]× R the function φ → (

Tφv
)
(t, x) is continuous, we can conclude the existence of φ∗.

To prove the continuity let {φn}n∈N = {(bn, δn)}n∈N → (b, δ) = φ; with exactly the same arguments
as in part (i), using the continuity of c(b) one gets the result. This implies also that φ∗ is a max, not
only a sup.

Control’s continuity is assured by lemma 3.2 in Onesimo-Hernandez and Runggaldier(1994) (or by
the so-called Michael’s Theorem, see Michael(1970)).

Part (iii). By induction.
By Assumption 14 the function G(x) is continuous and, usingMichael’s Theorem, also the optimal control
b∗(t, x) is a continuous functions. So v∗0(t, x) = G (x + c(b∗(t, x))(T − t)) is a continuous function.

Now suppose that v∗m(t, x) is a continuous function and consider

v∗m+1(t, x) = sup
φ∈U

(
Tφv∗m

)
(t, x)

12



Thanks to part (ii) of this proof, the optimal control φ∗ exists, is a maximum point and is continuous,
so also v∗m+1(t, x) is a continuous function, being

(
Tφ∗v∗m

)
(t, x) continuous thanks to part (i).

From the definition of T ∗ in (14) and the proof of the previous proposition, in particular from
parts (i) and (ii), we obtain

Corollary 16. Under Assumption 14, for v ∈ CB we have T ∗v ∈ CB, i.e. T ∗ : CB −→ CB
We are now ready to prove the contraction property of the operators T φ and T ∗. We have

Proposition 17. For v, v′ ∈ CB(R+×R) and under Assumption 14, the maps T φ (∀φ ⊂ Φ) and
T ∗ are contraction mappings, in particular we have:

i.
∥∥T φv − T φv′

∥∥ 6
(
1− e−λT

) ‖v − v′‖
ii. ‖T ∗v − T ∗v′‖ 6

(
1− e−λT

) ‖v − v′‖
The mappings T φ are contracting also in B(R+ × R) and for this Assumption 6 suffices.

Proof. Let h(t, x) = v(t, x)− v′ (t, x) = (v − v′) (t, x).
Part (i). For a given φ ∈ Φ it holds:

∥∥Tφv − Tφv′
∥∥ =

= sup
(t,x)

∣∣∣∣∣E
φ
t,x

[
1{t+Z<T} g

(
Xφ

t+Z

)
+ v

(
t + Z, Xφ

t+Z

)
+ 1{t6T<t+Z}G

(
Xφ

T

)]

−Eφ
t,x

[
1{t+Z<T} g

(
Xφ

t+Z

)
+ v′

(
t + Z,Xφ

t+Z

)
+ 1{t6T<t+Z}G

(
Xφ

T

)] ∣∣∣∣∣

6 sup
(t,x)

Eφ
t,x

[
|h

(
t + Z,Xφ

t+Z

)
|
]

=

= sup
(t,x)

∫ T−t

0

λe−λξ
∑
y,w

µ(w, y) |h (t + ξ, x + c(b)ξ − by + δ(ew − 1))| dξ 6

6 sup
(t,x)

∫ T−t

0

λe−λξ

(∑
y,w

µ(w, y)

)
‖h‖dξ = sup

t∈[0,T ]

(
1− e−λ(T−t)

)
‖h‖ =

=
(
1− e−λT

) ‖v − v′‖

Since
(
1− e−λT

)
< 1 we have that Tφ is, under Assumption 14, a contraction on CB; under Assumption

6 it is contracting on B(R+ × R)
Part (ii). Given v, v′ ∈ CB, let:

φ∗ (t, x) = arg

(
max

φTNt
∈U

(
Tφv

)
(t, x)

)

ϕ∗ (t, x) = arg

(
max

φTNt
∈U

(
Tφv′

)
(t, x)

)

13



where the max exists by Proposition 15ii). Since
(
Tϕ∗v′

)
>

(
Tφ∗v′

)
and

(
Tφ∗v

)
>

(
Tϕ∗v

)
it holds:

