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Abstract. We consider the problem of maximizing expected utility from ter-
minal wealth for a power utility of the risk-averse type assuming that the
dynamics of the risky assets are affected by hidden “economic factors” that
evolve as a finite-state Markov process. For this partially observable stochastic
control problem we determine a corresponding complete observation problem
that turns out to be of the risk sensitive type and for which the Dynamic
programming approach leads to a nonlinear PDE that, via a suitable trans-
formation, can be made linear. By means of a probabilistic representation we
obtain a unique viscosity solution to the latter PDE that induces a unique
viscosity solution to the former. This probabilistic representation allows to ob-
tain, on one hand regularity results, on the other a computational approach
based on Monte Carlo simulation.
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1. Introduction

We consider a market model with one locally riskless security and a certain number
of risky securities. The goal is to find an admissible self-financing investment strat-
egy that maximizes the expected utility from terminal wealth at a given maturity
and with a power utility function of the risk-averse type.

We assume that the dynamics of the risky assets are affected by exogenous
“economic factors” that evolve as a finite-state Markov process. We allow these
economic factors to be hidden, i.e. they may not be observed directly. Information
about these factors can therefore be obtained only by observing the prices of the
risky assets.
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Our problem is thus of the type of a partially observed stochastic control
problem and we shall determine its solution by solving a corresponding complete
observation control problem. After discussing some problems that arise for a com-
plete observation problem based on unnormalized filter values, we construct an
equivalent complete observation control problem, where the new state is given by
the pair (pt, Yt) consisting of the conditional state probability vector (normalized
filter) pt for the hidden factor process and of the log-asset prices Yt. This pair forms
a Markov process also in our more general setup where the coefficients in the se-
curity price dynamics are nonlinearly dependent upon the factors. The equivalent
complete observation control problem turns out to be of the type of a risk sensitive
stochastic control problem. It is approached by the method of Dynamic Program-
ming (DP) that leads to a nonlinear HJB equation. Applying a transformation
that is by now rather classical, this nonlinear HJB equation is transformed into a
linear one. By means of a probabilistic representation as expectation of a suitable
function of the underlying Markov process (pt, Yt), we obtain a unique viscosity
solution to the latter PDE that induces a unique viscosity solution to the former.
This probabilistic representation allows to obtain, on one hand, regularity results
on the basis of classical results on expectations of functions of diffusion processes;
on the other hand it allows to obtain a computational approach based on Monte
Carlo simulation. This latter computational approach is important since, as we
shall show, an explicit analytic solution is very difficult to obtain in the given
setup.

Portfolio optimization problems under partial information are becoming more
and more popular, also because of their practical interest. They have been studied
using both major portfolio optimization methodologies, namely Dynamic Program-
ming (DP) and the “Martingale Method”(MM). While DP has a longer tradition
in general, also MM has been applied already since some time for the cases when
the drift/appreciation rate in a diffusion-type market model is supposed to be an
unknown constant, a hidden finite-state Markov process, or a linear-Gaussian fac-
tor process. Along this line are the papers [9], [10], [8], [22] and, more recently, [5]
and [20]. The case when the volatility is driven by a hidden process is studied in
[16]. After the early paper [3], a DP-approach for a finite-horizon linear-Gaussian
model with one unobserved factor that is independent of the risky asset has been
used in [18]. In this latter paper the author also ends up with a nonlinear PDE.
However, instead of using a transformation to reduce the equation to a linear
one, the author introduces an auxiliary problem of the linear-quadratic type and
obtains from the latter the solution of the former problem. When investment deci-
sions are modelled to take place in discrete time, the entire portfolio optimization
problem reduces to one in discrete time and here a DP-approach under partial
information can be found in [19]. A risk-sensitive finite horizon control problem
under partial information for a general linear-Gaussian model has been considered
in [13] where, by solving two kinds of Riccati differential equations, it was possible
to construct an optimal strategy. The results are extended to the case of infinite
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time horizon in [15] by studying the asymptotics of the solutions of inhomogeneous
(time dependent) Riccati differential equations as the time horizon goes to infinity.

