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Abstract

We consider the pricing of derivatives when the evolution of the underlying is given by a
continuous time finite-state Markov chain. We present a semi-analytic approach that consists
in: i) simulating the number of transitions of the underlying up to a given time horizon, ii)
computing via an explicit analytic formula the derivative price for each simulated number of
transitions and iii) approximating the actual price by the empirical average over the values
computed in ii). This corresponds to a Monte Carlo approach with variance reduction by
conditioning and, with respect to a plain Monte Carlo, it leads thus to a smaller variance
in addition to more precise values. The method is in particular applied to path dependent
derivatives and numerical results are presented and discussed.

Keywords: Derivative pricing, path dependent derivatives, continuous time Markov chains,
Monte Carlo simulation, variance reduction by conditioning.
AMS classification: 91G20, 91G60, 60J28, 65C05.

1 Introduction

Traditional pricing formulae concern market models either in continuous or discrete time. There
are however situations, in which it is more natural to model the evolution of the underlying as
a continuous time Markov chain (CTMC) that combines features of both, continuous as well as
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discrete time models; in fact, while being a model in continuous time, it has an embedded Markov
chain that corresponds to a discrete time one. A CTMC has the following relevant features:

i) it jumps at random points in time;

ii) the number of jumps in a fixed time interval is random.

Market models based on CTMC may turn out to be useful models in the following specific situa-
tions:

a) In the pricing of bonds and interest rate derivatives, where the “underlying” can be considered
as given by the short rate of interest. This covers, similarly, all those situations where the
“underlying” is a rate (e.g. exchange rate) or an intensity (e.g. default intensity, see Remark
2.1 below). Since the actual evolution of rates or intensities may follow a pure jump process,
a CMTC model appears to be more natural than a diffusion-type model or even a jump-
diffusion model. For the latter the computations may in fact be rather involved (see e.g.
section 6 in [2], see also [12]).

b) In the context of small time scale models, where prices vary by tick size at random times
in reaction to trading or to the arrival of significant new information. Here the jumps are
naturally more frequent than in the case of a).

c) A CTMC modeling might also intervene in situations, where the evolution of the underlying
is modeled by a Poisson process or a market point process model with a finite number of
marks, to which a (deterministic or stochastic) evolution process is superimposed. (For a
related situation see e.g. [2] where, as mentioned under a) above, in section 6 a pricing
methodology is presented for derivatives having as underlying the short rate that satisfies an
affine jump-diffusion model; the solution is given in explicit form, but is difficult to compute
in practice). As an example consider an Insurance context with the risk process as underlying;
the latter is piecewise deterministic (premium payments) with the random part consisting of
a market point process, where the jumps are due to the arrival of a claim (see e.g. [1], [14]).
Another example may be in Credit Risk when the underlying is affected by rating transitions
or when a sequence of partial defaults (multiple defaults) may occur, whereby, at each rating
transition or default time, the value of the firm changes by a random amount (see [16]). For
a specific application of CTMCs to Credit Risk see Remark 2.1 below.

In this paper we shall consider a generic underlying process Xt, of which the evolution is given
by a CTMC and that may be multivariate and/or time inhomogeneous. We derive a method that
allows for an actual computation of the price also of path dependent claims. It is a mixture of an
analytic expression and a Monte Carlo (MC) simulation and corresponds to an MC method with
variance reduction by conditioning. As we shall illustrate in section 5 below where we consider
barrier and lookback options as examples, our method extends rather straightforwardly to path
dependent options; such an extension is not easily achieved by other models and approaches. In
fact, while for a Black and Scholes model there exist closed formulas for barrier options, for more
general diffusion models the pricing of path dependent options becomes more involved, even if
one uses a Monte Carlo simulation approach; for the latter a preliminary time discretization is
required not only for the underlying itself but in general also for possible supplementary state
variables summarizing the path dependence (see e.g. section 6.2.3 in [8]).
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Although for the computation of the expectation in the pricing formulas of the various claims
in our CTMC market model one can always resort to a plain Monte Carlo (MC) simulation, a
plain MC approach has various drawbacks as it will also appear from the numerical results below:
in addition to a possibly large variance, it may also lead to biased results, unless one performs an
extremely large number of simulation runs. The MC-based approach proposed in this paper and
that we shall call “conditional MC” approach, results from first conditioning on the number νt,T

of transitions of the underlying CTMC process Xt between the evaluation time t of the claim and
its maturity T . We shall show that the conditional expectation, given νt,T , allows for an explicit
analytic solution also in the case of claims that are not simple claims and this is by itself one of
the other contributions of the paper. In this way there remains only to possibly simulate νt,T (an
explicit, but cumbersome formula for computing analytically the distribution of νt,T can be found
in [13] for Xt scalar; see also Remark 4.8). The fact that a fair portion of what is computed by
simulation in plain MC is here computed explicitly, makes it intuitively clear that one can thus
obtain more precise results.

The outline of the paper is as follows. In section 2 we describe more specifically our CTMC
market model and formulate the problem more explicitly. The basic idea of the proposed pricing
approach is then illustrated in section 3 , while in section 4 we describe the details of the approach.
In section 5 we then show how to apply the conditional MC approach to the pricing of barrier op-
tions and of path dependent claims and in section 6 we present numerical results and comparisons.
For comparison purposes, and only for this purpose, in subsection 6.1 we consider a CTMC model
for the short rate of interest that is obtained by a specific quantization approach from an affine
diffusion model of the short rate considered as a benchmark. Indeed, for affine diffusion models
bond prices admit an explicit analytical expression and this allows for a comparison of the validity
of our approach in spite of the approximation due to the quantization. In all the remaining part
of the paper CTMCs are considered as a model in itself.

2 The model and the problem formulation

Let Xt be a CTMC with values in {x1, · · · , xN} and transition intensity matrix Q that we assume
for the moment to be time homogeneous. Below we shall occasionally identify xi with i , (i =
1, · · · , N). By a transition intensity matrix Q we mean here the matrix, where the off-diagonal
elements qi,j represent the transition rates from state i to state j, while the diagonal elements qi,i

are equal to zero. This is different from the infinitesimal generator matrix, where qi,i = −∑
j 6=i qi,j ,

while qi,j remain the same for i 6= j (notice that the information content is the same in both types
of matrices).

For a given maturity T let there be given a claim that, in order to better describe our approach,
we take here as a simple claim of the following form (the extension to more general, in particular
path dependent, claims is then given in section 5).