(T ∗v − T ∗v′) (t, x) =
(
Tφ∗v − Tϕ∗v′

)
(t, x) 6

6
(
Tφ∗v − Tφ∗v′

)
(t, x) 6

6
∥∥∥Tφ∗v − Tφ∗v′

∥∥∥ 6
(
1− e−λT

) ‖v − v′‖

(T ∗v′ − T ∗v) (t, x) =
(
Tϕ∗v′ − Tφ∗v

)
(t, x) 6

6
(
Tϕ∗v′ − Tϕ∗v

)
(t, x) 6

6
∥∥∥Tϕ∗v′ − Tϕ∗v

∥∥∥ 6
(
1− e−λT

) ‖v′ − v‖

So ∀ (t, x) ∈ [0, T ]×R we have |(T ∗v − T ∗v′) (t, x)| 6 (
1− e−λT

) ‖v − v′‖ and the conclusion follows.

Since B(·) and CB(·) are complete, separable metric spaces, from the proof of the previous propo-
sition we have

Corollary 18. For all φ ∈ Φ, the mappings T φ have, under Assumption 6, a unique fixed point
in B(R+ × R) and, see Theorem 11, V φ(t, x) = (TφV φ)(t, x). If φ = φ(t, x) with φ(t, x) a
continuous function of its arguments then, under Assumption 14, the fixed point belongs to CB.
The mapping T ∗ has, always under Assumption 14 and by Proposition 15.ii) (see also (16)), a
fixed point in CB and, see Theorem 11, V ∗(t, x) = (T ∗V ∗)(t, x).

3.4 The Value Iteration Algorithm

In this subsection we let Assumption 14 be in force. We also need some new notations: we
recall that a strategy φ has the form φ = (φ1, . . . φNT

) ∈ Φ; we may also consider the additional
component φTNT

+1 that however reduces to bTNT
+1 (see (8)).

Notation 19. We shall use the following:

• Let Φm ⊂ Φ the set of admissible strategies with only m components, namely relative to
the problem where at most m jump times are considered. Denote its elements by φm, more
precisely:

φm = (φm
1 , φm

2 , . . . , φm
m) ∈ Φm

• Given φ ∈ Φ, denote by φ|m ∈ Φm its restriction to the first m components, i.e. if φ =
(φ1, . . . , φm, φm+1, . . . , φNT

) then φ|m = (φ1, . . . , φm).

• Denote by (T ∗)m = (T ∗ ◦ · · · ◦ T ∗) the operator T ∗ composed m-times. It corresponds to
the m-th iterate of T ∗, so we can write (see (17)):

v∗m (t, x) = ((T ∗ ◦ · · · ◦ T ∗) v∗0) (t, x) = ((T ∗)m v∗0) (t, x)

Definition 20. The optimal strategy obtained from the first m iterations of T ∗ is:

φ∗,m = arg max
φm∈Φm

vφm

m (21)

where vφ
m is as defined in formula (16).

Remark 21. φm ∈ Φm can always be extended to φ ∈ Φ by adding e.g. zero-valued components.
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The following corollary is, combined with Corollary 18, a summary of the results obtained so
far and suggests an iterative algorithm to get an approximate optimum value and an approximate
optimal strategy.

Corollary 22. Under Assumption 14 it holds that

i. for all φ ∈ Φ the value function V φ is the unique fixed point of T φ in B (R+,R); if φ = φ(t, x)
is a continuous function of (t, x), then V φ belongs to CB (R+,R);

ii. V ∗ is the unique fixed point of T ∗ in CB (R+,R);

iii. the strategy φ̃ = arg max
φ∈U

T φV ∗ is optimal;

iv. ∀φ ∈ Φ, given ε > 0, ∃mε > 0 s.t. ∀m > mε

∥∥∥V φ − vφ|m
m

∥∥∥ < ε (22)

In particular, it suffices to take:

mε >
log

(
ε

4G
)− λT

log (1− e−λT )
(23)

v. given ε > 0, ∃mε > 0 s.t. ∀m > mε

∥∥∥V ∗ − vφ∗,m

m

∥∥∥ =

∥∥∥∥∥sup
φ∈Φ

V φ − sup
φm∈Φm

vφm

m

∥∥∥∥∥ < ε (24)

Proof. Part (i) and Part (ii) follow directly from Corollary 18.
Part (iii): Being

sup
φ∈U

(
TφV ∗) = T ∗V ∗ = V ∗ (25)

the strategy φ̃ = arg max
φ∈U

TφV ∗ is optimal (remember that V ∗ = V φ∗ where φ∗ is the optimal strategy)

and it exists by virtue of Proposition 15.
Part (iv): By the fixed point equation it is obvious that

∥∥∥V φ − v
φ|m
m

∥∥∥ −→ 0.