In relation to the literature as described above, in the present paper we con-
sider the portfolio maximization problem under a hidden Markov setting, where
the coefficients of the security prices are nonlinearly dependent on economic factors
that evolve as a k−state Markov chain (Section 2). The problem is reformulated
in Section 3 as a risk-sensitive stochastic control problem under complete observa-
tion and in Section 4 an optimal strategy is constructed from the solution of the
corresponding HJB-equation.

2. Problem setup

Let us consider a market model with N + 1 securities (S0
t , St) :=

(S0
t , S1

t , ..., SN
t )∗, were S∗ stands for the transpose of the matrix S, and an eco-

nomic factor process Xt, which is supposed to be a finite state Markov chain taking
its values in the set of the unit vectors E = {e1, e2, ..., ek} in Rk. The bond price
S0

t is assumed to satisfy the ordinary differential equation:

dS0
t = r(t, St)S0

t dt, S0
0 = s0, (2.1)

where r(t, S) is a nonnegative, bounded and locally Lipschitz continuous function
in S ∈ RN

+ = {(x1, ...., xN );xi ≥ 0, i = 1, 2, .., N}. The other security prices
Si

t , i = 1, 2, ..., N, are assumed to be governed by the following stochastic differ-
ential equations:

dSi
t = Si

t{ai(t,Xt, St)dt +
∑N

j=1 bi
j(t, St)dW j

t },

Si
0 = si, i = 1, ..., N

(2.2)

where ai(t, X, S) and bi
j(t, S) are bounded and, for each t and X, locally Lipschitz

continuous functions in S, b is uniformly non degenerate, i.e. z∗bb∗z ≥ c|z|2 , ∀z ∈
RN , ∃c > 0 and Wt = (W j

t )j=1,..,N is an N - dimensional standard Brownian
motion process defined on a filtered probability space (Ω,F ,Ft, P ) and is inde-
pendent of Xt. The Markov chain Xt can be expressed in terms of a martingale
Mt of the pure jump type, namely

dXt = Λ(t)Xtdt + dMt,

X0 = ξ,
(2.3)

where Λ(t) is the Q matrix (transition intensity matrix) of the Markov chain and
ξ is a random variable taking its values in E. Set

Gt = σ(Su;u ≤ t)

and let us denote by hi
t, (i = 0, 1, ..., N) the portfolio proportion of the amount in-

vested in the i-th security relative to the total wealth Vt that the investor possesses.
It is defined as follows :
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Definition 2.1. (h0
t , ht) ≡ (h0

t , h
1
t , h

2
t , ..., h

N
t )∗ is said to be an investment strategy

if the following conditions are satisfied
i) ht is an RN valued Gt - progressively measurable stochastic process such that

N∑
i=1

hi
t + h0

t = 1

ii) P (
∫ T

0
|hs|2ds < ∞) = 1.

The set of all investment strategies will be denoted by H(T ). When
(h0

t , h
∗
t )0≤t≤T ∈ H(T ) we shall often write h ∈ H(T ) for simplicity.
For given h ∈ H(T ), and under the assumption of self-financing, the wealth

process Vt = Vt(h) satisfies

dVt

Vt
=

∑N
i=0 hi

t

dSi
t

Si
t

= h0
t r(t, St)dt +

∑m
i=1 hi

t{ai(t, Xt, St)dt +
∑N

j=1 bi
j(t, St)dW j

t }

V0 = v

Taking into account i) above, Vt turns out to be the solution of
dVt

Vt
= r(t, St)dt + h∗t (a(t, Xt, St)− r(t, St)1)dt + h∗t b(t, St)dWt,

V0 = v,

where 1 = (1, 1, ..., 1)∗.
Our problem is the following. For a given constant µ < 1, µ 6= 0 maximize

the expected (power) utility of terminal wealth up to the time horizon T , namely

J(v;h;T ) =
1
µ

E[VT (h)µ] =
1
µ

E[eµ log VT (h)], (2.4)

where h ranges over the set A(0, T ) of all admissible strategies that will be defined
below in (3.17).