H = H(XT ) =
[
H(x1), · · · ,H(xN )

]′ where ′ denotes transposition (1)

and which, given the finite state assumption for Xt, can be represented as a vector. Denoting by
τn the random time at which the n−th transition of the chain Xt takes place, put, for simplicity,
Xn := Xτn so that Xs = Xn for s ∈ [τn, τn+1). Assume also that the short rate of interest rt is
related to the underlying Xt in the sense that rt = r(Xt) so that rt can undergo a change only at

3



the time points τn and we let rn := rτn = r(Xn) ∈ {r1, · · · , rN}. Let P̃ ∼ P be an equivalent (to
the physical measure P ) martingale measure that is used for pricing and that will typically result
from a calibration to the market. The arbitrage-free price at t < T of the claim H, when Xt = xi

is then

Πi(t) = EP̃

{
exp

[
−

∫ T

t
rsds

]
H | Xt = xi

}
. (2)

Denoting by νt := sup{n | τn ≤ t} the number of transitions of Xt up to a given time t so that
νt,T = νT − νt, one may rewrite (2) as

Πi(t) = EP̃
{

exp[rt(t− τνt) exp


−

νT−1∑

j=νt

rj(τj+1 − τj)− rT (T − τνT )


 H(XT ) | Xt = i

}

= exp[rt(t− τνt)]EP̃



exp


−

νT−1∑

j=νt

rj(τj+1 − τj)− rT (T − τνT )


 H(XT ) | Xt = i





(3)

where we have used the fact that τνt is known at time t and so exp[rt(t − τνt)] can be taken as
being deterministic. Since we may without loss of generality assume t = τνt , our problem can now
be described as follows:

Problem: Compute

VH,t,T (Xt) = EP̃



exp


−

νT−1∑

j=νt

rj(τj+1 − τj)− rνT (T − τνT )


H(XT ) | Xt



 (4)

where VH,t,T (Xt) denotes the vector with components VH,t,T (Xt)1{Xt=xi} that occasionally we
shall also denote by VH,t,T (Xt)|Xt=xi and where we may also write

H(·) := H0(·) =
N∑

i=1

w0
i 1{·=xi}, xi ∈ E, w0

i ∈ R (5)

with w0
i representing the value H(xi). Notice that VH,t,T (Xt)|Xt=xi corresponds to Πi(t) in (2) and

(3) and we shall use this more complex symbol below whenever we want to make explicit all the
ingredients for the price Πi(t).

A theory of financial markets, when the underlying follows a time homogeneous CTMC has
been developed in [11] according to which the price Πi(t) of a simple claim H can be computed as

Πi(t) = [exp{(Q−R) (T − t)}H]i (6)

where [z]i denotes the i−th component of the vector z, R is the diagonal (N × N)−matrix with
elements ri (i = 1, · · · , N) and Q is assumed here to be time homogeneous. The main purpose of
the present study is to extend the basic theory and to provide an efficient semianalytic method
to compute the price Πi(t) for these extensions. The extensions concern basically path dependent
claims that in many cases can be reduced to simple claims at the expense however of augmenting
the dimension of the underlying and occasionally, like in the case of barrier options, leading to
a time inhomogeneous process even when starting from a time homogeneous one. In the time
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inhomogeneous case the explicit formula (6) cannot be applied and it becomes cumbersome to
apply it also in the time homogeneous case when the underlying is multivariate. Some of the
extensions and the corresponding solutions for our Problem will be discussed in Section 5 below.
Here we add the following remark concerning possible extensions to a Credit Risk setup.

Remark 2.1. A multivariate CTMC may also arise in defaultable bond pricing, where the under-
lying is Xt = rt and the price is given by

Π(t) = 1{τ>t}EP̃

{
exp

[
−

∫ T

t
(rs + λs) ds

]
| Ft

}
(7)

with τ denoting the default time and λt the default intensity. The pair (rt, λt) may then be taken
to form a bivariate CTMC, i.e. Xt = rt, , Yt = λt. To take correlation into account, one may put
rt = r(Xt, Zt) and λt = λ(Yt, Zt) with Xt, Yt, Zt three independent CTMCs. One can extend this
further to a multicurve setup for the term structure of interest rates as it was introduced after the
financial crisis 2008− 2010 and where λt can more generally be considered as a short rate spread
due not only to credit risk but also other risks such as liquidity (see e.g.[7]). Notice finally that the
pricing of barrier options, as described for CTMCs in subsection 5.1 below, can be conveniently
adapted also to the pricing of credit risky products within the structural approach.

We close this section by mentioning the notation that we shall use for the time inhomogeneous
and multivariate case. In the time inhomogeneous case, instead of a fixed transition intensity
matrix Q, we shall consider a sequence Q(n) where n refers to the n−th transition time τn of the
underlying Xt. For the multivariate case let us take the special case of a bivariate CTMC (Xt, Yt)
with Xt ∈ {x1, · · · , xN}, Yt ∈ {y1, · · · , yM}. Letting τn denote the n−th jump time of the pair
(Xt, Yt), assume again that the short rate rt changes only at the time points τn, i.e. assume that
rn := rτn = r(Xn, Yn) with (Xn, Yn) = (Xτn , Yτn). For the (time inhomogeneous) multivariate
transition intensity matrix we shall put

Q(n) =
{
q(i,h),(j,k)(n)

}
i,j=1,··· ,N

h,k=1,··· ,M

3 The underlying methodology

As mentioned in the Introduction, in the general multivariate and time inhomogeneous cases one
can always resort to a Monte Carlo (MC) simulation to compute the expectation in (2) or, more
specifically, in (4), but this leads to various drawbacks. The “conditional MC” approach proposed
in this paper results from first conditioning on the number νt,T of transitions of the chain Xt

between t and T , namely by rewriting the expression in (2) as

Πi(t) = EP̃
{

e−
R T

t rsdsH(XT ) | Xt = i
}

= EP̃
{

EP̃
{

e−
R T

t rsdsH(XT ) | νt,T , Xt = i
}
| Xt = i

}
.

(8)

We shall show that the inner expression allows for an explicit analytic computation also in the
case of claims that are not simple claims and Xt is time inhomogeneous.
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First recall that a plain MC approach consists in simulating the successive transition times
τn of the chain Xt and the values Xn of Xt at τn and then averaging over the values obtained
in each simulation run for the argument in the expectation of the right hand side of (4). To be
precise, consider for a moment again a time homogeneous chain with transition intensity matrix
Q. Putting qi :=

∑
i6=j qi,j , one has that, if Xn = Xτn = xi, then the inter-jump times τn+1 − τn

are exponentially distributed with parameter qi and the transition probability of the embedded
chain, namely the probability that Xτn+1 = xj 6= xi is given by pi,j = qi,j

qi
implying, as it should

be, that pi,i = 0. Given these values for qi and pi,j , one can then simulate the successive values of
τn and of the corresponding Xn.

Our problem is now to compute VH,t,T (Xt) in (4) that we shall call Prototype product since
various more general derivatives can be obtained either as particular cases or as linear combinations
of prototype products. This is in particular the case when Xt = rt and one has to deal with
interest rate derivatives where e.g. Caps and Swaptions can be expressed as linear combinations of
prototype products (see [13]). Notice also the analogy between the prototype product and Arrow-
Debreu prices.

As already mentioned, we shall compute (4) by conditioning first on the number of jumps νt,T ,
i.e. in line with (8) we shall compute a conditional price V

νt,T

H,t,T (Xt) according to

V
νt,T

H,t,T (Xt) = EP̃



exp


−

νT−1∑

j=νt

rj(τj+1 − τj)− rνT (T − τνT )


 H(XT ) | Xt, νt,T



 (9)

so that
VH,t,T (Xt) = EP̃

{
V

νt,T

H,t,T (Xt) | Xt

}
. (10)

It follows that, if we are able to compute in an exact analytic way V
νt,T

H,t,T (Xt) in (9), then we
may compute the expectation in (10) by MC simulations of only νt,T . It turns out that the exact
analytic computation of V

νt,T

H,t,T (Xt) in (9) is made difficult by the presence of the random variables
rνT and τνT both in the sum as well as in the last term of the exponential in (9) thus preventing the
use of a double conditioning to separate the expectation of the exponential of the sum from that
of the last term. As we shall show below, it is however possible to compute in an exact analytic
way both an upper and a lower bound on V

νt,T

H,t,T (Xt), which we shall denote by V̄
νt,T

H,t,T (Xt) and
V

νt,T

H,t,T (Xt) respectively and that are defined as follows. First, let

V
νt,T ,0
H,t,T (Xt) = EP̃



exp


−

νT−1∑

j=νt

rj(τj+1 − τj)


