
Filtering

Stochastic filtering concerns the estimation of the state of a
randomly evolving system that is only indirectly observed and
the observations are, furthermore, affected by noise. The pri-
mary examples in finance concern factor models, where some
factors are not directly observable. We review stochastic fil-
tering in discrete and continuous time in linear and nonlinear
models and describe some applications to pricing and portfolio
management.
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The filtering problem

Consider a randomly evolving system, the state of which is de-
noted by xt and this state may not be directly observable. Denote
by yt the observation at time t ∈ [0, T ] (xt and yt may be vector-
valued): yt is supposed to be probabilistically related with xt.
For instance, yt may represent a noisy measurement of xt.

The process xt is generally supposed to evolve in a Markovian
way according to a given (a priori) distribution p(xt | xs), s ≤ t.
The dynamics of yt are given in terms of the process xt; a general
assumption is that, given xt, the process yt is independent of its
past and so one may consider as given the distribution p(yt | xt).
The information on xt at a given t ∈ [0, T ] is thus represented by
the past and present observations of yt, i.e. by yt

0 := {ys; s ≤ t}
or, equivalently, by the filtration Fy

t := σ{ys; s ≤ t}. This
information, combined with the a-priori dynamics of x given by
p(xt | xs) can, via a Bayes’-type formula, be synthesized in the
conditional or posterior distribution p(xt | yt

0) of xt, given yt
0,

and this distribution is called the filter distribution.
The filtering problem consists now in determining, possibly in

a recursive way, the filter distribution at each t ≤ T . It can also
be seen as a dynamic extension of Bayes’ statistics: for xt ≡ x an
unknown parameter, the dynamic model for x given by p(xt | xs)
reduces to a prior distribution for x and the filter p(x | yt

0) is then
simply the posterior distribution of x, given the observations
ys, s ≤ t.

In many applications it suffices to determine a synthetic value
of the filter distribution p(xt | yt

0). In particular, given an (inte-
grable) function f(·), one may want to compute

E{f(xt) | yt
0} = E{f(xt) | Fy

t } =
∫

f(x) dp(x | yt
0) (1)

The quantity in (1) may be seen as the best estimate of f(xt),
given yt

0, with respect to the mean square error criterion in the
sense that E{(E{f(xt | yt

0)} − f(xt))2} ≤ E{(g(yt
0) − f(xt))2}

for all measurable (and integrable) functions g(yt
0) of the avail-

able information. In this sense one may also consider E{f(xt) |
Fy

t } as the optimal filter for f(xt). Notice that, determining
E{f(xt) | Fy

t } is no more restrictive than determining the entire
filter distribution p(xt | yt

0); in fact, by taking f(x) = eiλx for
a generic λ, the E{f(xt) | Fy

t } in (1) leads to the conditional
characteristic function of xt given yt

0.
Related to the filtering problem are the prediction problem,

namely that of determining p(xt | ys
0) for s < t, and the inter-

polation or smoothing problem concerning p(xt | ys
0) for t < s.

Given the Bayesian nature of the filtering problem, one can also
consider the so-called combined filtering and parameter estima-

tion problem: if the dynamics p(xt | xs) for x include an unknown
parameter θ, one may consider the problem of determining the
joint conditional distribution p(xt, θ | Fy

t }.

Models for the filtering problem

To solve a given filtering problem one has to specify the two
basic inputs, namely p(xt | xs) and p(yt | xt). A classical model
in discrete time is{

xt+1 = a(t, xt) + b(t, xt) wt

yt = c(t, xt) + vt
(2)

where wt and vt are (independent) sequences of independent ran-
dom variables and the distribution of x0 is given. Notice that in
(2) the process xt is Markov and yt represent indirect observa-
tions of xt, affected by additive noise.

The continuous time counterpart is{
dxt = a(t, xt)dt + b(t, xt) dwt

dyt = c(t, xt)dt + dvt
(3)

and notice that, here, yt represents the cumulative observations
up to t. These basic models allow for various extensions: xt may
e.g. be a jump-diffusion process or a Markov process with a finite
number of states, characterized by its transition intensities. Also
the observations may more generally be a jump-diffusion such as

dyt = c(t, xt)dt + dvt + dNt (4)

where Nt is a doubly stochastic Poisson process, the intensity
λt = λ(xt) of which depends on xt. Further generalizations are
of course possible.



