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Introduction. If the aim is to develop mathematics within a constructive set
theory, topology seems to be a good test since it is a �eld in which foundational
problems are particularly evident. This is a fortiori true if constructivity is
meant in a stricter sense to include predicativity, like in Martin-L�of's construc-
tive type theory [5]. In fact, the usual de�nition of topological space involves a
quanti�cation over subsets, which has to be justi�ed predicatively. Moreover, in
many well known topological spaces the de�nition of points requires an in�nite
amount of information (one example is given by real numbers) and thus it is
not a priori granted that the collection of points form a set.

Such problems are solved in formal topology (see [8] and [10]) which is
strictly constructive since it is developed fully within Martin-L�of's type the-
ory (henceforth simply type theory) equipped with a notation for subsets to
support intuition (as introduced and justi�ed in [12]).

For our present purposes, the de�nition of formal topology can be motivated
as follows. Assume that a topology 
X on a set of points X is given by means
of a base; this is expressed in type theory as a family of subsets of X indexed
on a set S, that is a function ext : S ! PX , which is the same (cf. [12]) as a
binary relation x 
 a, for x 2 X and a 2 S. The main idea is then to transfer
the structure of 
X over the set S, and to this aim S is equipped with some new
primitives. A natural choice is to add a binary operation � satisfying x 
 a � b
i� x 
 a and x 
 b and thus called formal intersection, a distinguished element
1 2 S satisfying x 
 1 for any x 2 X , and an in�nitary relation a�U for a 2 S

and U � S, satisfying a � U i� (8x 2 X)(x 
 a ! (9b � U)(x 
 b)) and
thus called formal cover. A unary predicate Pos(a) prop (a 2 S) is also added,
satisfying Pos(a) i� (9x 2 X)(x 
 a) and called the positivity predicate.

The de�nition of formal topology is then obtained by expressing the above
situation in pointfree terms, that is by requiring the structureA = (S; �; 1;�; P os)
to satisfy all the properties of the new primitives �; 1;�; P os which can be for-
mulated without any mention of points of X . This leads to (cf. [8] and [9]):
A = (S; �; 1;�; P os) is a formal topology if:

(S; �; 1) is a commutative monoid;
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� satis�es:

re
exivity
a � U

a� U
transitivity

a� U (8b � U)(b� V )

a� V

�-left
a� U

a � b� U
�-right

a� U a� V

a� fb � c : b � U; c � V g

Pos satis�es

monotonicity
Pos(a) a� U

(9b � U)Pos(b)
positivity

Pos(a)! a� U

a� U

(for an analytic explanation of such conditions see [10]).
Any in�nitary relation � is equivalently represented as an operator on sub-

sets AU � fa 2 S : a�Ug; then � is a cover if and only if A is a closure opera-
tor which moreover satis�es distributivity in the form A (U �V ) = A (U)\A (V )
(where U � V � fb � c : b � U; c � V g). Then a formal open can be de�ned as a
subset U of S such that U = AU:

The presence of the positivity predicate Pos has been felt by some scholars
as a redundancy; from the above considerations, we see that Pos(a) is the
only primitive corresponding to an existential quanti�cation over points, and it
thus becomes a positive pointfree way to express that ext (a) is inhabited. Its
presence was due (apart from the convenience in the de�nition of formal points
and in the treatment of Scott domains [13]) to the expectation of obtaining a
good de�nition of formal closed subsets. As we will see here, to obtain this not
only Pos must be kept, but the way it expresses existential quanti�cation over
points must be strengthened, reaching a binary predicate which is as relevant
as the formal cover and dual to it.

What is the point of the move to pointfree terms? An ideological rejection
of points altogether is not a far reaching justi�cation in our opinion; to the
contrary, we believe that when points form a set, the information given by them
should by no means be thrown away (two examples: rational numbers and all
�nite sets). The trouble is that in the most interesting examples there is no
simple way to generate inductively all the points one would like to have. In the
case of real numbers, this problem was solved by Dedekind with the introduction
of Dedekind cuts and by Brouwer with choice sequences. Formal topology allows
to solve the same problem in more general terms by introducing the abstract
notion of formal point as follows. Using the notation with 
 adopted above,
when a point x is concretely given it satis�es the conditions:

x 
 1 x 
 a � b i� x 
 a and x 
 b

x 
 a a� U

(9b � U)(x 
 b)

x 
 a

Pos(a)