 H(XT ) | Xt, νt,T



 (11)

and

V
νt,T ,1
H,t,T (Xt) = EP̃



exp


−

νT∑

j=νt

rj(τj+1 − τj)


 H(XT ) | Xt, νt,T



 (12)

denoting, furthermore, by V
νt,T ,0
H,t,T (x) and V

νt,T ,1
H,t,T (x) the vectors with components V

νt,T ,0
H,t,T (Xt)|Xt=xi

and V
νt,T ,0
H,t,T (Xt)|Xt=xi respectively. Notice that in (11) the exponential does not include the term

−rνT (T − τνT ) that is however present in (9) and this makes the argument in the expectation in
the right hand of (11) a.s. larger than the corresponding one in (9). On the other hand, the last
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term −rνT (τνT +1−τνT ) in the sum on the right hand side of (12) is a.s. smaller than −rνT (T −τνT )
and this causes the argument in the expectation in (12) to be a.s. smaller than the corresponding
one in (9). Then, put

V̄
νt,T

H,t,T (Xt) := max
[
V

νt,T ,0
H,t,T (Xt), V

νt,T ,1
H,t,T (Xt)

]
(13)

V
νt,T

H,t,T (Xt) := min
[
V

νt,T ,0
H,t,T (Xt), V

νt,T ,1
H,t,T (Xt)

]
(14)

considering, analogously to V
νt,T ,i
H,t,T (x), i = 0, 1, also here the vectors V̄

νt,T

H,t,T (x) and V
νt,T

H,t,T (x). We
also recall that XT = XνT in (11) and XT = XνT +1 in (12).

Remark 3.1. Since for each Xt = xi the argument of the expectation in the right hand side of
(12) is a.s. smaller than the corresponding one in (11), one might wonder why we did not define
the upper and lower bounds directly as V

νt,T ,0
H,t,T (Xt) and V

νt,T ,1
H,t,T (Xt) respectively. The reason is that

it is the norm of the entire vector V
νt,T ,1
H,t,T (x) determined according to (12) that is guaranteed to

be smaller than or equal to that determined according to (11), but the individual components of
V

νt,T ,1
H,t,T (x) may not necessarily be smaller than those of V

νt,T ,0
H,t,T (x). In fact, in our computations

the individual components of V
νt,T ,0
H,t,T (x) and V

νt,T ,1
H,t,T (x) turned out to exhibit an initial oscillatory

behavior. It is however always the case that the actual price VH,t,T (Xt) in (4) (see also (10)) belongs
to the interval with extreme points given by the corresponding values of V̄

νt,T

H,t,T (Xt) and V
νt,T

H,t,T (Xt).

Instead of computing analytically the exact value of V
νt,T

H,t,T (Xt) in (9), we shall determine
analytically the approximation given by the midpoint between V̄

νt,T

H,t,T (Xt) and V
νt,T

H,t,T (Xt), namely

V
νt,T

H,t,T (Xt) ∼ Ṽ
νt,T

H,t,T (Xt) :=
1
2

(
V̄

νt,T

H,t,T (Xt) + V
νt,T

H,t,T (Xt)
)

(15)

which, combined with (10), leads to the approximation

VH,t,T (Xt) ∼ EP̃
{

Ṽ
νt,T

H,t,T (Xt)
}

:=
1
2
EP̃

{
V̄

νt,T

H,t,T (Xt) + V
νt,T

H,t,T (Xt)
}

(16)

where the expectation is with respect to νt,T .

Remark 3.2. Concerning the accuracy of the approximation in (15) and (16) it will be shown
in Corollary 4.7 below that the norm of the difference V̄ n

H,t,T (x) − V n
H,t,T (x) tends to zero for n

tending to infinity so that the approximation can be expected to be rather precise in situations where
there are many transitions of Xt. This is also in line with the fact that, as can be easily shown, the
norm of the difference V̄

νt,T

H,t,T (x)−V
νt,T

H,t,T (x) is bounded from above by ρ̄ := maxi≤N
ri
qi
, which is in

general a small value, especially if the transitions of Xt are frequent. In section 6 we perform some
numerical tests to assess the accuracy of the approximation of VH,t,T (Xt) by EP̃

{
Ṽ

νt,T

H,t,T (Xt)
}
.

The expectation with respect to νt,T in (16) will be computed by MC simulations. In order to
simulate just the number of jumps νt,T , for each simulation run we cannot avoid determining also
the successive values of τn and Xn, but we do not have to record them. In the next section we
shall now present our approach to determine in an analytically exact way the value of Ṽ

νt,T

H,t,T (Xt)
for each given value of νt,T .
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4 The algorithm to implement our methodology

4.1 Preliminaries

Given t and νt (recall that, see description following (3), we had assumed without loss of generality
that t = νt and so Xt = Xνt) fix an M ∈ N and define the sequence of functions Hn(·), n =
0, · · · ,M recursively as follows: H0(·) is given by the Prototype payoff, namely (see (5)

H0(·) =
N∑

i=1

w0
i 1{·=xi} (17)

and, for 0 < n ≤ M ,

Hn(Xνt+M−n) = EP̃
{

e−rνt+M−n(τνt+M−n+1−τνt+M−n)Hn−1(Xνt+M−n+1) | Xνt+M−n

}
. (18)

This definition has been inspired by an approach described in [6], where the authors derive the
analog in discrete time of the continuous time affine term structure models, and here we use the
fact that Xt is Markov and that, given Xνt , the distribution of the inter-arrival time τνt+1 − τνt

depends only on Xνt . Notice also that from (18) it follows that

HM (Xνt) = EP̃

{
exp

[
−

νt+M−1∑
m=νt

rm(τm+1 − τm)

]
H0(Xνt+M ) | Xνt

}
. (19)

Since Xt takes a finite number of possible values, just as with H(·) = H0(·), also each of the Hn(x)
can be represented as a vector. More precisely, letting x = [x1, · · · , xN ]′, we have

Hn(x) = [wn
1 , · · · , wn

N ]′ (20)

with wn
i representing the value Hn(xi).

Remark 4.1. Notice the immediate relationship between the vectors Hn(x) defined recursively
in (18) above and the basic quantities of our MC-with-conditioning approach, namely the vectors
V

νt,T ,0
H,t,T (x) and V

νt,T ,1
H,t,T (x) with components defined for each value of Xt = xi, i = 1, · · · , N according

to (11) and (12) respectively. From (11), (12), the equality H(XT ) = H0(XT ), the representation
of HM (·) in (19), and recalling that νt,T = νT − νt, we have in fact that

V
νt,T ,0
H,t,T (x) = Hνt,T (x) ; V

νt,T ,1
H,t,T (x) = Hνt,T +1(x) . (21)

This requires the sequence Hn(·) to be computed for a sufficiently large value of M so that there
is always an n ≤ M for each value of νt,T that might occur. In practice (see the Algorithm in
subsection 4.2 below) one takes M to be the largest value of νt,T that has occurred in the various
simulation runs.

