Inductively generated formal topologies

Thierry Coquand’, Giovanni Sambin?,
Jan Smitht, Silvio Valentini*

tDept. of Computing Science 1Dip. di Matematica Pura ed Applicata

Chalmers University Universita di Padova
S—41296 Goteborg, Swedish via Belzoni 7, 1-35131 Padova, Italy
coquand,smith@cs.chalmers.se sambin,silvio@math.unipd.it

December 12, 2002

Abstract

Formal topology aims at developing general topology in intuitionistic
and predicative mathematics. Many classical results of general topology
have been already brought into the realm of constructive mathematics by
using formal topology and also new light on basic topological notions was
gained with this approach which allows distinction which are not sensible
in classical topology.

Here we give a systematic exposition of one of the main tools in formal
topology: inductive generation. In fact, many formal topologies can be
presented in a predicative way by an inductive generation and thus their
properties can be proved inductively. We show however that some natural
complete Heyting algebra cannot be inductively defined.
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Foreword

The aim of formal topology is to develop topology in a constructive frame-
work where “constructive” is meant here to include both intuitionistic and pred-
icative. We can fix, if desidered, such a foundational theory to be Martin-Lof’s
constructive set theory [ML84], but we actually often do not use its full strength.
A monograph on formal topology is under preparation; it will include all the
preliminaries on type theory which we are here compelled to skip, and more
details on the basic notions.

Also other approaches to intuitionistic topology have been developed, no-
tably the theory of locales, which is usually developed in topos theory. Working,
as we do, with a foundational theory without power-sets brings to distinctions
between notions or methods which are irrelevant in a foundation like topos the-
ory, and hence there neglected. The most striking example is that it does not
seem possible to define predicatively the (co)product of two formal topologies,
unless they are inductively generated. It also brings us to new, sometime unex-
pected connections, like that with inductive definitions, which constitute a key
tool for proof theory (cfr. [BFPS81] and [Acz77]).

The paper is organized as follows. We first give a short introduction to
formal topology by showing how to move from the classical and impredicative
case of a concrete topological space to the constructive and abstract notion of
formal topology. Then the main topic of the paper is discussed, that is, the
problem of inductive generation of formal topologies. We will both show the
problems that must be solved to inductively generate a formal topology and we
will present our solutions of such problems. Finally, the last part of the paper is
devoted to show that most of the interesting formal topologies can be generated
inductively. But we will also show that there are formal topologies that cannot
be inductively generated; noticeably, we will also show that the example of non-
inductively generated formal topology that we were able to build is classically
equivalent to a formal topology which can be inductively generated.

This paper has a long history. Some of the relevant sources can be found in
[FG82, Sam87, Coq92, NV97, CN96, Dra87].

In the whole paper we follow the notation introduced in [SV98]. We are
confident that the reader will understand the notation with no problem since
most of the work in [SV98] was made purposely to be able to use standard
mathematical notation and still remain completely within Martin-L6f construc-
tive set theory. Anyhow it can be useful to stress at least one thing: we will use
the standard symbol € to mean the membership relation between an element



and a set or a collection, while we switch to the symbol £ for the relation of
membership between an element and a subset, since we want to stress the fact
that a subset is never a set but just a propositional function. It can be useful to
recall that, provided S is a set, a one of its elements and U one of its subsets,
a € S is a judgement while aeU is a proposition such that aeU is true if and
only if U(a) is true; hence two subsets U and V of S are extensionally equal,
notation U =7 V, if and only if (Vz € S) (U(z) «< V(z)).

1 The notion of formal topology

We recall in this section some of the motivations which lead to the notion
of formal topology, which is the central tool of the approach to constructive
topology adopted here.

It is convenient to start from a short analysis of the traditional definition of
topological space, so that we can underline which steps are problematic from a
constructive point of view, and how they are solved.

1.1 Concrete topological spaces

The classical definition reads: (X, (X)) is a topological space if X is a set and
Q(X) is a subset of P(X) which satisfies:

() 0, X € Q(X);
(Q2) (X)) is closed under finite intersection;
(Q3) Q(X) is closed under arbitrary union.

Usually, elements of X are called points and elements of Q(X) are called opens.

The quantification implicitly used in (€23) is of the third order, since it says
(VF C QUX))UF € Q(X), that is (VF € P(P(X)))(F C Q(X) —» UF € Q(X)).
The idea is that we can “go down” one step by thinking of Q(X) as a family
of subsets indexed by a set S through a map N : S — P(X), since we can now
quantify over S rather than on Q(X).

But we still have to say (YU € P(S))(3c € S) (UacwN(a) = N(c¢)), which is
also impredicative.

We can “go down” another step by defining opens to be of the form N(U) =
UgeuN(a) for an arbitrary subset U of S. In this way () is open, because
N(@) = 0, and closure under union is automatic, because obviously U;efN(U;) =
N(UierU;). So, all we have to do is to require N(S) to be the whole X and closure
under finite intersections, that is, condition (23). It is not difficult to realize
that this amounts to the standard definition saying that {N(a) C X| a € S} is
a base (see for instance [Eng77]). So we reach the following definition:

Definition 1.1 A concrete topological space is a triple X = (X, S,N) where X
is a set of concrete points, S is a set of observables, N is a map from S into



subsets of X, called the neighborhood map, which satisfies
(Bl) X = UaESN(a)

(B2) (Va,be S)(Vz € X) (zeN(a) N N(b) —
(3c € S) (xzeN(c) & N(c) C N(a) N N(d)))

Note that this definition re-establishes a balance between the side of points,
which we call the concrete side, and the side of observables, or formal basic
neighbourhoods, which we call the formal side.

Note that (Bs) is just a rigorous writing of the usual condition stating that
if N(a) and N(b) are two neighbourhoods of  then there exists a neighborhood
N(c) of z which is contained both in N(a) and N(b) and this is all what we need
to obtain closure under intersection.

Now, amap N : S — P(X) is a propositional function with two arguments,
that is N(z)(a) prop [z : X,a : S], that is a binary relation. Then we write it
more suggestively as

zlkaprop [z: X,a: 5]
and read it “x lies in a” or “x forces a”.
It is convenient to use also a few abbreviations:

zlFU = (eU) zI-b
ext(a) = {z:X|zlka}
ext(U) = Ugepext(a)

~—

Hence z I a is the same as zeext(a
the map N coincides with ext.
Then (B;) and (B2) can be rewritten as

(B1) (VzeX)(Fa€eS)zlka

and z IF U is the same as zeext(U); thus

(B2) (Va,be S)(Vzx e X) ((zlFa) & (zIFb) —
(Fc € S) (z IF ¢ & ext(c) C ext(a) & ext(c) C ext(b)))

We can make (Bz) a bit shorter by introducing another abbreviation, that is
alb={c: 9] ext(c) Cext(a) & ext(c) C ext(b)}
and by writing xeext(a) Next(b) for z IF a & x IF b, so that it becomes
(B2) (Va,b e S) ext(a) Next(b) Cext(a | b)

which looks much better.

Note that cea | b implies that ext(c) C ext(a) Next(b), so that ext(a | b) =
Ucealbext(c) C ext(a) Next(b). Then the definition of concrete topological space
can be rewritten as follows:

Definition 1.2 A concrete topological space is a triple X = (X, S, IF) where X
and S are sets and & is a binary relation from X to S satisfying:

(Bi)) (VzeX)zlFS

(B2) (Va,b e S) ext(a) Next(b) =ext(a ] b)



1.2 Formal topologies

The notion of formal topology arises by describing as well as possible the struc-
ture induced by a concrete topological space on the formal side and then by
taking the result as an axiomatic definition. The reason for such a move is that
the definition of concrete topological space is too restrictive, given that in the
most interesting cases of topological space we do not have, from a constructive
point of view, a set of points to start with. Thus, we choose two primitives, that
is <1 and Pos!, whose definition in the concrete case is

a1U

Ve X) (zlka—>zlFTU)

Pos(a)

FzeX)zlka

and look for their properties which are expressible without mentioning X and
its elements.

Given that z IF U = (FbeU) z Ik b, the rule of F-introduction yields that
if aeU then a < U. Similarly, since (Vz € X) (z I+ U — z I+ V) is logically
equivalent to (VbeU)(Vz € X) (z IF b = =z It V), the rule of 3-elimination
yields that if a < U and U < V then a <« V, where U <« V is a shorthand for
(VbeU) b <1 V which we will use from now on.

Similarly, properties of quantifiers bring to: if Pos(a) and a < U, then
(3beU) Pos(b), which we will abbreviate by Pos(U) from now on.

Also, the validity of (Az.¢ = Vz.(¢ = ¥)) = Vz.(¢ — %) in intuitionistic
logic shows that if a < U [Pos(a)] then a < U. . For more details on positivity see
[SVV96] where it is shown that it allows proofs by cases on Pos(a) for deductions
whose conclusion is of the form a < U.

To formulate (By) completely within the formal side, what we can do is to
weaken ext(a) Next(b) C ext(a | b) into

ext(c) C ext(a) Next(b)
ext(c) C ext(a | b)

that is
c<da c<b

c<dalb

where ¢ < a and ¢ < b are shorthand for ¢ < {a} and ¢ < {b} that we will use
from now on.

