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The theme of this paper is the relation between formal topology and the
theory of domains. On one hand, domain theory can be seen as a branch of
formal topology. On the other hand, the influence of domain theory on formal
topology is twofold. Historically, the presence of the subset Con in Scott’s
information systems has been the starting point for the introduction of the
positivity predicate Pos in formal topology; also, the notion of approximable
mapping has influenced the definition of continuous relations between formal
topologies. Conceptually, since domain theory can be seen as a particular case,
any notion and result in domain theory becomes a challenge for formal topology:
how much of domain theory can be generalized to formal topology?

My impression is that some open problems in one of the two fields could
already have a solution in the other, and that is why an intensification of contact
should be rewarding.1

1. Formal topology

What is formal topology? A good approximation to the correct answer is: formal
topology is topology as developed in (Martin-Löf’s) type theory [3]. This means
that it is intuitionistic and predicative. Actually, it is fully formalizable in an
implementation of type theory, via what we have called the toolbox for subsets
(cf. [7]); as a result, notation is quite standard, except for the use of ε, which is
different from ∈, for elements of a subset U (which is a propositional function,
and hence not a set: when S is a set and U ⊆ S, a ε U means that a ∈ S
and U(a) is true). The adjective “formal” is due to the stress on the pointfree
approach to topology, to which one is naturally lead adopting type theory. The
original main definition (cf. [4]) was:

Definition 1.1 (1984-1987) A structure A = (S, ·, 1,�,Pos) is a formal topol-
ogy when:

1I am very grateful to the organizers of the workshop Domains IV, in particular to Dieter
Spreen, for inviting me.

1



S is a set and (S, ·, 1) is a semilattice (or commutative monoid), called
the base;

a � U prop (a ∈ S, U ⊆ S) is a cover, that is it satisfies

reflexivity
a ε U

a � U

transitivity
a � V V � U

a � U
where V � U ≡ (∀b ε V )(b � U)

· - Left
a � U

a · b � U

· - Right
a � U a � V

a � U · V
where U · V ≡ {b · c : b ε U, c ε V }

Pos(a) prop (a ∈ S) is a positivity predicate, that is it satisfies

monotonicity
Pos(a) a � U

(∃b ε U)Pos(b)

positivity
Pos(a) → a � U

a � U

With any (infinitary) relation � one can associate an operator on subsets
AU ≡{a ∈ S : a�U} and conversely, given an operator A, one defines a relation
a � U ≡ a ε AU . One can show that � is a cover iff the associated operator
A is a closure operator satisfying A(U · V ) = AU ∩ AV . A subset U is called
A-saturated if U = AU ; on the collection Sat(A) of A-saturated subsets one
can define as usual meets as intersections and joins by

∨
i∈I AUi ≡ A(∪i∈IUi).

Then one can prove:

Theorem 1.2 For any formal topology A, Sat(A) is a frame (or locale, or
complete Heyting algebra).

Sat(A) is called the frame of formal opens. The intuition is that two subsets
U, V ⊆ S are equal in A if they cover each other, that is (U =A V ) ≡ U �

V & V � U , and clearly U =A V iff AU = AV . From an impredicative point
of view (for instance, in topos theory), all frames can be represented as formal
opens of a suitable formal topology. In this sense, formal topologies are the
predicative version of frames, or locales (see [2]).

The second main definition is:

Definition 1.3 In a formal topology A, a subset α ⊆ S is called a formal point
if:

α is inhabited 1 ε α

α is convergent
a ε α b ε α

a · b ε α

α splits �
a ε α a � U

(∃b ε U)(b ε α)
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α is consistent a ε α → Pos(a)

One can prove that:

Theorem 1.4 There is a bijection between formal points of A and completely
prime filters of Sat(A).

So, again, formal points are the predicative version of points in a locale; note
that while a formal point is a subset of S, a completely prime filter of Sat(A)
is a collection of subsets of S.

Definition 1.5 For any formal topology A, the collection Pt(A) of all formal
points of A is called a formal space.

Intuitively, Pt(A) is provided with the topology generated by the base
ext (a) ≡ {α : a ε α} for a ∈ S; but note that in type theory Pt(A) is not
necessarily a set, and this is why the adjective “formal” again.