From the definitions of V̄
νt,T

H,t,T (x) and V
νt,T

H,t,T (x) with components defined for each value of
Xt = xi, i = 1, · · · , N according to (13) and (14), from that of Ṽ νt,T

H,t,T (Xt) in (15), from the equalities
(21), and recalling that XT = XνT in (11) and XT = XνT +1 in (12), one obtains immediately the
following corollary where, in line with the other analogous vectors defined previously, Ṽ

νt,T

H,t,T (x)
denotes the vector with components Ṽ

νt,T

H,t,T (Xt)|Xt=xi , i = 1, · · · , N.
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Corollary 4.2. We have

V̄
νt,T

H,t,T (x) = max
[
Hνt,T (x),Hνt,T +1(x)

]
; V

νt,T

H,t,T (x) = min
[
Hνt,T (x), Hνt,T +1(x)

]

Ṽ
νt,T

H,t,T (x) = 1
2

(
V̄

νt,T

H,t,T (x) + V
νt,T

H,t,T (x)
)

= 1
2

(
Hνt,T (x) + Hνt,T +1(x)

)
.

This Corollary shows clearly the relevance of the functions Hn(·) computed recursively in (18).

4.2 Derivation of the Algorithm

We shall now derive an easily implementable procedure to analytically compute the functions
Hn(·). Considering the general case, where the transition intensity of the process Xt is given as a
sequence of Q−matrices Q(n) = {qi,j(n)}, define the sequence of matrices Q̃(n) as

Q̃(n) = (q̃i,j(n))1≤i,j≤N with q̃i,j(n) =

{
qi,j(n)

ri+qi(n)
i 6= j

0 i = j
(22)

where ri = r(X) when X = xi and qi(n) =
∑

j 6=i qi,j(n) =
∑

i,j qi,j(n). We have now

Proposition 4.3. Starting from the given H0(·) (see (5)), the functions Hn(·) in (18) can be
computed recursively by the following matrix multiplication

Hn(x) = Q̃(n) Hn−1(x) . (23)

Proof. Fixing a generic n, by the representation of Hn(x) in (20) we have to prove that

[wn
1 , · · · , wn

N ]′ = Q̃(n) [wn−1
1 , · · · , wn−1

N ]′

For this purpose it suffices to show that for a generic i ∈ {1, · · · , N} we have

wn
i =

N∑

j=1

qi,j(n)
ri + qi(n)

wn−1
j (24)

where, due to the fact that qi,i = 0, the sum extends actually only over the j 6= i. We next have,
see (18)

wn
i = Hn(Xνt+M−n = xi)

= EP̃
{

e−rνt+M−n(τνt+M−n+1−τνt+M−n)Hn−1(Xνt+M−n+1) | Xνt+M−n = xi
}

= EP̃
{

e−ri(τνt+M−n+1−τνt+M−n)
∑N

j=1 wn−1
j 1{Xνt+M−n+1=xj} | Xνt+M−n = xi

}

=
∑N

j=1 wn−1
j EP̃

{
e−ri(τνt+M−n+1−τνt+M−n)1{Xνt+M−n+1=xj} | Xνt+M−n = xi

}

(25)

where we have used the fact that, at a generic transition time τn, we have rn = ri if Xn = xi. We
have also used the definition of wn−1

j according to (20) with n− 1 replacing n.
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Next, by the general properties of CTMCs we have that, conditional on Xνt+M−n, the inter-
arrival time τνt+M−n+1 − τνt+M−n is independent of Xνt+M−n+1. Recalling furthermore that, for
Xνt+M−n = xi, the distribution of τνt+M−n+1− τνt+M−n is (negative) exponential with parameter
qi, we obtain

EP̃
{

e−ri(τνt+M−n+1−τνt+M−n)1{Xνt+M−n+1=xj} | Xνt+M−n = xi
}

= EP̃
{

e−ri(τνt+M−n+1−τνt+M−n) | Xνt+M−n = xi
}

EP̃
{
1{Xνt+M−n+1=xj} | Xνt+M−n = xi

}

=
∫∞
0 e−riuqi(n)e−qi(n)udu P̃

{
Xνt+M−n+1 = xj | Xνt+M−n = xi

}

= qi(n)
ri+qi(n)

pi,j(n) = qi,j(n)
ri+qi(n)

(26)
where in the last passage we have used the fact that one has that pi,j(n) = qi,j(n)

qi(n) . Combining (25)
with (26) we obtain (24) and thus the statement of the Proposition.

Notice that (23) implies Hn(x) = Q̃(n)Q̃(n− 1) · · · Q̃(1)H0(x) which in the time homogeneous
case becomes Hn(x) = Q̃nH0(x). Notice also that in the bivariate (multivariate) case, putting
z = (x, y)′ with x = (x1, · · · , xN ), y = (y1, · · · , yM ) we have H0(z) = [w0

1, · · · , w0
N ·M ]′ and

Hn(z) = Q̃(n)Hn−1(z) where

Q̃(n) =
{

q(i,h),(j,k)(n)
ri,h + qi,h(n)

}

i,j=1,··· ,N
h,k=1,··· ,M

with ri,h = r(X, Y ) when X = xi and Y = yh and qi,h(n) =
∑

j 6=i,k 6=h q(i,h),(j,k)(n).

The computation of Ṽ
νt,T

H,t,T (Xt) by recursive matrix multiplication and then that of the expec-

tation EP̃
{

Ṽ
νt,T

H,t,T (Xt)
}

by simulating νt,T forms the backbone of our (hybrid) MC method with
conditioning. It is based on the rather immediate next Proposition, which in fact follows from (16),
Proposition 4.3 and Corollary 4.2.

Proposition 4.4. The value of EP̃
{

Ṽ
νt,T

H,t,T (Xt)
}
, by which (see (16)) we determine the price

VH,t,T (Xt) of the Prototype product, is given by

EP̃
{

Ṽ
νt,T

H,t,T (Xt)
}
|Xt=xi

=
1
2

EP̃
{[(

1 + Q̃(νt,T + 1)
)

Q̃(νt,T ) · · · Q̃(1)H0(x)
]
i

}
(27)

where [z]i denotes the i−th component of the vector z and where the expectation is with respect to
νt,T . In the time homogeneous case the above expression reduces to

EP̃
{

Ṽ
νt,T

H,t,T (Xt)
}
|Xt=xi

=
1
2

EP̃
{[(

1 + Q̃
)

Q̃νt,T H0(x)
]
i

}
. (28)

Remark 4.5. The expressions in (28) can be further simplified if Q̃ is diagonalizable (see [13]).
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Based on the above Proposition 4.4, our conditional MC approach (hybrid MC) can now be
synthesized in the following

Algorithm:

i) Simulate a sufficiently large number of realizations of the random variable νt,T .

ii) Record the maximum value, say M , of νt,T obtained during the simulations and determine the
empirical distribution of νt,T derived from the simulations.

iii) Compute recursively the values of
(
1 + Q̃(n + 1)

)
Q̃(n) · · · Q̃(1)H0(x) for n = 1 up to n = M .

iv) Determine the average of the values computed in iii) with respect to the empirical distribution
of νt,T determined in ii).

Applications of this approach are discussed in the next section 5 and in section 6 we then present
numerical results and comparisons.

4.3 Accuracy

As already mentioned in Remark 3.2, the accuracy of the approximation of the exact price
VH,t,T (Xt) in (4) by the EP̃

{
Ṽ

νt,T

H,t,T (Xt)
}
, where Ṽ

νt,T

H,t,T (Xt) is the midpoint between the up-

per and lower bounds V̄
νt,T

H,t,T (Xt) and V
νt,T

H,t,T (Xt) respectively, can also be seen as a consequence
of Corollary 4.7 below. For this purpose consider the operator, acting on RN with values in RN ,
that is associated to the matrix Q̃(n) defining the recursions (23). It is given by the expectation
operator in (18) which, for the generic i−th component of Hn(x), can be expressed as (recall that
we had assumed ri = r(xi))

Q̃(n)Hn−1(Xn−1)|Xn−1=xi = EP̃
{

e−riIi
H(Xn) | Xn−1 = xi

}
(29)

with Ii denoting a (negative) exponential random variable with parameter qi. We have the following

Proposition 4.6. The operator Q̃(n) in (29) is a contraction operator in RN with contraction
constant

γ := max
i≤N,n∈N

qi(n)
ri + qi(n)

< 1 .