But again, this is not enough: by definition ¢ <1 a and ¢ <1 b give cga | b
and hence ¢ < a | b. So, we would fail to express closure of open subsets under
intersection. So, we first strengthen (B2) to arbitrary subsets, obtaining

ext(U)Next(V) Cext(U [ V)

1We can obtain a more general notion of constructive topological structure if we leave out
the positivity predicate from this definition, and it will be not difficult to check that also
taking away Pos all the results in the next sections continue to hold. On the other hand, the
positivity predicate plays a main role in the definition of some particular formal topologies,
like for instance the formal topology of Scott Domains (see [SVV96]).




where U | V = Ugeupeva J b. This holds by distributivity of P(X); in fact,
ext(U) Next(V) = Ugevext(a) N Upeyext(b) = Uger Upey ext(a) N ext(b)

So now by (Bs) ext(U) Next(V) C Ugzer Upey ext(a | b) and hence the claim
follows since ext distributes unions.
Now, the preceding idea brings to

ext(c) C ext(U) Next(V)
ext(c) Cext(U [ V)

that is
caU caV

caU LV

which is not trivial. We thus arrived at the main definition.

Definition 1.3 A formal topology is a triple A = (S, <, Pos) where S is a set,
< is a relation between elements and subsets of S, that is

a<qU prop [a: S, U C 9]

satisfying the following conditions:

aeU
flexivit
(reflexivity) a0
(transitivity) adU vav
Y a1V
. aU adV
(J-right) a U1V
where
U<V = u<aV [uel]
ULV = {d:85] (Fuel) (d qu) & (FueV) (d <v)}

and Pos is a subset of S, that is a propositional function over S, which satisfies
the following conditions

.. Pos(a) a<U
(m0n0t0n1c1ty) m
(positivity) @ QU [Pos(a)]

a1 U

In the following < is called cover and Pos positivity predicate.

In the terminology of locale theory, these structures correspond to open
spaces (see [Joh84] and [Neg02], proposition 2.17).

By the preceding remarks, this axiomatic definition is satisfied by the struc-
ture induced on the formal side of any concrete topological space. However, as
we explained above, its raison d’etre is that of gathering many more examples.



We will show that lots of examples are provided by the method of inductive
definitions, starting from given axioms for the cover relation.

Actually, this method is necessary also because otherwise we would not be
able, as far as we can see, to define predicatively one of the simplest construc-
tions, namely that of co-product of formal topologies (see [NV97]). In fact, let
A = (S,<4,Posy4) and B = (T, <1, Posp) be formal topologies. We want the
co-product of A and B to be a formal topology

A+B=(SxT,<4+B,PossiB)
where S x T is the usual cartesian product of sets,
Pos 445((a,b)) = Pos4(a) & Poss(b)
and < 44p is the minimal cover relation satisfying the axioms

(a,b) <a+8 U xb whenever b€ T and a <14 U,
(a,b) <aypaxV whenevera € S and b<pV

where of course U x b = {(u,b) : S x T'| ueU} and similarly for a x V.

As it stands this is not a definition of < 445 from a predicative point of view;
impredicatively, <1445 would simply be the intersection of all covers containing
the required axioms. To solve this problem, we see no predicatively acceptable
way other then that of an inductive definition.

2 Three problems and their solution

The conditions appearing in the definition of formal topology, though written
in the shape of rules, must be understood as requirements of validity: if the
premises hold, also the conclusion must hold. As they stand, they are by no
means acceptable rules to generate inductively a cover and a positivity predicate.
This is obvious if one notes that the operation | among subsets, which occurs
in the conclusion of |-right, is not even well defined unless we already have a
complete knowledge of the cover.

The second problem is that, as we will prove in detail, admitting transitivity
as an acceptable rule for an inductive definition is equivalent to a well-known fix-
point principle, which to our knowledge does not have a predicative justification.

Thirdly, one has to make up one’s mind whether the predicate Pos has to
play a role in the generation of the cover or has to be added on top of it. We will
see that the solution is a mixture. Monotonicity has an existential quantification
in its conclusion, and thus we cannot expect Pos to be generated inductively.
Still positivity plays a role in the generation of the cover.

So, to transform the axiomatic definition into good inductive rules we need to
face with three problems. We discuss them in detail in this section, together with
the solution we adopted, so that the reader can valuate correctly the method
and the main theorem in the next section.



2.1 Formal topologies with pre-order

As we reminded above, the definition of the operation | among subsets depends
on the covers and it requires the cover to be known. However, a crucial obser-
vation is that only the trace of the cover on elements is sufficient. The idea is
then to separate covers between elements, that is a < b, from those a <« U with
an arbitrary subset U on the right, so that we can block the former, require | on
it and then generate the latter. So, we must add, to those of a formal topology,
an extra primitive expressing what in the concrete case is ext(a) C ext(b). We
can obtain this in two technically different ways. The easiest way is then to
add directly a pre-order relation a < b among observables. The other is to add
a binary operation e between observables, called combination, whose interpre-
tation is that ext(a  b) = ext(a) N ext(d), so that ext(a) C ext(b) corresponds
to a b = a. In this paper we will consider only the first solution, even if an
analogous development is possible for the second one.

<.

Adopting a pre-order < as a new primitive, the natural definition is:

Definition 2.1 A formal topology with pre-order, shortly a <-formal topology,
is a quadruple A = (S, <, <1,Pos) where S is a set, < is a pre-order relation
over S, that is < is reflerive and transitive, < is a relation between elements
and subsets of S which satisfies the following conditions

(reflexivity) aaZUU
(transitivity) ¢d Ua > V['] <V
<b baU
(L-left) o0 O4dY Py <
(Siight) = ji Una;/V

where } U = {c: S| (FueU) ¢ < u} and Pos is a positivity predicate with respect
to Q.

The condition <-left is clearly equivalent to the fact that < respects <, that

is a<b

a<b
Of course, we must not require < to coincide with <1 on elements, otherwise this
would bring us back to the problem of the definition of U | V.

Since < respects <, for any subset U we have | U C|< U, where |9 U =
{c: 8] (FuelU) c<qu}. Thus JUN|LV CIIUN IV =U |V, so that <-right
implies |-right. Thus any <-formal topology is a formal topology. The converse
is trivial: given any formal topology (5, <, Pos), all we need to do is to define

a<b=a<b



and we obviously obtain a <-formal topology with a cover and a positivity
predicate coinciding with the original ones.

Since we will deal almost exclusively with the operation | UN | V rather
than |9 UN |9 V, in any <-formal topology we will abbreviate | Un | V
with U | V. There is little danger of confusion with the previous definition of
U | V, since in that case we can understand it as defined through the pre-order
a<b=a<b.

Other equivalent formulations are possible of the previous definition 2.1.
Here we mention just one, to be used in the following.

Lemma 2.2 For any cover relation < closed under reflexivity, transitivity and
<-left the condition <-right is equivalent to the following

a1 U

(localization) albaU LD

where a Lb={ce€ S| (c<a) & (c <b)}.

Proof. Immediate.

2.2 The problem of transitivity

An inductive definition of a cover will start from some axioms, which at the
moment we assume to be given by means of any infinitary relation

R(a,U) prop [a: S,U C 5]
We thus want to generate the least cover <lg which satisfies

(axioms) R, U)
a<dr U
As we will see, the task of forcing <1 to satisfy <-left and <-right is essentially
only technical and not too difficult, once it is clear that <g satisfies reflexivity
and transitivity. So we concentrate in this section on the conceptual problem
of constructing the minimal infinitary relation <l which satisfies reflexivity,
transitivity and the axioms given by R.

(From an impredicative point of view, < is easily obtained “from above”
simply as the intersection of the collection Cr of all the reflexive, transitive
infinitary relations containing R. In fact, it is clear that the total relation is in
Cr and that the intersection preserves all such conditions. Even impredicatively,
however, this is not enough to say that < is defined inductively; to be able to
prove a property P by induction on the generation of <lg, that is by showing
that P contains R and is preserved by reflexivity and transitivity, one still needs
a justification. In fact, one cannot a priori exclude that there is some rule which
is valid in all the infinitary relations in Cg, but which is not derivable from the
axioms by means of reflexivity and transitivity.



(From a classical point of view, one can easily prove that this is not the case.
In fact, by using the axiom of choice one can construct a list of all of the subsets
of S and then one can “correct” it in such a way that any subset appears in
the list an infinite number of times, that is after any occurrence of a subset in
the list there is still another later. Let us denote this list by V3,V5,...,V,,,....
Now consider the following inductive definition of <lg:

<o = RU{(a,U):acU}
dot1 = <aUW{(a,U):a<q Vo &V, <o U}
QB == Ua<6 g

and hence
<dr= Ua<ir <a

where \ is the ordinal of the set of P(S): what one has to do is to check an
infinite number of times all of the subsets of S. It is clear that the relation <1
inductively defined in such a way satisfies all the conditions and nothing more.

Note however that ordinals are not really necessary to prove the existence of
the minimal cover relation since, as we will see, it is possible to obtain the same
result also for an impredicative set theory by using only intuizionistic logic.

Predicatively the method of defining <1g as the intersection Cg is not ac-
ceptable, since there is no way of producing Cg above as a set-indexed family
and hence to define its intersection.

Therefore, we must obtain g “from below” by means of some introductory
rules. The first naive idea is that of using axioms, reflexivity and transitivity for
this purpose. But then a serious problem emerges: in the premises of transitivity,

that is
a<lRV V<]RU

a<dr U

there is a subset V' which does not appear in the conclusion. This means that the
tree of possible premises to conclude that a <{g U has an unbounded branching:
each subset V satisfying a <ig V and V <g U would be enough to obtain
a <r U, and there is no way to survey them all. Also, a dangerous vicious
circle seems to be present: the subset V', whose existence would be enough to
obtain a <g U, could be defined by means of the relation <1g itself which we are
trying to construct. In this way, the instructions to try to build up <1 would
not be fixed in advance, but change along their application.

