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Abstract This paper considers a general reduced form pricing model for
credit derivatives where default intensities are driven by some factor process
X. The process X is not directly observable for investors in secondary markets;
rather, their information set consists of the default history and of noisy price
observation for traded credit products. In this context the pricing of credit
derivatives leads to a challenging nonlinear filtering problem. We provide re-
cursive updating rules for the filter, derive a finite dimensional filter for the
case where X follows a finite state Markov chain and propose a novel particle
filtering algorithm. A numerical case study illustrates the properties of the
proposed algorithms.
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1 Introduction

This paper is concerned with the pricing of credit derivatives in reduced form
portfolio credit risk models under incomplete information. We consider models
where the default intensities of the firms in a given portfolio are driven by some
Markov process X. We assume that X is not directly observable for investors
trading in secondary markets; rather, their information set, denoted (F}), is
restricted to some special type of publicly available information, namely his-
torical default- and price information. In this incomplete information context
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the pricing of credit derivatives leads to a two step procedure: in the first step
one computes theoretical prices, (termed model values), with respect to a large
filtration (F;) such that X is (F;)-adapted; here Markov process techniques
can be fruitfully employed. In the second step the price of non traded credit
derivatives (from the viewpoint of secondary market investors) is computed by
projecting model values onto the investor information (/). This projection
is essentially a nonlinear filtering problem; one has to determine 7x, |5z (dx),
the conditional distribution of X, given F}.

Credit risk models with incomplete information have been considered pre-
viously in the literature. Kusuoka (1999), Duffie & Lando (2001), Giesecke
(2004), Jarrow & Protter (2004), Giesecke (2004), Coculescu, Geman, & Jean-
blanc (2008) and Frey & Schmidt (2006) are concerned with structural models
where the value of assets and/or liabilities is not directly observable. Reduced
form credit risk models with incomplete information such as our paper have
been considered by Schénbucher (2004), Collin-Dufresne, Goldstein & Helwege
(2003) and Duffie, Eckner, Horel & Saita (2006). The structure of the latter
three models is relatively similar: default intensities are driven by an unobserv-
able factor (process) X; given information about X, the default times are con-
ditionally independent, doubly stochastic random times; finally, the investor
information (F}) is given by the default history of the portfolio, augmented
by economic covariates. Schonbucher (2004), and Collin-Dufresne et al. (2003)
model the unobservable factor by a static random vector X, called frailty; the
conditional distribution 7 F1 s determined via Bayesian updating. Both pa-
pers point out that the successive updating of x| FI in reaction to incoming
default observations generates information-driven default contagion: the news
that some obligor has defaulted leads to an update in mx z (dx) and hence
typically to a jump in the (F/)-default intensity of the surviving firms. Duffie
et al. (2006) model the unobservable factor X by an Ornstein-Uhlenbeck pro-
cess. Their paper contains interesting empirical results; in particular, the anal-
ysis provides strong support for the assertion that an unobservable stochastic
process driving default intensities (a so calleddynamic frailty) is needed on
top of observable covariates in order to explain the clustering of defaults in
historical data.

Our paper differs from these contributions in two directions: First, in order
to better capture the complicated price dynamics of traded credit products,
we work in a general jump-diffusion model for the joint dynamics of the state
process X and the default indicator process Y (the jump process associated
with the default times). Our framework covers most reduced form models from
the literature and includes in particular models where X may jump in reaction
to a default event. Joint jumps of X and Y arise naturally in a variety of credit
risk models, and several examples are given in Section 2.3. Joint jumps can
in particular be used for the modeling of so-called physical default contagion,
that is the fact that the default of a major corporation has at least temporarily
an adverse impact on the survival probability of certain remaining firms. As
shown in a recent empirical analysis of Azizpour & Giesecke (2008), physical



default contagion is relevant even after the inclusion of frailty effects into the
model. Our model is thus accounting for both potential sources for jumps in
the prices of credit derivatives at defaults, namely physical and information-
based contagion. Second, we use a different information set: in our setup the
investor information (F/) contains theoretical prices of traded credit deriva-
tives observed in additive noise in addition to the default history of the firms
under consideration. This is important, as market quotes for traded credit
products are a crucial piece of information in any pricing model for credit
derivatives.

In order to determine the conditional distribution 7, zs(d) in our setup
we have to solve a challenging nonlinear filtering problem with mixed ob-
servations of marked point processes and diffusion type and with common
jumps of point process observation Y and state process X.Filtering problems
with common jumps of the unobserved state process and of the observations
have previously been discussed in the literature. First results can be found in
Grigelionis (1972); the papers Kliemann, Koch & Marchetti (1990) and Ceci
& Gerardi (2006) are concerned with scalar observations described by a pure
jump process. The recent paper Cvitanic, Liptser & Rozovski (2006) on the
other hand treats the filtering problem for a very general marked point process
model but without common jumps of the state- and the observation process.
All these papers follow the innovations approach to nonlinear filtering.

In the present paper we take an alternative route which is based on ideas
from the reference probability approach. In this way we obtain new general
recursive filter equations. In case that (X,Y) is a finite state continuous time
Markov chain our filter equations give rise to a finite dimensional filter. This
is important for two reasons: on one hand many credit risk models that have
recently appeared in the literature are of this form; on the other hand Markov
chain models can be used as computational tools in models with general state
variable processes. We establish a novel convergence result which justifies the
use of Markov chain approximations in our setup. Moreover, using our filter
formulas we are able to adapt - to our knowledge for the first time - particle
filters such as the algorithm of Crisan & Lyons (1999) to models with joint
jumps of X and Y. Suitable particle filters are a viable numerical scheme for
higher dimensions of the state spaces where Markov-chain approximations fail
(Budhiraja, Chen & Lee 2007). We carry out numerical experiments illustrat-
ing the performance of both filtering algorithms.

The paper is organized as follows. In Section 2 we introduce our setup and
provide various examples; moreover, we discuss the pricing of credit derivatives
under incomplete information. The ensuing filtering problem is then studied
in Sections 3 to 5.



2 An Information-based Approach to Credit-Derivatives Pricing
2.1 The Model

We work on some filtered probability space (§2, F, (F;), P); all stochastic pro-
cesses considered will be (F;)-adapted. Since our focus is on the pricing of
credit derivatives via martingale methods, P is interpreted as risk-neutral
pricing measure. Throughout we consider a fixed credit portfolio consisting of
a set of m firms. Our model is of the bottom-up type, that is we model the
stochastic evolution of the default-state of the individual firms in the port-
folio. The (F;)-stopping time 7; denotes the default time of firm i and the
current default state of the portfolio is summarized by the default indicator
process Y = (Y;1,..., Yy m)e>0 with Yy ; = 147, <¢). We assume that the factor
process X = (X;.1,...,X¢,q)1>0 and the default indicator process Y solve the
following SDE system

t t
X, = X, +/b(xs,,Ys,)ds + /a(XS,,YS,)dWS
0

+ KX(X,_, Y, ,u)N(ds,du), (2.1)

B —

Y = Yo, + (1-— Ys,,j)KjY(XS,7Ys,,u)/\/'(d&du), 1<ji<m. (22)

O, °o— _°
M\

Here W is a standard k-dimensional Brownian motion; the drift b = (by, ..., bg)
and the dispersion matrix o = (0;¢), 1 <14 <d,1 < < k are functions from
SX x {0,1}™ to R? and R4** respectively, S¥ C R? is the state space of X;
N (ds,du) denotes a (P, (Ft))-standard Poisson random measure on Ry X E,
E some Euclidean space, with compensator measure Fjs(du)ds; W and N are
independent; X, is a random vector taking values in S* C R?; Y| is a given
element of {0,1}™. We assume that KJY(:I:, y,u) € {0,1} for all ,y,u and all
1 < j < 'm, so that the solution of (2.2) is in fact of the form Y,; = Lir <ty
By Yx(z,y) € R™? we denote the matrix o(x,y)o'(x,y). Define

DX¥(x,y) ={ue E:KX(z,yu) #0}, 1<i<d, (2.3)

DY (w,y) :={ue E: KY(z,y,u) #0}, 1<j<m. (2.4)

We make the following assumptions.

Al. For every pair (z,y) € SX x {0,1}™ the SDE system (2.1), (2.2) has
a global solution with X¢ = «, Yo = y; moreover, pathwise uniqueness
holds. Sufficient conditions for A1l are discussed in Remark 2.1 below.



A2 Forall1<i<d,1<j<mandallT >0 we have
T T
E(/FN(DiX(XS,YS))ds> +E(/FN(D]Y(X3,YS))ds) < .
0 0

A3. For all 1 < j; < jo <m and all (z,y) € SX x {0,1}" we have
Fy (D} () N D (x,y)) = 0.