The following proof derives formula (23). Recalling that V φ is the unique fixed point of Tφ (part (i)
above) we may write V φ = limn

(
Tφ ◦ · · · ◦ Tφ

)n
vφ
0 = limn vφ

n and also, using telescopic series and the
triangular inequality:

∥∥V φ − vφ
m

∥∥ =

∥∥∥∥∥
+∞∑

k=m

(
vφ

k+1 − vφ
k

)∥∥∥∥∥ 6
+∞∑

k=m

∥∥∥vφ
k+1 − vφ

k

∥∥∥

Thanks to Proposition 17 we can easily estimate the norm
∥∥∥vφ

k+1 − vφ
k

∥∥∥:
∥∥∥vφ

k+1 − vφ
k

∥∥∥ =
∥∥∥
(
Tφ ◦ · · · ◦ Tφ

)k
(
vφ
1 − vφ

0

)∥∥∥ =

=
∥∥∥
(
Tφ ◦ · · · ◦ Tφ

)k
(
Tφvφ

0 − vφ
0

)∥∥∥ 6

6
(
1− e−λT

)k
∥∥∥Tφvφ

0 − vφ
0

∥∥∥ 6

6
(
1− e−λT

)k
(∥∥∥Tφvφ

0

∥∥∥ +
∥∥∥ vφ

0

∥∥∥
)

6

6
(
1− e−λT

)k
(3G + G) = 4G (

1− e−λT
)k

15



where in the last inequality we have used the Assumption 6, implied by Assumption 14, and the explicit
form of Tφ (formula (13)) and of vφ

0 (formula (16)). Using the sum of a geometric series we then obtain:
∥∥V φ − vφ

m

∥∥ 6 4G∑+∞
k=m

(
1− e−λT

)k = 4G∑+∞
k=1

(
1− e−λT

)k+m =

= 4G (
1− e−λT

)m ∑+∞
k=1

(
1− e−λT

)k =
4G(1−e−λT )m

1−(1−e−λT )
=

= 4G (
1− e−λT

)m
eλT

Recalling that log
(
1− e−λT

)
< 0, formula (23) is the solution of:

4G (
1− e−λT

)mε
eλT < ε

namely

mε >
log

(
ε

4G
)− λT

log (1− e−λT )

Part (v). Obvious by the fixed point equation being, see (21), vφ∗,m

m = v∗m.

Remark 23. Part (iii) provides a possible way to find the optimal strategy, but it requires knowl-
edge of the fixed point V ∗, that in general we do not have. We shall have it however in the
particular case of Section 4 where we shall then use (25). In the general case V ∗ can only be
computed as the limit of (T ∗)mv∗0 where, in practice, the iterations have to be stopped at a finite
value of m. We shall now estimate the error committed by stopping the iteration algorithm.

The approximation result is

Theorem 24. Under Assumption 14, let mε be such that ∀m > mε we have that ‖V ∗ − v∗m‖ < ε
where v∗m is as defined recursively in (17). For a given m > mε let φ∗,m be the strategy obtained
from the first m iterations of T ∗:

φ∗,m = arg max
φm∈Φm

vφm

m

(φ∗,m exists under Assumption 14 and the compactness of U by Proposition 15) and let φ̂ ∈ Φ be
any extension of φ∗,m, i.e.:

