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Abstract. For any semilattice (S,A,1) and any X,Z C S, define X% as{a € S: (Vb€ X)(aAbe Z)}
and say that X is Z-stable if X = X?%. We prove that for any S and any downward closed Z C S,
Z -stable subsets form a complete boolean algebra, and that all cBa’s can isomorphically be represented
in this way. The proof is obtained by specializing a similar representation theorem for boolean quantales,
already known in the literature. Contrary to Stone’s representation theorems, the proof is carried over
in a fully constructive set theory (that is, no prime filter principle or similar is necessary, and no
argument by reductio ad absurdum or proof by cases is used).

Foreword.

The aim of this paper is to present in all details’ a new method to represent every complete boolean
algebra. Such a method is substantially different from the classic representation by Stone; contrary to
Stone’s, where the prime filter principle is necessary, it does not need any set-theoretical principle.

This is not pursued just as a debatable curiosity; more positively, all definitions and results can be
carried over in a specific highly constructive set theory, namely Martin-Lo6f’s intuitionistic type theory
(see e.g. [ML] or [TvD], chap. 11). However, little attention is here payed to details of formalization,
with the aim of showing, by an example, that such theory can be put into practice also by the working
mathematician.

For the purpose of the proof of the theorem, it is convenient to look at cBa’s as quantales satisfying
some additional conditions. A unital commutative quantale (cf. e.g. [R]), here simply a quantale,
is a structure Q@ = (Q,-,1,V) where (Q,-,1) is a commutative monoid, (Q,V) is a complete lattice
and infinite distributivity (Viera;) - b = Vier(a; - b) holds for any family of elements (b;);c; and any
element a of Q. We denote the top and bottom element of Q by T and 0 respectively. For example,
given any monoid (M,-,1) (here and in the whole paper commutativity is understood), the structure
(PM,-,{1},U) is a quantale, where PM is the powerset of M, - is defined on subsets by A- B = {a -
b:a € Ab e B} and U is set-theoretic union. A boolean quantale is a quantale equipped with an
operation — such that a = — — a for any a. In section 1 we review basic properties of quantales and
of boolean quantales up to the point where it can be proved that cBa’s are the same thing as boolean
quantales satisfying two simple additional conditions.

A phase space PMz (cf. [R], p. 142) is a structure formed by those subsets of M which are stable
under double Z-complementation (defined below). In section 2 we repeat a theorem in [R] showing
that a quantale is boolean iff it is isomorphic to a phase space. Putting such representation theorem
together with the characterization of cBa’s, in section 3 the main theorem is easily obtained: phase
spaces of the form PSyz, where S is a semilattice and Z is any downward closed subset of S, exhaust,
up to isomorphism, all complete boolean algebras.

Contrary to Stone’s, the method presented here unfortunately does not seem to be applicable to
complete distributive lattices without modifications.? Also, the question remains to obtain Stone’s

LA first proof was obtained as a by-product of the development of a uniform method to prove completeness of several
different logics w.r.t. the many valued semantics given by the notion of pretopology (cf. [S], thm. 14); I here give a
simpler proof, and pruned of any reference to logic and pretopologies. I am deeply grateful to Silvio Valentini who has
played an important role in the writing of this paper, through conversation and encouragement.

2However, I thank John L. Bell for pointing out a connection with the method of polarities, cf. [B], p. 122.



representation of a cBa B directly from ours, thus detecting precisely the role of the prime filter
principle. To make the paper selfcontained and readable also by the non-specialist, we review all
properties of quantales which are needed (even if most of them are in [R]) and assume only a little
acquaintance with lattices.

1. Preliminaries on quantales and boolean quantales.
The next four lemmas contain the standard facts we need about quantales.
LEMMA 1.1. In any quantale Q, the following hold for any a, b, ¢, d € Q:
(1) localization: if a < b thena-c<b-c
(2) stability: ifa <bandc<d thena-c<b-d

PROOF: Localization: a < b means that a V b = b, hence also (a V b) - ¢ = b - ¢; but by distributivity
(aVb)-c=a-cVb-c,hence a-cVb-c=b-c, that is a-c < b-c. Stability: by localization, from a < b
we have a-¢ < b-c and similarly b-c < b - d from ¢ < d, so by transitivity a-c < b- d.