Definition 1.6 Let A = (S, ·,�A,PosA) and B = (T, ·, 1,�B,PosB) be any for-
mal topologies. A relation aFb prop (a ∈ S, b ∈ T ) is called a continuous
relation from A into B if

aF1
aFb aFc

aFb · c
aFb b �B V

a �A F−1V

PosA(a) aFb

PosB(b)

One can read intuitively this definition thinking of F as a constructive approx-
imation of a continuous function f : Pt(A) → Pt(B), the idea being that aFb
holds iff for all formal points α, a ε α → b ε fα.

Formal topologies and continuous relations form a category, called FTop. It
is the predicative version of locales, since (reasoning impredicatively) FTop is
equivalent to the category of locales (and dual to the category of frames).

2. Scott domains

After this telegraphic resumé of the beginning of formal topology, we can see the
connection with Scott domains, again telegraphically (the paper [8], submitted
in ‘92, contains all details).

Definition 1.7 A formal topology A is called unary, or scott, if its cover is
unary, that is it satisfies

a � U iff Pos(a) → (∃b ε U)(a � {b})

The name is due to the fact that Pos(a) → (∃b ε U)(a � {b}) iff there exists
a subset u ⊆ U with at most one element such that a � u; intuitively, no
two elements can cooperate to cover a positive element. The beginning of the
connection is given by:

3



Proposition 1.8 If A is a unary formal topology, then Pt(A) is a Scott do-
main.

But if A is unary, then � is determined by its trace on elements a ≺ b ≡ a�{b};
the converse also holds. So we put:

Definition 1.9 An information base is a structure S = (S, ·, 1,≺, Pos) where

a ≺ 1 a ≺ a
a ≺ b b ≺ c

a ≺ c

a ≺ b

a · c ≺ b
,

a ≺ b

c · a ≺ b

a ≺ b a ≺ c

a ≺ b · c

Pos(1)
Pos(a) a ≺ b

Pos(c)
Pos(a) → a ≺ b

a ≺ b

In other terms, an information base is just a way to present a semilattice (the
first two lines) with Pos. Formal points on, and continuous relations between,
information bases are defined as expected. One can prove (impredicatively)
that:

Theorem 1.10 The category of Scott domains is equivalent to the category of
information bases.

So information bases give a predicative approach to Scott domains, and, since
information bases are just an alternative presentation of unary formal topologies,
the theory of Scott domains becomes a subtheory of formal topology. This is
the content of [8], where the reader can find details, as well as an interpretation
of formal points as concepts and of continuous relations as translations.

The aim here is to begin to see how such results should be modified in the
new approach to formal topology.

3. The basic picture

The main definitions of formal topology had to be modified for two reasons: to
treat also formal closed subsets predicatively, and to get rid of the operation ·
so that PS, preorders, trees, etc. . . could be included more naturally. This has
brought to a structure which is deeper than previous formal topology, and which
I have called the basic picture.

To see it, one has to analyse carefully the usual definition of topological
space (X, ΩX) so that it can be brought to type-theoretic terms. The main
change is that one must add a second set S, of observables or formal basic
neighbourhoods, which plays the role of an index-set for the family of open
subsets ΩX. We cannot expect, however, to obtain all open subsets with an
index in S, otherwise we should obtain also PX as set-indexed. So we start
from X, S sets and a function ext : S → PX, and we want to obtain ΩX as the
family of subsets ext (U) ≡ ∪aεU ext (a) for all U ⊆ S. Then ∅ = ext (∅) and
closure under unions are automatic; so, to obtain that ΩX is a topology, only
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X = ext (S) and closure under finite intersections must be required. The latter
is extU ∩ extV = ext {c : ext (c) ⊆ ext U ∩ extV } which by distributivity is
equivalent to

ext (a) ∩ ext (b) = ext (a↓b)

where a↓b ≡ {c : ext (c) ⊆ ext (a) ∩ ext (b)}. Finally, note that a function
ext : S → PX can be identified with a binary relation x  a ≡ x ε ext (a).
Thus the definition we reach is:

Definition 1.11 A concrete topological space is a structure X = (X, , S)
where X, S are sets and  is a binary relation from X to S satisfying:

B1: ∀x∃a(x  a)

B2:
x  a x  b

x  a↓b

The new discovery is that B1 and B2 are not necessary to define usual topological
notions such as open, closed, continuous etc. What remains is just what I call
a basic pair X = (X, , S), that is two sets X, S linked by a relation :

X  S
concrete points x, y, · · · observables a, b, · · ·

It is easy to check that the usual definition of interior becomes: for any A ⊆ X,

int A ≡ {x : (∃a ∈ S)(x  a & ext (a) ⊆ A)}.