.

Proof. By Jensen’s inequality we have

‖Q̃(n)H(x)− Q̃(n)H̄(x)‖ ≤ sup
i,n

EP̃
{

e−ri Ii
}
‖H(x)− H̄(x)‖

where
sup
i,n

EP̃
{

e−ri Ii
}

= sup
i,n

∫ ∞

0
e−risqi(n)e−qi(n)sds = max

i,n

qi(n)
ri + qi(n)

.

This Proposition 4.6 as well as Corollary 4.2 lead immediately to the following
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Corollary 4.7. By the contraction property of the operator associated with Q̃(n) we have that

lim
n→∞ ‖V̄

n
H,t,T (x)− V n

H,t,T (x)‖ = 0

Remark 4.8. As already mentioned, instead of determining, on the basis of (27), the value of
EP̃

{
Ṽ

νt,T

H,t,T (Xt)
}
by MC simulations of νt,T , one might compute this expectation in a fully analytical

way as

EP̃
{

Ṽ
νt,T

H,t,T (Xt)
}
|Xt=xi

=
1
2

∞∑

n=0

[(
1 + Q̃(n + 1)

)
Q̃(n) · · · Q̃(1)H0(x)

]
i
P̃ (νt,T = n | Xt = xi) .

The difficulties for an actual use of this formula consist in the infinite sum and the probability
distribution of νt,T . Concerning the infinite sum notice that, since (see Proposition 4.6) the operator
associated to Q̃(n) is contracting, for the actual computations one may truncate the infinite sum
thereby introducing an approximation that can be made arbitrarily precise provided the truncation
is chosen to be sufficiently large. On the other hand, the probability distribution of νt,T can in fact
be determined explicitly, however the corresponding procedure is rather cumbersome. Details for the
case of a scalar Xt can be found in [13].

5 Applications of the conditional MC approach to the pricing of
path dependent options

To give an idea of the wide applicability of our approach, in particular in the time inhomogeneous
and multivariate cases, we show here how to apply it for the pricing of some path dependent claims,
for which the direct formula (6) cannot be used. We start in subsection 5.1 with the case of barrier
options (knock-out options), for which formula (6) cannot be used even if the underlying is time
homogeneous. For the majority of the path dependent claims, in order to apply our approach,
we have to first transform them into simple claims, where the underlying then becomes typically
multivariate, possibly also time inhomogeneous. As an example, in section 5.2 we consider lookback
options. Further examples, in particular the case of Asian options, are described in [10].

5.1 Barrier options (knock-out options)

Barrier options include various kinds of derivatives, in particular they include also credit risky
derivatives in the context of the structural approach. As an example we consider here a specific
case, namely knock-out options.

We consider the case when an option with underlying Xt is knocked out as soon as Xt reaches
or falls below a level L. Using a notation corresponding to (5), assume that for the “background”
(not knocked out) option we have

H̄(·) = H̄0(·) =
N∑

i=1

w̄0
i 1{·=xi}, xi ∈ E, w0

i ∈ R . (30)
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Assume furthermore that the values xi are arranged in increasing order of magnitude and put
` := min[i ∈ {1, · · · , N} | xi > L]. For the knock-out option we may then start from

H(Xt) = H0(XT ) =
N∑

i=1

w̄0
i 1{XT =xi,i≥`} :=

N∑

i=1

w0
i 1{XT =xi} (31)

having put w0
i := w̄0

i 1{i≥`}.

In order to be able to apply our conditional MC approach, we want also here to obtain a
relation of the form (23) for a suitable Q̃(n). We have now the rather immediate

Proposition 5.1. Starting from H0(·) =
∑N

i=1 w̄0
i 1{·=xi,i≥`} :=

∑N
i=1 w0

i 1{·=xi} with w0
i :=

w̄0
i 1{i≥`} we have, for n ≤ νT , that Hn(·) =

∑N
i=1 wn

i 1{·=xi}, where wn = [wn
1 , · · · , wn

N ]′ are
given recursively by

wn = I`Q̃(n)wn−1 (32)

with I` a unit matrix having the first ` rows equal to zero and, as before,

Q̃(n) =
{

qi,j(n)
ri + qi(n)

}

i,j=1,··· ,N
(33)

As a consequence of Proposition 5.1 we may restrict attention to an (N − `)−vector w̃n for
which

w̃0
i = w0

i := w̄0
i 1{i≥`} and w̃n = Q̃`(n)w̃n−1 (34)

where Q̃`(n) is the (N − `)× (N − `) sub matrix of Q̃n formed by the last N − ` rows and columns
and we have the equivalent representations

Hn(XνT−n) =
N∑

i=1

wn
i 1{XνT−n=xi} =

N−∑̀

i=1

w̃n
i 1{XνT−n=xi} . (35)

Notice the importance here of having the recursive relation (32) even if the underlying is time-
homogeneous. Notice also that, in the case of barrier options, the time in-homogeneity arises not
only if the underlying Xt is time in-homogeneous, but also if the barrier L is time varying.

5.2 Lookback options

A general form for the claim of a lookback option is

HT =
(
XT − g(XT

0 )
)+ (36)

where g(·) is a measurable function of the generic trajectory Xt
0 := (X0, · · · , Xt) for t ≤ T of the

process Xt for which, recalling that τn denote the transition times of Xt, we assume

g(Xτn
0 ) = G(Xτn , g(Xτn−1

0 )) for some measurable G(·, ·) . (37)

We now show how, with Xt a CTMC, one can transform this claim into a simple claim with a
bivariate underlying CTMC that in certain cases may also turn out to be time inhomogeneous.
This will then allow our approach to be applied.
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Put Yt := g(Xt
0) and notice that, for t ∈ [0, T ], the process Yt also takes a finite number of

possible values; denote them by h = 1, · · · ,M . More importantly, Yt can make a transition only
at the transition times of Xt and it can be easily seen that (Xt, Yt) forms a bivariate CTMC.
Furthermore, we have that HT = (XT − YT )+ and we also recall that (XT , YT ) = (XνT , YνT ). To
deal with the chain (Xt, Yt) and to price HT , we need to derive the transition intensity matrix Q
for (Xt, Yt), for which we have

Proposition 5.2. Given a CTMC Xt with transition intensity matrix Q = {qi,j}i,j=1,··· ,N , the
chain (Xt, Yt) has {

q(i,h),(j,k)(n)
}

i,j=1,··· ,N
h,k=1,··· ,M

with q(i,h),(j,k) = qi,j1{G(j,h)=k}

Proof. Recall first that, if for a scalar CTMC Xt the Q−matrix is Q = {qi,j}, then the transition
probabilities of the embedded chain Xn are pi,j = qi,j

qi
with qi =

∑
j 6=i qi,j (qi,i = pi,i = 0).