We consider here the maximization problem with partial information, since
the economic factors Xt are in general not directly observable and so one has to
select the strategies only on the basis of past information of the security prices.

3. Reduction to risk-sensitive stochastic control under complete
information

There are a priori more possible approaches to determine an equivalent complete
observation control problem. One may base it on a Zakai-type equation for an
unnormalized filter. One may however also base it on normalized filters. Each
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approach has its advantages and disadvantages, the major advantage for the Zakai-
type approach being that the dynamics are linear. In subsection 3.1 we first discuss
such an approach in a form related to [13] and show that, in our setting, an
explicit solution is difficult to obtain despite the linearity of the dynamics for the
unnormalized filter. Although we therefore abandon this approach in favour of one
based on normalized filter values, we still wanted to discuss it here because it forms
a basis for the other approach that will be derived in subsection 3.2 and that is
related to [13] and [15]. We want to point out that, in the given setup, the standard
approach leading to the so-called “separated problem” fails because of questions of
measurability with respect to the full and the observation filtrations and the fact
that in a crucial expectation there appears the product of the function of interest
with a Radon-Nikodym derivative (see (3.7) and the comment preceding (3.8)).

Before discussing the individual approaches, let us introduce some notation
and expressions that will be used in the sequel.

Let us set

Y i
t = log Si

t , i = 0, 1, 2, ..., N,

with Yt = (Y 1
t , Y 2

t , ..., Y N
t )∗ and eY = (eY 1

, ..., eY N

)∗. Then

dY 0
t = R(t, Yt)dt

and

dYt = Ā(t, Xt, Yt)dt + B(t, Yt)dWt, (3.1)

where
Āi(t, x, y) = ai(t, x, ey)− 1

2 (bb∗)ii(t, ey),

Bi
j(t, y) = bi

j(t, e
y), R(t, y) = r(t, ey)

Putting

η(t, x, y, h) :=
1− µ

2
h∗BB∗(t, y)h−R(t, y)− h∗(A(t, x, y)−R(t, y)1), (3.2)

with

Ai(t, x, y) = ai(t, x, ey),

by Itô’s formula we see that

dV µ
t = V µ

t {−µη(t, Xt, Yt, ht)dt + µh∗t B(t, Yt)dWt}, V0 = vµ (3.3)

and so

V µ
t = vµ exp{−µ

∫ t

0
η(s,Xs, Ys, hs)ds

+µ
∫ t

0
h∗sB(s, Ys)dWs − µ2

2

∫ t

0
h∗sBB∗(s, Ys)hsds}.

(3.4)
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3.1. Approach via a Zakai-type equation

Given our assumptions on the boundedness of the coefficients, let us introduce a
new probability measure P̂ on (Ω,F) defined by

dP̂

dP

∣∣∣∣∣
FT

= ρT ,

where

ρT = e−
∫ T
0 Ā∗(t,Xt,Yt)(BB∗)−1B(t,Yt)dWt− 1

2

∫ T
0 Ā∗(BB∗)−1Ā(t,Xt,Yt)dt (3.5)

Under the probability measure P̂

Ŵt = Wt +
∫ t

0

B∗(BB∗)−1(s, Ys)Ā(s,Xs, Ys)ds

is a Brownian motion process and Yt satisfies

dYt = B(t, Yt)dŴt. (3.6)

The criterion (2.4) can be rewritten under the new probability measure as
1
µE[V µ

T ]

= 1
µvµÊ[e−µ

∫ T
0 η(s,Xs,Ys,hs)ds+µ

∫ T
0 h∗sB(s,Ys)dWs−µ2

2

∫ T
0 h∗sBB∗(s,Ys)hsdsρ−1

T ]

= 1
µvµÊ[e−µ

∫ T
0 η(s,Xs,Ys,hs)ds+

∫ T
0 Q∗(s,Xs,Ys,hs)dYs− 1

2

∫ T
0 Q∗BB∗Q(s,Xs,Ys,hs)ds]

(3.7)
where

Q(t, Xt, Yt, ht) = (BB∗(t, Yt))−1Ā(t,Xt, Yt) + µht.