Assumption A2 ensures that the expected number of jumps of X on every
time interval [0, 7] is finite and that 7; > 0 for all firms ¢ such that Y;,; = 0.
Assumption A3 ensures that for j; # jo the processes Y;, and Yj, have no
common jumps so that there are no joint defaults. Note however, that the
model (2.1), (2.2) allows for common jumps of X and Y. More precisely, there
is a strictly positive probability that the factor process X jumps at 7, if

Fx (DY (Xs,—, Y5, )N DX(Xr,—, Y,,)) >0 forsome 1 <i<d. (2.5)

Note that by definition of the compensator of a Poisson random measure, the

process
t

Vi — / (1= Y JEn(DY (Xoe, Yo ))ds, £20,
0

is an (F;)-martingale, so that \;(X;—,Y;_) := Fx(DY(X;—,Y;_)) is the
(Ft)-default intensity of firm j. In Subsection 2.3 below we show how various
reduced-form credit risk models can be constructed as solutions of the SDE
system (2.1), (2.2).

Remark 2.1 (Sufficient conditions for A1) There are various types of con-
ditions ensuring strong existence and uniqueness for the SDE-system (2.1),
(2.2). In Theorem 2.2 of Kliemann et al. (1990) strong existence and unique-
ness is proved under growth conditions on b(z,y), Xx(x,y), Fa(DX(z,y)),
FN'(DJY (z,y)) and under the additional assumption that for every fixed y the
SDE dX; = b(X;,y)ds + o(X¢, y)dW has a unique weak solution which is
moreover a Feller process. Alternatively, one can impose growth and Lipschitz
conditions on the data of the problem; see for instance Appendix 1, Section 4
of Ceci & Gerardi (2006).

Some notation. Typically we take Yo = 0. In that case Assumption A2 per-
mits us to introduce the ordered default times 0 = Ty < Th < -+ < Ty, <
Tint1 = oo and the counting process Ny := max{n < m: T, < t}; forn > 1
the rv &, denotes the identity of the firm defaulting at 7;,. The sequence
(Th,€n)1<n<m gives a representation of Y as marked point process. The o-
field Hy = (Y : s < t) = o({(Tn,&) : n = 1,...,N;}) is the internal
filtration of Y or, in economic terms, the default history of the portfolio at



time ¢. Note that any H;-measurable function a,(-): £ x SX — R’ is of the
form

a;(w;x) = Z Li7, ()<t <Tpi (@)} @n(t®; Tj(w), §(w) 1 1 <5 < n), (2.6)

n=0

for functions a,,: [0,00) x SX x ([O, o0) x {1,... ,m})n — R?. For further use
we finally define the functions

N, y) => (1 =y)Xi(x,y), 0<j <m, and A(x,y) := Am(z,y). (2.7)

=1

2.2 Credit Derivatives and Incomplete Information

Credit derivatives are securities whose payoff at maturity 7" depends on the
default history of some underlying reference portfolio; in abstract terms their
payoff is hence given by some Hp-measurable random variable H. Examples
include corporate bonds, credit default swaps or collaterized debt obligations
(CDOs). We study the pricing of these securities using the popular martingale
modeling approach; as mentioned before, P represents the martingale mea-
sure used for pricing. For simplicity we assume that the default-free short rate
ry > 0 is deterministic. Recall that the o-field ftI C F; represents the infor-
mation available to secondary market investors at time ¢; a formal description
of (F}) is given in Assumption A4 below. We introduce two notions for the
the value/price of a credit derivative with maturity 7' > ¢ and payoff H. The
model-value ﬁt is defined to be

H, = E(e_ftT radspy | ]—"t> , t<T. (2.8)

In case that H is traded we view the model value H as theoretical price of
the claim; in our setup actual market quotes may however deviate temporarily
from theoretical prices (see the discussion following Assumption A4 below).
For non traded credit derivatives we define the secondary market price by

H, = E(e* S rads by | f{). (2.9)

Note that in our context H; is the correct notion of the secondary market price
for a non traded credit derivative since this quantity is defined with respect
to the information set actually available to investors.

By the Markovianity of the pair (X,Y), the model value H; is of the form
H, = a;(X;) for some H;-measurable random function a; : 2 x SX — R as in
(2.6). Now we get by iterated conditional expectations

H, = E(B(e™ 1 | 7) | F) = Bla(X,) | 7). (2.10)



In order to compute the secondary-market price H; from the right hand side
of (2.10) we thus need to determine in weak form the conditional distribution
X, |FI (dx). This is a typical nonlinear filtering problem which is studied in
detail in Sections 3, 4 and 5.1

Remark 2.2 Tt is well-known that intensities with respect to subfiltrations can
be computed by projection. Hence the (F/)-default intensity of firm j is given
by the left-continuous version of

Mj=ENX, YY) | Fl) = /)\j(w,Yt) mx, i (de), t<T.  (211)
Rd
In particular, new default information such as the news that obligor i # j has
defaulted leads to an update in the conditional distribution mx, |z (dx) and
hence to a jump in the (F})-default intensity of firm j.

The investor filtration. We assume that investors observe the default history
of the portfolio under consideration. Moreover, we assume that they have
noisy information about the model value a;(X:) = (ar,1(Xy), ..., are(Xy))
of ¢ traded credit derivatives. As explained below, in continuous time the
appropriate way to model this is to assume that investors observe the vector
a:(X;) in additive Gaussian noise. We therefore make the assumption

A4, Ff =H, v FE, t >0, where the ¢-dimensional process Z solves the SDE
dZt = a¢ (Xt)dt + Ud,@t . (212)

Here B is an ¢-dimensional standard Brownian motion on (§2, F, (%), P),
independent of X and Y; v denotes an invertible £ x £ matrix of constants;
ai(): 2 x S¥ — R’ is an H;-measurable random function as in (2.6);
moreover, the functions a,, in (2.6) are continuous and bounded.

Now we turn to the financial interpretation of Z. Suppose that secondary
market investors observe market quotes for the traded credit derivatives such
as (logarithmic) prices or spreads at discrete points in time ¢, = kA, and
that these quotes are of the form z;, = a: (X;,) + € for an iid sequence
of Rf-valued noise variables (€)s, independent of X, with F(e;) = 0 and

cov(er) = X.. Assume that Y. is positive definite and choose an invertible

root ¥. Define the scaled cumulative observation process Z{ := AZtkgt 2y,
and let v = /A®. Then we have for A small, using Donsker’s invariance
principle,
t
72 = Z ay, (X, )A+ A Z € R /as(Xs)ds +v0,. (2.13)
tp <t tp <t 0

I In the important case of credit default swaps and CDOs (2.10) applies separately to the
premium payment leg and the default payment leg of the transaction; the fair secondary
market spread is then computed by equating the secondary market price of both legs of the
transaction.



We have Yz = v’ = Afs, so that the instantaneous covariance matrix of
Z in (2.13) is proportional to the covariance matrix X of the noise variables
and inversely proportional to the observation frequency 1/A. Note that with
this interpretation of Z the information contained in observable market quotes
is taken into account when pricing non-traded claims according to (2.9). The
noise - (€x)x respectively v3 - represents classical observation errors such as
bid-ask spreads, transmission errors or non-simultaneous quotes as well as
(spurious) deviations of market quotes from theoretical prices. In applications
the error covariance matrix v has to be chosen by the modeler by balancing
flexibility (the fact that with low error variances mx,| F1 reacts swiftly to new
price information) against stability of the filtering algorithm which is being
used.

Remark 2.3 As pointed out to us by a referee, traders might base their deci-
sions also on general economic conditions represented by observable covariates.
This case is not covered by Assumption A4. However, observable covariates can
easily be incorporated into our framework. The idea of interpreting observed
prices of derivatives as noisy observations of functions of some unobserved
factor processes is pursued also in Gombani, Jaschke & Runggaldier (2005).

2.3 Examples

The following examples show that a great variety of models are covered by our
framework.

1. We begin with the standard models with conditionally independent, doubly
stochastic default times. In these models it is assumed that X follows a jump
diffusion model of the form

J an R?-valued compound Poisson process with compensator measure Fy(dx)ds;
moreover, given FX | the default times are conditionally independent with haz-
ard rate A\;(X;). A typical representative of this model class is the popular
affine jump-diffusion model of Duffie & Garleanu (2001). A possible choice for
N, KX and KY is as follows. Take F = R? x R, Fpr = Fy X v, v Lebesgue-
measure on R, and put

KY(w,u) = 1[

; (ugy1), 1<j<m, and (2.15)

ST Ni(@), D ()]
KXz, u) = wil_q0)(uap1), 1<i<d. (2.16)

Note that by the choice of KX and KY, Fx(DX(x) N DY (x)) = 0 for all
1<i<d,1<j<mandall in SX. A filter algorithm for the special case
where (F) = (H;) (only default information) and where the coefficients in

(2.14) are affine functions of X; is proposed in Frey, Prosdocimi & Runggaldier
(2007).