Similarly for closure of A; adopting the notation

A G B ≡ (∃x ∈ X)(x ε A & x ε B)

(which is different from A ∩B 6= ∅), the duality with interior is more visible:

cl A ≡ {x : (∀a ∈ S)(x  a → ext (a) G A)}

We now can see that int and cl are the combination of two very natural op-
erators on subsets. We have already defined the operator ext : PS → PX by
putting ext (U) ≡ ∪aεU ext (a) ≡ {x : (∃a)(x  a & a ε U} for any U ⊆ S. Since
a basic pair is fully symmetric, we can define also an operator 3 : PX → PS,
which is symmetric to ext , by putting 3A ≡ {a : (∃x)(x  a & x ε A)} for any
A ⊆ X. We write 3x for 3{x} so that a ε 3x, just as x ε ext (a), is a synonym
for x  a. Note that x ε ext (U) ≡ 3x G U and a ε 3A ≡ ext (a) G A.
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While ext is defined by an existential quantification, the second opera-
tor rest from PS into PX is defined by a universal quantification: for all
U ⊆ S, rest (U) ≡ {x : (∀a)(x  a → a ε U}. Then the symmetric of rest is
2 : PX → PS which is defined by 2A ≡ {a : (∀x)(x  a → x ε A)} for all
A ⊆ X. That is, x ε rest U ≡ 3x ⊆ U and a ε 2A ≡ ext (a) ⊆ A.

It is now immediate to see that, for any A ⊆ X,

intA ≡ ext2A x ε intA ≡ 3x G 2A

cl A ≡ rest 3A x ε cl A ≡ 3x ⊆ 3A

which shows both the logical nature of int and cl , and the logical duality
between them. As usual, we say that A is (concrete) open if A = intA and
(concrete) closed if A = cl A. By symmetry, we can define two operators on PS
by putting, for any U ⊆ S:

CU ≡ 3 rest U x ε CU ≡ ext (a) G rest U

AU ≡ 2 extU x ε AU ≡ ext (a) ⊆ extU

and then say that U is formal open if AU = U and that U is formal closed if
CU = U . The choice of names is due to the fact that in this way it is the lattice
of formal open (formal closed) subsets which comes out as isomorphic to that of
concrete open (concrete closed) subsets. A summary is expressed in a picture:

concrete closed formal open
cl ∀∃, symmetric A

int ∃∀, symmetric C
concrete open formal closed

A few more details can be found in [6], while a full treatment, including also
morphisms, will be in [5].

4. The new formulation of formal topology

The new definition of formal topology is obtained by first describing only in
terms of the operators A and C the properties of the formal side of a con-
crete topological space (which is nothing but a basic pair in which B1 and B2
hold) and then taking the result as an axiomatic definition. If � is the relation
corresponding to the operator A, then a � U (that is a ε AU) is defined by
ext a ⊆ ext U , which is exactly the intuitive, pointwise content of covers. The

6



discovery of symmetry, and hence of the new operator C, brings to the intro-
duction of a binary positivity predicate Pos(a, F ) ≡ a ε CF . Also, the pointfree
expression of B2 given by the condition ↓-Right below, allows to get rid of the
operation · (and of 1).