Like the de�nition of formal topology A is obtained by requiring all the prop-
erties which can be expressed in the pointfree language with �; 1;� and Pos,

2



formal points of A are now de�ned to be those subsets of S which cannot be
distinguished, in the language of A, from the subset �x � fa 2 S : x 
 ag
traced by an hypothetical generic concrete point x. Note that this idea is ex-
actly the same which led Dedekind from rational numbers to cuts, and to the
de�nition of real numbers as cuts (cf. [2]). Formally, a subset � of S is said to
be a formal point if, after writing � 
 a in place of � �a (i.e. a � �), all the
above conditions are satis�ed with � replacing x; we reach in this way the same
de�nition as that given in [8].

The collection of formal points over a formal topologyA is denoted by Pt(A).
The structure (Pt(A);A; �) is called a formal space, since it is similar to the
structure (X;A; 
) which was used above to describe a topological space. It
is type theory which gives a precise foundational meaning to the distinction
between topological spaces and formal spaces, since it refrains from considering
Pt(A) a set like any other, and in this sense it has favoured the emergence of
formal topology itself.

In a similar way, we now see how a new quite rich structure emerges after a
radical rejection of the law of excluded third, and in particular after rejection
of the identi�cation of 9: with :8, which in topology takes the form of the
identi�cation of closed subsets with complements of open subsets. To this aim,
we have to go back to the simple structure (X;S; 
) introduced above and take
it as our main object of study. The aim of this paper is to give a sort of preview
of the fact that this will be rewarding, mainly from a conceptual point of view1.

Basic pairs. A structure X � (X;S; 
); where X and S are arbitrary sets
and 
 is an arbitrary binary relation between them, is here called a basic pair.
To help the intuition, we may (as in the introduction above) think of X as a
set of concrete points and S as a set of basic formal opens (or observables);
x 
 a can be read as \a is a formal neighborhood of x" or more neutrally
as \x forces a" and then the relation 
 itself is called forcing. This way of
reading introduces a distinction between the left side, which is called concrete
side, and the right one, which is called formal side. The relation 
 is the way
to pass from the formal to the concrete side, and conversely. For any a 2 S;

the extension of a is the subset of X of all concrete points forcing a; that is
exta � fx 2 X : x 
 ag: In topological terms, the family of subsets (exta)a2S
is of course a sub-base for a topology on X; like any family of subsets of X:

In the other direction, any element x 2 X on the concrete side determines
a subset 3x � fa 2 S : x 
 ag on the formal side, which is called the system
of neighborhoods (or approximations) of x: The picture we have in mind is
something like:

1We have at least two debts of gratitude to Per Martin-L�of. One is his interest in formal
closed subsets, which is almost as old as formal topology itself. It indirectly stimulated the
discovery (by Sambin) of binary Pos and hence much of the basic picture in December '95;
morphisms and a correct appreciation of symmetry came later (and are due to both authors).
The other is more recent discussions, in particular on the topics in the last paragraph here.
It is a pleasure for us to thank him.
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ext a

xx

a

X S

approximationspoints

The de�nition of 3 is immediately extended to any subset A � X by
de�ning as usual3A �

S
x�A

3x: Spelling out the de�nition of union of subsets
(see [12]), we see that 3A is just the image of A along 
 through an existential
quanti�cation:

3A � fa 2 S : (9x 2 X)(x 
 a & x � A)g:

Because of the option for intuitionism, the image of A obtained through a uni-
versal quanti�cation is not de�nable in terms of 3 and we thus are lead to
put

2A � fa 2 S : (8x 2 X)(x 
 a! x � A)g:

So both 3 and 2 are operators on subsets, i.e. functions from P (X) to P (S):
The fact that they are given by an existential and universal quanti�cation respec-
tively is immediately visible by adopting a notation for quanti�cation relativized
to subsets (as justi�ed in [12]):

3A � fa 2 S : (9x � exta)(x � A)g
2A � fa 2 S : (8x � exta)(x � A)g

In the other direction, also ext is extended to any subset U � S by putting
extU �

S
a�U

exta; extU is called the extension of U: As above, we consider
also the universal image rest U and call it the restriction of U: Using quanti�ers
relativized to 3x; the formal de�nitions are:

extU = fx 2 X : (9a � 3x)(a � U)g
rest U = fx 2 X : (8a � 3x)(a � U)g

A glance at the de�nitions shows that the de�nition of the operators ext and
rest could be obtained from that of 3 and 2 ; respectively, just by switching
the role of the sets X and S: In fact, writing as usual 
� for the inverse of
the relation 
; we see that X� � (S;X; 
�) is still a basic pair, perfectly
as good as X � (X;S; 
); we call X� the symmetric of X : So the operators
ext and rest in X are just the same thing as 3 and 2 ; respectively, but in its
symmetric X�:

In purely mathematical terms, 3A and 2A just give what is sometimes
called the weak and strong image, respectively, of the subset A along a relation,
which in this case is 
 : For a relation denoted by r ; the notation rA and r� A;
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respectively, is sometimes used. Symmetrically, extU and rest U are just the
weak and strong anti-image, respectively, of U along 
 : They are denoted by
r� U and r� U; respectively, if the relation is r : Notice that r� U and r� U are
the same thing as weak and strong image along the relation r� : Even if the
mathematical content is exactly the same, to help the intuition we here have
preferred to adopt a speci�c terminology and notation, namely 3; 2; ext; rest;
for weak and strong (anti-)images along the forcing relation 
; which according
to a uniform notation should have been called 
; 
�; 
�; 
� respectively.

Beside the geometrical symmetry between the left side X and the right side
S; there is also a logical duality clearly present: the de�nition of 3 and 2 are
obtained one from the other by interchanging the roles of 8 with 9 and ! with
& : The same of course holds for ext and rest : So a picture could be:

dual du
al

E

symmetric

symmetric

A

ext

rest

What is the use of all such structure? We begin by seeing that the topological
notions of interior and closure are immediately obtained by combinations of the
four operators 3 ;2 ; ext ; rest : The symmetry of the picture will then produce
also their pointfree, or formal, versions.

Interior and closure. The interior of a subset A of X is usually de�ned as
the set of points of X with a neighborhood all contained in A (see for instance
[4], pp. 42, 44). In our notation, such de�nition becomes

intA � fx 2 X : (9a � 3x)(8y 2 X)(y 
 a! y � A)g;

and then it is clear that such combination of quanti�ers is just the composition
of ext after 2 ; that is intA � ext2A:

As usual we say that A is open if A = intA; but of course, we cannot
expect int so de�ned to be a topological interior operator, since nowhere it has
been assumed anything telling that the intersection of two open subsets is open.
However, it is easy to prove that int is an interior operator, that is

i. intA � A;

ii. if A � B then intA � intB;

iii. intA � int intA;
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for any A;B � X: Condition i. follows immediately from the adjunction

extU � A i� U � 2A; for any U � S and A � X (1)

by taking U to be 2A; condition ii. follows from the fact that the operators
ext and 2 preserve inclusion of subsets and iii. is a consequence of

2 ext2A = 2A; for any A � X

which follows easily from (1) above.
Quite similarly, the usual de�nition of the closure clA of a subset A of X

says that x � clA if any neighborhood of x intersects A. In our notation,

clA � fx 2 X : (8a � 3x)(9y � exta)(y � A)g

that is clA � rest 3A: It is now easy to prove that cl is a closure operator,
that is

i. A � clA;

ii. if A � B then clA � clB;

iii. cl clA � clA;

for any A;B � X: Like above, the proof is based on the adjunction

3A � U i� A � rest U; for any A � X and U � S (2)

and the fact that 3 and rest preserve inclusion.
Like we did above with open subsets, we say that A is closed if A = clA;

even if cl is not a closure operator in the sense of topology (since the union of
two closed subsets is not necessarily closed).

Formal open and formal closed subsets. Because of the symmetry be-
tween the left and the right side of a basic pair X



�!S; the above de�nitions

of int � ext2 and cl � rest 3 also have symmetric de�nitions, obtained by
replacing each operator with its symmetric: C � 3 rest and A � 2 ext : By
symmetry, it is immediate that C is an interior operator and A is a closure
operator. We now see that actually A is something already known, while C is
in a sense what we were looking for. In fact, spelling out the de�nition of A ;

we see that

a � AU � (8x 2 X)(x 
 a! (9b � U)(x 
 b))

that is, a � AU if all concrete points forcing a also force U; which is the relation
between a and U which was meant to be expressed by the formal cover a�U: So
we extend the previous de�nition and say that U is formal open if U = AU ; note
however that in the wider generality of any basic pair, the closure operator A
does not satisfy distributivity A (U � V ) = AU \AV since X has no topology
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in the traditional sense. Such generality, however, allows to see that A is
symmetric to cl ; which means that the notion of \a being covered by U", i.e.
a � AU; is just the symmetric of x � clA; that is \x is an adherence point of A";
to our knowledge, the simple (but unexpected!) fact that the formula de�ning
one notion can be obtained from the other by interchanging points and opens
had not been noticed before.