In any quantale, the operation — is defined putting, for any a,b € Q,
a—=b=V{c:a-c<b}

LEMMA 1.2. (Basic PROPERTIES OF —). In any quantale, the operation — satisfies the following
properties:

(1) a-(a—b) <D
cca<bifc<a—b

PRrROOF: (1) By definition, a - (a = b) = a- V{c: a-c < b}; by distributivity, a - V{c:a-c < b} < V{a-
¢ : a-c < b}, which by definition of sup is less than b. (2) Assume a-c < b; then, since c € {c: a-c < b}, it
follows that ¢ < V{c:a-c < b} = a — b. Conversely, if ¢ < a — b then by localization a-¢ < a-(a — b),
sothat a-c¢<bby (1). (3) a=a-1<ahencea<1—aq;conversely, 1l >a=1-(1—a)<a (4 By
(1), (a-b—¢c)-a-b<c, henceby (2) (a-b—c)-a<b—canda-b—c<a— (b— c); similarly,
(a—=(b—c)-a<b—ocgives(a— (b—c)-a-b<chencea— (b—>c)<a-b—c

In any quantale, for any element d the operation of d-complementation is defined putting
—ga=a —d.

If d is such that —g —q a = a for any a, then d is called a dualizer for Q. A quantale is called boolean®
if it has a dualizer d; in any case the d-complement of a is abbreviated by —a.

LEMMA 1.3. In any quantale, for any d, d- complementation satisfies:
(1) a < b implies —b < —a

(2) -1=d

3) -0=T

4) a<——a

(5) —a=———a

(6) a-——b< ——(a-b)
()~ (@ ——t)=—(ab)

3Following a suggestion in [R], where however it is called ‘Girard’.
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PROOF: (1) holds because a < b implies a- (b = d) < b-(b - d) < d and hence b > d < a — d. (2)
since —-1=1—dand 1 —d=d, —1 =d holds. (3) To show —0 = T it is enough to see that T < —0:
from 0 < —T one has 0- T < d hence T < —0. (4) follows immediately from a-—a < d. (5) holds since

the inequality —a < — — —a is an application of (5), while — — —a < —a comes from a < — —a by (1).
(6) By (1), (a = (b = d)) -a < b — d, that is, by (4) of lemma 2, —(a - b) - a < —b; by localization,
—(a-b)-a-——b< —b-——>b<d, hence by (2) of lemma 2 the claima-— —b< — —(a-b). (7) is an

easy consequence of (4) and (6).

LEMMA 1.4. In any boolean quantale, d- complementation satisfies:
(1) a<bif -=b< —a
—1=d, -d=

4) —(aANb)=—aV —b (de Morgan law)

PRrROOF: (1) By properties of —, from a < b we have —b < —a; conversely, by the same reason, —b < —a
gives ——a < ——b,i.e. a <b. (3) From —0 = T, which holds in any quantale, one has0 = ——0=—T.
(2) Similarly, from —1 = done has 1 = — — 1= —d (4) a A b < a gives —a < —(a A b) and similarly
—b< —(aAb),s0 —aV —b< —(aAb). Conversely, —a < —a V —b gives —(—a V —b) < a and similarly
for b, hence —(—a V —b) < a A b, from which —(a Ab) < —a V —b.2

LEMMA 1.5. In any boolean quantale, the following are equivalent:

(1) a-b<a for any a, b

2
3
4

5

a-b<aAbforanya,bd
a <1 for any a

T<1

d<o0

(2)
(3)
(4)
(5)

PRrROOF: From (1) it follows that a-b < a and a-b < b, hence a-b < a A b, i.e. (2); the converse is
trivial. By taking a = 1in (1) one has b =b-1 < 1 for any b, i.e. (3); the converse holds by localization.
Finally, (3) iff (4) because a < T for any a and (4) iff (5) because by lemma 4 d < 0 iff —0 < —d iff
T < 1. Note that the equivalences (1)-(4) hold in any quantale.