Since the argument of the expectation in (3.7) is of the form of a Radon Nikodym
derivative multiplied with the function of interest, we shall treat it as a whole
considering the following process

Ht = exp{−µ
∫ t

0
η(s,Xs, Ys, hs)ds +

∫ t

0
Q∗(s,Xs, Ys, hs)dYs

− 1
2

∫ t

0
Q∗BB∗(s, Ys)Q(s,Xs, Ys, hs)ds}

(3.8)

and
qi
t = Ê[HtX

i
t |Gt],

where Xi
t = 1{ei}(Xt). Then

E{V µ
T } = vµÊ{Ê[HT |GT ]} = vµ

k∑
i=1

Ê{Ê[HT Xi
T |GT ]} = vµÊ{

k∑
i=1

qi
T } (3.9)

where (see Corollary 3.3 in [1]; see also section 7.3 in [4]) qi
t satisfy

dqi
t = (Λ(t)qt)idt− µη(t, ei, Yt, ht)qi

tdt + qi
tQ

∗(t, ei, Yt, ht)dYt, (3.10)

qi
0 = pi

0 ≡ P (ξ = ei), i = 1, 2, ..., k
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Next we give some arguments to show that, as mentioned in the Introduction, an
explicit solution to the problem (3.9) and (3.10) is difficult to obtain.

Set qt = (qi
t). Then (qt, Yt) can be regarded as the controlled process for the

stochastic control problem of maximizing the criterion

J = vµÊ{
k∑

i=1

qi
T }.

Let us introduce the value function

w(t, q, y) = sup
h∈A(t,T )

Ê{
k∑

i=1

qi
T (t)}

where, analogously to A(0, T ), A(t, T ) denotes the admissible strategies over the
interval [t, T ], qi

s(t), t ≤ s ≤ T is a solution of (3.10) with the initial condition
qi
t(t) = qi and Ys, (t ≤ s ≤ T ) is solution of (3.6) with initial condition Yt = y.

The Bellman equation for w then becomes
∂w
∂s + suph Ls(h)w = 0 , t ≤ s ≤ T, (q, y) ∈ [0,∞)k ×RN

w(T, q, y) =
∑k

i=1 qi,

where

Ls(h) = 1
2

∑
i,j [BB∗(s, y)]ij ∂2

∂yi∂yj +
∑

i,j qi[Q∗(s, ei, y, h)B(s, y)]j ∂2

∂qi∂yj

+ 1
2

∑
i,j qiQ∗(s, ei, y, h)BB∗Q(s, ej , y, h)qj ∂2

∂qi∂qj

+
∑

i{[q∗Λ(s)∗]i − µη(s, ei, y, h)qi} ∂
∂qi

As can now be easily seen, an explicit solution of this Bellman equation is rather
difficult to obtain and so we abandon this approach in favour of one based on the
normalized filter that will however continue the main line of the arguments of the
present section.

3.2. Approach based on the normalized filter

In order to derive the corresponding full information control problem we put

pi
t = P (Xt = ei|Gt), i = 1, .., k, (3.11)

and use the notation

f(s, ps, y, h) =
k∑

i=1

f(s, ei, y, h)pi
s, (3.12)

for a given function f(s, x, y, h) on [0, T ]×E×RN×RN , while the defined function
is on [0, T ]×∆k−1 ×RN ×RN with ∆k−1 the k − 1 dimensional simplex