Some of us have tried for some time to eliminate transitivity, by reducing
it to other less problematic rules. We convinced ourselves, however, that this
is an unrealistic expectation. In fact, < can be read as a logical consequence
relation on the axioms given by R, and then transitivity plays the role of cut,
where what is cut is the subset V. So, a general method to eliminate transitivity
for any relation R would correspond to a general theorem of cut-elimination for
all theories, and we know that this is impossible. In fact, we know how sensitive
cut-elimination is to the way the theory, that is R, is presented; in this sense,
the solution we will give in section 3 can be seen as a cut-elimination theorem
of remarkable generality.
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All these, though convincing, are not yet conclusive arguments. For this
reason, following a suggestion by P. Aczel, we now show in detail that the
problem of transitivity is reducible to that of the existence of the least fix-
point for monotone operators, which is better known and seems to resist to a
predicative justification.

We begin by reducing the problem of transitivity to its essence. The connec-
tion with proof theory, in the form of the analogy between transitivity and cut,
suggests a considerable reduction. Thinking of an application of transitivity as
an application of cut, and hence the construction of <lg as a derivation in a
proof-system (with our axioms, reflexivity and transitivity as the only inference
rules), one can see that transitivity can be lifted until all its applications are
only of the special form

R(a,V)
a<gV M v 4pU
a<dr U

trans.

which corresponds to cut on axioms. In fact, given a figure like

a<dp W W gV "
a<drV TS qp U
a<gpU

trans.

one can reduce it to
W«rV VarU

a<r W W «<rU
a<dr U

trans.

trans.

where one application of transitivity has been moved from the left branch to the
right branch. In this way, the number of application of transitivity in the left
branch is lowered, and by iterating the reduction in the left branch we either
reach a figure of the form

acW
a<]RW W<IRV
a<rV

which, by definition of W <g V, is immediately reduced to a <{g V with no
application of transitivity, or an application of transitivity on azioms. Like with
cut-elimination, by iterating such reduction on all applications of transitivity,
we reach a proof were transitivity is applied only to the axioms.

Therefore one could think that a good strategy to get rid of transitivity would
be to adopt only

(reflexivity) %
R(a,V) VarU

t

( rax) a<rU

11



as introduction rules to generate <|g. In fact, axioms would be derivable because
obviously V <1g V holds by reflexivity and hence a <ig V follows from R(a,V)
by traz, and by the above argument transitivity would be admissible in this
formal system.

To complete this argument into a proof, we should argue by induction on
the generation of <lg. However, one can see immediately that even adopting
traz, rather then transitivity, does not change the conceptual essence of the
problem of justifying induction through the generation of <1g. The implicit
quantification on subsets, and thus the unbounded branching and the vicious
circle, have remained, since we have passed simply from

FVCS) (adrV &V arlU)) 5a<rU

to
@AV C S) (R(a,V) & V drU)) > a<g U

The idea of reducing to traz, however, allows to see more easily how the principle
of the least fix-point for monotone operators comes in.

2.2.1 Fix-points and saturation

An operator on subsets is any function F': P(S) — P(9), that is a map bringing
subsets of S into subsets of S and respecting extensional equality of subsets. F'
is called monotoneif U CV — F(U) C F(V).

First of all we need to recall the correspondence between infinitary relations
and operators on subsets. Given the infinitary relation

R(a,U) prop [a: S,U C 5]
we define the operator Fg : P(S) — P(S) by putting
Fr(U) ={a € S| R(a,U)}

Conversely, given an operator F' : P(S) — P(S), we define the relation R by
putting
Rp(a,U) = acF(U)

Note that the correspondence is clearly biunivocal; actually, the move from R
to F'r is simply abstraction on the variable a, and conversely the move from F'
to Rp is just application to a. So, infinitary relations and operators on subsets
are just two different notations for one and the same mathematical content, and
we call “rewriting” to pass from one to the other. Thus, if R is associated with
F, we say that R(a,U) is a rewriting of ae F'(U). Note that rewriting U C F(V)
one obtains (VaeU) R(a,V); so, when F is associated with <, U C F(V) is a
rewriting of U < V.

By rewriting, we immediately see that an operator F' is monotone if and only
if, for the corresponding relation R, R(a,V) and V C U yield R(a,U); thus we
say that in this case R is monotone.

12



Again by rewriting, we easily see that an infinitary relation < satisfies re-
flexivity and transitivity if and only if the corresponding operator F is a closure
operator, that is U C F(U), U CV — F(U) C F(V) and F(F(U)) C F(U)
for any U,V C S. In fact, rewriting reflexivity gives U C F(U) and rewriting
transitivity gives U C F(V) — F(U) C F(V); together they are equivalent to
F being a closure operator.

The connection with least fix-points of monotone operators is now easily
seen. First, let us recall that a subset Z is called the least fiz-point for an
operator F'if Z is a fix-point for F, that is F(Z) = Z, and any other fix-point
contains Z, that is F(W) =W yields Z C W.

F.

Theorem 2.3 Assume that for any infinitary relation R, o relation <g can
be obtained inductively by closing R under reflexivity and trax, that is, assume
that a relation <\g exists which, for any subset U and any property P, satisfies:

(a) aglU
a<rU
R(a,V) V <rU
(b) a<r U
© a<rU UCP zeP [R(z,V),V CP]

acP

Then, for any monotone operator F, the least fiz-point of F exists.

Proof. Given any monotone operator F', let R be the corresponding relation,
that is R(a,V) = aeF(V), and apply the assumption to such R to obtain <g.
Then Z = {a € S| a <g 0} is the least fix-point of F. In fact

(1) F(z)cz

holds, because aeF(Z) = R(a, Z) and Z <1g ( holds by definition, so that, by
(b), also a <1g 0, that is aeZ. Moreover

@) FW)CW »ZCW

is easily proved by (c¢). In fact, assume F(W) C W and let aeZ, that is a <ig 0.
Trivially § C W, so to obtain aeW by (c) it is enough to show that, for any
z € S, zeW follows from R(z,V) and V' C W. Since F is monotone, V C W
gives F(V) C F(W) and hence F(V) C W because F(W) C W; so from
R(z,V) = zeF (V) it follows that xeW.

The proof is now quickly concluded. From (1) it follows that F(F(Z)) C
F(Z) by monotonicity of F, hence by (2) also Z C F(Z), which with (1) gives
Z =F(Z). And (2) gives F(W) =W — Z C W a fortiori.

It is a fact that a predicative justification of the existence of least fix-points
for monotone operators has not been given yet, and some scholars believe that

actually it cannot be given. We agree with them. So, by the above proposi-
tion, the same predicament applies to the expectation that <1 can be defined
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inductively by closing under reflexivity and trax (or transitivity). The way out
we propose will be treated in section 3.

Here we continue our analysis of the relation between existence of least fix-
points for monotone operators and inductive generation via transitivity. We will
justify, at least impredicatively, inductive generation via transitivity and we will
improve the understanding of theorem 2.3 above.

Given any infinitary relation R, we say that a subset U is R-saturated if it
satisfies

R(a,V) VCU
aeU

We say that Z is the R-saturation of U if Z is the least R-saturated subset
containing U, that is, Z is R-saturated, U C Z and whenever U C W, for some
R-saturated subset W, then Z C W.

Now, for any given relation R, assume that <lg exists which satisfies (a),
(b) and (c) in theorem 2.3 and let R be the operator associated with <g; by
rewriting a <lg U as ageR(U), the conditions (a), (b) and (c) are immediately
seen to be equivalent to

(a') UCR)
R(a,V) V CR()

(59 aeR(U)
n UCP zeP [R(z,V),V CP]
() RU)C P

Clearly (b') says that R(U) is R-saturated, (a') that it contains U, and (c') that
it is the least such. Thus considering reflexivity and traz as good inductive rules
is equivalent to the

Principle of least R-saturation
For any infinitary relation R(a,V’) prop [a : S,V C S] and any subset U, there
exists a subset R(U) which is the least R-saturation of U.

Now, let R be any infinitary relation. Then by “monotonization” of R we
mean the minimal infinitary relation R* which is monotone and contains R.
From an impredicative point of view R* is defined by

R*(a,U) =3V CS) (R(a,V) &V CU)

In fact, R* is obviously monotone and contains R. Moreover, it is clearly the
least monotone relation containing R. Of course, if R is a monotone relation no
impredicative definition is required to define R* and in this case all the results
to follow will have a predicative proof. It is interesting to note that the cover
relation < generated by R and R* is exactly the same; in fact < is the minimal
infinitary relation obtained by closing R under reflerivity and transitivity and
hence it is also a monotone relation; thus if < contains R then it also contains
R* and the result follows by minimality. V)
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Given any infinitary relation R let us now consider the operator ® associated
to its monotonization, that is

ae®(U) if and only if (V' C S) (R(a,V) & V CU)

Note that ® is just the operator associated with R if R is monotone. Then (a'),
(b") and (c') above become:

") UCR)
(b") @(R(U)) CR(U)
(¢") IfU C P and ®(P) C P then R(U) C P

For any operator F', we say that Z is the least pre-fiz-point containing U if
UCZ, F(Z)CZand (UCW & FW)CW)—> ZCW. So (a"), (b")
and (c") say that R(U) is the least pre-fix-point of ® containing U. So the
equivalence between (a'), (b') and (c¢’) and (a'"), (b") and (c¢") says that for any
infinitary relation R and any subset U, the least R-saturation of U coincides
with the least pre-fix-point of ® containing U.

Note that the least pre-fix-point of F' containing U coincides with the least
pre-fix-point (containing () of the operator FU(W) = U U F(W), and that
FV is monotone if so is F. And finally, it is easy to check that, for a monotone
operator, the least pre-fix-point is actually the least fix-point (see the last lines of
the proof of theorem 2.3). Summing up, we have given a proof of the following
theorem, whose only (possible) impredicative step is a monotonization of an
infinitary relation.

Theorem 2.4 The principle of least R-saturation for any infinitary relation R
is equivalent to the existence of the least fiz-point for any monotone operator F'.