Viceversa, given pi,j , there are various possible qi,j that lead to the same pi,j . They differ by the
choice of qi since we have qi,j = qipi,j . Given that in our case Yt jumps exactly when Xt does, we
may put

q(i,h) =
∑

j,k

q(i,h),(j,k) = qi ∀h = 1, · · · ,M (38)

and notice that at a generic τn the process Xt actually leaves the current state, while Yt may
jump to itself. To conclude, it thus suffices to construct p(i,h),(j,k). Recalling that we had put
Xn = Xτn , Yn = Yτn , we have

p(i,h),(j,k) := P{Xn+1 = j, Yn+1 = k | Xn = i, Yn = h}

= P{Xn+1 = j,G(Xn+1, Yn) = k | Xn = i, Yn = h}

= P{G(Xn+1, Yn) = k | Xn+1 = j, Xn = i, Yn = h}
·P{Xn+1 = j | Xn = i, Yn = h}

= 1{G(j,h)=k}P{Xn+1 = j | Xn = i} = 1{G(j,h)=k}pi,j

(39)

from which
q(i,h),(j,k) = p(i,h),(j,k) · qi = qi,j1{G(j,h)=k} . (40)

Example 1. As an example consider the standard case where

Yt = g(Xt
0) := min

s≤t
Xs . (41)

Notice that in this case Yt has the same finite number of possible values as Xt and the assumptions
on g(·) are satisfied since G(Xτn , g(Xτn−1

0 )) = min
[
Xτn , mins≤τn−1 Xs

]
= g(Xτn

0 ). The relation
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(39) particularizes into p(i,h),(j,k) = 1{G(j,h)=k}pi,j = 1{min{j,h}=k}pi,j which, with the states xi in
increasing order of magnitude, implies that

p(i,h),(j,k) =





pik if k < h
pij if k = h, j ≥ k
0 if k > h

=





qik
qi

if k < h
qij

qi
if k = h, j ≥ k

0 if k > h

(42)

and, consequently,

q(i,h),(j,k) = p(i,h),(j,k) · qi =





qik if k < h
qij if k = h, j ≥ k
0 if k < h

(43)

Notice that the chain (Xt, Yt), as described above, is multivariate but still time homogeneous so
that the pricing of the claim could be performed by the explicit analytic formula (6), although it is
more complex due to the increased dimensionality. If, however, one would consider a claim of the
form HT = (XT − g(XT

T−σ))+ for a given 0 < σ < T , then our process Yt may be defined as taking
a suitable fixed value for t ≤ T − σ and thereafter evolves as in the case of g(XT

0 ) by letting t = 0
correspond to t = T − σ. In the specific case of Example 1, the process Yt may then be defined as

Yt =





maxi xi for t ≤ T − σ

minT−σ<s≤t Xs for t > T − σ
(44)

It is then quite evident that the chain (Xt, Yt) is not anymore time homogeneous, even if Xt is.
The transition intensity matrix is then a sequence Q(n) that has a certain expression for all n such
that τn ≤ T − σ and another one for those n for which τn > T − σ. Notice also that the change
from one expression to the other one depends on τn and therefore on the individual trajectory
of Xt. Formula (6) then does not apply anymore, but our conditional MC approach (see steps i)
to iv) of Algorithm in subsection 4.2) appears to be particularly appropriate since the expression
to be averaged, namely

[
1 + Q̃(n + 1)

]
Q̃(n) · · · Q̃(1)H0(x) can be computed separately for each

individual simulated trajectory.

6 Numerical results and comparisons

The purpose of this section is to implement numerically our suggested approach and thereby to
show that, with respect to a plain MC, in the MC with conditioning the variance is indeed reduced
and the results themselves are more precise without increasing the computational complexity. To
apply our method, we have first to specify a transition intensity matrix Q. For actual applications,
this matrix would have to be calibrated to actual market data. Here the purpose is however that
of providing some test examples and for this it may be convenient to choose the matrix freely,
possibly also different matrices as we do below for the case of lookback options.

While calibration is beyond the scope of this paper, we still want to point out that, for an
actual calibration to become feasible, one would have to choose specific patterns of Q−matrices,
parametrized by a small number of parameters, and so calibrate just these parameters. We also
mention that, for a time homogeneous Xt it is possible to set up a filtering approach to estimate
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the values of the Q−matrix, either by combined filtering and parameter estimation, or by filtering
and EM-parameter estimation (see e.g.[5], see also [10]).

The section is structured as follows. In subsection 6.1 we start by discussing the pricing of
zero-coupon bonds as this will allow us also to assess the quality of our approach. Zero-coupon
bond prices can in fact be obtained by an exact formula in the continuous time case when the short
rate evolves as an affine diffusion process. By discretizing in space the affine diffusion we obtain a
CTMC, to which we then apply our approach. We shall show that, in spite of the approximation
due to the spatial dicretization, the prices are close to one another. We may thus be confident
that also in other situations, where a comparison with a benchmark is not anymore possible, our
approach performs well. In this subsection 6.1 we use a “Kushner-type” approximation according
to [9]; other spatial discretization/quantization methods may also be used, in particular optimal
quantization methods according to [3] (for specific financial application of optimal quantization see
also [4], [15]). Referring to [13], we report prices of zero-coupon bonds that are computed according
to our MC with conditioning and we compare them with the exact values of the continuous-time
counterpart, with those obtained from the analytical formula (6) (to allow for this comparison we
consider a time homogeneous case), and also with the values obtained from other computational
methods, namely: plain MC, a recombining binomial tree model applied to the continuous-time
counterpart and the algorithm described in [6] with the discrete time Markov chain obtained via
a deterministic time discretization. In subsection 6.2 we numerically test our approach for the
pricing of barrier options (knock-out options) by comparing the prices computed according to
our conditional MC with those computed via plain MC. In subsection 6.3 we present analogous
numerical tests for the case of lookback options (for the case of Asian options we refer to [10]).
For this we consider a time homogeneous model and this allows for a comparison also with the
price computed according to the exact analytic formula (6). We perform this test for two different
Q−matrices, of which one induces more frequent transitions of the chain. To conclude section 6,
in subsection 6.3 we comparatively discuss the computational complexity and and the induced
computation times of our approach. One of the criteria that we use for comparison in subsections
6.2 and 6.3 is the empirical variance per number of samples, which we call the estimator variance
rate (EVR).

Remark 6.1 (Estimator variance rate). Given n MC samples Ci , (i = 1, · · · , n) for a generic
random variable C and letting Ĉn := 1

n

∑n
i=1 Ci be the MC estimate for the mean of C, as estimator

variance we intend the following empirical variance V̂ar(Ĉn) = 1
n−1

∑n
i=1 (Ci−Ĉn)2. The estimator

variance rate that we shall use as performance criterion in several diagrams below corresponds then
to EV R = 1

nV̂ar(Ĉn).