LEMMA 1.6. In any quantale, the following are equivalent:
(1) anb<a-b for any a, b
(2) a<a-a for any a

PROOF: From (1) by taking b = a it follows that a = a Aa < a-a. Conversely, aAb<aand aAb<b
by stability give (a A b) - (a Ab) < a-b, from which (1) since a Ab < (aAb)-(aAb).

COROLLARY 1.7. In a boolean quantale, if 0 is a dualizer, then it is the unique one.

PROOF: By lemma 5, if d = 0 then T = 1 and hence —d’ = 1 = T for any dualizer d’, so that
d=——d=-T=0.

We are now ready to characterize complete boolean algebras as a special class of boolean quantales.
Boolean algebras are here defined as usual (apart from notation), namely as distributive lattices with
bottom 0 and top T and with an operation of complementation v s.t. a Ava =0 and aVwva=1. We
say that a quantale Q is idempotent if all its elements are idempotent, that is a - @ = a holds for any
a € Q. Then we have:

4Note that also the second de Morgan law —(a V b) = —a A —b holds, but we don’t need it in this paper.
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THEOREM 1.8. Complete boolean algebras can be characterized as idempotent boolean quantales in
which 0 is a dualizer.

PROOF: It is an exercise on boolean algebras to show that any cBa B = (B, A, V,0, T,v) is a quantale
with the desired properties; however, here is a hint. Trivially, (B, A, T) is a semilattice, that is a monoid
in which @ = a A a holds, and (B, V,0, T) is a complete lattice. Infinite distributivity is easily derivable
from the fact that — is definable, putting

a—>b=vaVvbd

It is easy to check that — so defined satisfies a A ¢ < b iff ¢ < a — b; in fact, if a A ¢ < b then
c<(vavVa)A(vaVve) =vaV(aAc) < vaVb, and conversely if ¢ < vaVbthen cAa < aA(ravd) = (an
va)V (aAb) < b. Therefore (B, A, T,V) is an idempotent quantale. Finally, since va =vaV0=a — 0,
the equation vva = a, which holds in any boolean algebra, means that a = (¢ — 0) — 0, i.e. 0 is a
dualizer.

Conversely, assume Q = (Q,,V, 1) is a boolean quantale. The assumptions a -a = a and 0 = d by
lemmas 1.5 and 1.6 mean that a-b = a A b; moreover 1 = T by lemma 1.5, so that (Q,-,V,T) is a
complete distributive lattice. Finally a A —a = 0 because a A —a =a-—a < d=0andaV —-a=T
because aV —a = — —aV —a = (by de Morgan law) — (—aAa) = —0 =T, and so —a is the (boolean)
complement of a.

2. Phase spaces and the representation of boolean quantales.

As the last result of the preceding section suggests, the representation of cBa’s is obtained by spe-
cializing the representation of boolean quantales (see [R], thm. 6.1.1); we here repeat it shortly. We
need a lemma which shows how any quantale can be transformed into a boolean quantale:

LEMMA 2.1. For any quantale Q and any d € @, define d-complementation —a = a — d as usual, and
say that an element a € @ is d-stable if a = — — a. Then the set of d-stable elements of ) forms a
boolean quantale Q4 with dualizer d and with operations defined by:

Vi ja; = — — (Vierai) ab=——(a-b) 17=—--1
PRrROOF: The proof is obtained by standard applications of the properties of d-complementation (cf.
lemma 1.3). In fact, \/?elai is the supremum, since a; < Viera; < — — (Viera;) and if a; < b for all
i € I, then Vjcra; < b from which — — (V;era;) < — — b = b. The operation AT associative, because
(a-?b)-4c=a-4(b-%c) is by definition — — (— — (a-b)-¢) = — — (a-— — (b-c)), which is obtained from
(a-b)-c=a-(b-c) by repeated use of (7) of lemma 1.3. The element — — 1 is the unit element for -4,
since ——1-4g=——(——1-a)=— —(1-a) = — — a = a. Distributivity follows from distributivity

of Q, with an argument quite similar to that for associativity above.