It is known that existence of least fix-points can be proved also in a non-
classical foundation, like topos theory. Topos theory is often considered the foun-
dation for the development of locale theory, or pointless topology (see [Joh82],
[JT84]). So, the meaning of the above theorem is that it makes genuinely in-
ductive methods explicitly available in pointless topology.

2.3 Dealing with the positivity predicate

The definition of formal topology includes, besides a cover <, a positivity pred-
icate Pos. The two conditions that we require on Pos are different in nature.
Monotonicity is a condition of closure of Pos with respect to the cover, but has
nothing to do with its generation since its conclusion is a proposition on the
positivity predicate, and in this sense it is a “static” condition on Pos. On the
other hand, positivity is a condition also on the cover and its conclusion is about
the cover relation, and thus it contributes to the generation of the cover.

To obtain monotonicity, we will find out some conditions which a given
predicate Pos must satisfy before the cover is generated, so that it becomes
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monotonic with respect to the cover, after it is generated. To get an idea,
assume that an infinitary relation R and a predicate Pos are given which satisfy
Pos(a) R(a,V)

(FbeV') Pos(b)

(monotonicity on axioms)

If we could generate the cover by reflexivity and trazx, we would easily prove
monotonicity by induction. In fact, if Pos(a) and acU, then trivially Pos(U).
And if Pos(a), R(a,V) and V <1 U then by monotonicity on azioms there exists
beV such that Pos(b) and, whatever b is, Pos(U) follows from V' <1 U by inductive
hypothesis.

After the results of the previous section 2.2, we know that we must use other
rules to generate covers; the idea to obtain monotonicity will however remain
the same, though some technical complications will be necessary.

Then, there are conditions which depends on the particular presentation that
we are going to use for formal topologies. For instance if we want to deal with
<-formal topologies it is clear that the following condition must hold, because
a <byields a < b:

Pos(a) a<b

(monotonicity on <) Pos(d)

To impose positivity, we will simply put it among the rules generating the
cover, that is we simply add the following rule

a QU [Pos(a)]

ositivity rule
(p y rule) Py

We will see in section 3.2 that, as far as predicativity is concerned, it is as safe
as the other rules that we will adopt.

3 Inductive generation

The problem concerning transitivity, also in its reduced form of transitivity on
axioms, is essentially due to the fact that it allows to infer a <t U from R(a,V)
and V <« U, whatever the subset V is. Thus the possible premise of a <1 U
cannot be indexed by a set: the validity of a <« U depends on an existential
quantification on P(S), namely (3V C S) (R(a,V) & V < U). The solution is
simply to reduce it to a quantification over a set, so that the branching is under
control. The most general case we are able to devise is then to have a family
of sets I(a) set [a : S], so that the previous quantification over P(S) to infer
a < U will become a quantification over I(a), and for each i € I(a) a subset
C(a,i) C S, which will play the role previously played by the subset V. So, the
subsets which are postulated to cover a given element a are not given as those
V for which R(a,V) holds, but directly as the family C(a,%) indexed on the set
I(a). In this way the dependence on the general notion of subset is avoided, the
axioms are surely not affected by the process of generation and any danger of
vicious circles is stopped.

16



We will see in section 4 that the restriction is not too severe, since it is met
by most of the known examples of formal topologies. Actually, proving that a
specific formal topology is not included is not simple: we do this in the end of
section 4.

3.1 Set-based axioms and set-based relations

Let S be a set. We say that a set indexed family I(a) set [a : S] together with
a family of subsets C(a,i) C S [a : S,i : I(a)] is an aziom-set. The intended
meaning is that, for all a € S, the subset C(a, ) is assumed to be a cover of a,
for any i € I(a). We can think of such axioms also as an infinitary relation R,
linking a with C(a, %) for any i € I(a), that is, the relation R(a, V) holds if and
only if there exists i € I(a) such that V =5 C(a, ).

An application of the rule traz for such relation is particularly simple, since
the assumption that a is related with any C'(a, %) can be understood; so we reach
the rule
i € I(a) C(a,i) U

a1U
Note that the previous implicit quantification over P(S) has now become a
quantification over the family C(a,i) C S [i € I(a)], which is reduced to a
quantification over I(a). There remains the problem that the right premise
C(a,i) < U of infinity contains a subset at the left. We now must begin to
be more careful in the analysis of derivations, and thus we understand that
C(a,i) < U is an abbreviation for a derivation of x <1 U from zeC(a,i) with
the variable z free. So the expanded formulation of infinity is
i € I(a) z AU [zeC(a,i)]

aU

and we use the previous formulation as an abbreviation of this. We understand
that a similar convention applies to all rules to follow, which contain a subset
at the left of <.

Let us go back to the relation linked with an axiom-set. A bit more generally,
we add monotonicity and say that an infinitary relation R is set-based if there
exist two families I and C' as above such that, for alla € S and V C S,

R(a,V) if and only if (i € I(a)) C(a,i) CV

We can now see immediately that the problem of closing under transitivity is
solved for set-based relations. In fact, given any two families

I(a) set [a: 5]

(infinity)

(infinity)

C(a,i) C S la:S,i:I(a)]
we define < inductively by the rules

(reflexivity) aailUU
(infinity) i € I(a) C(a,i) U

a1U
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Such rules fall under a general scheme for which a predicative justification has
already been given (see [Dyb94]); they are for instance an example of the Tree
type in [NPS90]. So we know that also the elimination rule

alU UcpP xzeP [i: I(z),C(z,i) C P]
aeP

is valid. This means that proofs by induction on reflexivity and infinity are
justified.
It is now easy to prove by induction that:

Theorem 3.1 For any infinitary relation R which is set-based on I and C
as above, the relation < defined inductively by reflexivity and infinity is the
least infinitary relation which contains R and is closed under reflexivity and
transitivity.

Proof. First, we show that the rules generating < are valid, in the sense that
they hold for any relation <’ which contains R and is closed under reflezivity
and transitivity. Trivially reflexivity is valid. And if C(a,i) <’ U for some
i € I(a), then also a <’ U by transitivity on the axiom R(a,C(a,1)); this shows
that infinity is valid.

Then we show that they are complete, in the sense that they allow to derive
a <1 U whenever it holds for each reflexive, transitive <’ containing R. That is,
we prove by induction that < is indeed closed under reflexivity and transitivity
and that it contains R. Closure under reflexivity is built in the definition.
Closure under transitivity is proved by induction on the derivation of the left
premise a < U, the right premise being U < V. If a <« U is obtained by
reflexivity from acU then a < V follows from U < V, since by definition U <1 V
means ¢ < V [zeU]. If a < U is obtained by infinity from C(a,i) < U for
some i € I(a), then by inductive hypothesis C(a,i) < V, from which a < V' by
infinity.

Finally, R(a,U) by assumption means that there exists ¢ € I(a) such that
C(a,i) C U; then by reflezivity C(a,i) < U and hence a <t U by infinity.

It is interesting to note that, as a corollary of a general theorem on deductive
systems by P. Aczel [Aczel], we have also the following result.

Theorem 3.2 If R is set-based, then also the least infinitary relation closed
under reflexivity and transitivity containing R is set-based.

We will recall the proof of this theorem and we will use it in section 4.7.

3.2 Inductive generation of formal topologies

In order to generate a cover inductively it is enough to modify the generation
process of the previous section by forcing the resulting relation < to satisfy the
condition |-right. As shown in section 2.1, to this aim one must restrict to
formal topologies with an extra primitive. We deal here with formal topologies
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with a preorder < and thus we have to force <-left and <-right to hold. By
lemma 2.2 we can equivalently force <-left and localization. Then the idea for
the solution comes from the following remark:

Localization Lifting
Every application of localization can be “lifted over” any application of reflex-
wity, transitivity and <-left.

The suitable proof transformations are shown by the following figures:

aelU __aelU
a<1Ureﬂ'l alcCUlec A
aledUle "% ~ aLCQULCTe'
adV VaU adV VaU
—aaU ltmns. 7a¢c<V¢cloc' 7V¢c<U¢cioc'
aleaUle ™ = alc<aUlc rans.
a<b baU a<b baU
aaU f‘leﬂ alcCble ble<Ule &
alc<aUlc oc- ~ alc<aUlc

So, in a proof figure which contains only reflexivity, transitivity and <-left, lo-
calization can be lifted until it is applied only under the axioms; thus to obtain
closure under localization we could either restrict its application or simply re-
quire that the axioms are closed under localization. Because of the problem
with transitivity we cannot use this approach in an inductive process of gener-
ation, but it suggests how to modify the inductive generation with reflexivity
and infinity to obtain a relation < which is closed under localization. Applying
the idea of loc-lifting to a figure of the form

i€I(a) Cla,i)<V
a1V !
alcaViec oc.

infinity

we would apply localization to C(a,i) <« V obtaining C(a,i) | ¢ <V | ¢, but
then we could not apply infinity in its present form. However, we can modify
infinity into a valid rule which includes localization on the left. We obtain

i € I(a) Cla,i) eV ie
alcaVic

and thus we reach

i€ I(a) C(a,i) e U
alcaU

(loc-infinity)

which is still valid in any cover satisfying a < C(a,4). In fact, from a <1 C(a, 1)
one has a | ¢ < C(a,1) | ¢ by localization, and hence the premise C(a,i) | ¢ < U
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gives a | ¢ < U by transitivity. It is easy to check that this rule permutes with
localization. However, it has the drawback that a subset appears on the left of
its conclusion, and this could cause complications in a rigorous formalization of
proofs by induction. We can then write loc-infinity in the equivalent form

z<ec z<a i € I{a) Cla,i) e U
U

which, when z is taken to be c itself, gives

c<a i€ I(a) Cla,i) e U
caU

We can see that actually this special case is enough to give back the full rule
of loc-infinity. In fact, assume z < ¢, z < a and C(a,i) } ¢ < U. Since z < ¢
implies | z CJ ¢ and hence C(a,%) | z C C(a,i) | ¢, we obtain C(a,i) | z < U;
together with z < a, this allows to obtain 2 <1 U by the special case.