6.1 Zero Coupon Bonds

The pricing of zero coupon bonds corresponds to our setup by putting Xt = rt and H(XT ) ≡ 1.
To define the CTMC for Xt = rt, we have to choose a transition intensity matrix Q. In order to
have an example that allows for an easy comparison with exact results, we choose Xt as given by
a space discretization, in the spirit of [9], of well-known affine diffusion models for the short rate
of interest rt, for which the exact price can be computed analytically. We report here results from
[13], where the CTMC Xt = rt is obtained from a space discretization according to [9] of the CIR
model for the corresponding continuous-time short rate r̃t, namely

dr̃t = k(θ − r̃t)dt + σ
√

r̃t dWt , r̃0 = r̄ (45)
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The bond prices obtained from the MC method with conditioning are compared not only with
the theoretically exact price P̃ (t, T ) for model (45), but also with the prices obtained by other
methods, including plain MC. While in the present paper we consider the midpoint between the
upper and lower bounds as the value to be computed analytically in our (hybrid) MC method
with conditioning (see (15) and Corollary 4.2), in [13] the authors consider just the upper bound
that in general does not differ much from the midpoint. In the Tables below, prices for various
maturities T and different initial values for the short rate r̃0 = r0 = r̄, as well as for different values
of the parameters in (45) are reported from [13]. As already mentioned, P̃ (t, T ) denotes the exact
bond price for model (45), while the other reported prices are: PRBT (t, T ) the bond price obtained
from a recombining binomial tree model, PFZ(t, T ) the price computed for a time discretization of
(45) and computed according to the recursive pricing method described in [6], PExp(t, T ) the price
computed by formula (6) (recall that Q is here time homogeneous), Ppl(t, T ) the price computed
by plain MC and P ub

c (t, T ) the upper bound on the price computed by MC with conditioning.

The following parameters were used: t = 0 years, T = 0.5, 2 and 5 years. The number of MC
simulations M and the RBT steps M̄ were taken to be 500, which, while it is a small number
with respect to what is typical, was enough because a very fine space discretization was chosen.
In Table 1 and Table 2 the numerical results are presented when the values of the initial spot rate
r̄ and the mean-reversion constant θ are of the order of one hundredth; in Table 3 the values of r̄
and θ are of the order of one tenth.

T (years) 0.5 2 5 0.5 2 5

r̄(= ri) 0.01 0.01 0.01 0.02 0.02 0.02
k 0.01 0.01 0.01 0.02 0.02 0.02
θ 0.8 0.8 0.8 0.5 0.5 0.5
σ 0.1 0.1 0.1 0.05 0.05 0.05

eP (t, T ) 0.995014 0.980244 0.951462 0.990051 0.960821 0.905046
PRBT (t, T ) 0.995042 0.980302 0.951556 0.99007 0.960898 0.905226
PFZ(t, T ) 0.995014 0.980244 0.951463 0.990051 0.960821 0.905046
PExp(t, T ) 0.995012 0.979568 0.947174 0.990051 0.960821 0.905047

P ub
c (t, T ) 0.995024 0.980276 0.951621 0.990143 0.960734 0.905318

Table 1: Bond prices eP (t, T ), PRBT (t, T ), PFZ(t, T ), PExp(t, T ) and P ub
c (t, T ) (M = M̄ = 500)

T (years) 0.5 2 5 0.5 2 5

r̄(= ri) 0.03 0.03 0.03 0.02 0.02 0.02
k 0.03 0.03 0.03 0.02 0.02 0.02
θ 1.1 1.1 1.1 1.2 1.2 1.2
σ 0.1 0.1 0.1 0.1 0.1 0.1

eP (t, T ) 0.985116 0.941861 0.861094 0.990052 0.960849 0.905072
PRBT (t, T ) 0.985146 0.941974 0.86135 0.990072 0.960926 0.905251
PFZ(t, T ) 0.985116 0.941861 0.861094 0.990052 0.960849 0.905072
PExp(t, T ) 0.985116 0.941841 0.861042 0.990052 0.960738 0.904656

P ub
c (t, T ) 0.985128 0.941968 0.861319 0.990059 0.95647 0.90193

Table 2: Bond prices eP (t, T ), PRBT (t, T ), PFZ(t, T ), PExp(t, T ) and P ub
c (t, T ) (M = M̄ = 500)
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T (years) 0.5 0.5 0.5 0.5

er(= ri) 0.01 0.02 0.03 0.02
k 0.8 0.5 1.1 1.2
θ 0.01 0.02 0.03 0.02
σ 0.1 0.05 0.1 0.1

eP (t, T ) 0.995014 0.990051 0.985116 0.990052
PRBT (t, T ) 0.995042 0.99007 0.985146 0.990072
PFZ(t, T ) 0.995014 0.990051 0.985116 0.990052
PExp(t, T ) 0.995012 0.990051 0.985116 0.990052
Ppl(t, T ) 0.995012 0.990051 0.985067 0.989930
Pc(t, T ) 0.981921 0.990059 0.985041 0.989885

Table 3: Bond prices eP (t, T ), PRBT (t, T ), PFZ(t, T ), PExp(t, T ), Ppl(t, T ), Pc(t, T ) (M = M̄ = 500)

6.2 Barrier options (knock-out options)

Following the pricing approach in section 5.1 for barrier options, we are able to compare the barrier
options price as well as the EVR for plain MC and MC with conditioning. With N = 5, we define
the following Q matrix:

Q =




−190 30 25 50 85
5 −185 140 25 15
5 135 −230 70 20
5 40 165 −230 20
5 10 45 60 −120




For the other parameters, we set the (non-knocked-out) terminal payoff H(XT ) as H(XT ) =
[1, 1, 1, 1, 1]>, the Down-and-Out barrier level L = x2 (x ∈ {x1, · · · , x5}), the interest rate
values rt as rt = r(Xt) = [0.01, 0.015, 0.02, 0.025, 0.05], the initial state X0 = x4 again with
x ∈ {x1, · · · , x5}, initial time t = 0 and terminal time T = 1 year.

Figure 1: Estimator for barrier options
using Plain MC (dotted line) and MC with
conditioning (dashed line) over total num-
ber of MC simulations. Final estimated
price is Barpl(t, T ) = 0.0218, std. dev=
0.144, and Barc(t, T ) = 0.0215, std. dev=
0.00547, n = 10000.

Figure 2: The EVR for barrier options
using Plain MC (dotted line) and MC
with conditioning (dashed line), shown on
a log10 y-axis vs. the total number of
samples. For n = 10000 the Plain MC
EVR is 2.0860 × 10−6 while the MC-with-
conditioning variance rate is 2.994× 10−9.
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Down-and-Out barrier options are computed using these specified parameters. Figure 1 shows
a graph of the estimator with plain MC (dotted line) and MC with conditioning (dashed line), over
the number of MC simulations, from 1000 to 10,000. Figure 2 shows the EVR of plain MC (dotted
line) and MC with conditioning (dashed line); the y-axis is given in log10 scale to improve read-
ability. It is clear that MC with conditioning performs better for barrier options pricing compared
to plain MC using EVR as performance criterion.

6.3 Lookback options

We perform the MC pricing for lookback options as discussed in subsection 5.2 considering the
case where g(Xt

0) := mins≤t Xs (Example 1) assuming, furthermore, that σ = T . This implies
that, if the chain Xt is time-homogeneous, also the bivariate chain (Xt, Yt) is and has thus a
time homogeneous transition intensity matrix. Since the claim HT = (XT −YT )+ is furthermore a
simple claim, it is possible to compute the price also according to the analytic formula (6). We thus
computed lookback prices for a plain MC namely (L̃B(t, T )), for MC with conditioning (LB(t, T ))
and according to formula (6) (L̄B(t, T )) for different sets of parameters. We report here just two
of the tests that we performed, which however show two quite different situations that may occur.