Finally, d is d-stable, because d - (d — d) < d gives d < (d - d) > dand 1-d < d gives 1 < d — d,
hence (d - d) — d <1 — d = d; trivially — — a = a for any d-stable a. So d is a dualizer in Q4 and
Qg is a boolean quantale.

For any monoid M and any Z C M, the quantale PMz, obtained from the quantale PM as in the
preceding lemma, is called the phase space on M with dualizer Z. We denote by F, G,..., the Z-stable
subsets, sometimes called facts; the explicit definition of operations is:

VI Fi=——(UierF;) FZ7G=-—-(F-G) 17=--1

Note that by the definition of — in a quantale, it is A - B =U{C : C'- A C B} and it is easily seen
that A— B={a € M :a-AC B}. So in particular Z-complementation is

—ZAEAZ:{aEM:a-AgZ}

We say that a submonoid M of a quantale Q is a base for Q if for any ¢ € Q, ¢ = V{a € M : a < g}.
Note that any quantale has a base, at worst Q itself®.

5 Actually all results below could be stated without mentioning bases. Here some care is taken towards keeping the highest
possible degree of constructivity, and this is why bases are essential: in the terminolgy of [ML], a base M for Q could be
a set, even if Q is a proper category.



THEOREM 2.2. Any quantale is boolean iff it is isomorphic to a phase space. More specifically, any
phase space PMyz is a boolean quantale, and for any boolean quantale Q, for any submonoid M of Q
which is a base for Q, there exists Z C M s.t. Q =2 PM.

PROOF: PMy is a boolean quantale by lemma 2.1. Conversely, let Q be a boolean quantale and let M
be a base for Q. For any A C M, we put jA = {a € M : a < VA}. We now see that jA = —z —z A,
where we have put Z = {a € M : a < d} for a dualizer d of Q. In fact, for any a € M, by definition
ac——Aiffa- (A-2Z)CZif (W)(beA—Z=a-beZ). Nowa-be Ziffa-b<diff a < —band
similarly be A - Ziff b-AC Z iff (Ve € A)(b-c€ Z) iff (Ve€ A)(c < —d)if VA< —d. Soae ——A
iff (Vb)(VA < —b = a < —b), which is the same as a < VA, i.e. a € jA.

So the Z-stable subsets of PMy are all of the form jA for some A C M. Note that for any A C M,
itis V(— —A) = VA, since — — A= jA and V(jA) = VA.

Then the isomorphism k : PMy; — Q is given by k : F — VF. In fact, since obviously F C G iff
VFE < VG, k is one-one and preserves inclusion. Since M is a base, any ¢ € Q is equal to VA where
A={a€ M:a<q}and hence k(jA) = VA = g, that is k is onto. A few equalities show that k
preserves suprema:

k(VierFi) = k(= = (UierFi)) = V(UierFs) = Vier(VF;) = VierkF;
and that k preserves the monoid operation:

k(F -z G)=k(-—(F-G))=V(F-G)=VF VG = kF - kG

3. The representation of complete boolean algebras.
We begin with a corollary to theorem 2.2 above:

COROLLARY 3.1. Q is a boolean quantale in which 0 is a dualizer iff it is isomorphic to PMy for some
monoid M and some Z C M s.t. Z = — — ().

PROOF: By the theorem, it is enough to show that 0 is a dualizer of PMz iff Z = — — (). Recall that
— — 0 is the bottom of PMz and that Z is always a dualizer of PMz. Then the claim follows from
corollary 1.7.

The condition Z = — — () does not give a direct description of how Z should be. However, since
obviously —) = M, we can bring Z = — — ) to the form
Z=M—Z

which is a sort of fixed point equation to be solved. The solutions are all of the form M — A
for any A C M. In fact, if Z = M — Z then Z is of such form, and conversely for any A it is
M— (M- A =M-M— A=M — A. It also follows that Z = %% iff Z = ()*4 for some A. Note
also that, since the inclusion M — Z C Z holds for any Z (because a € M — Z = a - M C Z implies
a=a-1€ Z), the equation Z = M — A is equivalent to Z C M — Z, and hence to Z - M C Z; that
is, Z is an ideal in the monoid M. So, in the case M is in fact a semilattice (S, A, 1), the condition
becomes S A Z C Z, which is equivalent to |Z C Z, where |Z = {a € S: (3z € Z)(a < 2)} is the
downward closure of Z. Summing up, we have:

LEMMA 3.2. For any monoid M, the following are equivalent for any Z C M:

(1) Z is the bottom in PMyz, i.e. Z=— —1{
(2) Z = (044 for some A C M

3) Z=M—Z

(4) Z =M — A for some AC M

(5

In a semilattice S, any of the above is equivalent to:

)
)
) Z is an ideal, ie. M -Z C Z
5
6)

7 is downward closed, i.e. |Z C Z

We are finally ready to prove the main theorem:
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THEOREM 3.3. A structure B is a complete boolean algebra iff it is isomorphic to a phase space on a
semilattice with a downward closed dualizer. More specifically, for any semilattice S and any downward
closed Z C S, PSyz is a cBa. Conversely, for any cBa B, there exists a semilattice S and a downward
closed Z C S s.t. B2 PSy.

PROOF: First we prove that, for any semilattice S and any downward closed Z C S, PSz is a complete
boolean algebra. By theorem 2.2, PSy is a boolean quantale. Since Z is downward closed, 0 is a
dualizer by lemmas 1 and 2. So, by theorem 1.8, it only remains to prove that PSz is idempotent.
Since 0 is a dualizer, by lemma 1.5 U -¥ U C U holds for any Z-stable subset U C S; for the other
inclusion U C U -Z U it is enough to show that U C U - U, which is immediate since for any a € 9,
a €U impliessa=a-a€U-U.

Now let B be a cBa. By theorem 1.8 B is a boolean quantale, and hence by theorem 2.2 it is B =< PS4
for some base S and Z C S; note that S, like any base for B, is a semilattice. By the isomorphism
B = PSy, since 0 is a dualizer in B, it follows that Z is equal to bottom in PSz, that is Z = — — 0,
which is equivalent to Z downward closed by lemma 2.

It may be worthwhile to notice that, given a cBa B, it may well happen that Z = {a € M : a < 0}
is empty, which happens if 0 ¢ S. In this case, it is easy to check that PSyz is (isomorphic to) the
two-element boolean algebra {0, T}; in fact, for any A C S, it is A =0 if A # 0, and A® = Sif A =0,
so that A% is either @ or S. This does not affect the theorem, however, nor its uniformity; in fact, one
finds out (as suggested by Silvio Valentini) that when B is different from {0, T}, then any base S must
contain 0:

PROPOSITION 3.4. If a cBa B contains some element different from bottom and top, then any base S
for B must contain 0.

ProoF: If B is different from {0, T}, then any base S must be different from the singleton {T}; in
fact, {T} can generate only T and 0. Solet b€ S with b # T;then0=bA-b=bAV{ce S:c < -b},
and since b # T, it must be —b # 0, hence {c € S : ¢ < —b} # 0. Let ¢ be an element of S s.t. ¢ < —b;
then 0 =bA —b > bAc, hence 0 € S because b,c € S.

Concluding general remark.

As a concluding remark, note that the fact that the proof of the representation theorem does not
need any set- theoretic principle is not in contrast with the well known situation for representation
theorems in the style of Stone; the constructivity of the present proof is a trade off of the fact that our
presentation is not a field of sets, that is we have given up with the idea that @ and |J should be the
zero and sup, respectively®. So, while it is true that P.Sy is a family of subsets of S, it is not true that
it is a field of sets, i.e. a subalgebra of the powerset PS with usual set-theoretic operations.

This is perfectly in line with the spirit of pointfree (or pointless) topology, where for example Ty-
chonoff’s theorem on products of compact topological spaces does not need the axiom of choice, at the
price of giving up points (for a discussion on why a mathematician should be interested in pointless
topology, see [J]). Actually, also our example can be interpreted in this way: a constructive repre-
sentation is obtained by giving up the requirement that an element of the boolean algebra is to be
represented as a set of prime filters, i.e. points. The intriguing problem remains to explain why such
a representation seems to work only for the “classical” case of boolean algebras, rather than for an
arbitrary lattice of opens.
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