We thus choose the special case, since it has one premise less then loc-infinity,
and write it down as usual with a << U as a conclusion:

a<b i€ I(b) Cb,i)la<aU
a<U

We will show that <-infinity, together with reflexivity and <-left, is sufficient
to generate the least cover satisfying the axioms. But if we wish to generate
a formal topology, according to the present definition, we must have also a
positivity predicate Pos. We remarked in section 2.3 that we must start from
a given predicate Pos(a) prop [a : S] which is assumed to be monotonic with
respect to the axioms. But now the axioms are fitted in <-infinity, and hence
we are brought to require

(<-infinity)

Pos(a) a<b i€ 1(b)
Pos(a | C(b,1))

It is immediate to see that this condition has to hold if we want the positivity
predicate to be monotone. In fact from a < b we can deduce a < a | C(b,1)
for any i € I(b), by using <-left and <-right, and hence if Pos(a) it must also
be Pos(a | C(b,7)). We will prove that monotonicity of Pos with respect to the
generated cover follows.

On the other hand, the condition of positivity is put in the process of gener-
ation itself, that is we add

(monotonicity on <-infinity)

a QU [Pos(a)]

ositivit
(p y) Py

to the rules generating <1. The premise of positivity is equivalent to
z < U [Pos(z) & = = a]
and hence, after putting

at = {z € S| Pos(z) & = = a}
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also to at < U. So positivity can be formulated as

at U
a1U

which shows that it falls under the same schema that we have chosen above
for axioms. More precisely, if I and C are an axiom-set, we can define I' by
adding a new element § to each I(a) and C' by putting C'(a,) = a™ and
C'(a,i) = C(a,i) for any ¢ € I(a). Then the cover generated by I' and C’
will be the least cover which satisfies positivity and which contains the cover
generated by I and C.

We are finally ready to state and prove the main theorem:

Theorem 3.3 (Inductive generation of formal topologies) Let S be any
set, < any pre-order on S and let I(a) set [a : S] and C(a,i) C S [a: S,i: I(a)]
be an aziom-set.

Then the infinitary relation <o defined inductively by the rules reflexivity,
<-left and <-infinity is the least cover satisfying a <o C(a,i) [a: S,i: I(a)].

Assume in addition that o predicate Pos(a) set [a : S] is given which satisfies
monotonicity on <-infinity and monotonicity on < and let < be the infinitary
relation generated by the three rules above plus positivity.

Then A = (S, <,<,Pos) is a <-formal topology and < is the least among
the covers <’ satisfying a <’ C(a,i) [a: S,i: I(a)] and making (S, <,<’,Pos) a
formal topology.

Proof. We already showed that all the rules that we use in the generation
process are valid, thus we have only to show that they are complete, in the
sense that they allow to derive a <9 U (and a <1 U) whenever it holds for a
cover (formal topology) satisfying the axioms. This amounts to prove that <
(<) is closed under reflezivity, transitivity, <-left and <-right (and positivity)
and that, for any a € S and i € I(a), a < C(a,i).

Closure under reflezivity, <-left and positivity: trivial.

Closure under transitivity: if a <U and U <« W then a < W. The proof
is by induction on the derivation of a <1 U, that is the property on which
we apply induction is P(a) =U < W —a < W.

reflexivity: a < U is derived from aeU. Then aeU and U 4 W give
a<1W.

<-left: a < U is derived from a < b and b < U. Then, by inductive
hypothesis, from b < U and U <« W we obtain b <« W, so that a <« W
by <-left.

<-infinity: a < U is derived from a < b and C(b,i) | a < U. We
apply the inductive hypothesis to C(b,i) } a < U and U <« W to
obtain C'(b,7) | a < W, from which a <« W by <-infinity.
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positivity: a < U is derived from a <1 U [Pos(a)]. Assume Pos(a); then
a < U with a shorter derivation, so a << W by inductive hypothesis
and hence a << W by positivity.

Closure under <-right: if a < U and a <V then a < U | V. To be able
to go through the inductive steps we prove by induction a stronger claim,

that is
al1U baV

albaU|V
Then the original <-right is obtained from the special case in which a = b,

since aga | a. The proof of stability is by induction on the derivation of
a<U.

(stability)

reflezivity: a < U is derived from aeU. The proof is by induction on
the derivation of b < V. If b < V is derived from beV by reflexivity,
then aeU and beV give a | b C U | V by definition of |, and hence
al b U]V by reflexivity. In all the other cases, the proof is
exactly as the corresponding steps in the main induction.

<-left: a < U is derived from a < ¢ and ¢ <« U. Then by inductive
hypothesis ¢ | b1 U | V, but a | b C ¢ | b because a < ¢, and so
alb<UJ|V by using a bit of logic.

<-infinity: a < U is derived from a < ¢ and C(c,i) L a < U. We
have to prove that a | b <« U | V. Thus, let xzea | b, that is
z < a and z <b. The inductive hypothesis, and a bit of logic, give
(Clc,i) L a) L b U]V, that is C(c,i) | (a b)) < U | V; hence, by
logic, also C(c,i) L £ < U | V since zea | b. But £ < a and a < ¢
give x < ¢, and hence <-infinity can be applied to obtain z < U | V
as wished.

positivity: a < U is derived from a <1 U [Pos(a)]. By the inductive
hypothesis, a | b <1 U | V under the assumption Pos(a). Let zea | b
and Pos(z). Then z < a and hence Pos(a) by monotonicity on <,
so that z <« U | V under the assumption Pos(z). Then by positivity
z U |V as wished.

Finally, we prove a < C(a,%), for any a € S and i € I(a). To this aim first
note that, by reflexivity and <-left, | C(a,i) < C(a,i) and hence a fortiori,
C(a,i) } a =l Cla,i)N | a <« C(a,i). Then a <1 C(a,i) follows by <-infinity
since a < a.

Thus, we finished with the generation of the cover relation. To prove the
second statement in the theorem we have to prove only monotonicity of Pos with
respect to the cover that we have generated by reflexivity, <-left, <-infinity and
positivity. So, let us assume that Pos(a) and a <« U. Then the proof is by
induction on the derivation a < U.

reflezivity: a < U is derived from aeU. Then trivially Pos(U).
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<-left: a < U is derived from a < b and b <« U. Then, by monotonicity
on <, we get Pos(b) and hence Pos(U) by inductive hypothesis.

<-infinity: a <1 U is derived from a < ¢ and C(c,4) | a < U, for some i in
I(c). Then by monotonicity on <-infinity we obtain that Pos(C(c,1) | a)
and hence Pos(U) follows by inductive hypothesis (and a bit of logic).

positivity a < U is derived from a < U [Pos(a)]. By induction hypothesis
we obtain Pos(U) [Pos(a)] but Pos(a) is assumed, hence Pos(U).

3.3 Localizing the axioms

The main advantage of the approach above is that it is possible to choose the
axioms in a completely free way, that is without any condition, but the drawback
is the presence of a rule ad hoc, namely <-infinity. As we showed, the aim of
<-infinity is to be able to lift localization up to the axioms. But the axioms
are contained in the rule of infinity itself, and this is why we had to consider
its localized form <-infinity. So, if some axioms are given which are already
localized in a suitable sense, an expectation is that the infinity rule will be
enough. We now prove that it is so.

Definition 3.4 (Localized axiom-set) Let I and C be an axiom-set. Then
we say that it is localized if, for any a < ¢ and i € I(c), there exists j € I(a)
such C(a,j) Cal C(c,i).

Then, we can prove the following proposition.

Proposition 3.5 Provided the axiom-set is localized, an infinitary relation gen-
erated by using reflexivity, <-left and infinity satisfies <-infinity.

Proof. Let us suppose that a < ¢ and C(c,i) | a < U. Then, by assumption,
there exists j € I(a) such that C(a,j) C a | C(c,i). So C(a,j) < U and hence
a QU by infinity.

Thus, it is to be expected that it is possible to generate a formal topology also
by using infinity instead of <-infinity, provided that the axiom-set is localized.
In fact, we can prove the following theorem.

Theorem 3.6 Let S be any set, < any pre-order on S and let I(a) set [a : S]
and C(a,i) C S [a:S,i: I(a)] be a localized aziom-set. Assume in addition
that a predicate Pos(a) set [a : S] is given which satisfies monotonicity on < and
monotonicity on infinity, that is, if Pos(a) and i € I(a), then Pos(C(a,1)). Let <
be the infinitary relation generated by reflexivity, <-left, infinity and positivity.
Then A = (S,<,<,Pos) is a <-formal topology and < is the least among the
covers <’ satisfying a <' C(a,i) [a : S,i : I(a)] and making (S, <,<’,Pos) a
formal topology.
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Proof. The proof is almost exactly the same as in theorem 3.3 except the
inductive steps concerning the usage of <-infinity that we modify as follows:

transitivity: a < U is derived from C(a,i) <t U by infinity. Then, suppos-
ing U «V, C(a,i) <V follows by inductive hypothesis and hence a < V
by infinity.

stability: a < U is derived by C(a,i) < U by infinity. We want to prove
that a L b < U | V. Then let zea | b, that is z < a and < b. The
inductive hypothesis, and a bit of logic, give C(a,i) | b < U | V, and
hence also C(a,i) L ¢ < U | V since x < b gives | * CJl b. Since the
axiom-set is localized and we assumed that x < a, there exists j € I(x)
such that C(z,j) C = | C(a,i) and hence C(z,j) < U | V which by
infinity gives x QU | V as wished.