∆k−1 = {(d1, d2, .., dk); d1 + d2 + ... + dk = 1, 0 ≤ di ≤ 1, i = 1, .., k}.
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It is known that these (normalized) conditional probabilities pi
t, i = 1, 2, .., k,

satisfy the following equation (“Wonham filter”, see [11], [21])

dpi
t = (Λ(t)pt)idt + pi

t[Ā
∗(t, ei, Yt)− Ā∗(t, pt, Yt)]

·[BB∗(t, Yt)]−1[dYt − Ā(t, pt, Yt)dt],

namely

dpt = Λ(t)ptdt + D(pt)[Ā∗(t, Yt)− 1Ā∗(t, pt, Yt)]

·[BB∗(t, Yt)]−1[dYt − Ā(t, pt, Yt)dt],
(3.13)

where Ā(t, Y ) is an N × k matrix defined by Ā(t, Y ) = (Āi(t, ej , Y )) and D(p) is
a diagonal matrix of which the component in position ii is pi.

In full analogy with (3.8) we now define

Ĥt = exp{−µ
∫ t

0
η(s, ps, Ys, hs)ds +

∫ t

0
Q∗(s, ps, Ys, hs)dYs

− 1
2

∫ t

0
Q∗BB∗(s, Ys)Q(s, ps, Ys, hs)ds},

(3.14)

We then have

d(Ĥtp
i
t) = Ĥtdpi

t + pi
tdĤt + d〈Ĥ, pi〉t

= Ĥt(Λ(t)pt)idt

+ Ĥtp
i
t[Ā

∗(t, ei, Yt)− Ā∗(t, pt, Yt)][BB∗(t, Yt)]−1[dYt − Ā(t, pt, Yt)dt]

− µĤtp
i
tη(t, pt, Yt, ht)dt + Ĥtp

i
tQ

∗(t, pt, Yt, ht)dYt + d〈Ĥ, pi〉t

= (Λ(t)Ĥtpt)idt− µη(t, ei, Yt, ht)Ĥtp
i
tdt + Ĥtp

i
tQ

∗(t, ei, Yt, ht)dYt,
(3.15)

where the last equality is obtained from noticing that, given the previous defini-
tions, the following three equalities hold

d〈Ĥ, pi〉t = Ĥtp
i
t[Ā(t, ei, Yt)∗ − Ā(t, pt, Yt)∗][BB∗]−1Ā(t, pt, Yt)dt

+Ĥtp
i
tµh∗t [Ā(t, ei, Yt)∗ − Ā(t, pt, Yt)∗]dt;

−µη(t, ei, Yt, ht)Ĥtp
i
tdt + µη(t, pt, Yt, ht)Ĥtp

i
tdt

= Ĥtp
i
tµh∗t [Ā(t, ei, Yt)∗ − Ā(t, pt, Yt)∗]dt;

Ĥtp
i
t[Ā(t, ei, Yt)∗ − Ā(t, pt, Yt)∗][BB∗]−1[dYt − Ā(t, pt, Yt)dt]

+Ĥtp
i
tQ(t, pt, Yt, ht)∗dYt

= Ĥtp
i
tQ

∗(t, ei, Yt, ht)dYt − Ĥtp
i
t[Ā(t, ei, Yt)∗ − Ā(t, pt, Yt)∗][BB∗]−1Ā(t, pt, Yt).
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Therefore, we see that qi
t = Ĥtp

i
t thus showing that qi

t are indeed un-normalized
conditional probabilities and

Ê[HT |GT ] =
k∑

i=1

qi
T = ĤT .

We have thus proved the following Proposition, which establishes the equivalence of
the original incomplete information control problem with the present correspond-
ing complete one. The latter has as state variable process the (finite-dimensional)
Markovian pair (pt, Yt) satisfying (3.13) and (3.6) respectively, and as objective
function 1

µvµÊ[ĤT ], where ĤT depends, see (3.14), on the chosen strategy ht.

Proposition 3.1. The criterion (2.4) can be expressed equivalently as follows

J(v;h;T ) ≡ 1
µ

E[V µ
T ] =

1
µ

vµÊ[HT ] =
1
µ

vµÊ[ĤT ].