Definition 1.12 (1995) A formal topology is a structure S = (S, �,Pos) where:

a. S is a set;

b. � is a relation between elements a and subsets U of S which satisfies

reflexivity
a ε U

a � U

transitivity
a � V V � U

a � U

↓-Right
a � U a � V

a � U↓V
where a↓b ≡ {c : c � a & c � b} and U↓V ≡ ∪aεU,bεV a↓b;

c. Pos is a relation between elements a and subsets F of S which satisfies

antireflexivity
Pos(a, F )

a ε F

transitivity
Pos(a, F ) (∀b)(Pos(b, F ) → b ε G)

Pos(a,G)

d. � and Pos are linked by

compatibility
Pos(a, F ) a � U

(∃b ε U)Pos(a, F )

The notation with operators AU ≡ {a : a � U} and CF ≡ {a : Pos(a, F )}
allows a much shorter characterization: (S,A, C) is a formal topology if A is a
closure operator satisfying A(U↓V ) = AU ∩AV , C is an interior operator, and
they are linked by CF G AU → CF G U .

As it was meant to be, if X = (X, , S) is a concrete topological space, then
SX ≡ (S, �,Pos), where a�U ≡ ext (a) ⊆ extU and Pos(a, F ) ≡ ext (a) G rest F ,
is a formal topology; any such formal topology is said to be (pointwise) repre-
sentable.

Formal topology with the new definition is still under development (see [5]).
One can already see, however, that both locale theory and previous formal
topology can be thought of as particular cases. In fact, locale theory is obtained
when Pos is improper, that is Pos(a, F ) is always false, and previous formal
topology when Pos is trivial, that is CS is the only nonempty formal closed
subset, so that the old Pos is defined by Pos(a) ≡ Pos(a, S). Note that, when
Pos is trivial, the condition of compatibility boils down to monotonicity. Also
note that nothing corresponding to positivity is now required in the definition;
the idea is that one can add that assumption when convenient.

The definition of formal point has to be changed slightly, to take care of the
new positivity predicate:
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Definition 1.13 In any formal topology (S, �,Pos), a subset α of S is called a
formal point if, writing α  a for a ε α, for any a, b ∈ S and U,F ⊆ S it holds
that:

α is inhabited: (∃a)(α  a)

α is convergent:
α  a α  b

α  a↓b

α splits �:
α  a a � U

α  U
where α  U ≡ (∃b ε U)(α  b)

α enters Pos:
α  a α ⊆ F

Pos(a, F )

Again, the notation with A, C and G is shorter: α is a formal point if α G S,
α G U & α G V → α G U↓V , α G AU → α G U and α ⊆ F → α ⊆ CF .
Note that α enters Pos if and only if α = Cα, that is, α is formal closed; hence
α splits � is derivable by compatibility.

Formal spaces are defined as before.

5. Unary formal topologies and domains

The question now is whether also in the new formulation unary formal topolo-
gies are just a reformulation of Scott domains. The answer is negative, but
interesting. A relevant result is:

Proposition 1.14 For any formal topology S with a trivial Pos satisfying posi-
tivity, there exists a formal topology A, according to the old definition and hence
with · and 1, such that A is isomorphic to S.

(The idea for the proof is to simulate in pointfree terms the standard fact
that the closure under finite intersections of a base is still a base, for the same
topology.) But then one has a little surprise: keeping the definition of unary
cover given before in definition 1.7, it may well happen that the cover of S is
unary while that of A is not. Given that the class of unary formal topologies,
with the old definition, corresponds to the class of Scott domains, to which kind
of domains do unary formal topologies, with the new definition, correspond?
First of all, we introduce a definition of unary formal topology in which also the
new (binary) positivity predicate plays a role. Thus we keep the definition of
unary cover (except that Pos(a) is now replaced by Pos(a, S)) and characterize
unary positivity predicates by a dual condition:

Definition 1.15 A formal topology S = (S, �,Pos) is said to be unary if both
� and Pos are unary, in the sense that they satisfiy

a � U ↔ Pos(a, S) → (∃b ε U)(a � {b})

Pos(a, S) ↔ Pos(a, S) & (∀b)((a � {b} → b ε F )

respectively.
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The following little result says that, in the case of unary covers, one should not
worry about the condition ↓-Right:

Lemma 1.16 If � is reflexive and unary, then it also satisfies ↓-Right.