φ∗,m = φ̂|m

Then it holds that ∥∥∥V ∗ − V φ̂
∥∥∥ 6 2ε

Proof. We use formula (24) and formula (22) to obtain:
∥∥∥V ∗ − V φ̂

∥∥∥ =
∥∥∥V ∗ − vφ∗,m

m + vφ∗,m

m − V φ̂
∥∥∥ 6

∥∥∥V ∗ − vφ∗,m

m

∥∥∥ +
∥∥∥vφ∗,m

m − V φ̂
∥∥∥ 6 ε + ε = 2ε

3.5 The (approximate) strategy

Given the state x = X0 ∈ R at time T0 = 0 and given an m ∈ N, the strategy

φ∗,m =
(

φ∗,m1 (0, x) , · · · , φ∗,mm

(
Tm−1, X

(φm
1 ,φm

2 ,··· ,φm
m−1)

Tm−1

))
∈ Φm

results from iterating m times the operator T ∗ starting from

v∗0 (Tn, x) =1{Tn6T} sup
b∈[0,1]

G
(
x + c(b) (T − Tn)

)

So:
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• v∗0 represents the maximum expected cumulative utility when there are no more jumps be-

fore T , i.e. we are sitting at time Tm−1; at that time the capital will be X
(φ∗,m

1 ,φ∗,m
2 ,··· ,φ∗,m

m−1)
Tm−1

=

XTm−1 and so φ∗,mTm

(
Tm−1, XTm−1

)
= arg maxφ vφ

0

(
Tm−1, XTm−1

)
.

• φ∗,m1 (T0, XT0) results from the last iteration of T ∗ with T0 = 0, X0 = x, namely from
computing

sup
(b,δ)

{∫ T

0
λe−λξ

( ∑

y, w

µ(w, y) ·
[
g (x + c (b) ξ − by + δ (ew − 1))+

+ v∗m−1 (ξ, x + c (b) ξ − by + δ (ew − 1))
])

dξ + e−λT G (x + c(b)T )

}

• in general, for i ∈ {1,m}, φ∗,mi

(
Ti−1, XTi−1

)
results from the (m − i)-th iteration of T ∗

and it is given as
arg max

φ∈U

(
Tφv∗m−i

)
(Ti−1, XTi−1)

.

• for i ∈ {m, . . . , NT } the strategy is completed, e.g. by adding zero-valued components.

4 Computing the solution via value iteration

This section is divided into two subsections.

• Subsection 4.1 is devoted to the study of the problem when the utility functions g and G
are of the exponential type and for which an analytic solution can be obtained.

• In subsection 4.2 we mention a numerical algorithm which performs the iterates of T ∗ in
the case of two generic utility functions g and G.

4.1 Semianalytic solutions for exponential utility functions

Let (exponential utility functions)

g(x) = 1− γe−βx , G(x) = 1− µe−βx (26)

for some constants γ, µ, β ∈ R+, β 6= 0. We notice that if the size of the surplus/risk process
is negative or small then the associated utility is negative or small and so the maximization of
the expected total utility can be viewed as an “implicit” minimization of the ruin probability.
The above functions, independent of φ and t, satisfy the Assumptions 6 and 14 for x ∈ R, so
V φ (Tn, x) is increasing in x, bounded and continuous.

4.1.1 Fixed Point Characterization

Definition 25. Let

V =
{

v : R+ × R −→ R s.t. v(t, x) = 1{t6T}
(
M (t)− e−βxν (t)

)
; ν(t) > 0, β > 0

}

We now prove that, given g and G as in (26), the set V is closed under the action of T φ and
T ∗. This leads to what in Schäl(2004) is called “structure assumption” for the value iteration.
First we consider T φ in the following
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Theorem 26. For a fixed φ = (b, δ) ∈ Φ, given g, G as in formula (26), the set V is closed under
Tφ, i.e. if

v(t, x) = 1{t6T}
(
M (t)− e−βxν (t)

)

then there exists M̃(t) and ν̃(t) > 0 s.t.
(
T φv

)
(t, x) = 1{t6T}

(
M̃ (t)− e−βxν̃ (t)

)

Proof. Let v ∈ V for some given M(t), ν(t) and define: χ = χφ
Z = c(b)Z − bY + δ

(
eW − 1

)
.