Analytic solutions of the filtering problem

Discrete time

By the Markov property of the process xt and the fact that, given
xt, the process yt is independent of its past, with the use of Bayes’
formula one obtains easily the following two-step recursions{

p(xt | yt−1
0 ) =

∫
p(xt | xt−1) dp(xt−1 | yt−1

0 )
p(xt | yt

0) ∝ p(yt | xt)p(xt | yt−1
0 )

(5)

where ∝ denotes “proportional to” and the first step corresponds
to the prediction step while the second one is the updating step.
The recursions start with p(x0 | y0

0) = p(x0). Although (5) rep-
resents a fully recursive relation, its actual computation is made
difficult not only by the presence of the integral in xt−1, but
also by the fact that this integral is parametrized by xt that in
general takes infinitely many values. Depending on the model
one can however obtain explicit solutions as will be shown be-
low. The most general such situation arises when one can find
a finitely parametrized class of distributions of xt that is closed
under the operator implicit in (5), namely such that, whenever
p(xt−1 | yt−1

0 ) belongs to this class, then also p(xt | yt
0) belongs

to it. A classical case is the linear conditionally Gaussian case
that corresponds to a model of the form{

xt+1 = At(yt
0)xt + Bt(yt

0) wt

yt = Ct(yt
0)xt + Rt(yt

0) vt
(6)

where the coefficients may depend on the entire past of the ob-
servations yt and wt, vt are independent i.i.d. sequences of stan-
dard Gaussian random variables. For such a model p(xt | yt

0)
is Gaussian at each t and therefore characterized by mean and
(co)variance that can be recursively computed by the well-known
Kalman-Bucy filter. Denoting

x̂t|t−1 := E{xt | yt−1
0 } ; x̂t|t := E{xt | yt

0}
Pt|t−1 := E{(xt − x̂t|t−1)(xt − x̂t|t−1)′ | yt−1

0 } ;
Pt|t := E{(xt − x̂t|t)(xt − x̂t|t)′ | yt

0}
(7)

the Kalman-Bucy filter is given by (dropping for simplicity the
dependence on yt

0){
x̂t|t−1 = At−1 x̂t−1|t−1

Pt|t−1 = At−1Pt−1|t−1A
′
t−1 + Bt−1B

′
t−1

(8)

which represents the prediction step, and

x̂t|t = x̂t|t−1 + Lt[yt − Ctx̂t|t−1]
Pt|t = Pt|t−1 − LtCtPt|t−1

(9)

which represents the updating step with x̂0|−1 the mean of x0

and P0|−1 its variance. Furthermore,

Lt := Pt|t−1C
′
t[CtPt|t−1C

′
t + RtR

′
t]
−1 . (10)

Notice that in the prediction step the estimate of xt is propagated
one step further on the basis of the given a priori dynamics of xt,
while in the updating step one takes into account the additional
information coming from the current observation. A crucial role
in the updating step (9) is played by

yt − Ctx̂t|t−1 = yt − CtAt−1x̂t−1|t−1

= yt − CtE{xt | yt−1
0 } = yt − E{yt | yt−1

0 } (11)

which represents the new information given by yt with respect to
its best estimate E{yt | yt−1

0 } and is therefore called innovation.
The Kalman-Bucy filter has been extremely successful and has

been applied also to Gaussian models that are nonlinear by sim-
ply linearizing the nonlinear coefficient functions around the cur-
rent best estimate of xt. In this way one obtains an approximate
filter, called extended Kalman filter.

Exact solutions for the discrete time filtering problem can also
be obtained for the case when xt is a finite state Markov chain
with, say, N states defined by its transition probability matrix.
In this case the filter is characterized by its conditional state
probability vector that we denote by πt = (π1

t , · · · , πN
t ) with

πi
t := P{xt = i | Fy

t }.