More interesting is the second operator C ; which is the novelty emerged, by
symmetry with int or equivalently by duality with A ; from the general study
of basic pairs. Spelling out its de�nition, we have

a � C F � (9x 2 X)(x 
 a & (8b 2 S)(x 
 b! b � F ))

which we can now recognize as a strengthening of the intuitive pointwise in-
terpretation of the positivity predicate. In fact, writing 3x � F in place of
(8b 2 S)(x 
 b! b � F ) as usual, we see that a � C F means not only that a is
inhabited by a concrete point x; but also that 3x � F; i.e. all neighborhoods
of such point x are elements of F: As we write a � U for a � AU; we also will
write Pos(a; F ) for a � C F and call Pos(a; F ); for any a 2 S and F � S;

the binary positivity predicate. The previous unary positivity predicate is now
obtained as a special case, by putting Pos(a) � Pos(a; S):

The relevance of binary Pos is that it allows to de�ne by symmetry the notion
of formal closed: we say that a subset F of S is formal closed if F = C F; i.e.
a � F i� Pos(a; F ):

In this way we see that the notions of concrete and formal, open and closed
subsets are all de�ned by means of a couple of relativized quanti�ers of the form
98 or 89 (see the picture below). The logical structure is so evident that one
could even reverse the perspective and conceive such topological notions as a
conceptual tool to treat combinations of quanti�ers in a more synthetic way.

The isomorphism theorem. By de�nition of int ; any concrete open subset
A is of the form extU for some U � S: Conversely, any subset of X of the form
extU; for any U � S; is concrete open, because extU = ext2 extU = int extU:

Therefore:

A � X is concrete open i� A = extU for some U � S

Quite similarly, one can prove that:

A � X is concrete closed i� A = rest U for some U � S

U � S is formal open i� U = 2A for some A � X

F � S is formal closed i� F = 3A for some A � X:

It is then easy to see that, when restricted to open subsets (either concrete or
formal), the operators ext and 2 are bijective, and one inverse of the other.
Similarly for closed subsets, with rest and 3 :
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Just from the fact that int is an interior operator, it follows that an arbitrary
union of concrete open subsets is concrete open. Symmetrically, an arbitrary
union of formal closed subsets is formal closed. Dually, an arbitrary intersection
of concrete closed (formal open) subsets is concrete closed (formal open). We can
as usual de�ne the meet of an arbitrary family of concrete open subsets intAi as
the interior of the intersection, i.e.

V
i2I

intAi � int (
T
i2I

intAi); equivalently,
but less constructively, one could de�ne

V
i2I

intAi as the join of all concrete
open subsets contained in

T
i2I

intAi: Dually, the join of an arbitrary family
of formal open subsets is de�ned by

W
i2I

AUi � A (
S
i2I

AUi). So concrete
and formal open subsets form two complete lattices. Quite similarly for closed
subsets. The following theorem gives then further evidence of the correctness
of our de�nitions:

Theorem. The operator ext is an isomorphism between the lattice of for-
mal open and that of concrete open subsets. Dually, the operator rest is an
isomorphism between the lattices of formal closed and of concrete closed subsets.

The following picture summarizes most of the information about open and
closed subsets:

int

isomorphic

iso
mor

ph
ic

C

Acl

dual du
al

symmetric

symmetric

AE

EA

formal open

formal closed 

concrete closed

concrete open

Of course, the vertical line at the right refers to the formal side, and at the left
to the concrete side. Also, the top horizontal line refers to closure operators,
and the bottom one to interior operators. One diagonal refers to open subsets,
the other to closed subsets.

Continuity. What we have seen so far could be summarized by saying that
topology begins with basic pairs. They are the simplest extension of the notion
of set, that is two sets linked in the weakest possible way, namely by a relation.
We are now going to see that continuity begins with the weakest possible way
to link two basic pairs, namely a pair of relations giving rise to a commutative
square.