Proof: Assume a � U and a � V , and let Pos(a, S). Since � is unary, one
obtains (∃b ε U)(a � {b}) and (∃c ε V )(a � {c}), which by definition says that
a ε U↓V , from which (∃d ε U↓V )(a�{d}). So Pos(a, S) → (∃d ε U↓V )(a�{d}),
which means that a � U↓V since � is unary. q.e.d.

The idea underlying the condition on Pos is that Pos(a, F ) should hold just
when ext (a) is inhabited by a point, no matter where inside ext (a) it is. The
peculiarity of unary formal topologies is that they can be characterized in el-
ementary terms, and the framework of basic pairs allows to express this in a
simple and precise way.

Any preordered set P = (P,≺), that is a set P with a reflexive and transitive
binary relation ≺, can be looked at as a basic pair, namely (P,≺, P ). Then the
formal topology represented by P is unary. More generally, assume that H is
any monotone, or upward closed, subset of P (that is, a ε H & a ≺ b → b ε H).
Define  to be the restriction of the preorder ≺ to H, that is

a  b ≡ a ε H & a ≺ b

Then the topology SP pointwise represented by P = (P,≺, P ) is unary, as we
now prove. The cover and positivity predicate of SP are defined by

a �P U ≡ ext (a) ⊆ extU ≡ (∀c)(c  a → (∃b ε U)(c  b))

PosP(a, F ) ≡ ext (a) G rest F ≡ (∃c)(c  a & (∀b)(c  b → b ε F ))

respectively. As for any basic pair, it can be proved with no difficulty that SP is a
formal topology. To prove that it is unary, note first of all that ext (a) G rest S
iff (∃c)(c  a) iff a ε H. So PosP(a, S) iff a ε H. By definition, a �P U
is (∀c)(c  a → (∃b ε U)(c  b)), which by definition of  is equivalent to
(∀c)(c ε H & c ≺ a → (∃b ε U)(c ≺ b)) and hence, since H is monotone, also to
a ε H → (∃b ε U)(a ≺ b). We can conclude that �P is unary because

for any a ε H, a ≺ b iff a �P {b}

In fact, a �P {b} ≡ ext (a) ⊆ ext (b) ≡ (∀c)(c ε H & c ≺ a → c ≺ b) iff
a ε H → a ≺ b and hence the claim since a ε H.

It is convenient now to adopt the notation ↑a ≡ {b : a ≺ b}; by the last
remark above, ↑a = {b : a�P {b}} for any a ε H. So PosP(a, F ) can be rewritten
as (∃c)(c ε H & c ≺ a & ↑c ⊆ F ), which is equivalent to a ε H & ↑a ⊆ F . So
also PosP is unary, and the proof is complete.

It is now easy to see that actually all unary formal topologies are of this kind.
In fact, if S = (S, �,Pos) is unary, then � and Pos are uniquely determined
by the subset S+ ≡ {a : Pos(a, S)} and by the restriction of � to elements.
By compatibility, if Pos(a, S) and a � {b}, then (∃c ε {b})Pos(c, S), that is
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Pos(b, S); so S+ is monotone. It is then only a matter of checking that � and
Pos coincide with the cover and positivity predicate pointwise defined in the
basic pair (S, , S), where a  b ≡ a ε S+ & a�{b}. This is immediate, because
(∀c)(c ε S+ & c � {a} → (∃b ε U)(c � {b})) iff a ε S+ → (∃b ε U)(a � {b})) iff
a � U since � is unary; quite similarly for Pos. So we have proved that:

Theorem 1.17 Unary formal topologies are exactly those formal topologies
which are represented by basic pairs of the form (S, , S), where  is the re-
striction of a preorder on S to a monotone subset H ⊆ S.

The above theorem says that the essence of a unary formal topology is just
a preordered set with a distinguished monotone subset H. To actually obtain
a bijective correspondence, one has to add an extra condition saying that the
preorder is determined by its restriction to H:

Definition 1.18 A structure P = (P,≺,H) is called a preorder with positivity
if P is a set, ≺ is a preorder on P and H is a subset of P satisfying

monotonicity
a ε H a ≺ b

b ε H

positivity
a ε H → a ≺ b

a ≺ b

Of course, given any preorder (P,≺) and any monotone H ⊆ P , one can impose
positivity by defining a ≺′ b ≡ a ε H → a ≺ b.