Continuous time

For the solution of a general continuous time problem we have
two main approaches, namely the innovations approach that ex-
tends the innovation representation of the Kalman filter where,
combining (8) and (9), this latter representation is given by

x̂t|t = At−1 x̂t−1|t−1 + Lt[yt − CtAt−1 x̂t−1|t−1],

and the so-called reference probability approach. For the sake of
brevity we discuss here only the innovations approach (Kushner-

Stratonovich equation) and we do it for the case of model (3)
mentioning briefly possible extensions to other cases. For the
reference probability approach (Zakai equation) we refer to the
literature (for instance [8], [19]).

We denote by L the generator of the Markov diffusion xt in
(3) i.e., assuming x ∈ Rn, for a function φ(t, x) ∈ C1,2 we have

Lφ(t, x) = a(t, x)φx(t, x) +
1
2

n∑
i,j=1

σij(t, x)φxixj (t, x) (12)

with σ(t, x) := b(t, x)b′(t, x). Furthermore, for a generic (inte-
grable) f(·), we let f̂t := E{f(xt) | Fy

t }. The innovations ap-
proach now leads in case of model (3) to the following dynamics,
also called Kushner-Stratonovich equation (see e.g. [19],[8])

df̂t = L̂f(xt)dt+[ ̂c(t, xt)f(xt)− ĉ(t, xt)f̂t]′[dyt− ĉ(t, xt)dt] (13)



which (see (3)) is based on the innovations dyt − ĉ(t, xt)dt =
dyt − E{dyt | Fy

t }. In addition to the stochastic integral, the
main difficulty with (13) is that, to compute f̂ , one needs ĉf

which in turn requires ĉ2f and so on. In other words, (13) is not a
closed system of stochastic differential equations. Again, for par-
ticular models, (13) leads to a closed system as it happens with
the linear-Gaussian version of (3) that leads to the continuous
time Kalmann-Bucy filter, which is analogous to its discrete time
counterpart. A further case arises when xt is finite-state Markov
with transition intensity matrix Q = {qij}, i, j = 1, · · · , N.

Putting πt(i) := P{xt = i | Fy
t } and taking as f(·) the indicator

function of the various values of xt, (13) becomes (replacing L
by Q)

dπt(j) =
∑N

i=1 πt(i)qijdt + πt(j)[c(t, j)−
∑N

i=1 πt(i)c(t, i)]
· [dyt −

∑N
i=1 πt(i)c(t, i)dt]

(14)
For more results when xt is finite-state Markov we refer to [10],
in particular see [11].

We just mention that one can write the dynamics of f̂t also in
the case of jump-diffusion observations as in (4) (see [17]) and
one can furthermore obtain an evolution equation, a stochastic
PDE, for the conditional density p(xt) = p(xt | yt

0), whenever it
exists, that involves the formal adjoint L∗ of the L in (12) (see
[19]).

Numerical solutions of the filtering problem

As we have seen, an explicit analytic solution to the filtering
problem can be obtained only for special models so that, re-
maining within analytic solutions, in general one has to use an
approximation approach. As already mentioned, one such ap-
proximation consists in linearizing the nonlinear model, both in
discrete and continuous time, and this leads to the extended
Kalman filter. Another approach consists in approximating the
original model by one where xt is finite-state Markov. The lat-
ter approach goes back mainly to H.Kushner and co-workers,
see e.g. [18] (for a financial application see also [13]). A more
direct numerical approach is simulation-based and given by the
so-called particle approach to filtering that has been successfully
introduced more recently and that we are going to summarize
next.

Simulation-based solution (particle filters)

Being simulation-based, this solution method as such is applica-
ble only to discrete time models; continuous time models have
first to be discretized in time. There are various variants of parti-

cle filters but, analogously to the analytical approaches, they all
proceed along two steps, a prediction step and an updating step
and at each step the relevant distribution (predictive and filter
distribution respectively) is approximated by a discrete proba-
bility measure supported by a finite number of points. These
approaches vary mainly in the updating step.