Also the axioms can be proved by using infinity instead of <-infinity, and
with a simpler proof. In fact, for any a € S and any i € I(a), C(a,i) < C(a,i)
by reflexivity and hence a <1 C(a, %) by infinity.

Finally, we must give the inductive step to prove monotonicity when the rule
applied to prove a < U is infinity. Hence we know C(a,i) < U for some ¢ € I(a);
so by monotonicity on infinity Pos(a) gives Pos(C(a,%)) and hence Pos(U) by
inductive hypothesis.

Given any axiom-set I, C' we can always provide with a new axiom-set J, D
which is localized and generates the same cover relation. In fact, it is possible
to prove the following theorem.

Theorem 3.7 Let I(a) set [a: S] and C(a,i) C S [a:S,i: I(a)] be an aziom-
set and define a new axiom-set by putting

J(a)
D(a, (c, k))

{(e, k) (a<c) &k €I(c)}
al Clc, k)

Then, if a < ¢ and i € J(c) there exists j € J(a) such that D(a,j) C a |
D(c,1), that is, the new axiom-set is localized. Moreover, the axiom-set J and
D generates the same cover relation than the axiom-set I and C.

Its proof is almost immediate if one observe that, if a < ¢ and (d, k) € J(c¢) then
(d,k) € J(a) and D(a,(d, k)) =a 1 C(d, k) =alclC(dk) =al D(c(d,Fk)).

4 Some examples and one counter-example

This section is devoted to show some examples of application of the general
technique that we exploited in the previous sections to inductively generate
formal topologies. We will see that most of the standard topological spaces
and topological constructions can indeed be inductively generated and hence
that almost nothing is lost by restricting to consider only inductively generated
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formal topologies. Anyhow we will also show a remarkable example of formal
topology which cannot be inductively defined: this fact suggests to keep the
very definition of the notion of formal topology in its full generality instead to
restrict to consider only inductively generated formal topologies.

4.1 The Cantor space

The first example that we want to show is the formal topology over binary
trees, that is, Cantor space. To define such a formal topology we will use the
set 2* of binary words, that is, finite sequences of 0 and 1. To obtain a C-
formal topology from the set 2* we use the order relation C such that, for any
two words ¢ and ¢, 0 C ¢' holds if and only if ¢’ is an initial segment of o.
relation. The intended meaning of such an order relation can be understood if
one thinks of a word as a partial information over an infinite sequence, which
corresponds intuitively to a classical function from the set N of natural number
into 2; thus a longer word is a more precise information on the infinite sequence
and hence there are less words that contains it than any of its initial segments.
Finally the empty word, which is contained in all words, gives no information
at all and is contained in all of the infinite sequences. In formal topology a
representation of such infinite sequences can be obtained by using the collection
of the formal points. Given any formal topology (5, <, <, Pos), a formal point is
any non-empty subset a of S such that, for any a,b € S and U C S, both if aca
and bea then there exists cea such that ¢ < a and ¢ < b, and if aea and a < U
then there exists ueU such that uea. The collection of all the formal points
will be indicated by Pt(S). Then an infinite sequence f can be identified with
the formal point whose elements are all the words o such that for any natural
number z, smaller then the length of the word o, f(z) is equal to o[z], where
o[z] is the value in the place z of o.

With the same intuitive reading it is also easy to understand that ¢ <« U
should means that the words which contain ¢ are all contained in the words that
contain at least one of the words in U. But in order to inductively generate this
cover relation we have to state suitable axioms for it. Here we simply require
that the word o is covered by all its one-step successors, that is the only form
of axiom is

0 <1{00,01}

which is clearly an axiom-set. It is easy to prove that this axiom-set is localized
and hence the simple infinity rule is sufficient to generate this formal topology.
Finally the positivity predicate is completely trivial since any word is positive,
that is, we put

Pos(o) = true

For more information about this formal topology and the collection of its formal
points see [Val99].

It can be useful to show directly an axiom-set for the full cover relation of
this simple formal topology without making a reference to the proof of theorem
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3.2. First note that
o < U if and only if (3In € N)(Vo' € 2*(n))(FuelU) oo’ Cu

where 2*(n) is the set of the sequence of 0 and 1 of length n and oo’ is the
concatenation of the two words o and ¢'. In fact, one direction can be proved
by induction on the natural number n which is assumed to exist while the other
can be proved by induction on the length of the derivation of o < U.

We can now use a choice principle, which is valid in constructive type theory,
and obtain that

o A U if and only if
(3n € N)(3f € 2*(n) —» 2*)(Vo' € 2*(n)) oo’ C f(o') & f(o')eU

Then, by putting

(o) {(n, Hln €N, fe2(n) 2, (Vo' € 2(n)) o0’ E f(0')}
Clo,(n, f)) Im[f]

where Im[f] = {0 € 2*| (30’ € 2*(n)) 0 = f(o')} is the image of the function
f, we obtain

o < U if and only if (I(n, f) € I(0)) C(o,{n, f)) CU

that is, I and C' is an axiom-set for the Cantor formal topology.

4.2 The real numbers

Our second example of a formal topology which can be inductively generated
is the formal topology of real numbers. We can identify a real number with a
suitable collection of open intervals on the rational line, that is, the collection
of all the intervals which contain such a real number (see for instance [Joh82,
Ver86]). Thus, a real number can be identified with a formal point of a suitable
<-formal topology whose basic opens are the open intervals of the rational line
Q. We obtain such a <-formal topology (S, <, <, Pos) by putting

S=0xQ

The order relation < among these intervals is then simply defined by using the
standard order relation < between rational numbers and putting

(p,q) <(r,8)=(r<p) & (¢<5s)

The intended meaning is that (p, ¢) < (r,s) when the interval (p, ¢) is contained
in the interval (r, s).

Let us note now that the interval (p, q) is meant to contain some point only
if p < ¢ and hence the positivity predicate can be defined by putting

Pos((p,q)) =p<q
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We can state now the axioms that we need:

(p,q) < {(p,5),(r,q)} for r <s

(p,q) < {(r,8)|p<r<s<gqg}

The geometrical meaning of these axioms should be clear. In fact, let us suppose
that (p,q) is inhabited, then any axiom in the first family of axioms states
that an interval (p, q) is covered by any pair of overlapping intervals which are
contained in (p,q) provided one covers the left part and the other the right
part of (p,q). And the second axiom states that an interval is covered by the
collection of all the intervals that it contains properly. These axioms form an
axiom-set since for any couple (p,q) € Q x Q we can define I((p,q)) to be the
set obtained by adding one element * to the set of the ordered couple of rational
numbers. In fact, we can now use any ordered couple (r,s) of rational numbers
such that r < s to index one of the axioms of the first family and the element
* to index the only axiom of the second kind.

It is worth noting that also in this case the axiom-set that we are considering
is localized and hence this formal topology can be generated by using infinity
instead that the more complex <-infinity. This observation is useful to under-
stand that to inductively generate this formal topology one can equivalently use
the following two rules

r<s {(ps),(r,g} U {(r,s)lp<r<s<q}aU
(p,q) QU (p,a) QU

Note that it can be shown that to prove (p,q) < U one needs to use the second
rule at most once at the end of the proof.

4.3 Cartesian product revisited

In this example we will go back to the problem of a predicative definition of the
cartesian product of formal spaces. Indeed, in section 1 we observed that we
know no predicative way, apart inductive generation, to construct the cartesian
product of formal spaces. After the previous sections we know that we can
inductively generate a formal topology provided it has an axiom-set. Thus, we
can present now our solution to the problem of the predicative definition of
the cartesian product of formal topologies. In fact, if S and T are two formal
topologies with an axiom-set then their cartesian product, like in the definition
at the end of section 1, is again a formal topology which has an axiom-set.
Indeed, it is sufficient to observe that if the axiom-set for the formal topology
S is the family of sets I(a) set [a : S] together with the family of subsets
C(a,i) C Sla: S,i: I(a)] and the axiom-set for the topology 7 is the family of
sets J(b) set [b: T'] together with the family of subsets D(b,j) CT [b: T, j : J(b)]
then the axiom-set for the cartesian product of S and 7 is the following

(a,b) <« C(a,i) xbla:S,b:T,i:I(a)]
(a,b) <ax D(b,j) [a:S,b:T,j:J(b)]
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where
C(a,i) x b
a x D(b, j)

{(2,b) € S x T'| 2eC(a,i)}

{(a,w) € S x T'| weD(b,j)}

It is clear that such an axiom-set can be indexed by using the following family
of sets:

K((a,b)) = (I(a) x T) + (S x J (b))

where A + B is the disjoint union of the two sets A and B.

Note that the above definition of product of S and 7 works only if S and T
have an axiom-set. Since not all the formal topologies have an axiom-set (see
section 4.7) the problem of an unrestricted predicative definition of product of
formal topologies is still open.

4.4 All representable topologies have an axiom-set

In the previous sections we have given single examples of formal topologies which
have an axiom-set and this might suggest the idea that just a few, although im-
portant, formal topologies have an axiom-set. Actually one can show that large
classes of formal topologies have an axiom-set. Here we do this for representable
formal topologies, in the next section for unitary and finitary formal topologies.?

We say that a formal topology A = (5, <, Pos) is representable if there exist
a set X and a proposition z IF a prop [z : X,a : S] such that

a<1U ifandonlyif (Ve X) (zlka— (FbeS) zl-b& bel)
Pos(a) ifandonlyif (FzeX)zlra

That is, a formal topology is representable when it is the formal part of a
concrete topological space.