Proposition 1.19 There is a bijective correspondence between unary formal
topologies and preorders with positivity.

Proof: With any unary formal topology S = (S, �,Pos), we associate
LS ≡ (S,≺� HPos) where

a ≺� b ≡ a � {b} HPos ≡ S+ ≡ {a : Pos(a, S)}

Clearly ≺� is a preorder. We have already seen that S+ is monotone. To see
that it satisfies positivity, note that any unary cover satisfies

positivity
a ε S+ → a � U

a � U

because a ε S+ → a � U iff a ε S+ → (a ε S+ → (∃b ε U)(a � {b})) iff
a ε S+ → (∃b ε U)(a � {b}) iff a � U . So in particular a ε S+ → (a � {b}) iff
a � {b}, as wished. So LS is a preorder with positivity.

Conversely, given any preorder with positivity P = (P,≺,H), we define WP
to be the formal topology represented by (S, , S), where a  b ≡ a ε H & a ≺ b.
By the same arguments as in the proof of theorem 1.17, this means that WP is
equal to (P,�≺,PosH) where

a �≺ U ≡ a ε H → (∃b ε U)(a ≺ b)
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PosH(a, F ) ≡ a ε H & ↑a ⊆ F )

It only remains to be proved that the correspondence given by L and W is bijec-
tive. To show that LWP = P, it is enough to note that a ≺�≺ b ≡ a �≺ {b} iff
a ≺ b and that a ε HPosH

≡ PosH(a, S) iff a ε H, as we have already seen above.
On the other hand, WLS = S because a�≺�

U ≡ a ε HPos → (∃b ε U)(a ≺� b)
iff a ε S+ → (∃b ε U)(a � b) iff a � U because � is unary, and similarly
PosHPos(a, F ) ≡ a ε HPos & ↑a ⊆ F iff a ε S+ & ↑a ⊆ F iff Pos(a, F ) because
Pos is unary. q.e.d.

It should be possible to extend to morphisms the definition of L and W given
above on objects, and thus obtain an equivalence of categories. However, the
general notion of morphism between formal topologies (in the new formulation)
is not yet safely stabilized, and this is why I prefer to leave this topic to a future
occasion. Let us turn to domains.

We are going to see that for any unary formal topology S, the formal space
Pt(S) is an algebraic cpo. The proof is simpler if we exploit the preceding
proposition. In any preorder with positivity P, a subset α of P is called a
proper filter if it is inhabited, contained in H, upward closed and convergent;
writing α  a for a ε α as in definition 1.13 and a↓b for {c : c ≺ a & c ≺ b}, the
second two conditions are expressed by

α  a a ≺ b
α  b

α  a α  b
α  a↓b

respectively. The link with formal topologies is given by:

Lemma 1.20 For any unary formal topology S, formal points of S coincide
with proper filters of the corresponding preorder LS.

Proof: Since c ≺� a iff c � {a}, the subsets {c : c ≺� a & c ≺� b} and
{c : c�a & c�b} coincide (and this is why the same notation a↓b may be used).
So it is enough to show that α enters Pos iff α is upward closed and α ⊆ H.
Assume that α enters Pos. Then α  a (with α ⊆ α) gives Pos(a, S), that is
a ε H; so α ⊆ H. From α  a (and α ⊆ α) it follows that Pos(a, α) and hence,
if a ≺� b that is a�{b}, by compatibility also Pos(b, α), from which α  b; so α
is upward closed. Conversely, assume that α is upward closed and that α ⊆ H.
Then α  a gives a ε H and α ⊆ F gives ↑a ⊆ F , so that Pos(a, F ) because Pos
is unary. q.e.d.

Proposition 1.21 For any unary formal topology S, the formal space Pt(S) is
an algebraic cpo.