A simple version of a particle filter is as follows (see [3]): in
the generic period t − 1 approximate p(xt−1 | yt−1

0 ) by a dis-
crete distribution ((x1

t−1, p
1
t−1), · · · , (xL

t−1, p
L
t−1)) where pi

t−1 is
the probability that xt−1 = xi

t−1. Consider each location xi
t−1

as the position of a “particle”.

i) Prediction step: propagate over one time period each of the
particles xi

t−1 → x̂i
t using the given (discrete time) evolution

dynamics of xt: referring to model (2) just simulate indepen-
dent trajectories of xt starting from the various xi

t−1. This
leads to an approximation of p(xt | yt−1

0 ) by the discrete dis-
tribution ((x̂1

t , p̂
1
t ), · · · , (x̂L

t , p̂L
t )) where one puts p̂i

t = pi
t−1.

ii) Updating step: update the weights using the new observation
yt by putting pi

t = cpi
t−1p(yt | x̂i

t) where c is the normaliza-
tion constant (see the second relation in (5) for an analogy).

Notice that p(yt | x̂i
t) may be viewed as the likelihood of par-

ticle x̂i
t, given the observation yt, so that in the updating step

one weighs each particle according to its likelihood. There exist
various improvements of this basic setup. There are also vari-
ants, where in the updating step each particle is made to branch
into a random number of offsprings, where the mean number of
offsprings is taken to be proportional to the likelihood of that
position. In this latter variant the number of particles increases
and one can show that, under certain assumptions, the empirical
distribution of the particles converges to the true filter distribu-
tion. There is a vast literature on particle filters, we just mention
[5] and, in particular, [1].

Filtering in Finance

There are various situations in finance where filtering problems
may arise, but one typical situation is given by factor models.
These models have proven to be useful for capturing the compli-
cated nonlinear dynamics of real asset prices, while at the same
time being parsimonious and numerically tractable. In addition,
with Markovian factor processes, Markov-process techniques can
be fruitfully applied. In many financial applications of factor
models the investors have only incomplete information about the
actual state of the factors and this may induce model risk. In
fact, even if the factors are associated with economic quantities,



some of them are difficult to observe precisely. Furthermore, ab-
stract factors without economic interpretation are often included
in the specification of a model in order to increase its flexibility.
Under incomplete information of the factors, their values have to
be inferred from observable quantities and this is where filtering
comes in as an appropriate tool.

Most financial problems concern pricing as well as portfolio
management, in particular hedging and portfolio optimization.
While portfolio management is performed under the physical
measure, for pricing one has to use a martingale measure. Filter-
ing problems in finance may therefore be considered under the
physical or the martingale measures, or under both (see [22]).
In what follows we shall discuss filtering for pricing problems,
with examples from term structure and credit risk, as well as for
portfolio management. More general aspect can be found e.g. in
the recent papers [6], [7], [23].

Filtering in pricing problems

This section is to a large extent based on [14]. In Markovian
factor models the price of an asset at a generic time t can, under
full observation of the factors, be expressed as an instantaneous
function Ψ(t, xt) of time and the value of the factors. Let Gt de-
note the full filtration that measures all the processes of interest
and let Ft ⊂ Gt be a subfiltration representing the information
of an investor. What is an arbitrage-free price in the filtration
Ft? Assume the asset to be priced is a European derivative with
maturity T and claim H ∈ FT . Let N be a numeraire, adapted
to the investor filtration Ft and let QN be the corresponding
martingale measure. One can easily prove the following

Lemma 0.1. Let Ψ(t, xt) = NtE
QN

{
H

NT
| Gt

}
be the arbitrage-

free price of the claim H under the full information Gt and
Ψ̂(t) = NtE

QN
{

H
NT

| Ft

}
the corresponding arbitrage-free price

in the investor filtration. It then follows that

Ψ̂(t) = EQN

{Ψ(t, xt) | Ft} (15)

Furthermore, if the savings account Bt = exp{
∫ t

0
rsds} with cor-

responding martingale measure Q is Ft−adapted, then

Ψ̂(t) = EQ {Ψ(t, xt) | Ft} (16)

We thus see that, in order to compute the right hand sides in
(15) or (16), namely the price of a derivative under restricted
information given its price under full information, one has to
solve the filtering problem for xt given Ft under a martingale
measure. We present now two examples.