2. Next we discuss a version of the infectious-defaults model of Davis & Lo
(2001); here the state process does jump in reaction to default events. Assume
that X is modeled as a finite state Markov chain with state space SX =
{1,...,K} and that the default intensity of firm j is given by A;(X;) for
increasing functions A; : SX — R*. At a default time 7},, X jumps upward
by one unit with probability pe, (which may depend on the identity &, of the
nth defaulting firm), and remains constant with probability 1 — pe, (unless,
of course, if X7, = K, where X remains constant). If the system is in an
“ignited state”, i.e. if X; > 2, X; jumps to X; — 1 with intensity v(X;); these
downward jumps occur independently of the default history. An upward jump
of X at a default can be viewed as manifestation of physical default contagion,
as the default intensities of the remaining firms are increased. This leads to
a downward jump in the model value (and hence to an increase in the credit
spread) of a zero-coupon bond issued by non-defaulted firms. In Section 4.1
we show how this model can be embedded into the general framework (2.1),
(2.2) by a proper choice of Fir, K* and KY.

3. Finally we turn to the model of Frey, & Schmidt (2009) (FS-model in
the sequel). This model is of interest in our context, since the state vari-
able process is itself the solution of a filtering problem, so that the common
jumps of state variable and default indicator are generated by information
effects. In the FS-model it is assumed that the default times are condition-
ally independent doubly stochastic random times on some filtered probability
space (2, F,(F:),P) and that the (F;)-default intensities are driven by an
unobservable finite-state Markov chain ¥ with state space {1,...,K} and
generator matrix Q¥ modelling the state of the economy. Frey, & Schmidt
(2009) consider a market where ¢ credit derivatives with payoff Hi,... H, are
traded. The model value of these contracts is defined as conditional expec-
tations with respect to the information set F, = FY vV FV, termed market
filtration, i.e. we have H;; = E(exp(— ftT rsds)H; | F;). The process U is
given by U; = f(f o(¥,)ds + By, B a standard (F;)-Brownian motion indepen-
dent of ¥ and Y'; it models in abstract form the information about the state
of the economy ¥ contained in the prices of traded credit derivatives. Define
the conditional probabilities

pr=PW, =k|F), 1<k<K, andlet p, := (p},...,pK). (2.17)

The process p = (p,)i>0 is a natural state variable process for the model in
the market filtration; it thus plays the role of the process X from (2.1). The
reasons are the following: first, denoting the (F;)-default intensities by v;(%),
the (F;)-default intensities are given by \i(p;) := ZkK:1 p¥vi(k). Moreover,
note that by the (F;)-Markovianity of ¥ and Y, the conditional expectation
E(exp(— fOT_t rsds)H; | ft) is given by some H;-measurable function a. ;(¥).
By iterated conditional expectations theoretical prices can therefore be ex-
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pressed as H;-measurable functions of p, as well:

K
Hyj= B (W) | Fo) =Y pFae (k) = ani(p), 1<j <L (218)
k=1

Using the innovations approach to nonlinear filtering, in FS the following K-
dimensional SDE for the process p = (p},...,pK)i>0 is derived:

K m
dpf =" QY pidt + > ¥ (p, ) d(Yei — Nilp)dt) + 6" (p, ) dW, . (2.19)
=1 i=1

Here Wy = U — fg Zszl a(k)pt ds is (F;)-Brownian motion; the coefficients
in (2.19) are given by the functions

k(o) — ok v;(k)
'“m’%zimmw

In the FS-model the process U is unobservable for secondary market investors;
these investors have to back out the conditional distribution of probability
vector p, given historical default- and price information. Assuming that their
information set (F/) is as in Assumption A4 of the present paper, this leads to
a nonlinear filtering problem with state variable process p and observations Y
and Z with Z; = fot as(p,)ds+vB,. Thus the solution of the filtering problem
with respect to (F;) becomes the state variable p = X of the filtering problem
with respect to the investor filtration (Ff). The latter filtering problem is
covered by our setup, as the processes p and Y follow an SDE-system of the
form (2.1) (2.2). Note in particular that at a default time the probability
vector p is updated according to (2.19), so that there are common jumps of
state variable p and observation Y.

The FS-model has a number of attractive features: first, by (2.18) the
main numerical task is the evaluation of the functions a; ;(¢); as this function
is computed in a simple setup with conditionally independent defaults, com-
putations become relatively easy. Moreover, the model generates a rich set of
price dynamics with randomly fluctuating credit spreads and default conta-
gion. Results of numerical filter experiments for the FS-model are reported in
Section 4.3.

4)M@=w@w—iwwﬂ.@w

3 Filter Equations

The remainder of this paper is devoted to the analysis of the the following
filtering problem which is the crucial step in the computation of secondary
market prices: given a bounded function f : R? — R develop a recursive
approach to computing 7 f := E(f(X;) | FI).
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We begin with a brief overview of our analysis. As a first step, in Sub-
section 3.1 we use a well known change of measure argument from the refer-
ence probability approach in order to reduce the filtering problem to the case
where (F/) consists only of the default history (H;). In Subsection 3.2 we
study the dynamics of X between default events. This is a non standard step
which is necessary, given the common jumps of X and Y. Equipped with these
results we can derive general filter formulas in Subsections 3.3 and 3.4. Sec-
tion 4 is devoted to computational aspects: we derive a finite dimensional filter
for the case when (X,Y) follows a finite state Markov chain, adapt existing
particle-filtering algorithms to our more general setup and present some nu-
merical experiments. In Section 5 we finally discuss the the filter convergence
for finite-state Markov approximations.

Notation. In the sequel we use the following pieces of notation. By X 1=
(vv")~1 we denote the inverse of the instantaneous covariance matrix of Z; for
any vector a € R we define ||a||2221 =ad'Y, a.

3.1 Measure transformation and reduction to (H;)

It will be convenient to model the processes X, Y and Z on a product space
(2, F,(F), R%) so that Z is independent of X and Y and to revert to the
original model dynamics via an equivalent change of measure. For this we
denote by (£22, Fo, (F2), P%*) the (-dimensional Wiener space with coordinate
process 3°, i.e. ,6'? (w2) = wa(t). Given some probability space (£21, F1, (F}), P)
supporting a solution (X,Y) of the SDE-system (2.1), (2.2), let 2 := {21 X {29,
F=FiQ@Fy Fy=F}@F? R := P x P% and put for w = (w1, ws) € N2

X (w) == Xy (w1), Yi(w) := Y (w1), and B2(w) := BY (w2).

Note that this implies that under R°, 3° is ¢-dimensional Brownian motion,
independent of X and Y. Define the process Z; := vﬁg. Introduce a Girsanov-

type measure transformation of the form %‘ 5= L; with

t

Li(wy,we) = exp{/(U—las(XS)(wl))/d,@S(wQ) - %/H(IS(XS)(WQ)szz—l ds}
0

0
t

—exp { [ al(Xo) 1) 57 d2(wn) 5 [ llaaX )l s}
0 0
(3.1)

and note that the process L is indeed a R%-martingale of mean one as a(-) is
bounded by A4. Using the Girsanov theorem for Brownian motion we therefore
obtain that, under R, the process Z has the original dynamics (2.12); more-
over, since ,80 is orthogonal to both W and the martingale that results from
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compensating the counting measure N, the above measure transformation in-
duces no changes in the law of X and Y. Hence under R the triple of processes
(X,Y,Z) has indeed the correct joint law. Notice finally that by (3.1), L can
be expressed in terms of the observation Z. By the following Bayes formula,
known as Kallianpur-Striebel formula (Kallianpur & Striebel 1968), we then
have

ER°(f(X)L: | F)

mf = ER(f(Xt) | ‘7:15[) = ERO(Lt | ftj) )

(3.2)

so that, to compute 7, f, it suffices to compute the numerator on the right-hand
side in (3.2).

Recall that F/ = H; vV FZ. Next we reduce the conditioning on F/ to a
conditioning on H;. Since Z; = vBY with v invertible, we have FZ = .7-";6 D,
i.e. given FZ, the process wy(s), s <t is “known.” Using the Fubini theorem
and the product structure of (£2, F, (F;), R®) we therefore get

E™(f(Xe) L | Hy V FE) (W) = BP(f(Xo)Lo(-ywa) | He)(wn) - (3.3)

In order to compute m; f we thus have to evaluate the conditional expectation
on the right hand side of (3.3). Note that this involves only the first component
(021, F1, (F}), P) of the underlying probability space and hence only the joint
law of X and Y. In orderto ease the notation expectations with respect to that
law will be simply denoted by E (instead of E¥’); moreover the arguments of
L; will usually be omitted.