Notice that, for Markovianity, we have to consider as state variables in the
complete observation problem the pair (pt, Yt) and not just pt alone, because in
our original problem the coefficients depend on St and therefore on Yt. Notice also
that the state-variable pair (pt, Yt) is finite-dimensional.

The criterion expressed in the rightmost equivalent form above can be shown
to be of the form of a risk-sensitive stochastic control problem in finite dimension.
To this effect let us introduce another change of measure with the Girsanov density
defined by

dP̃

dP̂

∣∣∣∣∣
GT

= ζT = e
∫ T
0 Q∗(s,ps,Ys,hs)dYs− 1

2

∫ T
0 Q∗BB∗Q(s,ps,Ys,hs)ds

= e
∫ T
0 Q∗(s,ps,Ys,hs)B(s,Ys)dŴs− 1

2

∫ T
0 Q∗BB∗Q(s,ps,Ys,hs)ds.

(3.16)

Notice that the new probability measure P̃ depends, through ζT , on the chosen
strategy ht. In order that P̃ is a probability measure we have to require that the
set A(0, T ) of admissible strategies is given by

A(0, T ) =
{

h ∈ H(T ) | Ê{ζT } = E{ρT ζT } = 1
}

(3.17)

Under the probability measure P̃ we now have that

W̃t =
∫ t

0

B−1(s, Ys)dYs −
∫ t

0

B∗(s, Ys)Q(s, ps, Ys, hs)ds (3.18)

is a standard Gt - Brownian motion process and we have

dYt = B(t, Yt)dW̃t + BB∗(t, Yt)Q(t, pt, Yt, ht)dt

= B(t, Yt)dW̃t + {Ā(t, pt, Yt) + µBB∗(t, Yt)ht}dt
(3.19)
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and

dpt = D(pt)[Ā∗(t, Yt)− 1Ā∗(t, pt, Yt)][BB∗(t, Yt)]−1B(t, Yt)dW̃t

+{Λ(t)pt + µD(pt)[Ā∗(t, Yt)− 1Ā∗(t, pt, Yt)]ht}dt.
(3.20)

Since
1
µ

vµÊ[ĤT ] =
1
µ

vµẼ[exp{−µ

∫ T

0

η(s, ps, Ys, hs)ds}]

we are reduced to considering the risk-sensitive stochastic control problem that
consists in maximizing

1
µ

vµẼ[exp{−µ

∫ T

0

η(s, ps, Ys, hs)ds}] (3.21)

subject to the controlled process (pt, Yt) on ∆k−1 × RN being governed by the
controlled stochastic differential equations (3.20) and (3.19) defined on the filtered
probability space (Ω,F ,Gt, P̃ ).

The solution to this latter complete observation problem forms the subject
of the next section 4.

4. HJB-equation

For ease of notation, given t ∈ [0, T ], let us now introduce for s ∈ [t, T ] the vector
process

Zs := [ps, Ys]∗ , ps ∈ ∆k−1, Yt ∈ RN

so that, putting

β(s, Zs) :=
[

Λ(s)ps

Ā(s, ps, Ys)

]
, a (k + N)− vector

α(s, Zs) :=
[

D(ps)[Ā∗(s, Ys)− 1Ā∗(s, ps, Ys)](BB∗)−1B(s, Ys)
B(s, Ys)

]
(4.1)

which is a (k + N)×N −matrix and

βµ(s, Zs;hs) := β(s, Zs) + µα(s, Zs)B∗(s, Ys)hs, a (k + N)− vector, (4.2)

from (3.20) and (3.19) the dynamics of Zs on (Ω,F ,Gs, P̃ ) and for s ∈ [t, T ] become dZs = βµ(s, Zs;hs)ds + α(s, Zs)dW̃s