(
Tφv

)
(t, x) =

= 1{t6T}E
φ
t,x

[
1{t+Z6T} g

(
Xφ

t+Z

)
+ 1{t+Z6T}

(
M (t + Z)− e−βXφ

t+Z ν (t + Z)
)

+

+1{t6T}1{t+Z>T}G
(
Xφ

T

)]
=

= 1{t6T}

{
Eφ

t,x

[
1{t+Z6T}

(
1− γe−β(x+c(b)Z−bY +δ(eW−1))

)
+

+1{t+Z6T}
(
M (t + Z)− e−β(x+c(b)Z−bY +δ(eW−1))ν (t + Z)

)
+

+1{t+Z>T}
(
1− µe−β(x+c(b)(T−t))

)]}
=

= 1{t6T}

{
Eφ

t,x

[
1{t+Z6T}

(
1− γe−βx−βχ

)
+

+1{t+Z6T}
(
M (t + Z)− e−βx−βχν (t + Z)

)
+ 1{t+Z>T}

(
1− µe−β(x+c(b)(T−t))

)]}
=

= 1{t6T}

{
Eφ

t,x

[
1{t+Z6T} + 1{t+Z6T}M (t + Z) + 1{t+Z>T}

]
+

−Eφ
t,x

[
1{t+Z6T} γe−βx−βχ + 1{t+Z6T}e−βx−βχν (t + Z) + 1{t+Z>T}µe−β(x+c(b)(T−t))

]}
=

= 1{t6T}

{
Eφ

t,x

[
1 + 1{t+Z6T}M (t + Z)

]
+

−e−βxEφ
t,x

[
1{t+Z6T} e−βχ (γ + ν (t + Z)) + 1{t+Z>T}µe−βc(b)(T−t)

]}
=

= 1{t6T}
{

M̃(t)− e−βxν̃(t)
}
∈ V (27)

where:

M̃(t) = 1 +Eφ
t,x

[
1{t+Z6T}M (t + Z)

]
= 1 +E

[
1{t+Z6T}M (t + Z)

]
(28)

ν̃(t) = Eφ
t,x

[
1{t+Z6T} e−βχ (γ + ν (t + Z)) + 1{t+Z>T}µe−βc(b)(T−t)

]
> 0 (29)

Notice that, although we use the notation Eφ
t,x, the expectation is over the joint distribution of (Z, Y, W )

so that the functions on the left hand side of (28) and (29) do not depend on x but only on t and, for ν̃,
also on the chosen φ = (b, δ). In what follows we shall therefore write ν(t; b, δ) and ν̃(t; b, δ) instead of
ν(t) and ν̃(t) respectively.

For a fixed φ = (b, δ) ∈ Φ we have the following sequence of equalities for equation (29),

18



justified by the independence between Z, Y and W :

ν̃(t; b, δ) = Eφ
t,x

[
1{t+Z6T} e−βχ (γ + ν (t + Z; b, δ)) + 1{t+Z>T}µe−βc(b)(T−t)

]

= Eφ
[
1{t+Z6T} e

−β(c(b)Z−bY +δ(eW−1)) (γ + ν (t + Z; b, δ))
]

+ µe−(λ+βc(b))(T−t)

= Eφ

[
e−β

(
δ(eW−1)−bY

)]
Eφ

[
1{t+Z6T} e−βc(b)Z

(
γ + ν (t + Z; b, δ)

)]
+ µe−

(
λ+βc(b)

)
(T−t)

(30)

Definition 27. Inspired by formulas (28), (29) and (30), given M(t) and ν(t; b, δ), define:

M̃ (t) = 1 +E
[
1{t+Z6T}M (t + Z)

]
(31)

ν̃(t; b, δ) = Eφ

[
e−β

(
δ(eW−1)−bY

)]
Eφ

[
1{t+Z6T} e−βc(b)Z

(
γ + ν (t + Z; b, δ)

)]
+

+ µe−
(
λ+βc(b)

)
(T−t) (32)

and let b∗ and δ∗ be s.t. ∀b ∈ [0, 1], ∀δ ∈ [−C1, C2]

ν (t; b∗, δ∗) 6 ν(t; b, δ)

i.e.
(b∗, δ∗) = arg inf

(b,δ)
ν (t; b, δ) (33)

When we need to be more explicit we will write M̃M (t) and ν̃ν(t; b, δ) to point out that M̃(t) and
ν̃(t; b, δ) in (31) and (32) depend also on the choice of M(t and ν(t; b, δ).