Proof: By the lemma and by proposition 1.19, it is enough to show that
proper filters of any preorder with positivity form an algebraic cpo. This is
a standard result (cf. e.g. [1] for a quite similar result). A variant is due to
the presence of the subset H, but it gives no problems. The algebraic elements
are exactly the principal filters ↑a for any a ε H, and for any proper filter α,
α = ∪aεα↑a holds. q.e.d.
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Also the converse holds, that is, any algebraic cpo D = (D,≤) can be pre-
sented as the formal space of a unary formal topology. Equivalently, D will be
presented as the cpo of proper filters of a preorder with positivity. This also
is familiar; to obtain a predicative proof, one must assume that D is set-based,
that is, that the collection K(D) of compact elements is given as a set-indexed
family, say ai ∈ D(i ∈ I), where I is a set (see [8]). Then we say that D is
algebraic if, for any x ∈ D, the collection ↓Kx of compact lower bounds of x
is a set-indexed family of elements which is directed (and hence inhabited) and
such that x = ∨↓Kx.

Then the idea is simple: we take K(D) itself (formally, the set I on which it
is indexed) as the preordered set, and associate an arbitrary element x ∈ D with
(the indexes of) compact elements below x. In particular, a compact element a
must correspond to (indexes of) the formal point ↑a. So we provide I with the
preorder

i ≺ j ≡ aj ≤ ai

for any i, j ∈ I. For the positivity predicate, we have no other choice than
declaring any element in I to be positive. So (I,≺, I) is a preorder with (a
trivial) positivity. The isomorphism from D into proper filters of (I,≺) is given
by

f : x 7→ ↓Ix ≡ {i ∈ I : ai ≤ x}

Firstly, ↓Ix is a proper filter, for any x ∈ D. In fact, ↓Ix is inhabited, because
i ε ↓Ix ≡ ai ≤ x and ↓Kx is inhabited. It is convergent because ↓Kx is directed.
And it is upward closed because i ε ↓Ix and i ≺ j mean that ai ≤ x and aj ≤ ai,
so that aj ≤ x ≡ j ε ↓Ix. Trivially, ↓Ix is proper because all elements of I are
positive.

It is easy to check that

x ≤ y iff ↓Ix ⊆ ↓Iy

In fact, if x ≤ y and i ε ↓Ix, then ai ≤ x, hence ai ≤ y, that is i ε ↓Iy.
Conversely, ↓Ix ⊆ ↓Iy gives ↓Kx ⊆ ↓Ky, and hence x ≤ y because x = ∨↓Kx
and y = ∨↓Ky. So f preserves the order and is one-one. Finally, to show that
f is onto, assume that α is any proper filter of (I,≺). Then {aj : α  j} is
directed in D, and hence it has a supremum x; the claim is that α = ↓Ix. In
fact, if α  i then obviously ai ≤ x, that is i ε ↓Ix. Conversely, if i ε ↓Ix, that
is ai ≤ x ≡ ∨{aj : α  j}, then since ai is compact, there exists j such that
α  j and ai ≤ aj ≡ j ≺ i, and hence α  i because α is upward closed.

We have thus proved:

Proposition 1.22 Any set-based algebraic cpo is isomorphic to a formal space
Pt(S), where S is some unary formal topology.

Technically speaking, propositions 1.21 and 1.22 are hardly new (for similar
results, see for instance [1], in particular theorem 2.2.29); the novelties here
are mainly conceptual, as I now point out. First, all the proofs given here are
predicative; more precisely, they can be formalized in type theory, just as all
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of formal topology. It is nice to know, I believe, that the theory of domains,
that is denotational semantics, can be expressed in a safe computer language.
Secondly, the expectation is confirmed that a class of domains corresponds to
unary formal topologies, also in the new formulation. The fact that such class
is that of algebraic cpos, which is wider than that of Scott domains, speaks in
favour of the new definition of formal topology (and of course Scott domains
can be obtained by adding the condition that for all a and b there is c such
that a↓b = ↓c, but we leave the details). The interest of the embedding into
formal topology is that all the results acquire meaning as part of a more general
framework; in particular, the link between preorders and domains is given by the
fundamental topological functor mapping a formal topology S into the formal
space Pt(S).

Finally, I admit, the extra generality given by the presence of the subset H of
positive elements is not yet fully justified. Further study is necessary; in partic-
ular, I would not drop it until a thorough study of morphisms is accomplished.
Note however that from a predicative point of view the class of preorders with
positivity is strictly wider than that of preorders, because predicatively a subset
is not necessarily a set.
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