Zt = z
(4.3)

where the strategy hs affects the evolution of Zs directly through the drift βµ and,
recalling the comment before (3.17), indirectly also through the measure P̃ , i.e.
through W̃s.
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Recall now the objective function (2.4) and its representation in Proposition
3.1 and in (3.21) that are all defined for the initial time t = 0. For a generic t with
0 ≤ t ≤ T and for Vt = v, Zt = z, put

J(t; v; z, h;T ) =
1
µ

vµ G(t, z, h)

where, letting with some abuse of notation η(s, Zs, hs) := η(s, ps, Ys, hs) with
η(s, ps, Ys, hs) as in (3.2) and with the notation as in (3.12), we define

G(t, z, h) = Ẽt,z

{
exp

[
−µ

∫ T

t

η(s, Zs, hs) ds

] }
(4.4)

In view of the HJB equation put now

w(t, z) := sup
h∈A(t,T )

log G(t, z, h) (4.5)

so that

sup
h∈A(0,T )

J(v;h;T ) =
1
µ

vµ ew(0,Z0) (4.6)

Based on the definition of η(t, z, h) and the dynamics of Z in (4.3) with drift βµ

as in (4.2), we may now formally write for w(t, z) in (4.5) the following Bellman
equation of the Dynamic programming approach

∂w
∂t + 1

2 tr[αα∗D2w] + 1
2 (∇w)∗αα∗∇w

+suph

[
βµ(t, z, h)∗∇w + µγ∗(t, z)h− 1

2µ(1− µ)h∗BB∗h
]

+µR(t, z) = 0

w(T, z) = 0

(4.7)

where
γ(t, z) = A(t, p, Y )−R(t, z)1 (4.8)

Given our assumptions that b is uniformly non degenerate, the maximizing ĥ in
(4.7) is

ĥ = ĥ(t, z) =
1

1− µ
(BB∗)−1(t, z) [B(t, z)α∗(t, z)∇w(t, z) + γ(t, z)] (4.9)

and (4.7) itself becomes
∂w
∂t + 1

2 tr[αα∗D2w] + 1
2(1−µ) (∇w)∗αα∗∇w + Φ∗∇w + Ψ = 0

w(T, z) = 0
(4.10)

where, for simplicity of notation, we have put

Φ(t, z) := β(t, z) + µ
1−µα(t, z)B−1(t, z)γ(t, z)

Ψ(t, z) := µR(t, z) + µ
2(1−µ)γ

∗(t, z)(BB∗)−1(t, z)γ(t, z)
(4.11)
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and which is a nonlinear 2nd order PDE. We shall now transform (4.10) into a
linear PDE by following a by now classical procedure (see e.g. [6], [7]) and according
to which we put

v(t, z) = e
1

1−µ w(t,z) (4.12)

With this transformation (4.10) becomes now
∂v
∂t + 1

2 tr[αα∗D2v] + Φ∗(t, z)∇v + Ψ(t,z)
1−µ v = 0

v(T, z) = 1
(4.13)

It can now be easily seen that v(t, z) is a viscosity solution for (4.13) if and only
if w = (1− µ) log v is a viscosity solution for (4.10).

Notice that, in spite of the linearity of the PDE in (4.13), an explicit ana-
lytic solution is very difficult to obtain in our setting (to this effect see also the
Remark 4.2 at the end of this section). However, the linearity of the PDE leads
to a Feynman-Kac representation of the solution, which makes it then possible to
compute it numerically by simulation as we shall mention also below. Set then

v̄(t, z) = Et,z

{
exp

[
1

1− µ

∫ T

t

Ψ(s, Zs) ds

]}
(4.14)

where Zs now satisfies, instead of (4.3), the following{
dZs = Φ(s, Zs)dt + α(s, Zs)dWs

Zt = z
(4.15)

where Ws is a Wiener process and which, given our assumptions of bounded and
locally Lipschitz continuous coefficients with b uniformly non degenerate, admits
a unique strong/pathwise solution. A solution to this equation can rather easily
be simulated for the purpose of calculating then numerically the value of v̄(t, z).