Remark 28. It is remarkable that formula (33) shows that the optimal controls b∗ and δ∗ depend
only on time: they are independent on the value x of the reserve.

We get now the result corresponding to Theorem 26 also for T ∗

Corollary 29. V is closed also under T ∗, namely if v ∈ V, i.e.

v(t, x) = 1{t6T}
(
M (t)− e−βxν (t; b, δ)

)

then
(T ∗v) (t, x) = 1{t6T}

[
M̃ (t)− e−βxν̃(t; b∗, δ∗)

]

where M̃(t) and ν̃(t; b∗, δ∗) are defined by formulas (31) and (32) respectively.

Proof. Theorem 26 leads to:

(T ∗v) (t, x) =

= sup
(b,δ)∈U

1{t6T}
{

M̃(t)− e−βxν̃(t; b, δ)
}

= 1{t6T}

{
M̃(t)− e−βx inf

(b,δ)∈Φ
ν̃(t; b, δ)

}
=

=1{t6T}
{

M̃(t)− e−βxν̃(t; b∗, δ∗)
}
∈ V

From the the fixed point equation (see Corollary 18 and formula (25)) as well as Corollary
29 we have
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Proposition 30. Let V ∗(t, x) be of the form

V ∗ (t, x) = 1{t6T}
(
M∗ (t)− e−βxν∗ (t; b∗, δ∗)

)

for some functions M∗(t) and ν∗(t; b, δ) satisfying, for given (b, δ) = φ ∈ U , the following integral
equations:

M∗(t) = 1 +E
[
1{t+Z6T}M∗ (t + Z)

]
= 1 + λ

∫ T−t

0
M∗(t + ξ)e−λξdξ (34)

ν∗(t; b, δ) = Eφ

[
e−β

(
δ(eW−1)−bY

)]
Eφ

[
1{t+Z6T} e−βc(b)Z

(
γ + ν∗ (t + Z; b, δ)

)]
+

+ µe−
(
λ+βc(b)

)
(T−t) =

=

(∑
w,y

e−β
(
δ(ew−1)−by

)
P[W = w, Y = y]

)∫ T−t

0
λ
(
γ + ν∗ (t + ξ; b, δ)

)
e−

(
βc(b)+λ

)
ξdξ+

+ µe

(
βc(b)+λ

)
(t−T ) (35)

and let φ∗ = (b∗, δ∗) = arg inf
b,δ

ν∗(t; b, δ) ∈ Φ be as in formula (33).

Then V ∗(t, x) ∈ V is the unique fixed point of T ∗ and φ∗ is the optimal strategy.

Proof. By Corollary 29 and formulas (31) and (32) applied with M = M∗ and ν = ν∗ one obtains the
result in a straightforward manner being:

(T ∗V ∗)(t, x) = 1{t6T}
{

M̃M∗(t)− e−βxν̃ν∗(t; b∗, δ∗)
}

= 1{t6T}

{
1 +E

[
1{t+Z6T}M∗ (t + Z)

]

− inf
φ=(b,δ)∈Φ

e−βx

(
Eφ

[
e−β

(
δ(eW−1)−bY

)]
Eφ

[
1{t+Z6T} e−βc(b)Z

(
γ + ν∗ (t + Z; b, δ)

)]
+

+ µe−
(
λ+βc(b)

)
(T−t)

)}
=

= 1{t6T}
(
M∗ (t)− e−βxν∗ (t; b∗, δ∗)

)
= V ∗(t, x)

4.1.2 Explicit (semianalytic) solution for the case of exponential utilities

The crucial integral equations (34) and (35) are two special cases of Volterra integral equations
for which an explicit (analytical) solution exists. In fact, both (34) and (35) are of the type of
the general Volterra equation

f(t) = g(t) + A

∫ t

a
eλ(t−y)f(y)dy

that admits (see Polyanin and Manzhirov(2008)) the explicit analytic solution

f(t) = g(t) + A

∫ t

a
e(λ+A)(t−y)g(y)dy
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and this leads in the case of (34) to

M(t) = 1 + λ (T − t) (36)

while for (35) we obtain (see Edoli(2009))