Example 0.2. (Term structure of interests) The example is a
simplified version adapted from [15]. Consider a factor model for
the term structure where the unobserved (multivariate) factor
process xt satisfies the linear-Gaussian model

dxt = Fxtdt + Ddwt (17)

In this case the term structure is exponentially affine in xt and
one has

p(t, T ;xt) = exp[A(t, T )−B(t, T ) xt] (18)

with A(t, T ), B(t, T ) satisfying well-known first order ordinary
differential equations in order to exclude arbitrage. Passing to
log-prices for the bonds, one gets the linear relationship yT

t :=
log p(t, T ;xt) = A(t, T ) − B(t, T )xt. Assume now that investors
cannot observe xt, but they can observe the short rate and the
log-prices of a finite number n of zero-coupon bonds, perturbed
by additive noise. This leads to a system of the form

dxt = Fxtdt + D dwt

drt =
(
α0

t + β0
t xt

)
dt + σ0

t dwt + dv0
t

dyi
t =

(
αi

t + βi
txt

)
dt + σi

tdwt + (Ti − t)dvi
t ; i = 1, · · · , n

(19)
where vi

t, i = 0, · · · , n are independent Wiener processes and
the coefficients are related to those in (17) and (18). The time-
dependent volatility in the perturbations of the log-prices reflects
the fact that it tends to zero as time approaches maturity.

From the filtering point of view the system (19) is a linear-
Gaussian model with xt unobserved and the observations given
by (rt, y

i
t). We shall thus put Ft = σ{rs, y

i
s; s ≤ t, i = 1, · · · , n}.

The filter distribution is Gaussian and, via the Kalman filter, one
can obtain its conditional mean mt and (co)variance Σt. Apply-
ing Lemma 0.1 and using the moment-generating function of a
Gaussian r.v., we obtain as arbitrage-free price, in the investor
filtration, of an illiquid bond with maturity T the following

p̂(t, T ) = E{p(t, T ;xt) | Ft}
= exp[A(t, T )]E{exp[−B(t, T )xt] | Ft}
= exp[A(t, T )−B(t, T )mt + 1

2B(t, T )ΣtB
′(t, T )]

(20)
For the given setup the expectation is under the martingale mea-
sure Q with the money market account Bt as numeraire. To
apply Lemma 0.1 we need the numeraire to be observable and
this contrasts with the assumption that rt is observable only in
noise. This difficulty can be overcome (see [14]) but, by suit-
ably changing the drifts in (19) (corresponding to a translation
of wt), one may however consider the model (19) also under a
martingale measure for which the numeraire is different from Bt

and observable.

A further filter application to the term structure of interest
rates can be found in [2].



Example 0.3. (Credit risk) One of the main issues in credit
risk is the modeling of the dynamic evolution of the default state
of a given portfolio. To formalize the problem, given a portfolio
of m obligors, let yt := (yt,1, · · · , yt,m) be the default indicator
process where yt,i := 1{τi≤t} with τi the random default time
of obligor i; i = 1, · · · ,m. In line with the factor modeling
philosophy it is natural to assume that default intensities depend
on an unobservable latent process xt. In particular, if λi(t) is the
default intensity of obligor i; i = 1, · · · ,m, assume λi(t) = λi(xt).
Note that this generates information-driven contagion: it is in
fact well known that the intensities with respect to Ft are given
by λ̂i(t) = E{λi(xt) | Ft}. Hence the news that an obligor has
defaulted leads, via filtering, to an update of the distribution
of xt and thus to a jump in the default intensities of the still
surviving obligors. In this context we shall consider the pricing
of illiquid credit derivatives on the basis of the investor filtration
supposed to be given by the default history and noisily observed
prices of liquid credit derivatives.