Finally, using also the boundedness of v̄, from Theorem 4.4.3 and Appendix
7.7.2 in [14] it follows that v̄(t, z) is the unique viscosity solution for (4.13) and,
consequently, w̄ = (1−µ) log v̄ is the unique viscosity solution for (4.10). Thus we
have the following proposition.

Proposition 4.1. Under the assumptions in section 2 equation (4.10) has a unique
viscosity solution w and it is expressed as w(t, z) = (1 − µ) log v̄, where v̄ is the
function defined by (4.14).

Under stronger assumptions on r, ai, bi
j such that they are C2 functions with

derivatives of polynomial growth we have by Theorem 5.5 in [2] that v̄(t, z), and
therefore also w̄(t, z), are of class C2 and with derivatives of polynomial growth.
The formal Bellman equation (4.7) becomes thus an equation having a classical
solution and the function ĥ in (4.9) exists and ĥ(t, Zt) is thus an optimal control.

We close this section with the following Remark that is intended to better
explain why an explicit analytic solution to (4.13) is difficult to obtain.
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Remark 4.2. We show here the expressions for the coefficients of the HJB equation
(4.13) in the simplest case when the coefficients in the asset price dynamics (2.2)
are autonomous and do not depend on the asset price itself and the factor process
Xt is a two-state homogeneous Markov process with Q−matrix

Λ∗ =
(

λ1 −λ2

−λ1 λ2

)
.

Denote by pt the conditional state probability for state 1 in the generic period t,
i.e.

pt = P{Xt = e1|Gt}
We have now

αα∗(p)

=


p2(1−p2)(a(e1)−a(e2))

2B−2 −p2(1−p2)(a(e1)−a(e2))
2B−2 p(1−p)(a(e1)−a(e2))

−p2(1−p2)(a(e1)−a(e2))
2B−2 p2(1−p2)(a(e1)−a(e2))

2B−2 p(1−p)(a(e2)−a(e1))

(a(e1)−a(e2))p(1−p) (a(e2)−a(e1))p(1−p) B2



Φ(p) =

 λ1p−λ2(1−p)

−λ1p+λ2(1−p)

a(e1)p+a(e2)(1−p)− 1
2 B2



+ µ
1−µ

 p(1−p)(a(e1)−a(e2))B
−2(a(e1)p+a(e2)(1−p)−R)

p(1−p)(a(e2)−a(e1))B
−2(a(e1)p+a(e2)(1−p)−R)

a(e1)p+a(e2)(1−p)−R


Ψ(p) = µR +

µ

1− µ
[ a(e1)p + a(e2)(1− p)−R]2 B−2

and from here it can be seen that, even in this simple case, an explicit solution of
the HJB equation (4.13) is difficult to obtain.

5. Conclusions and computational remarks

Given our expected utility maximization problem for a power utility of the risk
averse type, where the coefficients in the asset price dynamics are driven by a
hidden finite state Markov process representing “economic factors”, we have first
discussed a corresponding complete observation control problem based on unnor-
malized conditional probabilities (unnormalized filter) satisfying a linear Zakai-
type equation and shown that for this problem it is difficult to obtain an explicit
solution. We have then studied an equivalent complete observation problem based
on normalized filter values. For this problem we have studied the corresponding
HJB equation that has been shown to admit a unique viscosity solution that can
be computed as an expectation according to (4.14) and (4.15). Under sufficient
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regularity assumptions this solution has enough regularity so that an optimal in-
vestment strategy exists and can be computed from the solution of the HJB equa-
tion according to (4.9). This strategy is a function of the process Zs = [ps, Ys]∗

formed by the pair consisting of the filter ps in (3.11) for the unobserved factor
process Xs and the log-prices Ys, all of which are accessible to the economic agent.

Since a solution can be obtained in the form of an expectation according to
(4.14) and (4.15), it can in general be computed by Monte Carlo simulation. This
is important since, as discussed in section 4, also for the complete observation
problem based on normalized filter values an analytic solution is very difficult to
obtain.
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