3.2 Dynamics of X between default times

Next we discuss the dynamics of X for ¢ € [T,,_1,T},) i.e. between default
times. This is a prerequisite for the filtering equations in the next subsections
and for the derivation of approximation results in Section 5. For this purpose
we define the new kernel

. - B v
KX (2, y,u) = {0, if we DY (x,y):= U{j:yj:o} DY (z,y),

KX(x,y,u) else.
(3.4)
We will see shortly that the kernel K* governs the jumps of X between default
times. For instance, in case of the extended Davis Lo model, KX (k,y,u) =
—1—y),0)(u), k= 1,--- | K, reflecting the fact that between defaults X can
only jump downwards.
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Consider, for t > T, _1, the SDE system

t t
X, =Xp _, + / b(Xs, Y7, )ds + / o(Xs, Y, )dW,

n—1

/t/ (XKoo Yo o, w)N(ds, du), (3.5)

Yt] = YTW 1,7 + / / (X9 7YT )N(ds,du), 1 S J S m.
nfl

Comparing the system (3.5) with the original model dynamics (2.1), (2.2), we
see that KX has been replaced with K*X; moreover, in the coefficients of the
equation the “initial value” Yr, , replaces Y;_. Since, for T),_; < t < T},
there are no atoms of N'(ds, du) in {t} x DY (X;_,Y7,_,), by definition of KX
in (3.4) we have for T,,_1 <t < T, the equality

/t/KX(XS’YS’“W(dS»d“): /t /KX(XsﬂYTn,l,u)N(ds,du).

Tn_1 E Th-1 E

Strong uniqueness of (3.5) implied by Assumption A1 therefore yields that a.s.

Xy =Xy, Ty <t < Ty, and Yy =Yy, T,_y <t < T, (T, included).
(3.6)

Denote by Pz, the law of the solution (X,Y) to the SDE system (3.5)
starting at ¢ = 0 in the point (z,y) € R? x {0,1}™. Now the law of the
processes (Xt+Tn 1,Yt+T7 )t>0 is obviously equal to P(XTW,_leTn_l) and so
P(XT%1 Y1, ) also governs the evolution of the original process (X;_,Y) for
Tho1 <t<T,.

Define the stopping time Ty := inf{t > 0 : AY; # 0} and denote by
& € {1,--- ,m} the identity of the first jump firm in the “bar-model”. Note
that T} is a standard doubly stochastic random time. Hence we have

t

Pl ) (Tl >t fz) = exp{ - /X(Xs,y)ds} and (3.7
0
t
Py ez (01 1X) = MKy exp { - / AXoy)dsh,  (38)
0

where hT1,§1| #x is the conditional density of Ty, & under P(wﬂ), given ]-'O)E (see
e.g. Section 9.6.2 of McNeil, Frey & Embrechts (2005)). Properties (3.7) and
(3.8) will be essential for the derivation of the filter equations.
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3.3 Filtering between default times

Overview. Our filter formulas take the form of a recursion over the ordered
default times 0 = Ty < 11 < --- < T},. Denote the distribution of Xy given
FE (the initial filter distribution) by mo(dz) and for 1 < n < m by 7, (dx)
the filter distribution at ¢ = T,,. In Theorem 3.1 we consider a time point
t € [Th-1,T,) and show how 7 f can be derived from 7y, _, (dx) and from
the trajectory (Zs)r, ,<s<t, representing the new price information received
over [T,,_1,t]. In Subsectlon 3.4 below we explain how to compute 77, f from
mr,_, (dx), the new price information received over [T,,_1,T},] and the new
default information (T5,,&,). Since only the new price information (Zy)s>1, ,
matters for these considerations, in the sequel we use the lighter notation

Z0 = Zoir,, and  al()=acr, (). (3.9)

Theorem 3.1 Consider a time point t € [T,_1,T),) for two successive default
times Ty,_1 and T,,. Then m;f is proportional to

1
J ) Bt ( Reor) L oo { = [ ALY is) ).
R4 0

(3.10)
where the process L™ = (L), >0 is defined by

_exp{/ $) Xz dZ"——/H o HE 1 ds} . (3.11)

The proportionality factor is given by (3.10) evaluated at f(x) = 1.

Proof Recall that by (3.2) and (3.3), mf o« E(f(X:)L¢ | H¢). Denote by
Fim = o(lyr,<sy: s < t) the filtration generated by the indicator of the
random time 7. Now note that for T,y < ¢t < T,,, H; = Hp,_, V .7:tT"
By the so called Dellacherie-formula (see for instance Lemma 3.1 in Elliott,
Jeanblanc & Yor (2000)) we get for any integrable, F..-measurable random
variable U that

EUlr, >t | Hr,_,)

FE(U1 Hy) =1 3.12
(Ulir,>ey | He) = Lm>ey P >t [ Hr, ) (3.12)

With U = f(X;)L; we therefore obtain for t € [T),—1,Ty)
E(f(X¢)Li | He) o< E(f(Xe)Lelgr, ey | Hr,_y) - (3.13)

By double conditioning we get
BE(f(X)Lilir, >0 | Hr, )

= E(Ln IE(f(Xt) LTL: Ly, >ty |;an,1) |HTM). (3.14)
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Recall the definition of the process L™ from (3.11). By the Markov property
of (X,Y) and the equality in law discussed in the previous subsection below
equation (3.6), the inner conditional expectation in (3.14) equals

E(XT"717YTW’71)(f(Xt_Tnfl)L?_Tnfl 1{T1>t*Tn,1}> . (3.15)
Using the survival function of 7} as given in (3.7) and double conditioning on
FX, (3.15) is equal to

t—=Tp

-1
Ectr e ) ( AR ) Er, e { = [ AR Yn ) ds}) |
0

Using the Kallianpur Striebel formula (3.2) and relation (3.3), expression
(3.14) is thus proportional to

t—Tn_1
[ 00 By, (1 L, e { = [ AV as) ).
R4 0

proving the theorem.

3.4 Filtering at a default time T,

Again by (3.2) and (3.3), at a generic default time T;, we have
w1, f < E(f(Xr,)Lr, | Hr,) -

Notice now that, due to the possibility of common jumps between X and
Y, the expressions E(f(Xr,)Lt, | Hr,) and E(f(Xg, - )L, | Hr,) do not
necessarily coincide. We shall therefore proceed along two steps. In Step 1 -
which is specific to the case of common jumps of X and Y - we show that
one can obtain the conditional expectation E(f(Xr,)Lr, | Hr,) once one is
able to compute E(g(Xg, )L, | Hr,) for a generic function g(+). In this step
we use the joint distribution of the jumps AX7 and AYr, and hence the
particular structure of the given model. In Step 2 we then compute the latter
of those two quantities via Bayesian updating.

Step 1. (Reduction to the filter distribution of X, _)
Proposition 3.2 We have the relation
E(f(Xz,)Lr, | Hr,) = E(9(X1,—; Y1, 1, &) Ly, | Ho,).
Here the function g is given by
fD;{(m’y) f(:c + Kx(a:,y,u)) vj(du) , for FN(D]Y(:(:,y)) >0

g(w;y,J)Z{ o) else:

(3.16)
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the measure vj(dx) is defined by v;(A) = F (D?(m,y))leN(A NDY(x,y),
provided that the denominator is strictly positive.

Remark 3.8 Note that without common jumps of X and Y, i.e. in case that
Fy (DY (x,y) N DX(x,y)) = 0 for all i,j,x,y, we have that K*(z,y,u) is
Zero on D;.((a:,y) Fy—a.s., so that

/ f(@+ KX(@,y,0)v;(du) = f(z).
DY (z,y)

Consequently g(x,y,j) = f(x) in that case, even for Fj (DJY(:B,y)) > 0, and
so Step 1 becomes superfluous.

Proof By (2.1), (2.2) we have for t € (T,,_1,T,,] and for j with Y7, , ; = 0 the
equality

{(Tn. ) = ()} = {NV ({t} x DY (X¢-, Y, _,)) =1},

or, in words, (T,,,&,) = (t,7) if and only if A/(ds,du) has an atom in the set
{t} x DY (X;—,Yr,_,). Hence

Hr, C .7'~—Tn_ =Fr,_V J(l{N( (3.17)

(T.}x DY (X1, - Y1, ,)) :1}) )

Since moreover X7, = Xrp,— + [ KX(Xq,—, Y71, , u) N{T,}, du) , we get
by double conditioning, using (3.17),

E(f(Xr,)Lt, | HT,) = E(E (LTn

X /f(XTn— JrKX(XTn_,YTn_l,U))N({Tn},du) | ‘%Tn_) ‘ HT,,,)-

Now note that Ly, and Xr,_ are Fr, _ measurable whereas N ({T},},du)
is independent of Fr _ with compensator measure Fy(du). Moreover, given
Fr,—, conditioning on Fr,_ is equivalent to conditioning on the fact that
N({T.},du) has an atom in the set {T,,} x D (Xz,-,Yr,_,). Hence the
inner conditional expectation is equal to g(Xr, —; Y7, _,,&n) L1, , and the result
follows.