We assume that, conditionally on xt, the defaults are indepen-
dent with intensities λi(xt) and that (xt, yt) is jointly Markov. A
credit derivative has the payoff linked to default events in a given
reference portfolio and so one can think of it as a r.v. H ∈ Fy

T

with T the maturity. Its full information price at the generic
t ≤ T , i.e. in the filtration Gt that measures also xt, is given by
H̃t = E{e−r(T−t)H | Gt} where r is the short rate and the expec-
tation is under a given martingale measure Q. By the Markov
property of (xt, yt) one gets a representation of the form

H̃t = E{e−r(T−t)H | Gt} := a(t, xt, yt) (21)

for a suitable a(·). In addition to the default history we assume
that the investor filtration includes also noisy observations of
liquid credit derivatives. In view of (21) it is reasonable to model
such observations as

dzt = γ(t, xt, yt)dt + dβt (22)

where the various quantities may also be column vectors, βt is
an independent Wiener process and γ(·) is a function of the type
of a(·) in (21). The investor filtration is then Ft = Fy

t ∨Fz
t . The

price at t < T of the credit derivative in the investor filtration is
now Ht = E{e−r(T−t)H | Ft} and by Lemma 0.1 we have

Ht = E{e−r(T−t)H | Ft} = E{a(t, xt, yt) | Ft} (23)

Again, if one knows the price a(t, xt, yt) in Gt, one can thus obtain
the price in Ft by computing the right hand side in (23) and for
this we need the filter distribution of xt given Ft.

To define the corresponding filtering problem we need a more
precise model for (xt, yt) (the process zt is already given by (22)).

Since yt is a jump process, the model cannot be one of those
for which we had described an explicit analytic solution. With-
out entering into details, we refer to [13] (see also [14]), where
a jump-diffusion model is considered that allows for common
jumps between xt and yt. In [13] it is shown that an arbitrarily
good approximation to the filter solution can be obtained both
analytically, as well as by particle filtering.

We conclude this section with a couple of additional remarks:

1. Traditional credit risk models are either structural models
or reduced-form (intensity-based) models. Example 0.3 be-
longs to the latter class. In structural models the default
of the generic obligor/firm i is defined as the first passage
time of the asset value Vi(t) of the firm at a given (possibly
stochastic) barrier Ki(t), i.e.

τi = inf{t ≥ 0 | Vi(t) ≤ Kt(t)} (24)

In such a context, filtering problems may arise when either
Vi(t) of Ki(t) or both are not exactly known/observable (see
e.g. [9]).

2. Can a structural model also be seen as a reduced-form model?

At first sight this is not clear since τi in (24) is predictable,
while in intensity-based models it is totally inaccessible. It
turns however out (see e.g. [16]) that, while τi in (24) is
predictable with respect to the full filtration (measuring
also Vi(t) and Ki(t)), it becomes totally inaccessible in the
smaller investor filtration that, say, does not measure Vi(t)
and it admits furthermore an intensity.

Filtering in portfolio management problems

Rather than presenting a general treatment (for this we refer
to [21] and the references therein), we discuss here two specific
examples in models with unobserved factors, one in discrete time
and one in continuous time. Contrary to the previous section on
pricing, here we shall work under the physical measure P .

A discrete time case

To motivate the model, start from the classical continuous time
asset price model dSt = St[adt + xtdwt] where wt is Wiener and
xt is the non directly observable volatility process (factor). For
yt := log St one then has

dyt =
(

a− 1
2
x2

t

)
dt + xtdwt (25)



Passing to discrete time with step δ, let for t = 0, · · · , T the
process xt be a Markov chain with m states x1, · · · , xm (may
result from a time discretization of a continuous time xt) and

yt = yt−1 +
(

a− 1
2
x2

t−1

)
δ + xt−1

√
δεt (26)

with εt i.i.d. standard Gaussian as it results from (25) by apply-
ing the Euler-Maruyama scheme. Notice that (xt, yt) is Markov.
Having for simplicity only one stock to invest in, denote by φt

the number of shares of stock held in the portfolio in period t

with the rest invested in a riskless bond Bt (for simplicity as-
sume r = 0). The corresponding self financed wealth process
then evolves according to

V φ
t+1 = V φ

t + φt (eyt+1 − eyt) := F
(
V φ

t , φt, yt, yt+1

)
(27)

and φt is supposed adapted to Fy
t ; denote by A the class of such

strategies. Given a horizon T , consider the following investment
criterion

Jopt(V0) = supφ∈A J(V0, φ)

= supφ∈A E
{∑T−1

t=0 rt(xt, yt, V
φ
t , φt) + f(xT , yT , V φ

T )
}
(28)

which, besides portfolio optimization, includes also hedging prob-
lems. Problem (26),(27),(28) is now a stochastic control problem
under partial/incomplete information given that xt is an unob-
servable factor process.