It is interesting to note that when a formal topology S is representable the
set X of concrete points can be embedded into the collection Pt(.S) of the formal
points of S. In fact, it is possible to associate to the concrete point x in X the
formal point a; = {a € S| z I+ a}.

If we are dealing with a representable formal topology, we can apply a choice
principle, which is valid in constructive type theory, and obtain that

aaU
if and only if
(3f € {g € ext(a) = S| (Vzeext(a)) z IF g(x)})(Vzeext(a)) f(z)eU

that is, the function f takes any point  contained in ext(a) and finds an element
b in S such that z is contained in ext(b) and b is an element of the subset U.
Hence, we can put

I(a) {g € ext(a) = S| (Vzeext(a)) z IF g(z)}
Ca, f) Im[/]

2The idea for the results in this section comes us from a conversation with Per Martin-Lof.
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where Im[f] is the image of f.
Then we obtain

a < U if and only if (3f € I(a)) C(a,f) CU

that is, I and C is an axiom-set for <. In fact, if a < U then by the above stated
principle of choice we can find the suitable function in I(a). On the other hand,
if (3f € I(a)) C(a, f) C U then we have a function such that for any point x
contained in ext(a) gives an element b of S such that zeext(b); thus, since the
topology is representable, a <1 Im[f] holds; but also Im[f] C U holds and hence
a < U follows by transitivity.

Note that, as a consequence of the fact that all of the representable formal
topologies can be inductively generated and of the existence of a formal topology
which cannot be generated, that we will present in section 4.7, we know that
not all formal topologies are representable. Moreover, it is interesting to note
that there are formal topologies which can be inductively generated but are
not representable. For instance, in section 4.1 we proved that Cantor space
is a formal topology inductively generated; on the other hand it cannot be
representable, at least if we want to represent it by using the most natural
choice, that is by using like set X the set 2N of the functions from the natural
numbers into the two elements set 2. Indeed in this case the most natural
definition of the forcing relation would be

zIF o = (Yn < len(0)) f(z) = o]

where len(o) is the length of the sequence o and o[z] is the value in the z-th
position of the sequence o. Now, to state that X and IF can be used to represent
the Cantor space is equivalent to the Brouwer’s fan theorem and hence it is not
recursively valid (see [JT84] and [FG82]).

4.5 A space whose collection of points is not a set

Let us give an example of a formal space whose collection of points cannot be
indexed by a set. Let us consider the set 2 and the order relation defined by
putting 0 < 0,0 <1and 1 < 1. Then we can obtain a cover relation by putting,
forany a € 2 and U C 2,

a<dU = (Fuel) a<u

In fact, it is immediate to check that the relation < satisfies reflexivity, transi-
tivity, <-left and <-right. This cover relation is the minimal cover relation that
one can define to obtain a <-formal topology over (2, <), that is, it is the cover
of the formal topology generated on (2, <) by using no axiom, that is when in
the axiom-set, for any a € 2, the set I(a) is empty. Note that the axiom-set for
this formal topology is trivially localized.

Moreover, it is not difficult to check that a subset a of 2 is a formal point of
this formal topology if and only if both lea and whenever aea and a < b then
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also bea.. Thus, for any closed proposition A, ag = {z € 2| AV (z =2 1)} is a
point. Now, note that a4 = ap if and only if A <+ B. Thus, there is a bijective
correspondence between the collection of formal points of this formal topology
and the collection of the closed propositions, because we can associate to any
formal point a the closed proposition A, = Oz and in this way we obtain that
a = ay, . But then if it would be possible to index by a set the collection of the
formal points of this formal topology then it could as well be possible to index
by a set the collection of the closed propositions, that is the collection of the
subsets of the one element set, and it is not expected that such a collection can
be indexed by any set.

4.6 Unitary and finitary formal topologies

In this section we will show that also two other classes of formal topologies have
an axiom-set, namely Scott’s and the Stone’s formal topologies.

Let us first analyze the case of Stone’s, alias finitary, formal topologies since
they are technically simpler than Scott’s topologies because they do not require
a detailed treatment of the positivity predicate. On the other hand, after Stone’s
topologies will be understood, in order to deal with Scott’s topologies we will
have only to specialize the ideas that we used for the former to the latter and
thus we will be able to work out the details which will allow us to deal with the
positivity predicate.

Let S be any set and P, (S) be the set of the finite subsets of S3.

Then we can give the following definition.

Definition 4.1 A formal topology A = (S, <, Pos) is finitary if a < U if and
only if (3Uy € Pu(S)) (Ug CU & a < Up).

Given any finitary formal topology (5, <1, Pos) we will call trace of S the
relation Tr(a,Uy), where a is any element in S and Uy is any finite subset of S,
which holds if and only if a < Up.

Then, supposing A = (5, <, Pos) is a finitary formal topology whose trace is
definible by the proposition Tr(a,Up), the axiom-set that one needs in order to
inductively generate A is the following

{Uo € Pu(S)| Tr(a,Uo)}
Uo

I(a)
C(a, Uo)

It is now possible to prove that
a < U if and only if (U, € I(a)) C(a,Uy) CU

Both directions are trivial. Suppose that (3Uy € I(a)) C(a,Uy) C U holds;
then, Up € I(a) yields a < Uy, that is, a < C(a,Up) and hence a < U follows by

3We will not commit here with any particular implementation of this set to avoid to deal
with the problems that would arise (see for instance [Mai99]). In any case all of what we are
doing here can be formalize in Martin-Lof’s type theory by using the type List(.S) of the lists
of elements of S [NPS90].
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transitivity, since C(a,Up) C U. To prove the other implication, let us assume
that @ < U, that is, (3Up € P,(S)) (Us C U & a < Up) since the cover is
finitary. Then Uy € P, (S) and Tr(a,Up), that is Uy € I(a), and Uy C U, that
is C(a,Ug) CU.

Let us analyze now the case of Scott, alias unitary, formal topologies. The
definition of unitary formal topology is the following:

Definition 4.2 The formal topology A = (S, <, Pos) is unitary if a < U if and
only if Pos(a) —» (b € S) (beU & a <1 b).

Also in this case there is a natural notion of trace Tr of the cover relation,
that is, Tr(a,b), for any a,b € S, is a relation which holds if and only if a < b.

The main novelty of unitary topologies with respect to the previous case of
finitary topologies is the presence of the assumption on the positivity of a in the
condition on a < U which defines them, which is necessary to avoid reasoning
by case, according to the positivity of a. This assumption will force us to change
all of the previous definitions to adapt them to this new setting. In particular
it will be necessary to deal with the proofs of the proposition Pos(a). This is
the reason why, following the propositions as sets tradition, in the next proofs
we will write z € Pos(a) to mean that z is a proof of Pos(a).

Suppose A = (S, <, Pos) is a unitary formal topology and that its trace is
defined by the proposition Tr(a,b) [a : S,b : S]; then we obtain an axiom-set for
A by putting

I(a) {g € Pos(a) — S| (Vz € Pos(a)) Tr(a, g(z))}
C(a, f) Im[f]

Similarly to the previous case with finitary topologies, the intended meaning
of the set I(a) is to denote the set whose elements are all the elements of S which
cover a but we had to move to this more complex definition because the set
{b € S| a < b}, which is equal to the set {b € S| Pos(a) — a <1 b} because of the
positivity condition, is only classically equivalent to the set I(a) in our definition
and in the next proofs we will need exactly I(a). The intended meaning of the
definition of the family of subset C(a, f) is to obtain, according to the fact that
a is a positive element of S or not, a subset which is a singleton subset of S,
whose only element is an element which covers a, or the empty subset; the way
the subset C(a, f) is defined, which can look a bit strange at a first sight, was
chosen to guarantee the property above without requiring decidability of the
predicate Pos.

It is now possible to show that

a < U if and only if (3f € I(a)) C(a, f) CU

that is, any unitary formal topology with a definable trace has an axiom-set,
and hence can be inductively generated.

Let us first suppose that (3f € I(a)) C(a, f) C U holds. Then f € I(a) and
hence, assuming z is a proof of Pos(a), we can deduce that a < f(x) and hence
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also a < C(a, f) and finally a <« U by transitivity, since f(z)elm(f] = C(a, f)
and C(a,f) C U. Then a < U without any assumption follows since the
assumption Pos(a) can be discharged by positivity.

Now, let us suppose that a <« U. Then Pos(a) — (3b € S) (beU & a < b)
follows because the formal topology is unitary. But then also

(Vz € Pos(a))(3b € S) (beU & a <1 b)
holds, and hence we can use a valid choice principle and obtain that
(3f € Pos(a) = S)(Vz € Pos(a)) f(z)eU & a < f(z)

Thus we obtain both that f € Pos(a) — S and (Vz € Pos(a)) Tr(a, f(z)), that
is f € I(a), and (Vz € Pos(a)) f(x)eU, that is C(a, f) =Im[f] C U.

4.7 A covering which cannot be inductively defined

We want to finish this section by showing that not all of the formal topologies
can be obtained by inductive generation. To this aim let us introduce the notion
of Dedekind-MacNeille cover. Let S be a set and < be an order relation on the
elements of S. Then, inspired by the Dedekind construction of the completion
of the rational line, we can define an infinitary relation <ip,s over S by putting,
foranya € Sand any U C S,

a<dpm U = ae ﬂ Jy
UCly

where | y = {z € S| z < y}. Tt is not difficult to prove that this relation
satisfies reflexivity, transitivity and <-left while to prove that also <-right holds
some more conditions on the order relation are required like, for instance, the
possibility of defining both an infimum operation between two elements of S
and its adjoint, namely implication (see [Sam89]). We will call such a cover the
Dedekind-MacNeille cover over S.

We want now to show that there are examples of a Dedekind-MacNeille cover
which do not have an axiom-set. To this aim it is convenient to use an equivalent
formulation of the notion of axiom-set.