Step 2 (Updating of the conditional distribution of X, )
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Theorem 3.4 Recall the definition of the process L™ from (3.11). Given the
information that a default has actually occurred at t = T,, and given the iden-
tity &, of the defaulting firm, for a generic function g : R* — R we have

E(9(Xr,-)Lr, | Hr,) /WTnfl(dw) E(w,YTn1)<9(XTn—Tn1)
Rd
Tn

XL 1 ey (Xo, -1y Y1) eXP{ - /
0

Tn

;(Xs, Yo ) ds}> .

(3.18)

Proof The proof goes in two steps: first we reduce the claim to a statement
with respect to Py, L secondly we apply Bayesian updating. Since Hr, =
Hr, , Vo(Tn, &) we get

E(9(Xr,-)Lt, | Hr,)

= E(LTH_lE(g(XTn—)LLTTTL" | an_l,ngn) | HTn_uTmfn) ' (3.19)

—1

We now concentrate on the inner expectation. Using (3.6) we get that

B(g(Xn, ) g2 | Fr,y To = 1,60 = i) = E(9(Xr,-)

Ty Ty
~ 1 ~ 2
Xexp{ /a/s(xg)zgldzs—5 / HaS(Xs) - ds}|FTn71,Tn:t,§n:i).
z
T"71 Tn—l

Now note that, due to the equality in law as discussed after relation (3.6),
given Fr,_,, the joint law of ((X,)7,_,<s<1,, T — Tn—1,&n) equals the law
of (Xs)o<sery>T1,€1) under P(XTW_17YT”_1). Moreover, AX 7 = 0 a.s. Hence
the last term equals

T

(o) e { [ (@) x5 a2
0

E(XTnfl Y,

(3.20)

Ty
1 v S —_
_ §/||az<xs>||';z,l asy |T=t1-To 1.6 =),
0

We are now in a position to do the Bayesian updating. Recall from (3.8) the
form of the conditional density hflfll #x. By double conditioning on FX V

o(T1,&) and the Bayes formula, (3.20) is easily seen to be proportional to

E(xTnfl ’YT'nfl) (g(Xt_T”*I ) L;L_Tnfl
t—Tpn_1

x/\i()_(t,Tnfl,YTnfl)exp{— / X(X&YTnfl)ds}).
0
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Combining this with (3.19), thereby using (3.2) and (3.3), gives the result.

4 Filter Computation

In this section we discuss two approaches for turning the filter equations from
the previous section into a computable filtering algorithm. In Section 4.1 we
derive a finite dimensional filtering algorithm (Algorithm 4.3) for the case
where the pair process (X,Y) follows a finite state Markov chain. Models of
this type are frequently being used in portfolio credit risk modelling (with
observable X); examples include the infectious defaults model discussed in
Section 2.3 or the Markov-chain models of Arnsdorf & Halperin (2007) and
of Frey & Backhaus (2007). Moreover, the results for the finite state Markov
case can be used to construct a filter approximation for general jump-diffusion
models, as will be shown in Section 5 below. While Markov chain approxi-
mations are very useful for lower dimensional state processes, computations
become prohibitively expensive as soon as the dimension of X becomes mod-
erately large. In Subsection 4.2 we therefore explain how the filter equations
from Section 3 can be used to construct a particle filtering algorithm for the
jump-diffusion model (2.1) (2.2). The results of numerical experiments are
reported in Subsection 4.3

4.1 Filter equations for finite-state Markov chains

A general Markov chain model. Assume that the pair process (X,Y) follows
a finite-state Markov chain. W.l.o.g. we assume that the state space of (X,Y)
is given by the set {1,..., K} x {0,1}™; in particular, X is now scalar. We
denote the transition intensities of (X,Y) by q(k,y;l%,fg). In line with our
general framework we restrict the transition intensities so that default is an
absorbing state and so that there are no simultaneous defaults. Hence, denoting
the current state by (k,vy), there are three possible transitions of (X,Y). First
there may be a transition from (k,y) to (h,y), h # k; this transition occurs
with intensity (jgﬁh := q(k,y; h,y). Second, there may be a ‘contagious default’,
i.e. for fori € {1,...,m} with y; = 0 and h # k there may be a transition from
(k,y) to (h,y"), where y is obtained from y by flipping the ith coordinate.
Third we may have a ‘pure default’, i.e. a transition from (k,y) to (k,y%). In
particular, the default intensity of a non-defaulted firm i is equal to A\;(k,y) =
K 4

2on=14(k, Y h,y').

In order to apply the results from the previous section we have to model
the dynamics of (X,Y) in a way that fits into the general framework (2.1),
(2.2). Since there are three types of transitions we take E =R x {1,2,3} and,
with u = (u1,u2), Fy(du) = v(duy) ®E§?:1 0;(ug) with v(-) the Lebesgue and
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9;(-) the Dirac measures. We put

Xkoyu) =D (h - B g, 1 (w) - (41)

ay e >
h#k {e<h: L#k} kot {z<h+1;z¢k}k’e

+ Z Z(h a k)l( > alkyity?), > q(k,y;t’,yi)] (1) Loy (u2)

{iry;=0} h#k {e<h:l#k} {L<h+1: ¢#£k}

and for 1 <i<m

KY (k,y,u) = 1{y¢:0}(1(0_’ S atkyity) (u1) Lizy (u2)
=5

0 qkwny] (“1)1{2}(U3)) (4.2)

It follows that the the kernel K*(-) defined in (3.4) is given by the right hand
side of (4.1), as can also be seen from the fact that for ¢ € [T,,,T,,+1) the factor
process X follows a finite state Markov chain with transition intensities q:T"
k # h; we denote the corresponding generator matrix by QY.

The filter equations. In the finite-state Markov case the filter distribution can

be summarized by the K-dimensional process m; = (7},...,75) with 7 :=

P(X; =i | Fl). Obviously, it suffices to compute an un-normalized version
of 7r;. The key step in applying the filtering results of Section 3, in particular
Theorems 3.1 and 3.4, is thus the evaluation of expressions of the form

orgln, yl : Zan L({i)) E(zy< (X)L eXp 0/ X ds ) (4.3)

for generic g: {1,..., K} = R, y € {0,1}. Put for h € {1,..., K}

t
Jt n,yl ZWT E(l y) (1{X¢—h}‘[’;I eXp{ _/S‘(sty) ds}) ; (4.4)
0

so that o¢[n,ylg = Zthl ol[n,y]g(h). In the next proposition we derive a
Zakai-type SDE for the vector process o¢[n,y| = (of[n,y], ..., [n, y]) that,
as follows immediately from the previous development, represents a vector of
unnormalized conditional probabilities.

Proposition 4.1 The process o = o[n,y] solves the SDE
dot = (qu oF =X y)at) dt + ol (al) ()57 dZy, 1<i<K, (4.5)

with initial condition o} = 7y, ({i}).
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Proof A similar reasoning as in Section 3.1 yields ol o< Ry ()__(t =h| ]—'tzn)
where under R, X is a Markov chain with generator matrix QY, initial dis-
tribution 7, and where Z} solves the SDE dZ} = a}(X,)dt + vd3}, with

5? = <5t+:ﬂ”,1)t>0~

The statement can now be derived from general results in Corollary 3.9 of
Elliott (1993). For this purpose we need to define an appropriate process H
that we choose as H; := exp { —fot MXs,y)ds}, so that dH, = — (X, y)Hedt.
With this choice of H the coefficients in (3.1) of Elliott (1993) become 8 = § =
0 and a; = —\(X;,y)H;. Equation (4.5) now corresponds to relation (3.18) in
Elliott (1993).

The filter distribution at a default time T, . Here we have the following result.

Corollary 4.2 Using the convention 0/0 = 0, we have for 1 <i < K

i . Q(haYTnfl;iaYTn)
rhy =, (i) = S P (Xg, = b | Fh) |
! ; " Zj(:l q(hﬂYTnfﬁ.])YTn)

q(l, YTn_1 ) i, YTn)
Zf:l q(la YTn71;j7 YTn)

(4.6)

+ P (Xr,-=i| 77,)

Proof The result can be established by applying Proposition 3.2 to the kernels
KX and K introduced previously. Alternatively, an analogous reasoning as
in the proof of Proposition 3.2 can be used to show that the expressions

q(haYTnfﬁLYTn) and q(LYTnfl;ivYTn)

Ejl‘{:l q(ha YTn—l;ja YTn) Zf:l q(i7YTn71;ja YTn)

give the conditional probability that X jumps from state h to state ¢ at T,
respectively that X stays in state i at T),, given the observed transition of Y.