A standard approach to dynamic optimization problems un-
der partial information is to transform them into corresponding
complete information ones whereby xt is replaced by its filter
distribution given Fy

t . Letting then πi
t := P{xt = xi | Fy

t } , i =
1, · · · ,m we shall first adapt the filter dynamics in (5) to our
situation to derive a recursive relation for πt = (π1

t , · · · , πm
t ).

Being xt finite-state Markov, p(xt+1 | xt) is given by the transi-
tion probability matrix and the integral in (5) reduces to a sum.
On the other hand, p(yt | xt) in (5) corresponds to the model
in (2) that does not include our model (26) for yt. One can
however easily see that (26) leads to a distribution of the form
p(yt | xt−1, yt−1) and (5) can be adapted to become here{

π0 = µ initial distribution for xt)
πi

t ∝
∑m

j=1 p (yt | xt−1 = j, yt−1) p (xt = i | xt−1 = j) πj
t−1

(29)
In addition we may consider the law of yt conditional on

(πt−1, yt−1) = (π, y) that is given by

Qt(π, y, dy′) =
m∑

i,j=1

p (y′ | xt−1 = j, y) p (xt = i | xt−1 = j) πj .

(30)

From (29), (30) it follows easily that (πt, yt) is a sufficient statis-
tic and an Fy

t −Markov process.
To transform the original partial information problem with

criterion (28) into a corresponding complete observation prob-
lem, put r̂t(π, y, v, φ) =

∑m
i=1 rt(xi, y, v, φ)πi and f̂(π, y, v) =∑m

i=1 f(xi, y, v)πi so that, by double conditioning, one obtains

J(V0, φ) = E
{∑T−1

t=0 E
{

rt(xt, yt, V
φ
t , φt) | Fy

t

}
+E

{
f(xT , yT , V φ

T ) | Fy
T

}}
= E

{∑T−1
t=0 r̂t(πt, yt, V

φ
t , φt) + f̂(πT , yT , V φ

T )
} (31)

Due to the Markov property of (πt, yt) one can write the following
(backwards) dynamic programming recursions

uT (π, y, v) = f̂(π, y, v)
ut(π, y, v) = supφ∈A

[
r̂t(π, y, v, φ)

+E {ut+1(πt+1, yt+1, F (v, φ, y, yt+1)) | (πt, yt) = (π, y)}
]

(32)
where the function F (·) was defined in (27), and φ here refers
to the generic choice of φ = φt in period t. It leads to the op-
timal investment strategy φ∗ and the optimal value Jopt(V0) =
u0(µ, y0, V0). It can in fact be shown that the strategy and value
thus obtained are optimal also for the original incomplete infor-
mation problem when φ there is required to be Fy

t −adapted.
To actually compute the recursions in (32) one needs the con-

ditional law of (πt+1, yt+1) given (πt, yt), which can be deduced
from (29) and (30). In this context notice that, even if x is
m−valued, πt takes values in the m−dimensional simplex that
is ∞−valued. To actually perform the calculation one needs an
approximation leading to a finite-valued process (πt, yt) and to
this effect various approaches have appeared in the literature (for
an approach with numerical results see [4]).

A continuous time case

Consider the following market model where xt is an unobserved
factor process and St is the price of a single risky asset{

dxt = Ft(xt)dt + Rt(xt)dMt

dSt = St [at(St, xt)dt + σt(St)dwt]
(33)

with wt a Wiener process and Mt a not necessarily continuous
martingale, independent of wt. Since in continuous time

∫ t

0
σ2

sds

can be estimated by the empirical quadratic variation of St, in
order not to have degeneracy in the filter to be derived below
for xt, we do not let σ(·) depend also on xt. For the riskless
asset we assume for simplicity that its price is Bt ≡ const (short
rate r = 0). In what follows it will be convenient to consider



log-prices yt = log St for which

dyt = [at(St, xt)− 1
2σ2

t (St)] dt + σ(St)dwt

:= At(yt, xt)dt + B(yt)dwt
(34)