Given two basic pairs X � X


�!S and Y � Y



�!T; we say that a pair of
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relations r : X ! Y and s : S ! T is a morphism from X to Y if the diagram

X


�! S

?
?
yr

?
?
ys

Y


�! T

is commutative. Here we assume that composition of relations is de�ned as
usual; then, writing rx for r fxg; commutativity of the above diagram is ex-
pressed by the equation

3rx = s3x for any x 2 X: (3)

Several motivations lead to consider relations rather than functions and then
to adopt the above de�nition of morphisms between basic pairs. First of all,
relations are more general than functions and they allow to grasp better the
essence of continuity. Secondly, on one hand we obtain the usual de�nition of
continuity for functions as a particular case, but on the other hand we will also
be able to give a natural constructive de�nition of topological Kripke structures.
A third good reason for considering relations is that the inherent symmetry of
basic pairs is somehow preserved: if (r; s) : X ! Y is a morphism, also the
inverse (s� ; r� ) is a morphism, from Y� into X�: This statement would be
impossible with functions.

Given a relation r : X ! Y; a simple minded extension of the usual de�nition
of continuity for functions is to require that r� is open. Since any open subset
of Y is of the form extU for some U � T; this amounts to

r� (extU) = int (r� extU) for any U � T :

Since ext distributes over union, it is enough to require that

r� (ext b) = int (r� ext b) for any b 2 T : (4)

One can see that, putting a s b � exta � r� (ext b); such requirement is equiv-
alent to (3) above. So, (3) is satis�ed when r� is open, for a suitable choice of
s: On the other hand, it can easily be proved that if (r; s) is a morphism, then
r� is open and s is essentially uniquely determined by r; in fact, if (r; s0) is any
other morphism, then s and s0 coincide \topologically", that is A s0

�
b = A s� b

for any b 2 T: So in a certain sense (3) is equivalent to r� being open; we prefer
the former for aesthetic reasons.

An equivalent characterization is reached through a di�erent path. Assume
we express the fact that r� is open as:

for any U � T; there is V � S such that r� (extU) = extV:

More constructively, this can be expressed by requiring the existence of a family
of subsets Vb � S for b 2 T such that

r� (ext b) = extVb for any b 2 T: (5)
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But as we have seen already, the family of subsets (Vb)b2T is equivalently rep-
resented as a relation a s b � a � Vb; and then (5) becomes

r� (ext b) = ext (s� b) for any b 2 T: (6)

It is a matter of fact that (6) is equivalent to (3). Actually, one can prove that
also

r� (rest F ) = rest (s� F ) for any F � T;

2 (r� A) = s� (2A) for any A � X

are equivalent formulations of morphisms.
Basic pairs and morphisms, as de�ned above, form a category which we call

BP. From a strictly technical point of view, BP is nothing but the category
Rel

2, that is the category whose objects are arrows in Rel, the category of sets
and relations, and morphisms are indeed de�ned as commutative squares. We
have preferred to adopt a new name to recall both that topology is now involved,
which makes BP conceptually di�erent from Rel

2, and that the underlying set
theory is constructive type theory. Nevertheless, the usual nice tricks with dia-
grams are possible in BP as they were in Rel2. For instance, the commutative
square of the de�nition of a morphism (r; s) can be read also as a morphism
( 
; 
) from the basic pair X

r
�!Y into the basic pair S

s
�!T:

A basic pair is technically also the same thing as a boolean Chu space (see
[7]); we have chosen to adopt a new name for the same reasons as above. A
fortiori in this case since the category of Chu spaces is quite di�erent from
BP, since morphisms of Chu spaces are de�ned as pairs of functions, and in
opposite directions. Thus BP strictly generalizes the category of boolean Chu
spaces and provides it with a topological taste which was so far neglected. One
can therefore expect from BP an even wider range of applications than those
developed and foreseen by V. Pratt for Chu spaces (see his www page [6]).

The notion of continuity for relations (sometimes euphemistically called
\many-valued functions") has been considered by various authors, particularly
in the past; a textbook is [1]. Two more recent references are [15], especially
section 4.4 where some bibliographic references can also be found, and [16],
which generalizes2 the notion of continuous relation as introduced in [11].