In both cases, we assumed a state space E = [0.8, 0.9, 1.0, 1.1, 1.2] with N = 5; initial state
X0 = 1.1, and maturity T = 2 years. For Test 1 and Test 2 we used the following Q-matrices:

Q =




−1440 360 360 360 360
7.2 −28.8 7.2 7.2 7.2
0.72 0.72 −2.88 0.72 0.72
2.52 2.52 2.52 −10.08 2.52
480 480 480 480 −1920


 and Q =




−0.8 0.2 0.2 0.2 0.2
0.73̄ −2.53̄ 0.6̄ 0.6 0.53̄
0.02 0.02 −0.08 0.02 0.02
0.6 0.53̄ 0.6̄ −2.46̄ 0.6̄
0.4 0.4 0.3̄ 0.4 −1.53̄




respectively, where the over-bar denotes repeated decimals. Notice that the basic difference in the
two cases consists in the fact that, in the first case, we obtain more frequent jumps/transitions of
Xt.

The results of the tests are reported in the various Figures where for plain MC and the hybrid
MC with conditioning we show the price, that is its averaged value over the various simulation
runs, together with a confidence interval given as a multiple of the empirical standard deviation,
which is given by

√
nEV R.

For Test 1, the plain MC estimate of the lookback price is L̃B(t, T ) = 0.216839 (std. dev
δ̃ = 0.128226) (Figure 3), for the MC-with-conditioning the estimated price is LB(t, T ) = 0.194265
(std. dev δ = 0.011603) (Figure 4), while L̄B(t, T ) = 0.194707. Note that L̃B(t, T )−δ̃ < LB(t, T )−
δ < LB(t, T )+δ < L̃B(t, T )+ δ̃. Figure 3 and Figure 4 show the graphs of the empirical mean as a
function of the total iteration count of the MC simulation, together with a plot of the 1.5 standard
deviations interval for L̃B(t, T ) and LB(t, T ) in Test 1, respectively. For comparison, each of the
Figures includes also the level corresponding to L̄B(t, T ). For Test 1, Figure 5 is a graph of the
EVR over the total number of MC simulations for the plain MC estimator (solid line) and the
MC-with-conditioning estimator (dashed line). Here we see again that the MC-with-conditioning
performs better under the EVR criterion.

For Test 2, where the jump intensities are considerably lower, the lookback price with the
plain MC estimator is L̃B(t, T ) = 0.147932 (std. dev δ̃ = 0.118035) (Figure 6), the MC-with-
conditioning price has empirical mean LB(t, T ) = 0.118050 (std. dev δ = 0.037996)(Figure 7) and
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Figure 3: Plain MC estimator for look-
back options showing the 1.5 standard de-
viation interval (Test 1). lookback price
gLB(0, 2) = 0.216839 (dashed line), sample
std dev = 0.128226, L̄B(t, T ) = 0.194707
(dotted line), n = 10000

Figure 4: MC-with-Conditioning estima-
tor for lookback options showing the 1.5
standard deviation interval (Test 1). look-
back price LB(0, 2) = 0.194265 (dashed
line), sample std dev = 0.011603,
L̄B(t, T ) = 0.194707 (dotted line), n =
10000

Figure 5: EVR for lookback options by
Plain MC (solid line) and MC with condi-
tioning (dashed line), over the total num-
ber of MC samples (Test 1). Y-axis in
log10 scale. For n = 10000 the Plain MC
EVR is 1.644 × 10−6 while the MC-with-
conditioning EVR is 1.346× 10−8.

Figure 6: Plain MC estimator for look-
back options showing the 2 standard de-
viation interval (Test 2). lookback price
= 0.147932 (dashed line), sample std dev
= 0.118036, L̄B(t, T ) = 0.056398 (dotted
line), n = 10000

L̄B(t, T ) = 0.056398. Unlike in the previous test, we now have that L̃B(t, T ) + δ̃ < LB(t, T ) − δ
and we need to plot the 2 standard deviation interval so that it includes L̄B(t, T ). This may
indicate that, since we have less frequent state transitions, it takes more simulations to obtain
sufficiently reliable estimates. In fact, clustering problems may arise, i.e., the drawn samples in
the simulation belong to just a small subset of the event space. This is a well known phenomenon
that may lead to highly biased MC estimators. Indeed we find that in our MC tests, samples are
sometimes not drawn over a large enough subset of the event space for the random variable νt,T -
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not every possible transition count in [t, T ] is achieved by the simulated paths (see Figures 8 and
9 which show the empirical distribution of jump counts for test 1 and test 2 respectively). As a
result, many of the possible outcomes are weighted too low, causing the empirical mean, that is
the weighted average, to be unreliable (see Figures 10 and 11 which show respectively the sampled
price and the theoretical price for each possible jump count).

Nevertheless we still observe better performance for MC-with-conditioning under the EVR
criterion as well as a considerably smaller squared bias with respect to the value L̄B(t, T ) calcu-
lated from (6). Figure 12 shows in fact the EVR over the number of simulations, which just as
before reflects the improved performance of MC-with-conditioning. This suggests that in order to
meaningfully apply MC, in particular plain MC, it must be understood what conditions on the
parameters may lead to models that are susceptible to clustering, and in that case, it may be
better to apply a Quasi-MC approach.

Figure 7: MC-with-Conditioning estima-
tor for lookback options showing the 2 stan-
dard deviation interval (Test 2) lookback
price = 0.118 (dashed line), sample std dev
= 0.0380, L̄B(t, T ) = 0.0564 (dotted line),
n = 10000

Figure 8: Empirical Distribution of
Jump Counts for Test 1 samples, for
ν = 0 . . . 40 jumps

6.4 Complexity and Computation Times

Table 4 shows the example computation times in running each of the various numerical exper-
iments. They represent the computational cost to obtain the performance gain (lower variance)
corresponding to each test as reported in Sections 6.1-6.3. For the MC pricing, we distinguish the
time spent on the simulation of paths, which is common to the plain and the conditional MC,
and the actual time for computing prices. The computations were performed using the software
package MATLAB Release 2012b on a 2.6 GHz Intel Core i7 processor, with 16GB Memory, under
an OS X Version 10.9.1 operating system. Comparing the computation times of plain MC to those
of the MC with conditioning, it can be seen that the latter is slightly faster than the former in all
the cases (Zero-Coupon Bonds, Barrier Options and Lookback Options). This is expected because
the computation under plain MC involves several evaluations of the exponential function. It is well
known that the calculation of the exp function in most math libraries are rather slow. Instead,
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Figure 9: Empirical Distribution of
Jump Counts for Test 2 samples, for
ν = 0 . . . 40 jumps

Figure 10: Conditional mean of prices
per jump count (Test 1 samples). Dashed
line - sample price (Plain MC); Solid line -
theoretical price (MC -with-Conditioning)

Figure 11: Conditional mean of prices
per jump count (Test 2 samples).
Dashed line - sample price (Plain MC);
Solid line - theoretical price (MC-with-
Conditioning)

Figure 12: EVR for lookback options by
Plain MC (solid line) and MC with condi-
tioning (dashed line), over the total num-
ber of MC samples (Test 2). Y-axis in
log10 scale. For n = 10000 the Plain MC
EVR is 1.393 × 10−6 while the MC-with-
conditioning variance rate is 1.444× 10−7.
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under the MC with conditioning, such evaluations are not necessary, and, in fact it involves only
matrix operations. Most math libraries have optimized routines for dealing with the latter.

In summary, the MC with conditioning presents a comparable, if not slightly better, method
over plain MC, not only with respect to variance reduction but also with respect to a slightly lower
computational complexity/cost.

Test Simulation Time Plain MC MC with Conditioning
Zero-Coupon Bonds 59.57 s 0.602 s 0.503 s
Barrier Options 505.4 s 1.803 s 1.721 s

Lookback Options 15.774 s 5.611 s 2.321s

Table 4: Computation Time for the Numerical Tests
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