Investing in this market in a self-financing way and denoting by
ρt the fraction of wealth invested in the risky asset, we have from
dVt

Vt
= ρt

dSt

St
= ρt

deyt

eyt
that

dVt = Vt

[
ρt

(
At(yt, xt) +

1
2
B2

t (yt)
)

dt + ρtBt(yt)dwt

]
(35)

We want to consider the problem of maximization of expected
utility from terminal wealth, without consumption, and with a
power utility function. Combining (33), (34) and (35) we ob-
tain the following portfolio optimization problem under incom-
plete information where the factor process xt is not observed and
where we shall require that ρt is FY

t −adapted
dxt = Ft(xt)dt + Rt(xt)dMt (unobserved)
dyt = At(yt, xt)dt + B(yt)dwt (observed)
dVt = Vt

[
ρt

(
At(yt, xt) + 1

2B2
t (yt)

)
dt + ρtBt(yt)dwt

]
supρ E {(VT )µ} , µ ∈ (0, 1)

(36)

As in the previous discrete time case, we shall now transform this
problem into a corresponding one under complete information
thereby replacing the unobserved state variable xt by its filter
distribution given Fy

t , namely πt(x) := p(xt | Fy
t )xt=x. Even if

xt is finite-dimensional, πt(·) is ∞−dimensional. We have seen
above cases where the filter distribution is finitely parametrized,
namely the linear-Gaussian case (Kalman filter) and when xt

is finite-state Markov. The parameters characterizing the filter
were seen to evolve over time driven by the innovations process
(see (9),(11) and (14)). In what follows we shall then assume
that the filter is parametrized by a vector process ξt ∈ Rp, i.e.
πt(x) := p(xt | Fy

t )xt=x = π(x; ξt) and that ξt satisfies

dξt = βt(yt, ξt)dt + ηt(yt, ξt)dw̄t (37)

where w̄t is Wiener and given by the innovations process.
We shall now specify this innovations process w̄t for our
general model (36). To this effect, putting At(yt, ξt) :=∫

At(yt, x) dπt(x; ξt), let

dw̄t := B−1
t (yt) [dyt −At(yt, ξt) dt] (38)

and notice that, replacing dyt from (34), this definition implies
a translation of the original (P,Ft)−Wiener wt, namely

dw̄t = dwt + B−1
t (yt) [At(yt, xt)−At(yt, ξt)] dt (39)

and thus the implicit change of measure P → P̄ with

dP̄

dP | FT

= exp{
∫ T

0

[At(yt, ξt)−At(yt, xt)]B−1
t (yt)dwt

−1
2

∫ T

0

[At(yt, ξt)−At(yt, xt)]
2
B−2

t (yt)dt} (40)

We obtain thus as complete information problem correspond-
ing to (36) the following one, which is defined on the space
(Ω,F ,Ft, P̄ ) with Wiener w̄t:

dξt = βt(yt, ξt)dt + ηt(yt, ξt) dw̄t

dyt = At(yt, ξt)dt + Bt(yt)dw̄t

dVt = Vt

[
ρt

(
At(yt, ξt) + 1

2B2
t (yt)

)
dt + ρtBt(yt)dw̄t

]
supρ Ē {(VT )µ} , µ ∈ (0, 1)

(41)

One can now use methods for complete information problems
to solve (41) and it can also be shown that the solution to (41)
gives a solution of the original problem for which ρt was assumed
Fy

t −adapted.
We just remark that also other reformulations of the incom-

plete information problem as a complete information one are
possible (see e.g. [20]).

A final comment concerns hedging under incomplete informa-
tion (incomplete market). When using the quadratic hedging
criterion namely minρ ES0,V0

{
(HT − V ρ

T )2
}

, its quadratic na-
ture implies that, if φ∗t (xt, yt) is the optimal strategy (number
of units invested in the risky asset) under complete information
also of xt then, under the partial information Fy

t , the optimal
strategy is simply the projection E{φ∗t (xt, yt) | Fy

t } that can be
computed on the basis of the filter of xt given Fy

t (see [12]).
Wolfgang Runggaldier
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