ν(t, b, δ) =
λE(b, δ)γ

Λ(b)− λE(b, δ)
+ e(Λ(b)−λE(b,δ))(t−T )

(
µ− λE(b, δ)γ

Λ(b)− λE(b, δ)

)
(37)

having put

E(b, δ) = Eφ
[
e−β(δ(eW−1)−bY )

]
=

∑
y,w

e−β
(
δ(ew−1)−by

)
P[W = w]P[Y = y] (38)

Λ(b) = βc(b) + λ (39)

To obtain the optimal values b∗, δ∗ of the controls we have to minimize ν(t; b, δ) with respect to
(b, δ). The analytic approach to perform the minimization leads to computing the derivatives of
ν(t; b, δ) with respect to b and δ that, letting for a fixed t,

Eδ = ∂δE =
∑
y,w

β (1− ew) e−β(δ(ew−1)−by)P[W = w]P[Y = y]

Eb = ∂bE =
∑
y,w

βye−β(δ(ew−1)−by)P[W = w]P[Y = y]

Λb = ∂bΛ = βc′(b) = β (1 + θ)
p · y
E [Ξ]

Λδ = ∂δΛ = 0

are given by

∂bν(t) = λγ
EbΛ− EΛb

(Λ− λE)2
+

+ e(Λ−λE)(t−T )

[
(Λb − λEb) (t− T )

(
µ− λEγ

Λ− λE
)
− λγ

EbΛ− EΛb

(Λ− λE)2

]
(40)

∂δν(t) = λγ
EδΛ

(Λ− λE)2
+

+ e(Λ−λE)(t−T )

[
(−λEδ) (t− T )

(
µ− λEγ

Λ− λE
)
− λγ

EδΛ
(Λ− λE)2

]
(41)

From here one sees that already the first order conditions are quite involved and so we opt
rather for a feasible numerical approach that consists in implementing in Matlab the minimization
of ν(t; b, δ). This is the reason why we called the approach “semianalytic”. We have nevertheless
worked out the analytical derivatives since they have been used in order to speed up and increase
the accuracy of the algorithm (details are in Edoli (2009)).

We present now some numerical results, where we keep the less influential parameter values
fixed, more precisely

T = 1, θ = .5, β = .0007, γ = .001, µ = .7, C1 = −5, C2 = 10, λ = 1000 (42)

and focus our attention on the impact of the following parameters:
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i. The size ȳ of the claim (for simplicity we had chosen only one nonzero value for the claim size,
i.e. a “representative value”) and its probability p̄ = P[YTi = ȳ].

ii. The parameters that drive the market behavior, namely those that characterize the distribu-
tion of WTi . They are concerned with the fact that we had assumed WTi ∈ {−d, 0, u} with
probabilities p1, p2, p3 = 1− p1 − p2 respectively.

The numerical results reported below correspond to the intuition that large and frequent
claims (ȳ and p̄ large) lead to larger levels of reinsurance, while a favorable market situation (u
and p3 relatively large) leads to a higher level of investment.

First we consider the Behavior of ν (t; b, δ). We note that for a fixed t it is possible to plot
the surface ν(t; b, δ) on the grid [0, 1] × [C1, C2]: a graphical inspection of the surface can give
us an idea of the behavior of the function that we are trying to minimize and also suggests that
changes in the values of the parameters in (42) do not lead to significant changes in the shape of
ν(t; b, δ), but may occasionally lead to numerical instability (for example a large value of β leads
to many NaN, i.e. undetermined ratios).

Figure 1(a) shows the shapes of the surface ν(0.9, b, δ) for various values of p from 0.01 to
0.2: it is clear that the minimum is attained at (b∗, δ∗) = (0, 10). Notice that for small values
of p the surface is quite flat, while for large values of p the surface is increasing in b, suggesting
that when the claims are frequent the optimal choice is a complete reinsurance, i.e. b∗ = 0. The
optimal control δ∗ = 10 is due to the favorable situation of the market, having set p1 = 0.3,
p2 = 0, p3 = 0.7. Figure 1(b) shows the same experiment but with an unfavorable market
situation, obtained with p1 = 0.7, p2 = 0, p3 = 0.3: in this case the optimal control becomes
(b∗, δ∗) = (0,−5).