We summarize our filtering results for the finite-state Markov case in
the following algorithm. Recall that (Us[n,y])8>0 denotes the solution of
(4.5) with initial value ofn,y] = w1, ,({i}), Z" = Zsir, , and a?(-) =
asit, ()

Algorithm 4.3 (Filtering for a finite-state Markov chain.)

1. Set n=1,Ty =0, Yo =0, and denote the initial filter distribution by (.

2. Compute oi[n, Yz, _,] for t > T,,_; according to (4.5) (for the actual com-
putation see the next paragraph).

Uz—Tn,l [n7 YTn—l]

3. For t € [T_1,T,), set (see Theorem 3.1) m} := — -
k=19%t—T,_, n,Yr,_,]
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4. For t = T, compute first (see Theorem 3.4)

- >‘§n (iﬂYTn—l)O—é"n—Tn,l[nﬂYTn—l]
- K
Zk}:l )\fn (k’ YTn—l )0-',]16—'.,L—Tn,1 [n’ YTn—l]

and determine then mg, = [, ..., 75 | according to (4.6). Replace n by
n + 1 and return to Step 2.

P(Xr,_ =i|Ff):

Note that all quantities appearing in Algorithm 4.3 can be expressed in term
of the transition intensities of the Markov chain (X,Y).

Solving the Zakai-equation (4.5). In order to apply Algorithm 4.3, we need to
solve the SDE (4.5). Here two cases can be distinguished. If (F}) = (H;) or,
equivalently, a}'(-) = 0 equation (4.5) reduces to the ODE-system

d . _ ,
—0p = atof —Aiyloy, 1<i<K (4.7)

In vector notation the solution of this equation is given by the matrix expo-
nential o;[n,y] = oo[n, ylexp {t ((Q¥)' — diag(A(1,y)--- ,A(K,y)))}. This
matrix exponential can be computed by diagonalizing the matrix QY. Alter-
natively, one can apply numerical schemes for ODEs to equation (4.7).

If a} () # 0, (4.5) is a stochastic differential equation. Numerical methods
for solving this equation are based on time discretization, e.g. according to
the Euler-Maruyama scheme. This is the natural approach if only discrete
time observations of Z are available; for a discussion of technical details we
refer to Clark (1978). An alternative approach, again due to Clark (1978),
is to reduce the stochastic differential equation (4.5) to a deterministic one
via a well chosen factorization. To this effect notice that a straightforward
application of It6’s formula allows to show the following

Lemma 4.4 We have o} := Ay ; - 7;(t, A) where
t

¢

S\ y— n 1 n(; .

Ay = exp { /(a?)’(z)ﬂzl dZ" s — 3 / la” (z)||222_1 ds} ,i=1,...,K (4.8)
0 0

and where (-, A) solves the ODE-system

K
d <.
it A) = ALY Ak (aY = M y)du)r(t A), r(0,A) =00, (4.9)

k=1

In order to use this result one has to determine a trajectory of A = (A1, -,
At i) je>0 given the observed trajectory of the process Zi'. This can be accom-
plished by using stochastic partial integration to allow for a pathwise evalua-
tion of the stochastic integral in (4.8); we refer to Davis (1978) for details and
for a deeper discussion of pathwise non-linear filtering.
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4.2 Particle filtering

In particle filtering the conditional distribution mx FI is approximated by the
occupation measure 7; of a branching particle system with particles in the state
space SX of X. This branching system is constructed by a recursion over dis-
crete time steps ¢, = kA, k= 0,1,.... The measure 7y, ., is constructed from
T4, in a two-stage procedure. In the prediction step one generates for each par-
ticle 2% in the system at time ¢, a trajectory of the SDE (3.5) of length A with
initial value @ . In the updating step, the new particle system is constructed
by letting each particle branch into a random number of offsprings; the mean
number of offsprings is defined in accordance with Theorems 3.1 and 3.4 (see
Step 3 and 4 of Algorithm 4.5 below). Moreover, at a default time the parti-
cles are shifted by a random amount according to the conditional jump-size
distribution of X at a default time as given in Proposition 3.2.

Let ((tr) denote the number of particles at time ¢, and consider (in ac-
cordance with (3.5)) for (x,y) € S¥ x {0,1}™ the SDE

t t t

X;=x+ /b(Xs,y)ds + /U(Xs,y)dws + //[_(X()_(S,,y,u)./\/(ds,du),

0 0 0 E

(4.10)

The evolution of the particle system can then be described as follows:

Algorithm 4.5 (Particle filtering.)

1. The initial state 7y is given by the occupation measure of 5(0) particles
of mass 1/3(0), i.e. 7y = B(0)~! Zf:((i) Szi(0); here {z'(0),..., 27 (0)}
represent independent draws from the initial distribution mq.

2. (Prediction step) Given the particles {x}, . .. ,mf(t’“)} in the system at time
tr, generate fori = 1,. .., B(tx) independent trajectories X* = (X'(s))o<s<A
of the SDE (4.10) with starting value x =, and y = Yy,.

3. (Updating step/no defaults) Assume that there is no default in (tg,tg4+1]-
Given the new noisy price observation (Z;);, <s<t,,,, define (in accordance
with Theorem 3.1) for each trajectory X*, 1 <i < ((ty), the weights

A
L= exp{ - /S\(Xi,Ytk)ds
0
A A (4.11)
/ iy y—1 1 i |2
+ atk+s<Xs)EZ dztk+8 - 5 Hatk+5(xs)||z‘£1 ds}
0 0

In a numerical implementation the stochastic integral in (4.11) may be
computed by Euler approximation. Define

i Bk)L

t L)
S0 L
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and denote by [uf] the integer part of u’. At t,,; each particle w; in
the system at t; produces independently a random number m(i) of off-
springs with mean number of offsprings equal to u’; in order to minimize
the variance of m(i) it is assumed that m(i) has support {[u'], 4] + 1}
Note that together with the requirement E(m(i)) = p; this determines the
distribution of m(i). The positions of the m(i) offsprings of particle i are
given by X?(A) (the endpoint of the trajectory with initial value xi). We

set B(tk+1) :== Zi:(tl’”‘) m(i) and denote the new particles at time tx1 by

{:Bi_H, ol wgg’f“)}. The approximation to the filter distribution at time
ti+1 is then given by
B(tr41)
~ -1
T = Bltes)) ™ D Oy - (4.12)
i=1

4. (Updating step at a default time) If there is a default event in (¢, tx11],
we use Theorem 3.4 and proceed as follows?. Denote by ¢ € {1,...,m}
the identity of the defaulting firm and put L := :\\5 (X*(A))L" with L
as in (4.11). The number of offsprings m(4) is determined by the same
mechanism as in Step 3 but with L,..., L°() instead of L',..., LA,
In accordance with Proposition 3.2 the position of the offsprings of particle
i is given by X*(A) + KX(X(A),Yy,,U), where U ~ v¢(du) with

4 En(40 DY (X¥(4),Y,,)
V) = DY (X))

The measure 7, , is then again given by (4.12).

This algorithm has a number of advantages, in particular for high-dimensional
problems. First, particles with small weights (corresponding to a-posteriori
unlikely trajectories of X) have a low probability of being carried forward,
so that the particles concentrate mostly in the more probable regions of the
state space. Moreover, the computational effort increases only linearly in the
dimensionality of the state process. Obviously, particle filtering algorithms
based on resampling instead of branching (see e.g. Budhiraja et al. (2007))
can be adapted to our setting in an analogous manner.

4.3 Numerical experiments

Next we present results from numerical experiments illustrating the perfor-
mance of the Markov-chain filter (Algorithm 4.3) and of the proposed particle
filtering algorithm. We work in a scalar version of the affine jump-diffusion
model of Duffie & Garleanu (2001), termed (scalar) DG-model, and in a spe-
cial version of the Frey, & Schmidt (2009)-model, termed FS-model. The scalar

2 Since the interval length is short we can neglect the possibility of more than one default
per time step. Moreover, we may assume that the default happens exactly at t = t541.
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DG-model has a low-dimensional state space and is therefore a useful test case
where Markov-chain filter and particle filter can be compared. The FS-model
is more demanding: in this model the state space of the signal process is of
higher dimension (we take K = 4 for the simulation study), and there are
common jumps of state space and default indicator process. For this model we
we relied exclusively on particle filtering.