When X and Y are topological spaces, a relation r : X ! Y is said to be
lower semi-continuous if r� is closed, i.e. r� A is closed inX wheneverA is closed
in Y; and upper semi-continuous if r� is open (see [15]). Lower semi-continuity
is classically equivalent to r� open, and hence to our (4), which does not need
any free variable on subsets, while the free variable on subsets to express upper
semi-continuity is not eliminable. This is why we have adopted the former as
our de�nition (while continuous relations of [1] are required to satisfy both).

Note that our de�nition is still su�cient to give the usual de�nition of con-
tinuity for functions as a special case when the relation r is actually a function.

2Note that the generalization of [11] given by M. B. Smyth in [16] is in the opposite direction
of that presented here. We will bring more arguments for our present choice in [3].
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Topological Kripke structures. A Kripke structure is usually nothing but
a set X together with a relation r : X ! X: It clearly is a special case of
basic pair (in which S = X). We are more interested however in the fact that
basic pairs allow to introduce a constructive de�nition of topological Kripke
structure in a natural way. In fact, we say that (X ; r) is a topological Kripke
structure if X



�!S is a basic pair, so that X is topologized by S through 
; and

r : X ! X is a relation whose inverse r� is open. In other terms, a topological
Kripke structure is essentially nothing but a morphism from a basic pair into
itself. Then also the notion of contraction (see e.g. [11], also called p-morphism,
etc.) can now be generalized, and described simply as a commutative cube, of
which one face is (X ; r ) and the opposite face is (Y ; s ):

A new trend in formal topology. To conclude this preview, we can repeat
the process described in the introduction as a motivation for the de�nition of
formal topology, but now starting from a more general situation, given by a
basic pair (X;S; 
): The unfolding of the basic picture in the previous pages
has shown that to describe in the best possible way the concrete topological
structure of X by means only of the formal side, we have to adopt two primitive
relations � and Pos or equivalently two operators A and C ; which will be
assumed to be a closure operator and an interior operator respectively. When
A and C are de�ned by means of the relation 
 in a basic pair, the link between
them is automatically given by the fact that A � 2 ext and C � 3 rest with
respect to the same forcing relation. We now have to add a condition expressing
this with no mention of X; and hence of 
 : We thus arrive at

compatibility
a � AU a � C V

(9b � U)(b � C V )

which is easily seen to hold in any basic pair. In the equivalent notation with
� and Pos; we thus reach the:

De�nition of basic formal topology. A triple S � (S;�; P os) is called a basic
formal topology if S is a set, � and Pos are in�nitary relations satisfying:

re
exivity
a � U

a� U
transitivity

a� U (8b � U)(b� V )

a� V

antire
.
Pos(a; F )

a � F
trans.

Pos(a; F ) (8b 2 S)(Pos(b; F )! b � G)

Pos(a;G)

compatibility
a� U Pos(a; F )

(9b � U)(Pos(b; F ))

The di�erence with the previous de�nition of formal topology is twofold. On
one hand, no condition expressing that (ext a)a2S is a base is now present, or
equivalently, no condition guaranteeing that formal opens form a frame. Since
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they do form a complete lattice in any case, the di�erence is distributivity.
This was previously expressed by the requirement A (U � V ) = AU \ AV; or
equivalently �-left and �-right, but it can be expressed even in absence of the
primitive operation � taking up an idea in [14]. So in this sense basic formal
topologies become a more general de�nition. On the other hand, however, now a
binary Pos is required, which means that formal topologies are not obtained as
a special case. Rather, this leads to the de�nition of formal topologies in which
a binary Pos is assumed. We expect that the study of such structures will
highlight the stronger expressiveness of binary Pos; in particular with regards
to negative notions.

The de�nition of basic formal topology has in any case some interest in itself.
A notion of formal point can still be given, but one can see that in absence of
distributivity it collapses with that of formal closed subset. Also, a good notion
of formal continuous map between basic formal topologies can be obtained by
using both weak and strong anti-images, to deal with formal open and formal
closed subsets respectively.

As a �nal remark, note that, due to the complete symmetry of a basic pair,
we would reach exactly the same de�nition by transferring the structure of the
formal-right side to the concrete-left side, rather than conversely as in formal
topology. If we actually write down the result, we see that it is nothing but a
structure (X; cl ; int ); where cl is a closure operator and int an interior operator,
linked by the condition

x � clA x � intB

(9y � A)(y � intB)

which has an immediate intuitive content. This is a quite simple but rich struc-
ture, which never came to life before because the equalities of classical logic
made it impossible to be conceived.
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