Definition 4.3 A bunch of azioms for a cover relation on a set S is a family of
sets B(a) set [a: S] and a family of sets C(a,b) set [a : S,b: B(a)] together with
a function d(a,b,c) € S [a: S,b: B(a),c : C(a,b)] whose intended meaning is
that, for alla € S and b € B(a), a < Im[Az. d(a, b, )] where Im[Az. d(a,b,z)] =
{z € S| (3c € C(a,b)) z =5 d(a,b,c)}.

We know that a cover relation <1 on a set S is set-based when there is an
axiom-set I(a) set [a : S] and K(a,b) C S [a: S,b: I(a)] such that a < U if
and only if (3b € I(a)) K(a,b) C U. A similar condition can be used with a
bunch of axioms. We say that a cover relation is set-based if a < U if and only
if (3b € B(a))(Vc € C(a,b)) d(a,b,c)eU.

32



Then, it is possible to prove that the notion of bunch of axioms is equivalent
to the notion of axiom-set. In fact, suppose a € S and U C S and assume
to have a bunch of axioms B(a) set [a : S], C(a,bd) set [a : S,b : B(a)] and
d(a,b,c) € S [a : S,b: Ba),c : C(a,b)]. Then we can define an equivalent
axiom-set by putting

B(a)
Im[Az.d(a, b, z)]

In fact, it is now possible to prove that if (3b € B(a))(Vc € C(a,b)) d(a,b,c)eU
then (b € I(a)) K(a,b) C U. In fact by using the same element b that we
know to exist in I(a) = B(a) from the hypothesis, we have just to show that,
for all z € S, if zeK(a,b) then zeU. But zeK(a,b) means that there is an
element ¢ € C(a,b)) such that © =g d(a,b,c) and then the hypothesis yields
that d(a, b, c)eU and hence zeU.

On the other hand, if we start with an axiom-set I(a) set [a : S] and K (a,b) C
S [a:S,b: I(a)] then we can define an equivalent bunch of axioms by putting

B(a) = I(a)
C(a,b) = X(S,K(a,b))
d(a,b,c) = fst(c)

Indeed, it is now possible to prove that, if (3b € I(a)) K(a,b) C U, then
(3b € B(a))(Vc € C(a,b)) d(a,b,c)eU. In fact by using the same element b
that we know to exist in B(a) = I(a) from the hypothesis, we have to show
that (Ve € C(a,b)) d(a,b,c)eU. Thus, let us assume that ¢ € %(S, K(a,b)).
Then snd(c) is a proof that fst(c)eK (a,b) and hence the hypothesis shows that
it belongs also to U; thus d(a, b, ¢) belongs to U since d(a, b, c) = fst(c).

Now, let S € Set, B(z) € Set [z € S], C(z,y) € Set [z € S, y € B(z)],
d(z,y,2) € Sz €S, y € B(z), z€ C(z,y)] be given.

We let <€ S — (S — Set) — Set denote the infinitary relation inductively
defined by the rules

aeU
a<U

be B(a) (Vze€ C(a,b))(d(a,b,z)<U)
a<U

Intuitively, we can think of B(a) as the set of rules by which we can conclude
a < U fora € S. C(a,b) is then the set of indexes for the premisses of the rule:
for each z in C(a,b), d(a,b,z) < U is a premiss.
In general, < is not a covering relation. However, given a partial order <,
the rule
a<U a<d
a<U
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is easily expressed by the schema above; hence, every inductively defined cover-
ing relation can be obtained in this way.
For arbitrary a € S, define the set Tree(a) of trees with root a by induction:

leaf_tree(a) € Tree(a)

b € B(a) f € (z € C(a, b)) Tree(d(a, b, z))
branch_tree(a, b, f) € Tree(a)
The set of branches Branch(a,t) of a tree t € Tree(a) is defined by

{ Branch(a, leaf_tree(a)) = N;
Branch(a, branch_tree(a,y, f)) = (2z € C(a,y))(Branch(d(a,y,z2), f(z)))

where N; is the unit set.
We also need the leaf of a branch u of a tree ¢:

If_br(a, leaf_tree(a), u) = a
If_br(a, branch_tree(a, y, f), (v, w)) If_br(d(a, y,v), f(v),w)

We can now give an explicit description of covers by putting

cover(U,a,t) = (u € Branch(a,t)) U(If_br(a,t,u))

Theorem 4.4 a < U holds if and only if there exists t € Tree(a) such that
cover(U, a,t) holds.

Proof. The tree t is easily constructed by induction on the derivation of a < U.
That cover(U, a,t) implies a < U is straightforwardly proved by induction ¢.

We now come to the topology which covering relation cannot be inductively
defined. The base of the topology is Boole = {0,1} with the natural ordering
< and with the Dedekind-MacNeille cover

AU & (VY)[Vuel)u<y]=>x<y
This covering relation can be redefined as
zAU & zeU"

where V! = {z € Boole | (Vu € V) zu = 0} and the product is propositional
conjunction. Indeed, by taking z = -y in (Vy)[(Vu e U)u < y] = z < y we
see that this proposition is equivalent to

Vz[(Vu e Uuz =0l =22 =0

that is, U’ C {z}', which is equivalent to z € U".

Assume that < can be inductively defined. By theorem 4.4, we then have
a tree structure Tree(z) € Set [z € Boole], Branch(z,y) € Set [z € Boole, y €
Tree(z)] such that

aeU" & (3t € Tree(a))(Vz € Branch(a,t))U(If_br(a,t,z)) (1)
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for all U € (z € Boole) Set because, as we have seen above, a <U & a € U".
Let V' be an arbitrary subset of Boole, and let P; denote the proposition 1 € V.
We then have V' = {0} U {1 | —~P;}. Hence

V' = {0}U{L] Py @
Let P be an arbitrary proposition and define Up by
zelUp & [zt=0V(z=1& P)]
By (1) we have
leUp & (3t € Tree(1))(Vz € Branch(1,t))Up(If-br(1,t, 2)) (3)
Since 1 € Up & P we get from (2) that 1 € Up < ——P; hence
—-=P & (3t € Tree(1))(Vz € Branch(1,t))Up(If_br(1,t, 2)) (4)

We claim that (4) is not valid in the w-model [Hof97]. Indeed, if we take
P = QV-Q, (4) implies

(3t € Tree(1))(Vz € Branch(1,t))Ugyv-q(If-br(1,t, 2))
because =—(Q V =Q) is logically true. Hence, by the definition of Ugy-q,

(3t € Tree(1))(Vz € Branch(1,t))[If-br(1,¢,2) =0 V 5
(Ifbr(1,t,2) = 1 & (Q V =Q))] (5)

Uniformity in the model gives the existence of ¢y € Tree(1) such that
(Vz € Branch(1,t0))[lf-br(1,%0,2) =0V (If_br(1,%0,2) =1 & (Q V-Q))] (6)

for all propositions (). Let br be an arbitrary element in Branch(1,%y). If
If_br(1,¢,br) =1 then, by (6), @ V —Q for all Q, which is false in the w-model.
So, If_br(1,t,br) = 0 for any br in Branch(1,%o)). Since Up(0) is true for all P,
we then obtain

(3t € Tree(1))(Vz € Branch(1,¢))Up(If_br(1,t, 2)

Hence, by (3), 1 € U and we get ——P for all propositions P, which is false.

Since this topology cannot have an axiom-set, we don’t know a priori if the
product topology of the space with itself is definable in type theory. This can
be formulated as the problem whether an explicitly given monotone operator
on subsets of S = {0,1} x {0,1} has a least fixed point in type theory. Given
U C S and z € {0,1} let p,(U) be the set of y such that (z,y) € U and ¢, (U)
be the set of z such that (z,2) € U.

Open Problem 4.5 Let F(U) be the set of (x,y) such that y < p,(U) or z <
qy(U). This is a monotone operator on P(S) which is definable by a first-order
formula, and which satisfies U C F(U). Can we define in type theory the least
fixed point of F' containing U ?
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The operator F' is positive but not strictly positive. Such operators have
been analyzed in [BFPS81].

It is interesting to note that it is possible to give a formulation of the
Dedekind-MacNeille cover which is classically equivalent to the one above and
for which an axiom-set can be found. In particular, the example above of a
cover without an axiom-set has a classically equivalent formulation which has
an axiom-set. In fact, let us define a new infinitary relation <',,, over the set
S by putting, for any a € S and U C S,

a<py U= (Vy€S) (—(a<y) = (Fuel) ~(u < y))

This definition is clearly classically equivalent to the definition of the cover <|pas
above since ae (¢, 4 ¥ if and only if (Vy € 5) (((VueU) u <y) — (a <y)).

Now, it is possible to prove in a straightforward way that <’,,, satisfies
reflexivity and transitivity while to prove that it satisfies also <-left it is necessary
to use transitivity of <. Finally in order to prove the validity of <-right, some
more conditions must be required on the order relation. Indeed, according to the
definition of <1’y ,,, it is sufficient that if =(u < y) and —(v < y) then there exists
z such that z < u, z < v and —(z < y). This condition is for instance satisfied
if the pre-order relation < is total, that is, for all z,y € S, (x < y)V (y < )
holds, as it was for the boolean algebra of two elements that we used above to
build a formal topology which does not have an axiom-set.

After proving that <, is a cover relation, the quickest way to see that it
has an axiom-set is to observe that by putting, for any a,y € S,

ylFa=-(a<y)

the very definition of <’,,, shows that it is representable and hence, by the
results in section 4.4, it is inductively generable by using the following axiom-
set:

Ia) ={g€{y € S|-(a<y)} = S| (Vz € {y € S|=(a < y}) ~(9(z) < 2)}
C(a, f) = Im[f]
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