For simplicity we assume that all firms have identical default intensities.
In the DG-model the signal is given by the default intensity Ay = AX;, A > 0,
of the firms under consideration; in the FS-model the signal corresponds to
the solution p = (p},...,p})i>0 of the SDE (2.19) representing the filter-
distribution of the market. The continuous observation process Z is given by
dZy = AXdt + vdf; (for the DG model) and by dZ; = Zi:l ME)pkdt + vdp,
(for the FS-model) respectively; in both cases the parameter v models the size
of the observation noise.® Note that the drift term in the observation represents
the (Fi)-default intensity of the firms under consideration; this term can be
interpreted as credit spread of a short term bond or CDS-contract (assuming
for simplicity a zero recovery rate). All simulations were carried out with
m = 100 firms.

Results. Numerical results are displayed in Figures 4.1 and 4.2 below. Inspec-
tion of these graphs points to the following observations.

— In both models, for low observation noise (low o), the filtered default
intensity is very close to the market default intensity (see left panel of
Figure 4.1 respectively the bottom right panel of Figure 4.2). Interestingly,
for low observation noise? the filtered probabilities (E(p, | F{)) are quite
close to the market probability vector p,, as is revealed by the two left
panels of Figure 4.2; this is quite remarkable, since the signal is a four-
dimensional process whereas Z (the continuous part of the observation
process) is one dimensional. For high o, the filter performance is of course
somewhat worse but still quite good. Overall we found that the information
contained in Z has a stronger impact on the precision of the filter than the
default history; this is not surprising since for realistic parameter values
defaults are rare events.

— In the DG-model we can compare the Markov-chain filter and a particle
filtering algorithm. Both algorithms give roughly similar results even for a
coarse discretisation of the state space of X. While the Markov chain filter
is significantly faster, for low observation noise the numerical integration
of the Zakai equation tends to produce small numerical instabilities as can
be seen from the spikes on the left plot of Figure 4.1.

3 Recall from Subsection 2.2 that in order to model discrete observations occurring on
a fine time grid t; = kA one should take v = eV A, where o represents the standard
deviation of the discrete observation noise.

4 The value oc = 0.5% or gc = 0.2% may seem very small at first sight, but one should
keep in mind that the default intensities are of the order of 1 or 2 %
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Note finally that Figure 4.2 gives a nice numerical illustration of the phe-
nomenon of information based default contagion: at a default the conditional
probability of being in State 1 (where default intensities are assumed to be
low) is decreased, whereas the conditional probability of being in States 3 and
4 (where default intensities are high) jumps upwards.

5 Filter Approximations

A viable approach to solve filtering problems for a general state variable X is to
consider approximations of X by a sequence X" of finite state Markov chains
as a computational tool. In this section we provide the necessary theoretical
basis for this and show the convergence of the filter computed for a finite state
approximation X" to the filter corresponding to the original state variable
process X. The proof of this result relies heavily on our general filter formulas.

An alternative representation of the filter. We begin with an alternative ex-
pression for the filter; while more abstract than the results from Section 4, this
expression is well suited for deriving approximation results. Consider a pair
of processes (X,Y) solving the original SDE system (2.1) (2.2); in particular,
the dynamics of X are given in terms of the drift vector b(x, y), the dispersion
matrix o(x,y) or equivalently the matrix Xx (x,y) = o(x,y)o(x,y)" and the
kernel KX (x,y,u). Fix some ¢ > 0. Put as before N; := max{n < m : T, <t}
and recall that the sequence (7),,&,), n = 1,..., N; or equivalently the pro-
cess (Ys)s<¢ represents the default history up to time ¢. In the sequel we
will always work with respect to given and fixed default observations (T}, &),
n=20,.. .,Nt respectively (Y(g)sgt; the “hat-notation” is meant to indicate
that the default observations are fixed and can hence be considered determin-
istic.

Recall now the definition (3.4) of the kernel KX. Denote by (24, F¢ (F2))
the Skorokhod space D?([0,00)) with its canonical filtration and denote the
coordinate process on £2¢ by X. For reasons that will become apparent in the
sequel, we define on (£2¢, F¢, (F%)) a predictable vector process by

t t
B, :/b(Xs,Ys)ds+//KX(XS_,YS_,u)FN(du) ds (5.1)
0 0 F
N, )
+ Y Fy (DF Xp,_ Yz, ) / KX(X7 Y4 u) Fa(du);
n=1

Y (X, Y
Dén (XTn - ’YTnfl

)
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Rdxd

a predictable -valued process étij, 1<4,5<d, by

i — /EX(XS,YS)der //f(f((f(s_,Ys_,u)f(]x(Xs_,Ys_,u)FN(du)ds (5.2)
/ .

+ Y En(DY (Xg, Y ) / RX(Xom, Yoo, u) KX (X, Yoo, u) Fiv (du);
DE’;L(X _?Tnfl)

and finally a predictable random measure v on [0, c0) x R? given for bounded
and measurable v : R — R by

(x)v(ds, dx) = KX(X4 Yz u)) Fy(du)ds (5.3)
IE [ ) B

E
X,
Y (% < -1 X (% <
+3 Fv(DY (X, Ys ) / (K (XT,L_,YT;H,u)) Fr(du) .
n=1

)

577,( Ty — 3YT

The triple (B, C, v) has the typical form of modified semimartingale charac-
teristics (Definition I1.2.16. in Jacod & Shiryaev (2003)). We assume that

A5. The martingale problem associated with (B,C,v) and initial law mo is
well posed, i.e. there is a unique probability measure R on 2% such that X
is a semimartingale with modified characteristics (B, C, v) and initial law
0-

Furthermore, denote as in Section 3.1 by (29, Fa, P%¢) the (-dimensional

Wiener space with coordinate process 3° and let (22, F, R°) be the product

space

(2,F,R%) = (2% x 25, F4 @ Fo, R x P). (5.4)

According to the results from Section 3 (see, in particular, (3.2), (3.3) as well

as Theorems 3.1, 3.4 and Proposition 3.2) we obtain that, for a given time ¢, for

a given default history {(Tn, fn) n < Nt}, and for a bounded and continuous

function f : SX — R, the filter 7, f can be expressed in the form

o f (w2) oc BY (F(Xe) Ly L (- w2)) (5.5)
where
~, Ty t
Li = H1 {)‘én (XTH—’YTn,l)eXp (— / X5, Y Ty )ds)} exp (—/ X(XS,YTNt)ds),
"= Tpo1 T,
(5.6)

and where, by analogy with (3.1),

L2(-,we) —exp{fo (X)X, dZs(wo) — 3 fo ||as S)HQEZ_l ds},

Zi(ws) = U,@?(WQ) = vws(t).
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Approximating filter sequence. Consider a sequence of processes (X™, Y™),¢n,
solving the SDE system

t

Xm = X" 4 / / KXm(X™ Y™ w)N(ds, du) (5.8)
0 FE

Cas¥}

t
Y= Yo, + //(1 Y KX (XY™ w)N (ds, du). (5.9)
0 F

Note that KJY is independent of m. In applications K*™(-) will be chosen so
that (X™,Y™) is a finite state Markov chain as e.g. in Section 4.1.

Given the default observation (Tn, én), n=1,..., N, respectively (sz)sgta
introduce the modified semimartingale characteristics (B™, 5””7 V™) given by
(5.1), (5.2) and (5.3) with b = X = 0 and KX™ instead of K*. Choose a
sequence of initial distributions 7§* on the state space of X™ such that 7§
converges weakly to my and denote by the measure R™ on (2% Fe (F2))
the solution of the martingale problem associated with the characteristics
(B™,C™,v™) and the initial distribution 7§* (we assume that this martin-
gale problem is well-posed for every m). The filter 7} f in the approximating
model can be expressed in the form

i f(wz) o BR" (F(X)LILE (- ws)) - (5.10)

Below we shall give conditions on (B™, ém, ™) so that the sequence of
measures R™ converges weakly to R (denoted R™ = R) as m — 00. Assuming
for a moment such a convergence, here we show first the ensuing convergence
of the filters. We need the following additional assumption.

A6. The default intensities \;(x,y) are bounded and continuous in x.

Theorem 5.1 Fiz somet > 0 and a default history {_(Tn,én)_: n=1,...,N:}.
Suppose that Assumptions A1 to A6 hold and that R™ = R. Then 7" f (w2)
converges PO*-stochastically to mf(ws), i.e. P% —lim,, oo ©"f = mif .

Remark 5.2 1.) Although the convergence is in a weaker form than a.s. con-
vergence, it still implies that, for m sufficiently large, the probability that 7" f
differs from 7, f by a given amount can be made arbitrarily small.