Next we consider the Optimal controls. An interesting question, suggested by the results
on the behavior of ν (t; b, δ), is to investigate the dependence on time of the optimal controls b∗

and δ∗ (recall from Remark 28 that for exponential utilities they depend at most on the time t,
but not on the level x of the reserve).

In the specific case considered in the numerical calculations the probabilities p1, p2, p3 (the
main ingredients for the distribution of W ) are supposed to be given and constant over time.
It follows that a favorable or unfavorable market situation will remain such throughout and so
it does not come at a surprise if the optimal level of investment in the Figures 3(a) and 3(b)
remains constant over time. From the numerical calculations it also turned out that as soon as
p1 < 0.5 (with p2 = 0), namely the market situation is favorable, then the optimal investment
corresponds to the highest level. Otherwise, for p1 > 0.5, it corresponds to the lowest level.

For a more general investigation an analytical study of the sign of the derivatives does not
seem to be a good way to proceed; however, numerical calculations suggest that the sign of
∂bν (t; b, δ) and ∂δν (t; b, δ) does not depend on time: when t = T it is immediately seen from
(40) and (41) that ∂bν (t; b, δ) = ∂δν (t; b, δ) = 0; when t ∈ [0, T ) the sign is always positive or
negative, depending on the values of the parameters.

Figures 2(a) and 2(b) show the surfaces of ∂bν (t; b, δ) and ∂δν (t; b, δ) for some values of t;
here p = 0.01, p1 = 0.7, p2 = 0, p3 = 0.3: with this choice of parameters the optimal controls,
obtained from a numerical minimization of ν(t; b, δ) on a grid of 100 points in [0, 1], are plotted
in figures 3(a) and 3(b). Notice also that (37) implies that at t = T one has ν(T ; b, δ) ≡ µ and so
for t = T every choice of b and δ is optimal; in the iterative optimization algorithm the optimal
controls are thus simply given by their starting values.
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(a) Surface of ν(0.9, b, δ) with p1 = 0.3, p2 = 0, p3 = 0.7, d = u = 0.5

(b) Surface of ν(0.9, b, δ) with p1 = 0.7, p2 = 0, p3 = 0.3, d = u = 0.5

Figure 1: Some surfaces of ν(t, b, δ) when t = 0.9
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(a) The partial derivative ∂bν (t, b, δ) (b) The partial derivative ∂δν (t, b, δ)

Figure 2: Derivatives of ν(t, b, δ) for some values of t

(a) Optimal control b∗(t) (b) Optimal control δ∗(t)

Figure 3: Optimal controls b∗(t) and δ∗(t)
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4.2 Numerical iterative algorithm for general utility functions

While for exponential utility functions, which allowed to obtain a solution that combines
features of ruin minimization and expectation maximization, in the previous subsection 4.1 it
was possible to obtain an explicit (semi)analytical solution, for general utility functions one has
to look for an approximate solution by iterating the operator T ∗ according to (17) and this ap-
proach is discussed in subsection 3.4. For this purpose one needs an efficient scheme to compute
the iterates of T ∗. It turns out that for this purpose the computationally most demanding part
is the expectation in formula (13) of Definition 9. In the specific case of Example 13, which is
the case considered in the calculations, this expectation becomes the integral in (19). A numer-
ical quadrature formula for the computation of the integral leads to precise results but is time
consuming so that a Monte Carlo (MC) approach appeared to be more convenient. Remaining
within a reasonable number of samples of the MC approach, some numerical instability appeared
for values of t close to T (this problem can be overcome by increasing sufficiently the number
of samples). Using both a Matlab and Mathematica implementation of T ∗, in Edoli(2009) a
comparison is made between the exact results obtainable for exponential utilities (previous sub-
section 4.1.2) and those obtained on the basis of successive iterations of T ∗. It turned out that
up to values of t not too close to T the results are identical and lead to the optimal values. For
values of t very close to T (and a reasonable number of MC samples) the computed controls
differ slightly from the actual optimal ones because of the abovementioned numerical instability;
again, this problem can be overcome by increasing sufficiently the number of MC samples.
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