2.) Note that Theorem 5.1 is a filter approximation result for a model where
signal and observation cannot be made independent via a measure transfor-
mation. This sets the result apart from filter approximation results as in Zeng
(2003) which are based on general results by T. Kurtz and E. Goggins concern-
ing weak convergence of conditional expectations. By the same token, Zeng
(2003) obtains only weak convergence of the approximating filters, while here
we obtain convergence in probability.
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Proof (of Theorem 5.1) Denote by d4(x,y) the Prokhorov metric on D?([0, 00))
(see Jacod & Shiryaev (2003), Chapter VI, (1.26)). By Skorokhod embedding,
the weak convergence R™ = R implies that there is some probability space
- denoted again by (£2¢, F¢, R) for simplicity - and processes X and X with
laws R™ and R respectively such that lim,, .. 64(X™,X) = 0, Ra.s. and
hence also R® = R x P%¢ a.s. Now we have the following two Lemmas, whose
proof is relegated to Appendix A.

Lemma 5.3 Consider bounded and continuous functions f(-) and A(-) We get
for processes X™, X as above that

lim f(X") = f(X;) R°—a.s. (5.11)
lim AX7 ) =\Xg ), R'-as., n=1,... N (5.12)
t2 t2
lim [ A(X™,Y,)ds = /X(X‘Q,Ys)ds; t) <ty <t; R —as (5.13)
t1 ty

Lemma 5.4 Let L™ denote the process L? defined in (5.7), but with X™ re-
placing X there. Then, for processes X™, X as above, one has
RO —limp, oo L7™ = L2

Now we return to the proof of Theorem 5.1. From the boundedness of f
and LY™ (see A6), the definition of L™ according to (5.6) (with X" instead
of X) and the fact that ER ((L*™)?) < C < oo (due to the boundedness of
a,(+)) we obtain uniform integrability for the sequence (f(X/™) L™ L™ men.
From Lemma 5.3 as well as from Lemma 5.4 we then obtain that

FXMLE™L?™ — (X)) LIL? in £Y(2,F,R%), m — co. 5.14
t t t t—t

Using the product-form of R, this £'-convergence can be written more ex-
plicitly as

lim [ R (| X)L L we) = f(R0) LELECw2) ) PO (dwn) = 0.
023

It follows that the inner expectation converges to zero in £(§2,, F, pot ) and
therefore also P%‘-stochastically, which proves the theorem.

Weak convergence. In the remaining part of this subsection, under a couple
of additional assumptions on the model, we give conditions on the modified
characteristics of X™ for which we obtain weak convergence of X™ to X. For
this purpose we base ourselves on Theorems 3.35 and 2.11 in chapter IX of
Jacod & Shiryaev (2003). The additional assumptions on the model are:

AT7.1 (a strengthening of A2). There exists A C F with A compact such that
DX(xz,y) C Aforall z,yand alli=1,--- ,d.
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A7.2 There exists a positive constant H such that for all x,y, alli=1,--- d
and all u € F,

d d d
dolbilmyu) [<H; Y [KX@yu) |<H; > | Z%(@y) [<H.
=1

i=1 i=1

Following Jacod & Shiryaev (2003) we introduce the following class of test
functions: C; := {y : R? — R: ~ continuous, |y(z)| < 1, 7(0) = 0}. Fur-
thermore, for generic d, d4(x,y) denotes the Prokhorov metric on the d-
dimensional Skorohod space.

Proposition 5.5 Let Assumption Al to A7 hold and suppose that for the
characteristics of the approximating Markov chains X™ one has

54(B™, BoX) By,
8542(C™,C o X) R, (5.15)
Rm

Si(y*v™, (yxv)oX) —— 0 forally €C.

where R™ is the sequence of measures making the coordinate process a semi-
martingale with modified characteristics (B™, cm, v™) and initial distribution
myt with i = my. Then, for a given default sequence (Tn,én), we have the
weak convergence R™ = R for m — oo.

The conditions (5.15) can be taken as guidelines when choosing the approx-
imating sequence of finite state Markov chains. While given in a somewhat
abstract form here, they assume a more specific form for a given problem at
hand. The proof of the proposition is given in Appendix A.

A Additional proofs for Section 5

Proof of Lemma 5.3. Note that by the form of the characteristics of X, for
t & J o= {Tn in o= 1,...,]\7,5} we have AX; = 0, R°—a.s. Given the
R%—a.s. convergence of X™ to X in the Prokhorov metric, (5.11) follows from
Proposition VI.2.1 (b.5) in Jacod & Shiryaev (2003). On the other hand, if
v({T} x R%) > 0 then also v ({T},} x R%) > 0 for m sufficiently large, so that
Proposition VI.2.1 (b.6) in Jacod & Shiryaev (2003) implies that for 7}, < ¢
we have R'—a.s.

n%gnoo X = an_ and w}E»noo Xﬂ’li = Xj"n .

(A1)

m
T —

Relation (A.1) then implies (5.12) and, for ¢ € Jy, also (5.11). Relation (5.13)
is obvious from the definition of the Skorokhod topology.
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Proof of Lemma 5.4. We first consider the stochastic integral terms. Since
Z, = Uﬂ?, we get

ER"((O/ta;(X;”)EEleS —O/ta’s(Xs)Egles>2)
(A.2)

t
27 ([ (@) - au XD, ds) = 0 w0,
0

where the convergence follows from the assumption of continuity and bound-
edness of the function a;(-) (see Assumption A4 ) as well as from bounded
convergence. Next, always by the Assumption A4 as regards a.(-) as well as
by the triangle inequality we also have,

t

/ (llas(XN5sr = llas(X|[%, 1) ds <2 |l / (@4 (X7) = as(Xo))|| 5, ds,
0

0

and, as m — oo, the right hand side converges to 0 R — a.s. This convergence
and relations (A.2) imply that for m — oo,

t

[anxryzy az. -

t t t
_ =0 _ 1 _
[l 2y as 2 [ aixosgiaze— [ loaRol 0 ds
0 0 0 0

1
2
and therefore also R® — lim,, o L™ = L? for arbitrary fixed ¢.

Proof of Proposition 5.5. The proof is based on the following two lemmas.

Lemma A.1 Under the assumptions of Proposition 5.5 the sequence of mea-
sures R™, m € N, is tight.

Proof The proof is based on that for Theorem 3.35 in Chapter IX of Jacod
& Shiryaev (2003). We show that, under our assumptions, Conditions i),ii),v)
and vi) of that theorem are satisfied.

Condition i) (Strong majorization hypothesis II) can, on the basis of As-
sumption A7.1 and A7.2, be seen to be satisfied if in the definition of the strong
majorization condition (Definition 3.11 in Chapter IX of Jacod & Shiryaev
(2003)) one takes as deterministic increasing cadlag functions the following:

F,=[2H + H(1 + H)Fy(A)t+ H(H + 1) N, (A.3)

with A and H from Assumptions A7.1 and A7.2 respectively; for v € C; we
take R
FY = Fy(A)t+ N (A.4)

Recall that we work with a given observed sequence (Tn, fn), so that the func-
tions Fy and F; are deterministic functions of time. The remaining conditions
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are immediate: Condition ii) (Condition on the big jumps) is automatically
satisfied under the given assumptions; Condition v) holds by assumption on
the initial conditions; Condition vi) corresponds to (5.15).

The statement of the lemma follows now from the first part of the proof
of Theorem 3.35 in Chapter IX of Jacod & Shiryaev (2003), which in turn is
based on Theorem 3.20 in the same chapter.

Lemma A.2 Under the hypotheses of Proposition 5.5 every weakly converging
sequence X™ has as limit a semimartingale process with modified characteris-
tics (B,C,v)

Proof Here we rely on Theorem 2.11 in Chapter IX of Jacod & Shiryaev (2003).
Condition i) in that Theorem is satisfied since the assumption made by requir-
ing (5.15) is stronger than this condition. Condition ii) (majorization condi-
tion) is here a rather immediate consequence of assumptions A7.1 andA7.2.

There remains Condition iii), namely the (Continuity condition) for the
modified characteristics (B, C, v) in the Skorokhod topology. This condition
has to hold a.s. with respect to the limit measure, in our case R. Next recall
that each of the characteristics is composed of terms expressed as an integral
with respect to time and one term given by a sum over T,,. The time integrals
are automatically continuous. The term given by the sum over T, can on
the other hand be treated by analogy to Lemma 5.3 noticing that we have
)\j(Xt,,Yt,) = FN(D}((Xt,,Yt,)) and for A;(-,y) we have the continuity
assumption A6. Having now all conditions of Theorem 2.11 in Chapter IX of
Jacod & Shiryaev (2003) satisfied, the statement here follows from that same
Theorem.

We can now conclude with the proof of Proposition 5.5: By the tightness
result of Lemma A.1 we have that every sequence R™ has a weakly converging
subsequence. By Lemma A.2 each of these converging sequences has a weak
limit that corresponds to the same modified characteristics (B, C, v), namely
those of the original process X. By Assumption A5 the weak limit is unique
and this gives us the statement of the proposition.
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